SCAD Office

Version 23

VERIFICATION EXAMPLES

Volume 1

Electronic edition

SGAVID

Kyiv • 2024
© SCAD Soft

TABLE OF CONTENTS

Introduction 9
SCAD. VERIFICATION MATRIX 10
Strength and Stiffness Analysis of a Rolled I-beam 29
Linear Statics 31
Plane Truss Subjected to a Concentrated Force 32
Plane Hinged Bar System Subjected to a Concentrated Force 34
Plane Truss Subjected to Force, Thermal and Kinematic Actions 37
Plane Hinged Bar System with Elements of Different Material Subjected to Temperature Variation 39
Plane Hinged Bar System with Elements of the Same Material Subjected to Temperature Variation 41
Test CS01 Spatial Hinged Bar System Subjected to a Concentrated Force 43
Cantilever Beam Subjected to a Concentrated Load 46
Cantilever Beam Subjected to a Concentrated Shear Force 48
Vertical Cantilever Bar of Square Cross-Section with Longitudinal and Transverse Concentrated Loads at Its Free End 51
Simply Supported Beam Subjected to a Concentrated Force and Uniformly Distributed 55
Three-Step Simply Supported Beam Subjected to Concentrated Forces 57
Doubly Clamped Beam Subjected to a Uniformly Distributed Load 59
Doubly Clamped Beam Subjected to a Uniformly Distributed Load, Concentrated Longitudinal and Shear Forces and a Bending Moment 61
Two-Span Simply Supported Beam with an Intermediate Compliant Support Subjected to Concentrated Shear Forces Applied in the Middle of the Spans. 63
Beam on the Elastic Horizontal Subgrade Subjected to Concentrated Vertical Forces 65
Simply Supported Beam on the Elastic Horizontal Subgrade Subjected to a Vertical Uniformly Distributed Load, Concentrated Vertical Force and Bending Moment 68
Doubly Clamped Beam Subjected to the Transverse Displacement of One of its Ends 71
Plane System of Two Coaxial Bars Subjected to Temperature Variation 73
Stress-Strain State of a Simply Supported Beam Subjected to Longitudinal-Transverse Bending 75
System of Cross Bars Subjected to a Distributed Load and a Concentrated Force in Their Plane 77
Cantilever Frame Subjected to a Concentrated Force 80
Single-Span Simply Supported Plane Frame with a Dual-Pitched Girder Subjected to a Vertical Uniformly Distributed Load, Concentrated Vertical and Horizontal Forces and a Bending Moment82
Spatial Bar System with Elastic Constraints Subjected to a Concentrated Force 85
Ring Subjected to a Distributed Load Acting in Its Plane 90
Simply Supported Semicircular Arch of Constant Cross-Section Subjected to a Concentrated Force Acting in Its Plane 93
Strain State of a Split Circular Ring Subjected to Two Mutually Perpendicular Forces P_{x} and P_{y}, Acting in the Plane of the Ring 96
Cantilever Curved Beam with a Transverse Concentrated Force at Its Free End 99
Cantilever Circular Bar of Constant Cross-Section with Concentrated Forces and a Moment Acting in Its Plane at Its Free End 104
Cantilever Circular Bar of Constant Cross-Section with a Concentrated Force out of Its Plane at ItsFree End108
Single-Span Beam with a Prestressed Tie Subjected to a Uniformly Distributed Load 112
Two-Span Single-Storey Frame Subjected to a Constant Transverse Unit Force Moving Along the Girder Spans with a Small Speed. Plotting of Influence Lines of Internal Forces in the Frame Sections 114
Bending of a Rectangular Deep Beam Rigidly Suspended along the Sides Subjected to a Uniformly Distributed Load Applied to Its Upper Side 118
Pure Bending of a Square Plate in the Plane Stress State Clamped on One Side and Simply Supported in the Center of the Opposite Side 122
Compression and Bending of a Symmetric Wedge by Concentrated Forces Applied to Its Vertex (Michell's Problem) 128
Bending of a Symmetric Wedge by a Concentrated Moment Applied to Its Vertex (Inglis Problem)132
Bending of a Symmetric Wedge by a Uniformly Distributed Load Applied to the Surface of One of the Faces of the Wedge (Levi Problem) 136
Triangular Dam Subjected to Its Self-Weight and Hydrostatic Pressure 140
Plane Subjected to a Concentrated Moment and a Concentrated Force 144
Bending of a Curved Beam of a Narrow Rectangular Cross-Section by a Force Applied to Its Free End (Golovin's Problem) 153
Unilateral Tension of a Plate with a Small Circular Hole (Kirsch Problem) 158
Stress-Strain State of a Simply Supported Circular Plate Subjected to a Uniformly Distributed
Transverse Load 170
Stress-Strain State of a Clamped Circular Plate Subjected to a Uniformly Distributed Transverse Load 175
Stress-Strain State of a Simply Supported Annular Plate Subjected to a Uniformly Distributed Transverse Load. 180
Rectangular Narrow Cantilever Plate Subjected to a Uniformly Distributed Transverse Load 184
Torsion of a Rectangular Narrow Cantilever Plate by a Pair of Concentrated Forces 186
Square Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Load 189 Rectangular Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Transverse Load 193
Rectangular Plate Simply Supported at Three Vertices Subjected to a Concentrated Force and Concentrated Moments out of Its Plane 201
Stress-Strain State of a Clamped Hexagonal Plate Subjected to a Uniformly Distributed Load 204
Clamped Rectangular Plate of Constant Thickness Subjected to Thermal Loading 208
Simply Supported Thick Square Plate Subjected to a Uniformly Distributed Transverse Load. 212
Two-Ribbed Beam Subjected to Uniformly Distributed Loads Applied in the Plane of the Ribs 216
Curved Hollow Section Beam of a Bridge Superstructure Subjected to a Concentrated Force 222
Cylindrical Shell with Simply Supported Edges Subjected to Uniform Internal Pressure 233
Cylindrical Vertical Tank with a Wall of Constant Thickness with a Flat Bottom Subjected to Internal Fluid Pressure 240
Cylindrical Shell with Free Edges at a Temperature Gradient across the Thickness (in the Radial Direction) 247
Thick Square Slab Simply Supported along the Sides Subjected to a Transverse Load Distributed over the Upper Face According to the Cosine Law. 254
Thick Circular Slab Clamped along the Side Surface Subjected to a Load Uniformly Distributed over the Upper Face 259
Cylindrical Body Free from Restraints Subjected to a Longitudinal Load Uniformly Distributed over the Edges 262
Square Panel of a Flat Slab Rigidly Connected to a Column of a Circular Cross-Section Subjected to a Uniformly Distributed Transverse Load 265
Square Panel of a Flat Slab Rigidly Connected to a Column of a Square Cross-Section Subjected to a Uniformly Distributed Transverse Load 270
Elastic Half-Space Subjected to a Transverse Load Uniformly Distributed over a Rectangular Surface. Love's Problem 274
Linear Dynamics 284
Plane Truss Subjected to Instantaneous Pulses Concentrated in Non-Supporting Nodes of the Bottom Chord 285
Natural Oscillations of a Spatial Pipeline Clamped at the Edges (Hougaard's Problem) 291
Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Sudden Constant Load Applied to One of Them 296
Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Harmonic Exciting Force Applied to One of Them 303
Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Harmonic Exciting Force Applied to One of Them Taking into Account the Energy Dissipation due to Internal Friction 326
Simply Supported Beam with a Distributed Mass Subjected to a Transverse Harmonic Exciting Force Applied in the Middle of the Span 349
Simply Supported Beam with a Distributed Mass Subjected to a Constant Shear Force Moving along the Span of the Beam at a Constant Speed 356
Simply Supported Beam with a Distributed Mass Subjected to a Uniformly Distributed Instantaneous Pulse (Impact of a Beam with Immovable Supports) 362
Simply Supported Beam with a Distributed Mass Subjected to a Kinematic Excitation of Supports (Seismic Action) 370
Cantilever Weightless Column with a Concentrated Mass at the Free End Subjected to a Horizontal Kinematic Displacement of a Support (Seismogram Based Analysis) 373
Natural Oscillations of a Simply Supported Circular Plate 379
Natural Oscillations of a Clamped Circular Plate 398
Natural Oscillations of a Square Cantilever Plate 417
Natural Oscillations of a Simply Supported Square Plate 425
Natural Oscillations of a Simply Supported Rectangular Plate 448
Natural Oscillations of a Clamped Square Plate 471
Natural Oscillations of a Simply Supported Circular Cylindrical Shell 494
Natural Oscillations of a Clamped Circular Cylindrical Shell 523
Natural Oscillations of a Cantilever Open Cylindrical Shell 553
Plane Frame Subjected to a Uniformly Distributed Instantaneous Pulse 560
Seismic Response of a Beam according to the Linear Spectral Theory 571
Non-uniform Damping. Return to the Static Equilibrium Position 573
Non-uniform Damping 575
Linear Stability 579
Stability of a Simply Supported Beam Subjected to a Concentrated Longitudinal Force 580
Stability of a Clamped Beam Subjected to a Concentrated Longitudinal Force 582
Stability of a Cantilever Column with a Step Change in Cross-Section Subjected to Longitudinal Compressive Forces Applied to the Intermediate and End Sections 584
Stability of the System of Three Equally Loaded Columns of Different Rigidity Hingedly Interconnected by Girders 590
Stability of the System of Three Differently Loaded Columns of the Same Rigidity Hingedly Interconnected by Girders 593
Stability of the System of Three Differently Loaded Columns of Different Rigidity Interconnected by Girders Infinitely Rigid in Bending 596
Stability of the Frame of Two Simply Supported Equally Loaded Rigid Columns Rigidly Interconnected by a Girder 599
Stability of a Three-Span Two-Storey Frame Subjected to Concentrated Longitudinal Forces Applied to the Columns in the Joints with Girders 601
Stability of a Circular Two-Hinged Arch of a Constant Cross-Section Subjected to Hydrostatic Pressure 603
Stability of In-Plane Bending of a Cantilever Strip of a Rectangular Cross-Section by a Shear Force Applied at the Free End 606
Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Concentrated Longitudinal Compressive Force Centrally Applied at the Free End (Central Compression) 609
Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Concentrated Transverse Bending Force Centrally Applied at the Free End. 613
Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Concentrated Transverse Bending Force Applied to the Upper Edge of the Free End 616
Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value (Pure Bending) 620
Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value (Pure Bending) 623
Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to Concentrated Longitudinal Bending Forces Applied to the Upper Edges of the Ends and Equal in Value (Longitudinal Bending) 626
Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to Concentrated Longitudinal Bending Forces Applied to the Upper Edges of the Ends and Equal in Value (Longitudinal Bending) 630
Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Load Uniformly Distributed along Its Longitudinal Axis 634
Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Load Uniformly Distributed along the Longitudinal Axis of Its Upper Face 638
Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending) 642
Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis of the Upper Face (Transverse Bending) 645
Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending) 648
Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane
Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis 651
Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis 654
Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value (Pure Bending) 657
Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending) 660
Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis 663
Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Load Uniformly Distributed along the Longitudinal Axis of Its Upper Flange 666
Stability of a Simply Supported Rectangular Plate Uniformly Compressed in One Direction 669
Stability of a Simply Supported Square Plate Uniformly Compressed in One Direction 673
Stability of a Simply Supported Square Plate Uniformly Compressed in One Direction under Kinematic Action 676
Stability of a Rectangular Simply Supported Plate under Pure Shear 679
Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners Uniformly Compressed in the Longitudinal Direction (Model 1) 683
Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners Uniformly Compressed in the Longitudinal Direction (Model 2) 688
Stability of a Rectangular Simply Supported Orthotropic Plate Uniformly Compressed in One Direction 694
Stability of a Cylindrical Thin-Walled Shell with Simply Supported Edges Subjected to Uniform External Pressure 699
Nonlinear Statics 703
Three-Span Beam with One Clamped End and Three Rigid One-Sided Supports Subjected to Concentrated Forces above Them 704
Rigid Body Restrained by Five Springs of the Same Rigidity Working Only in Tension Subjected to a Concentrated Force. 706
Circular Tunnel Lining Subjected to the Given Active Vertical And Horizontal Earth Pressure andPassive Lateral Earth Pressure in the Contact Area709
Contact with Detachment for a Layer and Subgrade with a Concentrated Shear Force Applied to the Layer 725
Flexible Thread with Supports in One Level Subjected to a Uniformly Distributed Transverse Load 728
Flexible Ring Subjected to Two Mutually Balanced Radially Compressive Forces 730
Flexible Long Rectangular Plate Simply Supported along the Longitudinal Edges Subjected to a Uniformly Distributed Transverse Load 734
Flexible Square Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Transverse Load 739
Simply Supported Flexible Circular Plate Subjected to a Uniformly Distributed Transverse Load 743
Double-Guyed Mast Subjected to Static Loads and Prestressing Forces 747
Square Membrane with a Compliant Contour 753
Pathological Tests 755
Rectangular Plate under the Constant Stresses on the Midsurface 756
Rectangular Plate with Constant Curvature 765
Cube under the Constant Stresses throughout the Volume 774
Rectilinear Cantilever Beam with Concentrated Longitudinal and Shear Forces and a Torque at Its Free End 779
Curvilinear Cantilever Beam with Concentrated Shear Forces at Its Free End 811
Twisted Cantilever Beam with Concentrated Shear Forces at Its Free End 827
Simply Supported Flat Square Plate Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center 835
Flat Square Plate Clamped along the Outer Edges and Subjected to a Transverse Load UniformlyDistributed over the Entire Area and a Concentrated Shear Force Applied in the Center853
Simply Supported Flat Rectangular Plate Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center. 872
Flat Rectangular Plate Clamped along the Outer Edges and Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center. 901
Open Cylindrical Shell Rectangular in Plan and Simply Supported along the Curvilinear Edges Subjected to a Transverse Load Uniformly Distributed over the Entire Area 932
Free Hemispherical Shell with a Circular Pole Hole Subjected to Two Orthogonal Pairs of Mutually Balanced Radial Tensile and Compressive Forces Applied at the Equator. 962
Nearly Incompressible Thick-Walled Cylinder under Plane Deformation Subjected to Uniformly Distributed Internal Pressure1004
Energy Analysis 1016
Frame Subjected to Various Vertical Forces 1017
Frame Subjected to Vertical Forces 1019
Symmetric Frame Subjected to Vertical Forces - Detection of "Weak" Elements 1021
Erection 1023
Static Analysis of Stress-Strain State of a Building Taking into Account Genetic Nonlinearity 1024 Determination of Stress-Strain State Taking into Account Genetic Nonlinearity ("Erection" Mode) 1027
Replacement of a Column of a Two-Span Single-Storey Frame Subjected to a Constant Load 1030
Sequential Erection of a Steel Reinforced Concrete Single-Span Beam 1034
Response Spectra 1038
Response Spectrum of Absolute Response Accelerations of a Linear Oscillator Installed in the Middle of the Span of a Simply Supported Beam with a Distributed Mass Subjected to a Kinematic Excitation of Supports (Seismic Action) 1039
Amplitude-Frequency Characteristics 1044
Amplitude-Frequency Characteristic of a System with One Degree of Freedom 1045
Steel Structural Members 1049
Strength and Stiffness Analysis of a Welded I-beam 1050
Strength and Stiffness Analysis of a Rolled I-beam 1054
Strength and Stiffness Analysis of a Rolled I-beam 1058
Strength and Stiffness Analysis of a Rolled I-beam 1062
Strength and Stiffness Analysis of a Welded I-beam 1066
Analysis of an Axially Compressed Welded I-beam Column 1070
Strength and Stiffness Analysis of Stringers for a Normal Stub Girder System 1074
Strength and Stiffness Analysis of Stringers for a Complex Stub Girder System. 1078
Strength and Stiffness Analysis of Secondary Beams for a Complex Stub Girder System 1082
Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems 1086
Analysis of an Axially Compressed Welded I-beam Column...... 1091
Analysis of an Axially Compressed Electric Welded Circular Hollow Section Column 1095
Analysis of a Top Truss Chord from Unequal Angles 1099
Reinforced Concrete Structural Members 1103
Calculations according to SNiP 2.03.01-84* 1104
Strength Analysis of a Rectangular Beam 1105
Strength Analysis of a T-section 1109
Strength Analysis of a Wall Panel 1113
Calculations according to SNiP 52-01-2003 1117
Strength Analysis of a Rectangular Beam 1118
Calculation of a Rib of a TT-shaped Floor Slab for Load-bearing Capacity under Lateral Forces 1122
Calculation of a Simply Supported Rectangular Beam under Lateral Forces1129
Calculation of a Column of a Multi-storey Frame for Load-bearing Capacity under a Lateral Force 1133
Example of Punching Near the Edge of the Slab 1139
Analysis of a Reinforced Concrete Foundation Slab for Normal Crack Opening 1148

Introduction

This document contains verification examples, which are used to assess the reliability of the results obtained in SCAD. In the verification examples the numerical results obtained in SCAD are compared with known theoretical solutions (exact and approximate) in the fields of statics, dynamics and stability of structures, as well as with experimental data and numerical results obtained with the help of other independent software.

All verification examples are provided with exhaustive initial data with design models, necessary explanations and descriptions of finite element models, as well as the references to publications which are the sources of the adopted target solutions (theoretical and experimental). There are analytical formulas for the calculation of the results based on the theoretical solutions for most verification examples. Results of the calculation in SCAD are given in tabular and graphical form.

The differences between the results obtained in SCAD and the target results (theoretical and experimental) are given as relative deviations in \%, primarily for the extreme values (maximum and minimum) of the target solution, as well as for values that have a significant contribution to the stress-strain state of the structure, which, for example, can be estimated as the ratio of the considered value to the maximum extreme value according to a certain strength theory. The calculation of deviations was not performed in the areas of close proximity to zero solutions and to solutions with singularities, as well as in the areas where there is a distortion of solutions by the accepted boundary conditions.

SCAD. VERIFICATION MATRIX

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \end{array}$
Linear Statics							
1.	SSLL09	Plane Truss Subjected to a Concentrated Force	Concentrated static load	Based on the analytical solution	10	Displacements	0.00
						Forces	0.00
2.	SSLL11	Plane Hinged Bar System Subjected to a Concentrated Force	Concentrated static load	Based on the analytical solution	10	Displacements	0.00
3.	SSLL12	Plane Truss Subjected to Force, Thermal and Kinematic Actions	Concentrated static load, initial displacement, thermal action	Based on the analytical solution	1	Displacements	0.02
						Forces	0.00
4.	T1	Plane Hinged Bar System with Elements of Different Material Subjected to Temperature Variation	Thermal action	Based on the analytical solution	1	Forces	0.00
5.	T2	Plane Hinged Bar System with Elements of the Same Material Subjected to Temperature Variation	Thermal action	Based on the analytical solution	1	Stresses	0.00
6.	CS01	Spatial Hinged Bar System Subjected to a Concentrated Force	Concentrated static load	Based on the analytical solution	4	Forces	0.00
7.	4.1	Cantilever Beam Subjected to a Concentrated Load	Concentrated static load	Based on the analytical solution	5	Displacements	0.00
						Forces	0.00
8.	CS06	$\begin{array}{\|c\|} \hline \text { Cantilever Beam } \\ \text { Subjected to a } \\ \text { Concentrated Shear Force } \end{array}$	Concentrated static load	Based on the analytical solution	10	Displacements	0.00
					30	Displacements	0.07
9.	4.9	Vertical Cantilever Bar of Square Cross-Section with Longitudinal and Transverse Concentrated Loads at Its Free End	Concentrated static load	Based on the analytical solution	5	Displacements	0.00
						Stresses	0.00
					50	Displacements	0.12
						Stresses	1.67
					37	Displacements	0.06
						Stresses	1.29
10.	4.3	Simply Supported Beam Subjected to a Concentrated Force and Uniformly Distributed Pressure	Concentrated and distributed static loads	Based on the analytical solution	2	Displacements	0.00
						Forces	0.00
11.	4.5	Three-Step Simply Supported Beam Subjected to Concentrated Forces	Concentrated static load	Based on the analytical solution	5	Displacements	0.00
12.	4.4	Doubly Clamped Beam Subjected to a Uniformly Distributed Load	Distributed static load	Based on the analytical solution	2	Displacements	0.00
						Forces	0.00
13.	SSLL01	Doubly Clamped Beam Subjected to a Uniformly Distributed Load, Concentrated	Concentrated and distributed static loads	Based on the analytical solution	10	Displacements	0.05

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \\ \hline \end{array}$
		Longitudinal and Shear Forces and a Bending Moment				Forces	0.00
14.	SSLL03	Two-Span Simply Supported Beam with an Intermediate Compliant Support Subjected to Concentrated Shear Forces Applied in the Middle of the Spans	Concentrated static load	Based on the analytical solution	10, 51	Displacements Forces	0.00 0.00
15.	SSLL15	Beam on the Elastic Horizontal Subgrade Subjected to Concentrated Vertical Forces	Concentrated static load	Based on the analytical solution	3	Displacements	0.06
						Forces	0.00
					3, 51	Displacements	1.63
						Forces	0.28
16.	SSLL16	Simply Supported Beam on the Elastic Horizontal Subgrade Subjected to a Vertical Uniformly Distributed Load, Concentrated Vertical Force and Bending Moment	Concentrated and distributed static loads	Based on the analytical solution	3	Displacements	0.00
						Forces	0.00
					3, 51	Displacements	0.00
						Forces	0.08
17.	CS09	Doubly Clamped Beam Subjected to the Transverse Displacement of One of its Ends	Initial displacement	Based on the analytical solution	2	Forces	0.00
18.	B1	Plane System of Two Coaxial Bars Subjected to Temperature Variation	Thermal action	Based on the analytical solution	2	Stresses	0.00
19.	4.8	Stress Strain State of a Simply Supported Beam Subjected to Longitudinal-Transverse Bending	Concentrated static load	Based on the analytical solution	2,51	Displacements	0.11
						Forces	0.03
					2,51	Displacements	0.07
						Forces	0.01
20.	SSLL10	System of Cross Bars Subjected to a Distributed Load and a Concentrated Force in Their Plane	Concentrated and distributed static loads	Based on the analytical solution	10	Displacements	0.12
						Forces	0.12
21.	SSLL05	Cantilever Frame Subjected to a Concentrated Force	Concentrated static load	Based on the analytical solution	10	Displacements	0.02
						Forces	0.00
22.	SSLL14	Single-Span Simply Supported Plane Frame with a Dual-Pitched Girder Subjected to a Vertical Uniformly Distributed Load,	Concentrated and distributed static loads	Based on the analytical solution	2	Displacements	0.10

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c\|} \hline \text { Deviation } \\ \% \end{array}$
		Concentrated Vertical and Horizontal Forces and a Bending Moment				Forces	0.00
23.	SSLL04	Spatial Bar System with Elastic Constraints Subjected to a Concentrated Force	Concentrated static load	Based on the analytical solution	10, 51	Displacements	0.01
						Forces	0.01
24.	4.7	Ring Subjected to a Distributed Load Acting in Its Plane	Distributed static load	Based on the analytical solution	10	Displacements	0.00
						Forces	0.86
25.	SSLL08	Simply Supported Semicircular Arch of Constant Cross-Section Subjected to a Concentrated Force Acting in Its Plane	Concentrated static load	Based on the analytical solution	10	Displacements	0.05
26.	4.6	Strain State of a Split Circular Ring Subjected to Two Mutually Perpendicular Forces $\mathbf{P}_{\mathbf{x}}$ and P_{y}, Acting in the Plane of the Ring	Concentrated static load	Based on the analytical solution	5	Displacements	0.00
27.	4.38	Cantilever Curved Beam with a Transverse Concentrated Force at Its Free End	Concentrated static load	Based on the analytical solution	5	Displacements	0.03
					50	Displacements	0.03
					37	Displacements	0.03
28.	SSLL06	Cantilever Circular Bar of Constant Cross-Section with Concentrated Forces and a Moment Acting in Its Plane at Its Free End	Concentrated static load	Based on the analytical solution	10	Displacements	0.07
29.	SSLL07	Cantilever Circular Bar of Constant Cross-Section with a Concentrated Force out of Its Plane at Its Free End	Concentrated static load	Based on the analytical solution	10	Displacements	0.07
						Forces	0.18
30.	SSLL13	Single-Span Beam with a Prestressed Tie Subjected to a Uniformly Distributed Load	Distributed static load, prestressing	Based on the analytical solution	1,2	Displacements	0.00
						Forces	0.00/
31.	Influen ce Line	Two-Span Single-Storey Frame Subjected to a Constant Transverse Unit Force Moving Along the Girder Spans with a Small Speed. Plotting of Influence Lines of Internal Forces in the Frame Sections	Concentrated static load	Based on the analytical solution	2	Forces	0.69
32.	$\begin{array}{\|c} \text { KSLS0 } \\ 1 \end{array}$	Bending of a Rectangular Deep Beam Rigidly Suspended along the Sides Subjected to a Uniformly Distributed Load Applied to Its Upper Side	Static load distributed along the line	Based on the analytical solution	21	Displacements	4.56

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \\ \hline \end{array}$
33.	4.29	Pure Bending of a Square Plate in the Plane Stress State Clamped on One Side and Simply Supported in the Center of the Opposite Side	Concentrated static load	Based on the analytical solution	30, 2	Stresses	1.69
					30, 100	Stresses	1.69
34.	4.22	Compression and Bending of a Symmetric Wedge by Concentrated Forces Applied to Its Vertex (Michell's Problem)	Concentrated static load	Based on the analytical solution	50, 100	Stresses	0.16
35.	4.23	Bending of a Symmetric Wedge by a Concentrated Moment Applied to Its Vertex (Inglis Problem)	Concentrated static load	Based on the analytical solution	50, 100	Stresses	2.21
36.	4.24	Bending of a Symmetric Wedge by a Uniformly Distributed Load Applied to the Surface of One of the Faces of the Wedge (Levi Problem)	Static load distributed along the line	Based on the analytical solution	50	Stresses	0.89
37.	4.25	Triangular Dam Subjected to Its SelfWeight and Hydrostatic Pressure	Distributed surface static load and static load distributed along the line	Based on the analytical solution	30, 25	Stresses	1.70
38.	4.26	Plane Subjected to a Concentrated Moment and a Concentrated Force	Concentrated static load	Based on the analytical solution	30, 100	Stresses	6.60
39.	4.21	Bending of a Curved Beam of a Narrow Rectangular CrossSection by a Force Applied to Its Free End (Golovin's Problem)	Concentrated static load	Based on the analytical solution	50, 100	Stresses	1.67
40.	4.27	Unilateral Tension of a Plate with a Small Circular Hole (Kirsch Problem)	Static load distributed along the line	Based on the analytical solution	30, 25	Stresses	5.15
					30, 25	Stresses	1.17
41.	4.14	Stress-Strain State of a Simply Supported Circular Plate Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	50, 45	Displacements	0.46
						Forces	2.70
42.	4.15	Stress-Strain State of a Clamped Circular Plate Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	50, 45	Displacements	0.59
						Forces	6.48
43.	4.16	Stress-Strain State of a Simply Supported Annular Plate Subjected	Distributed surface static load	Based on the analytical solution	50	Displacements	0.78

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \end{array}$
		to a Uniformly Distributed Transverse Load				Forces	1.72
44.	SSLS01	Rectangular Narrow Cantilever Plate Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	11	Displacements	0.00
45.	SSLS27	Torsion of a Rectangular Narrow Cantilever Plate by a Pair of Concentrated Forces	Concentrated static load	Based on the analytical solution	11	Displacements	0.20
46.	4.17	Square Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Load	Distributed surface static load	Based on the analytical solution	20	Displacements	0.09
						Forces	0.09
47.	SSLS24	Rectangular Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	20	Displacements	0.38
						Forces	1.57
					20	Displacements	0.18
						Forces	0.60
					20	Displacements	0.00
						Forces	0.64
48.	SSLS26	Rectangular Plate Simply Supported at Three Vertices Subjected to a Concentrated Force and Concentrated Moments out of Its Plane	Concentrated static load	Based on the analytical solution	20	Displacements	0.00
49.	4.19	Stress-Strain State of a Clamped Hexagonal Plate Subjected to a Uniformly Distributed Load	Distributed surface static load	Based on the analytical solution	44, 42	Displacements	0.77
						Forces	0.69
50.	4.20	Clamped Rectangular Plate of Constant Thickness Subjected to Thermal Loading	Temperature gradient across the thickness	Based on the analytical solution	41	Displacements	-
						Forces	0.00
						Stresses	0.00
51.	RMP	Simply Supported Thick Square Plate Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	150	Displacements	0.07
					150	Displacements	0.00
					150	Displacements	0.00
52.	4.34	Two-Ribbed Beam Subjected to Uniformly Distributed Loads Applied in the Plane of the Ribs	Static load distributed along the line	Based on the analytical solution	27	Stresses	0.92
53.	4.35	Curved Hollow Section Beam of a Bridge Superstructure Subjected to a Concentrated Force	Concentrated static load	Based on the experiment	150	Displacements	9.9
						Stresses	10,9
54.	4.31	Cylindrical Shell with Simply Supported Edges	Distributed surface static	Based on the analytical	44	Displacements	0.19

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \end{array}$
		Subjected to Uniform Internal Pressure	load	solution		Forces	0.83
55.	4.32	Cylindrical Vertical Tank with a Wall of Constant Thickness with a Flat Bottom Subjected to Internal Fluid Pressure	Distributed surface static load	Based on the analytical solution	44	Displacements	1.47
						Forces	5.73
56.	4.33	Cylindrical Shell with Free Edges at a Temperature Gradient across the Thickness (in the Radial Direction)	Temperature gradient across the thickness	Based on the analytical solution	44	Displacements	6.67
						Stresses	1.04
		Square Slab Simply				Displacements	0.3
57.	4.36a	Subjected to a Transverse Load Distributed over the Upper Face According to the Cosine Law	Distributed surface static load	Based on the analytical solution	36	Stresses	1.65
58.	4.37	Thick Circular Slab Clamped along the Side Surface Subjected to a Load Uniformly Distributed over the Upper Face	Distributed surface static load	Based on the analytical solution	35, 37	Displacements	7.59
						Stresses	9.12
59.	$\begin{array}{\|c} \text { SSLV0 } \\ 1 \end{array}$	Cylindrical Body Free from Restraints Subjected to a Longitudinal Load Uniformly Distributed over the Edges	Distributed surface static load	Based on the analytical solution	61	Displacements	0.00
60.	Flate_p late $\mathbf{C i}$ rcular column. spr	Square Panel of a Flat Slab Rigidly Connected to a Column of a Circular Cross-Section Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	15, 20, 100	Stresses	2.3
61.	Flate_p late_Sq uare co lumn.sp r	Square Panel of a Flat Slab Rigidly Connected to a Column of a Square Cross-Section Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	20, 100	Stresses	9.45
62.	$\underset{\mathbf{r}}{\text { Lave.sp }}$	Elastic Half-Space Subjected to a Transverse Load Uniformly Distributed over a Rectangular Surface. Love's Problem.	Distributed surface static load	Based on the analytical solution	37	Displacements Stresses	3.2 7.75
Linear Dynamics							
1.	5.11	Plane Truss Subjected to Instantaneous Pulses Concentrated in NonSupporting Nodes of the Bottom Chord	Concentrated dynamic load	Based on the analytical solution	1	Natural frequencies	5.10
						Displacements	2.46
2.	5.1	Natural Oscillations of a Spatial Pipeline Clamped at the Edges (Hougaard's Problem)	Modal analysis	Based on the analytical solution	5	Natural frequencies	8.26

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c\|} \hline \text { Deviation } \\ \% \\ \hline \end{array}$
3.	$\underset{\text { dd_L }}{\text { 5.12_Su }}$	Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Sudden Constant Load Applied to One of Them	Concentrated dynamic load	Based on the analytical solution	2	Natural frequencies	0.00
						Displacements	0.09
						Forces	0.91
4.	$\begin{aligned} & \text { 5.12_H } \\ & \text { arm_L } \end{aligned}$	Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Harmonic Exciting Force Applied to One of Them	Concentrated dynamic load	Based on the analytical solution	2	Natural frequencies	0.00
						Displacements	6.16
5.	Test 5.12 Harm L Damp	Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Harmonic Exciting Force Applied to One of Them Taking into Account the Energy Dissipation due to Internal Friction	Concentrated dynamic load	Based on the analytical solution	2	Natural frequencies	0.00
						Displacements	6.39
6.	$\begin{aligned} & \text { Test } \\ & 5.13 \end{aligned}$	Simply Supported Beam with a Distributed Mass Subjected to a Transverse Harmonic Exciting Force Applied in the Middle of the Span	Concentrated dynamic load	Based on the analytical solution	3	Natural frequencies	0.73
						Displacements	3.68
7.	$\begin{gathered} \text { Test } \\ \text { DIN B } \\ \text { ML } \end{gathered}$	Simply Supported Beam with a Distributed Mass Subjected to a Constant Shear Force Moving along the Span of the Beam at a Constant Speed	Concentrated dynamic load	Based on the analytical solution	3	Natural frequencies	0.73
						Displacements	0.18
8.	Test DIN B IL	Simply Supported Beam with a Distributed Mass Subjected to a Uniformly Distributed Instantaneous Pulse (Impact of a Beam with Immovable Supports)	Distributed dynamic load	Based on the analytical solution	3	Natural frequencies	0.73
						Displacements	0.36
						Forces	14.06
9.	$\begin{gathered} \text { Test } \\ \text { DIN B } \\ \text { SL } \end{gathered}$	Simply Supported Beam with a Distributed Mass Subjected to a Kinematic Excitation of Supports (Seismic Action)	Dynamic displacement	Based on the analytical solution	3	Natural frequencies	0.05
						Displacements	0.80
						Forces	0.73
10.	5.14	Cantilever Weightless Column with a Concentrated Mass at the Free End Subjected to a Horizontal Kinematic	Dynamic displacement	Based on the analytical solution	5	Natural frequencies	0.00

$\left.\begin{array}{|c|c|c|c|c|c|c|c|}\hline & \text { Code } & \begin{array}{c}\text { Name of the test }\end{array} & \begin{array}{c}\text { Combination of } \\ \text { loads and actions }\end{array} & \begin{array}{c}\text { Type of check } \\ \text { of the results }\end{array} & \begin{array}{c}\text { Finite } \\ \text { elements }\end{array} & \begin{array}{c}\text { Checked } \\ \text { parameters }\end{array} & \begin{array}{c}\text { Deviation } \\ \%\end{array} \\ \hline \text { 11. } & 5.7 & \begin{array}{c}\text { Displacement of a Support } \\ \text { (Seismogram Based } \\ \text { Analysis) }\end{array} & \begin{array}{c}\text { Natural Oscillations of a } \\ \text { Simply Supported } \\ \text { Circular Plate }\end{array} & \text { Modal analysis } & \begin{array}{c}\text { Based on the } \\ \text { analytical } \\ \text { solution }\end{array} & 20,15 & \text { Displacements }\end{array} \mathbf{0 . 3 9} \begin{array}{|c|c|c|c|c|c|c|}\text { Natural } \\ \text { frequencies }\end{array}\right] 1.57$.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \& Code \& Name of the test \& Combination of loads and actions \& Type of check of the results \& Finite
elements \& Checked parameters \& $$
\begin{array}{|c}
\hline \text { Deviation } \\
\%
\end{array}
$$

\hline \& \& Concentrated Transverse Bending Force Applied to the Upper Edges of the Free End \& \& \& 150 \& Critical force \& 1.80

\hline \& \& \& \& \& 37 \& Critical force \& 4.26

\hline 14. \& Stabilit y Bar 4 \& Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value \& Concentrated static load \& Based on the analytical solution \& 5 \& Critical force \& 0.59

\hline \& \& (Pure Bending) \& \& \& 150, 5 \& Critical force \& 1.28

\hline 15. \& Stabilit
y Bar 5 \& Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value (Pure Bending) \& Concentrated static load \& Based on the analytical solution \& 5

150,5 \& | Critical force |
| :---: |
| |
| Critical force | \& 0.64

5.36

\hline 16. \& $$
\begin{array}{|l}
\text { Stabilit } \\
\text { y Bar } 6
\end{array}
$$ \& Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to Concentrated Longitudinal Bending Forces Applied to the \& Concentrated static load \& Based on the analytical solution \& 5,100 \& Critical force \& 0.01

\hline \& \& and Equal in Value (Longitudinal Bending) \& \& \& 150, 5 \& Critical force \& 0.48

\hline 17. \& \[
$$
\begin{array}{|l}
\text { Stabilit } \\
\text { y Bar } 7
\end{array}
$$

\] \& | Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the |
| :--- |
| Bending Plane Subjected to Concentrated |
| Longitudinal Bending Forces Applied to the Upper Edges of the Ends and Equal in Value (Longitudinal Bending) | \& Concentrated static load \& Based on the analytical solution \& $\begin{array}{r}\text { 5, } 100 \\ \\ \hline 150,5\end{array}$ \& | Critical force |
| :--- |
| |
| Critical force | \& 0.02

8.18

\hline \multirow{3}{*}{18.} \& \multirow{3}{*}{Stabilit
y Bar 8} \& \multirow[t]{3}{*}{Stability of a Cantilever Beam of a Square CrossSection Subjected to a Load Uniformly Distributed along Its Longitudinal Axis} \& \multirow{3}{*}{Distributed static load} \& \multirow{3}{*}{Based on the analytical solution} \& 5 \& Critical load \& 0.45

\hline \& \& \& \& \& 150 \& Critical load \& 3.30

\hline \& \& \& \& \& 37 \& Critical load \& 5.73

\hline \multirow{3}{*}{19.} \& \multirow{3}{*}{Stabilit y Bar 9} \& \multirow[t]{3}{*}{Stability of a Cantilever Beam of a Square CrossSection Subjected to a Load Uniformly Distributed along the Longitudinal Axis of Its Upper Face} \& \multirow{3}{*}{Distributed static load} \& \multirow{3}{*}{Based on the analytical solution} \& 5,100 \& Critical load \& 0.20

\hline \& \& \& \& \& 150 \& Critical load \& 1.71

\hline \& \& \& \& \& 37 \& Critical load \& 3.67

\hline
\end{tabular}

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	Deviation \%
20.	Stabilit y Bar 10	Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to a	Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the	Concentrated static load	Based on the analytical solution	5	Critical force

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \\ \hline \end{array}$
26.	StabilityFlangedBeam 2	Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending)	Concentrated static load	Based on the analytical solution	5	Critical force	1.38
					150	Critical force	1.65
27.	Stabilit y Flanged Beam 3	Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis	Distributed static load	Based on the analytical solution	5	Critical load	1.21
					150	Critical load	0.98
28.	$\begin{array}{\|c\|} \hline \text { Stabilit } \\ y \\ \text { Flanged } \\ \text { Beam } 4 \end{array}$	Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Load Uniformly Distributed along the Longitudinal Axis of Its Upper Flange	Distributed static load	Based on the analytical solution	15	Critical load	1.54
					150	Critical load	1.87
29.	6.6	Stability of a Simply Supported Rectangular Plate Uniformly Compressed in One Direction	Static load distributed along the line	Based on the analytical solution	44	Critical stresses	1.95
					50		0.00
30.	6.7	Stability of a Simply Supported Square Plate Uniformly Compressed in One Direction	Static load distributed along the line	Based on the analytical solution	44	Critical stresses	1.26
					50		0.00
31.	6.8	Stability of a Simply Supported Square Plate Uniformly Compressed in One Direction under Kinematic Action	Initial displacement	Based on the analytical solution	44	Critical stresses	1.27
					50		0.00
32.	6.9	Stability of a Rectangular Simply Supported Plate under Pure Shear	Static load distributed along the line	Based on the analytical solution	44	Critical stresses	3.26
					50		0.05
33.	$\begin{array}{\|c\|} \hline 6.10 \mathrm{a} \\ \text { model } 1 \end{array}$	Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners Uniformly Compressed in the Longitudinal Direction (Model 1)	Distributed along the line and concentrated static loads	Based on the analytical solution	50, 5	Critical stresses	0.10
34.	$\begin{array}{\|c\|} \hline 6.10 \mathrm{a} \\ \text { model } 2 \end{array}$	Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners Uniformly Compressed in the Longitudinal Direction (Model 2)	Static loads distributed along the line	Based on the analytical solution	50	Critical stresses	2.55

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \end{array}$
35.	6.10 b	Stability of a Rectangular Simply Supported Orthotropic Plate Uniformly Compressed in One Direction	Static loads distributed along the line	Based on the analytical solution	50	Critical stresses	0.03
36.	6.11 S	Stability of a Cylindrical Thin-Walled Shell with Simply Supported Edges Subjected to Uniform External Pressure	Distributed surface static load	Based on the analytical solution	50	Critical pressure	1.94
Nonlinear Statics							
1.	Contact 1	Three-Span Beam with One Clamped End and Three Rigid One-Sided Supports Subjected to Concentrated Forces above Them	Concentrated static load	Based on the analytical solution	2, 352	Displacements	0.00
						Forces	1.67
2.	$\underset{2}{\text { Contact }}$	Rigid Body Restrained by Five Springs of the Same Rigidity Working Only in Tension Subjected to a Concentrated Force	Concentrated static load	Based on the analytical solution	100, 352	Forces	0.07
3.	Tunnel lining	Circular Tunnel Lining Subjected to the Given Active Vertical and Horizontal Earth Pressure and Passive Lateral Earth Pressure in the Contact Area	Concentrated static load	Based on the analytical solution	5,352	Forces	0.01
4.	$\underset{3}{\text { Contact }}$	Contact with Detachment for a Layer and Subgrade with a Concentrated Shear force Applied to the Layer	Concentrated static load	Based on the analytical solution	30, 352	Size of the contact area	3.77
5.	$\begin{gathered} \text { NL } \\ \text { CANA } \\ \mathbf{T} \end{gathered}$	Flexible Thread with Supports in One Level Subjected to a Uniformly Distributed Transverse Load	Distributed static load	Based on the analytical solution	302	Displacements	0.02
						Forces	0.34
6.	Ring	Flexible Ring Subjected to Two Mutually Balanced Radially Compressive Forces	Concentrated static load for a non-inflectional elastic curve	Based on the analytical solution	310	Displacements	3.29
						Forces	0.05
7.	NEL	Flexible Long Rectangular Plate Simply Supported along the Longitudinal Edges Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	341	Displacements	0.06
						Stresses	4.26
8.	7.6	Flexible Square Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Transverse Load	Distributed surface static load	Based on the analytical solution	344	Displacements	1.87
						Stresses	1.80
9.	7.7	Simply Supported Flexible Circular Plate Subjected to a Uniformly	Distributed surface static load	Based on the analytical solution	342, 344	Displacements	1.14

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \end{array}$
		Distributed Transverse Load				Stresses	1.67
10.	Mast	Double-Guyed Mast Subjected to Static Loads and Prestressing Forces	Concentrated and distributed static loads	Based on the analytical solution	5,308	Forces	0.23
11.	Platemembr ane 4	Square Membrane with a Compliant Contour	Distributed surface static load	Experimental data	341	Displacements	5.84
Pathological Tests							
1.	Patch test Consta nt stress Shell	Rectangular Plate under the Constant Stresses on the Midsurface	Initial displacement	Based on the analytical solution	42	Stresses	0.00
					44	Stresses	0.00
					45	Stresses	0.00
					50	Stresses	0.00
2.	Patch test Consta nt curvatu re Shell	Rectangular Plate with Constant Curvature	Initial displacement	Based on the analytical solution	42	Stresses	0.00
					44	Stresses	0.00
					45	Stresses	0.00
					50	Stresses	0.00
3.	Patch test Consta nt stress Solid	Cube under the Constant Stresses throughout the Volume	Initial displacement	Based on the analytical solution	32	Stresses	0.00
					34	Stresses	0.00
					36	Stresses	0.00
					37	Stresses	0.00
4.	$\begin{gathered} \text { Straigh } \\ \mathrm{t} \\ \text { cantilev } \\ \text { er } \\ \text { beam } \end{gathered}$	Rectilinear Cantilever Beam with Concentrated Longitudinal and Shear Forces and a Torque at Its Free End	Concentrated static load	Based on the analytical solution	42 regular mesh	Displacements	96.85
					$\begin{gathered} 42 \\ \text { trapezoida } \\ 1 \text { mesh } \end{gathered}$	Displacements	98.52
					42 parallelog ram mesh	Displacements	97.78
					$\begin{gathered} 142 \\ \text { regular } \\ \text { mesh } \end{gathered}$	Displacements	96.85
					$\begin{gathered} 142 \\ \text { trapezoida } \\ \text { I mesh } \\ \hline \end{gathered}$	Displacements	98.52
					$\begin{gathered} 142 \\ \text { parallelog } \\ \text { ram mesh } \end{gathered}$	Displacements	97.78
					$\begin{gathered} 44 \\ \text { regular } \end{gathered}$ mesh	Displacements	90.65
					44 trapezoida 1 mesh	Displacements	97.31
					44 parallelog ram mesh	Displacements	96.57
					$\begin{gathered} 144 \\ \text { regular } \end{gathered}$ mesh	Displacements	90.37
					144 trapezoida l mesh	Displacements	97.22

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \end{array}$
					144 parallelog	Displacements	96.11
					45 $\begin{array}{c}\text { regular } \\ \text { mesh }\end{array}$	Displacements	3.29
					45 trapezoida 1 mesh	Displacements	3.69
					45 parallelog	Displacements	2.97
					$\begin{gathered} 145 \\ \text { regular } \\ \text { mesh } \\ \hline \end{gathered}$	Displacements	4.08
					145 trapezoida 1 mesh	Displacements	4.25
					145 parallelog ram mesh	Displacements	4.13
					$\begin{gathered} 50 \\ \text { regular } \\ \text { mesh } \end{gathered}$	Displacements	2.51
					$\begin{gathered} 50 \\ \text { trapezoida } \\ 1 \text { mesh } \end{gathered}$	Displacements	2.79
					$\begin{gathered} \hline 50 \\ \text { parallelog } \\ \text { ram mesh } \end{gathered}$	Displacements	2.78
					$\begin{gathered} 150 \\ \text { regular } \\ \text { mesh } \end{gathered}$	Displacements	3.37
					$\begin{gathered} 150 \\ \text { trapezoida } \\ 1 \text { mesh } \end{gathered}$	Displacements	3.53
					$\begin{array}{\|c\|} \hline 150 \\ \text { parallelog } \\ \text { ram mesh } \\ \hline \end{array}$	Displacements	3.43
					36 regular mesh	Displacements	97.48
					36 trapezoida 1 mesh	Displacements	98.96
					36 parallelog ram mesh	Displacements	98.59
					37 regular mesh	Displacements	15.05
					37 trapezoida l mesh	Displacements	24.81
					37 parallelog	Displacements	15.09
5.	Curved cantilev er beam	Curvilinear Cantilever Beam with Concentrated Shear Forces at Its Free End	Concentrated static load	Based on the analytical solution	42	Displacements	97.50
					142	Displacements	97.50
					44	Displacements	92.76
					144	Displacements	92.59
					45	Displacements	2.74
					145	Displacements	2.57
					50	Displacements	1.41
					150	Displacements	1.95
					36	Displacements	92.77
					37	Displacements	6.01

	Code	Name of the test	$\begin{array}{c}\text { Combination of } \\ \text { loads and actions }\end{array}$	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c\|} \hline \text { Deviation } \\ \% \end{array}$
6.	Twisted cantilev er beam	Twisted Cantilever Beam with Concentrated Shear Forces at Its Free End	Concentrated static load	Based on the analytical solution	42	Displacements	16.21
					142	Displacements	14.63
					44	Displacements	65.00
					144	Displacements	65.23
					45	Displacements	0.70
					145	Displacements	24.74
					50	Displacements	27.24
					150	Displacements	24.55
					36	Displacements	79.38
					37	Displacements	0.63
7.	Bending ofsquareflatplateSimplysupported	Simply Supported Flat Square Plate Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center	Distributed surface static load	Based on the analytical solution	$\begin{gathered} \text { 42, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	0.39
					$\begin{gathered} \text { 44, FE } \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.32
					$\begin{gathered} 45, \mathrm{FE} \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.00
					$\begin{gathered} \mathbf{5 0 , ~ F E ~} \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.00
					$\begin{gathered} \text { 36, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x} 128 \end{gathered}$	Displacements	24.64
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	0.39
					$\begin{gathered} \hline 42, \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.95
					$\begin{gathered} \text { 44, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	0.54
					$\begin{gathered} \hline 45, \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.01
			surface static	Based on the analytical	$\begin{gathered} 50, \text { FE } \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.02
					$\begin{gathered} \text { 36, FE } \\ \text { mesh } \\ \text { 128x128 } \end{gathered}$	Displacements	25.08
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	0.38
8.	Bendin g of square flat plate Clampe d support ed	Flat Square Plate Clamped along the Outer Edges and Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center	Distributed surface static load	Based on the analytical solution	$\begin{gathered} \hline 42, \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.71
					$\begin{gathered} \text { 44, FE } \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.63
					$\begin{gathered} \text { 45, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	0.00
					$\begin{gathered} \text { 50, FE } \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.00
					$\begin{gathered} \begin{array}{c} 36, \text { FE } \\ \text { mesh } \end{array} \\ \mathbf{1 2 8 x 1 2 8} \\ \hline \end{gathered}$	Displacements	27.91
					$\begin{gathered} \hline \begin{array}{c} 37, \text { FE } \\ \text { mesh } \end{array} \\ \mathbf{1 2 8 \times 1 2 8} \\ \hline \end{gathered}$	Displacements	0.08
			Concentrated static load	Based on the analytical solution	$\begin{gathered} \hline 42, \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	1.71
					$\begin{gathered} \text { 44, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	1.05
					$\begin{gathered} 45, \mathrm{FE} \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.04
					$\begin{gathered} \hline 50, \mathrm{FE} \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.07
					$\begin{gathered} \text { 36, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	27.66

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \end{array}$
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	0.18
9.	Bendin\mathbf{g} of rectang ular flat plate Simply support ed	Simply Supported Flat Rectangular Plate Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center	Distributed surface static load	Based on the analytical solution	$\begin{gathered} \text { 42, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	0.10
					$\begin{gathered} \hline 44, \text { FE } \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.45
					$\begin{gathered} \text { 45, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	0.00
					$\begin{gathered} 50, \mathrm{FE} \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.00
					$\begin{gathered} \hline \text { 36, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	28.81
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	0.02
			Concentrated static load	Based on the analytical solution	$\begin{gathered} \hline 42, \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	12.54
					$\begin{gathered} \hline 44, \mathrm{FE} \\ \text { mesh } 8 \mathrm{x} 8 \end{gathered}$	Displacements	7.68
					$\begin{gathered} 45, \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.65
					$\begin{gathered} \text { 50, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	0.68
					$\begin{gathered} \text { 36, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x} \mathbf{2 8} \end{gathered}$	Displacements	43.08
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	0.09
10.	$\begin{array}{\|c} \text { Bendin } \\ \text { g of } \\ \text { rectang } \\ \text { ular } \\ \text { flat } \\ \text { plate } \\ \text { Clampe } \\ \text { d } \\ \text { support } \\ \text { ed } \end{array}$	Flat Rectangular Plate Clamped along the Outer Edges and Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center	Distributed surface static load	Based on the analytical solution	$\begin{gathered} \hline 42, \mathrm{FE} \\ \text { mesh } 8 \mathrm{x} 8 \\ \hline \end{gathered}$	Displacements	1.34
					$\begin{gathered} \text { 44, FE } \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.04
					$\begin{gathered} \hline 45, \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.04
					$\begin{gathered} \text { 50, FE } \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	0.04
					$\begin{gathered} \hline \text { 36, } \mathrm{FE} \\ \text { mesh } \\ \mathbf{1 2 8 x} 128 \end{gathered}$	Displacements	30.29
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	0.00
			Concentrated static load	Based on the analytical solution	$\begin{gathered} \hline 42, \mathrm{FE} \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	20.79
					$\begin{gathered} \text { 44, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	12.04
					$\begin{gathered} \text { 45, FE } \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	2.02
					$\begin{gathered} \mathrm{50,} \mathrm{FE} \\ \text { mesh } 8 \times 8 \end{gathered}$	Displacements	1.85
					$\begin{gathered} \text { 36, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	45.90
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 \times 1 2 8} \end{gathered}$	Displacements	0.21
11.	$\begin{gathered} \text { Scordel } \\ \text { is-Lo } \\ \text { roof } \end{gathered}$	Open Cylindrical Shell Rectangular in Plan and Simply Supported along the Curvilinear Edges Subjected to a Transverse Load Uniformly Distributed over the Entire Area	Distributed surface static load	Based on the analytical solution	$\begin{gathered} \hline 42, \mathrm{FE} \\ \text { mesh } 8 \mathrm{x} 8 \end{gathered}$	Displacements	15.04
					$\begin{gathered} \text { 44, FE } \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	4.70
					$\begin{gathered} 45, \mathrm{FE} \\ \text { mesh } 8 \times 8 \\ \hline \end{gathered}$	Displacements	0.94
					$\begin{gathered} \text { 50, FE } \\ \text { mesh 8x8 } \end{gathered}$	Displacements	0.87

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{gathered} \text { Deviation } \\ \% \\ \hline \end{gathered}$
					36, FE mesh 128x128	Displacements	4.86
					$\begin{gathered} \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 x 1 2 8} \end{gathered}$	Displacements	0.58
12.	Quadra nt of a spheric al shell	Free Hemispherical Shell with a Circular Pole Hole Subjected to Two Orthogonal Pairs of Mutually Balanced Radial Tensile and Compressive Forces at the Equator	Concentrated static load	Based on the analytical solution	$\begin{gathered} \text { 42, FE } \\ \text { mesh } \\ \text { 32x32 } \end{gathered}$	Displacements	1.38
					$\begin{gathered} \text { 44, FE } \\ \text { mesh } \\ \text { 32x32 } \end{gathered}$	Displacements	0.85
					$\begin{gathered} \text { 45, FE } \\ \text { mesh } \\ \mathbf{3 2 x 3 2} \end{gathered}$	Displacements	1.38
					$\begin{gathered} \hline \mathbf{5 0 , F E} \\ \text { mesh } \\ \mathbf{3 2 x 3 2} \\ \hline \end{gathered}$	Displacements	0.85
					36, FE mesh 128x128	Displacements	62.77
					$\begin{gathered} \hline \text { 37, FE } \\ \text { mesh } \\ \mathbf{1 2 8 \times 1 2 8} \end{gathered}$	Displacements	0.32
13.	Nearly incomp ressible thick cylinde r	Nearly Incompressible Thick-Walled Cylinder under Plane Deformation Subjected to Uniformly Distributed Internal Pressure	Distributed surface static load	Based on the analytical solution	42, Poisson's ratio 0.49	Displacements	1.05
					42, Poisson's ratio 0.499	Displacements	1.15
					42, Poisson's ratio 0.4999	Displacements	1.17
					44, Poisson's ratio 0.49	Displacements	1.94
						Displacements	2.04
					44, Poisson's ratio 0.4999	Displacements	2.05
					45, Poisson's ratio 0.49	Displacements	3.08
					45, Poisson's ratio 0.499	Displacements	3.20
					45, Poisson's ratio 0.4999 年	Displacements	3.22
					50, Poisson's ratio 0.49	Displacements	3.04
					50, Poisson's	Displacements	3.20
					50, Poisson's ratio 0.4999 36	Displacements	3.18
					36, Poisson's ratio 0.49	Displacements	15.48

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c} \hline \text { Deviation } \\ \% \\ \hline \end{array}$
					36, Poisson's ratio 0.499	Displacements	64.07
					36, Poisson's ratio 0.4999	Displacements	94.65
					37, Poisson's ratio 0.49	Displacements	0.54
					37, Poisson's ratio 0.499	Displacements	1.19
					$\begin{gathered} \hline 37, \\ \text { Poisson's } \\ \text { ratio } \\ 0.4999 \\ \hline \end{gathered}$	Displacements	11.36
Energy Analysis							
1.	$\begin{gathered} \text { Energy } \\ 94 \mathrm{~A} \end{gathered}$	Frame Subjected to Various Vertical Forces	Nodal load	Based on the analytical solution	2	Estimation of the role of subsystems in the case of buckling	-
2.	$\begin{gathered} \text { Energy } \\ \text { 94B } \end{gathered}$	Frame Subjected to Vertical Forces	Nodal load	Based on the analytical solution	2	Estimation of the role of subsystems in the case of buckling	-
3.	Energy	Symmetric Frame Subjected to Vertical Forces - Detection of "Weak" Elements	Nodal load	Based on the analytical solution	2	Estimation of the role of subsystems in the case of buckling	-
Erection							
1.	Test-01	Static Analysis of StressStrain State of a Building Taking into Account Genetic Nonlinearity	Distributed loads	Comparison with the ANSYS solution	44,5	displacements	2.5 6.6
2.	Truss	Determination of StressStrain State Taking into Account Genetic Nonlinearity	Nodal loads	Based on the analytical solution	1	displacements	0.21 0.91
3.	Rearra nge_Fr ame	Replacement of a Column of a Two-Span SingleStorey Frame Subjected to a Constant Load	Distributed loads	Based on the analytical solution	5	forces	0.0
4.	$\begin{array}{\|c} \hline \text { Wiring } \\ \text { Girder } \\ \text {-.MPR } \\ \hline \end{array}$	Sequential Erection of a Steel Reinforced Concrete Single-Span Beam	Distributed loads	Based on the analytical solution	5,44,100	displacements	1.29
Response Spectra							
1.	$\underset{\text { _RS }}{\text { DIN_B }}$	Determination of the Response Spectrum of Response Accelerations of a Linear Oscillator	Accelerogram	Comparison with the Abaqus calculation	5	Frequency at which the maximum acceleration occurs	0.0
						Maximum acceleration	0.95

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c\|} \hline \text { Deviation } \\ \% \\ \hline \end{array}$
Amplitude-Frequency Characteristics							
1.	AYX	Plotting the AmplitudeFrequency Characteristic of a Single-Mass Elastic	Concentrated dynamic load	Based on the analytical solution	51	Frequency at which the maximum displacement occurs	0.0
		Excitation				Maximum displacement	0.65
Steel Structural Members							
1.	4.1 Section Resista nce_Ex ample_ 4.1	Strength and Stiffness Analysis of a Welded Ibeam	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
2.	4.2 Section Resistance_ Examp le_4.2	Strength and Stiffness Analysis of a Rolled I-beam	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
3.	4.3 Section Resista nce_Ex ample_ 4.3	Strength and Stiffness Analysis of a Rolled Ibeam	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
4.		Strength and Stiffness Analysis of a Rolled Ibeam	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
5.	4.5 Section Resis- tance_E xample _4.5	Strength and Stiffness Analysis of a Welded Ibeam	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
6.	4.6 Section Resista nce_Ex ample_ 4.6	Analysis of an Axially Compressed Welded Ibeam Column	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
7.	3.1 Beam_ Exampl e_3.1 3.2	Strength and Stiffness Analysis of Stringers for a Normal Stub Girder System	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
8.	3.2 Beam_ Exampl e_3.2	Strength and Stiffness Analysis of Stringers for a Complex Stub Girder System	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
9.	3.3 Beam_ Exampl e_3.3	Strength and Stiffness Analysis of Secondary Beams for a Complex Stub Girder System	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
10.	3.4 Beam_ Exampl e_3.4	Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0

	Code	Name of the test	Combination of loads and actions	Type of check of the results	Finite elements	Checked parameters	$\begin{array}{\|c\|} \hline \text { Deviation } \\ \% \end{array}$
11.	5.1 Column _Exam ple_5.1	Analysis of an Axially Compressed Welded Ibeam Column	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.0
12.	5.3 Column _Exam ple_5.3	Analysis of an Axially Compressed Electric Welded Circular Hollow Section Column		Based on the analytical solution	5	Utilization factors of restrictions	0.0
13.	7.1 Truss_ Elemen t_Exam ple_7.1	Analysis of a Top Truss Chord from Unequal Angles		Based on the analytical solution	5	Utilization factors of restrictions	0.0
Reinforced Concrete Structural Members							
Calculations according to SNiP 2.03.01-84*							
1.	$\begin{aligned} & \text { SCAD } \\ & 3 \text { SNiP } \end{aligned}$	Strength Analysis of a Rectangular Beam	Nodal loads	Based on the analytical solution	2	Utilization factors of restrictions	4.2
2.	$\begin{aligned} & \text { SCAD } \\ & 7 \text { SNiP } \end{aligned}$	Strength Analysis of a Tsection	Distributed loads	Based on the analytical solution	2	Utilization factors of restrictions	3.0
3.	$\begin{array}{\|l\|l} \text { SCAD } \\ \text { 12 SNiP } \end{array}$	Strength Analysis of a Wall Panel	Distributed loads	Based on the analytical solution	5	Utilization factors of restrictions	4.1
Calculations according to SNiP 52-01-2003							
1.	$\underset{6 \text { SP }}{\text { SCAD }}$	Strength Analysis of a Rectangular Beam	Distributed loads	Based on the analytical solution	2	Utilization factors of restrictions	1.9
2.	$\begin{array}{\|l\|} \hline \text { SCAD } \\ \text { 12.1.SP } \\ \text { u } \\ \text { SCAD } \\ \text { 12.2.SP } \\ \hline \end{array}$	Calculation of a Rib of a TT-shaped Floor Slab for Load-bearing Capacity under Lateral Forces	Distributed loads	Based on the analytical solution	2	Utilization factors of restrictions	1.4
3.	$\begin{aligned} & \text { SCAD } \\ & \text { 13 SP } \end{aligned}$	Calculation of a Simply Supported Rectangular Beam under Lateral Forces	Distributed loads	Based on the analytical solution	2	Utilization factors of restrictions	1.7
4.	$\begin{gathered} \text { SCAD } \\ \mathbf{3 4} \text { SP } \end{gathered}$	Calculation of a Column of a Multi-storey Frame for Load-bearing Capacity under a Lateral Force	Nodal loads	Based on the analytical solution	5	Utilization factors of restrictions	0.4
5.	$\begin{array}{\|c} \hline \text { SCAD } \\ \text { 41 SP- } \\ 2003 \\ \text { u } \\ \text { SCAD } \\ \text { 41 SP- } \\ 2012 \\ \hline \end{array}$	Example of Punching Near the Edge of the Slab	Nodal loads	Based on the analytical solution	5, 41, 51	Utilization factors of restrictions	0.1
6.	$\begin{aligned} & \text { SCAD } \\ & 43 \text { SP } \end{aligned}$	Analysis of a Reinforced Concrete Foundation Slab for Normal Crack Opening	Concentrated moment	Based on the analytical solution	2	Utilization factors of restrictions	4.9

Linear Statics

Plane Truss Subjected to a Concentrated Force

Objective: Determination of the stress-strain state of a plane truss subjected to a concentrated force.

Initial data file: SSLL09_v11.3.SPR

Problem formulation: The plane truss consists of two inclined downward bars of the same length and rigidity of the cross-section arranged symmetrically with respect to the vertical axis, connected by hinges in the common node (point C) and simply supported at the opposite nodes (points A and B). A vertical concentrated force F is applied in the common node of the truss bars. Determine the vertical displacement of the common node of the truss bars Z and longitudinal forces in the truss bars N .

References: S. Timoshenko, Resistance des materiaux, t.1, Bruxelles, Edition Polytechnique Beranger, 1963, p. 10.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{11} \mathrm{~Pa}-\quad$ - elastic modulus of truss bars;
$1=4.5 \mathrm{~m} \quad$ - length of truss bars;
$\theta=30^{\circ} \quad-$ inclination angle of the bars to the horizon;
$\mathrm{A}=3.0 \cdot 10^{-4} \mathrm{~m}^{2} \quad$ - cross-sectional area of the bars;
$\mathrm{F}=2.1 \cdot 10^{4} \mathrm{~N} \quad-$ value of the vertical concentrated force.
Finite element model: Design model - plane hinged bar system, 2 bar elements of type 10. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z for pinned support nodes. Number of nodes in the design model - 3 .

Results in SCAD

Design and deformed models

Values of vertical displacements Z (m)

Values of longitudinal forces $N(N)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Vertical displacement $\mathrm{Z}($ point C$), \mathrm{m}$	$-3.0000 \cdot 10^{-3}$	$-3.0000 \cdot 10^{-3}$	0.00
Longitudinal force $N($ bar AC), N	21000.0	21000.0	0.00
Longitudinal force $N($ bar BC), N	21000.0	21000.0	0.00

Notes: In the analytical solution, the vertical displacement of the common node of the truss bars Z and longitudinal forces in the truss bars N are determined according to the following formulas:

$$
\begin{gathered}
Z=\frac{F \cdot L}{2 \cdot E \cdot A \cdot \sin ^{2}(\theta)} \\
N=\frac{F}{2 \cdot \sin (\theta)} .
\end{gathered}
$$

Plane Hinged Bar System Subjected to a Concentrated Force

Objective: Determination of the strain state of a plane hinged bar system subjected to a concentrated force.

Initial data file: SSLL11_v11.3.SPR

Problem formulation: The plane hinged bar system consists of four inclined bars. The bars in the first pair have the same lengths and rigidities of the cross-section, go upward to the common node (point C) and are simply supported in the opposite nodes (points A and B). The bars in the second pair have the same rigidities of the cross-section, go upward to the common node (point D) and are attached to one of the bars of the first pair at the opposite nodes (points C and B). A vertical concentrated force F is applied in the common node of the second pair of bars. Determine horizontal X and vertical Z displacements of the common nodes of the first (point C) and second (point D) pairs of bars of the system.

References: S. S. Rao, The finite element method in engineering, 4 ed, Elsevier science end technology books, 2004, p. 313.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{10} \mathrm{~Pa}$ - - elastic modulus of the bars of the system;
$\mathrm{X}_{\mathrm{A}}=0.0 \mathrm{~m} \quad$ - coordinates of the node A ;
$\mathrm{Y}_{\mathrm{A}}=0.0 \mathrm{~m}$
$\mathrm{X}_{\mathrm{B}}=1.0 \mathrm{~m} \quad$ - coordinates of the node B ;
$\mathrm{Y}_{\mathrm{B}}=0.0 \mathrm{~m}$
$\mathrm{X}_{\mathrm{C}}=0.5 \mathrm{~m} \quad$ - coordinates of the node C ;
$\mathrm{Y}_{\mathrm{C}}=0.5 \mathrm{~m}$
$\mathrm{X}_{\mathrm{D}}=2.0 \mathrm{~m} \quad$ - coordinates of the node D ;
$\mathrm{Y}_{\mathrm{D}}=1.0 \mathrm{~m}$
$\mathrm{A}_{\mathrm{AC}}=2.0 \cdot 10^{-4} \mathrm{~m}^{2} \quad$ - cross-sectional area of the bar AC;
$\mathrm{A}_{\mathrm{BC}}=2.0 \cdot 10^{-4} \mathrm{~m}^{2} \quad$ - cross-sectional area of the bar BC;
$\mathrm{A}_{\mathrm{CD}}=1.0 \cdot 10^{-4} \mathrm{~m}^{2} \quad-$ cross-sectional area of the bar CD ;
$\mathrm{A}_{\mathrm{BD}}=1.0 \cdot 10^{-4} \mathrm{~m}^{2} \quad-$ cross-sectional area of the bar BD;
$\mathrm{F}=1.0 \cdot 10^{3} \mathrm{~N} \quad-$ value of the vertical concentrated force.

Finite element model: Design model - plane hinged bar system, 4 bar elements of type 10. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z for pinned support nodes (points A and B). Number of nodes in the design model-4.

Results in SCAD

Design and deformed models

Values of horizontal displacements $X(m)$

Values of vertical displacements Z (m)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Horizontal displacement X (point C), m	$2.6517 \cdot 10^{-4}$	$2.6517 \cdot 10^{-4}$	0.00
Vertical displacement Z (point C), m	$0.8839 \cdot 10^{-4}$	$0.8839 \cdot 10^{-4}$	0.00
Horizontal displacement X (point D), m	$34.7903 \cdot 10^{-4}$	$34.7903 \cdot 10^{-4}$	0.00
Vertical displacement Z (point D), m	$-56.0035 \cdot 10^{-4}$	$-56.0035 \cdot 10^{-4}$	0.00

Plane Truss Subjected to Force, Thermal and Kinematic Actions

Objective: Determination of the stress-strain state of a truss subjected to force, thermal and kinematic actions.

Initial data file: SSLL12_v11.3.spr

Problem formulation: The two-span truss is loaded by two concentrated forces F_{E} and F_{F} in the nodes of the top chord, uniformly heated across all cross-sections of its elements by the value of $\Delta \mathrm{T}$ and subjected to the displacement of its supports by the values of $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}$ and v_{C}. Determine the longitudinal force N in the support diagonal BD and vertical displacement $v(\mathrm{Z})$ in the point D of its joint with the bottom chord and the lattice members.

References: M. Laredo, Resistence des materiaux, Paris, Dunod, 1970, p.579.

Initial data:

Lattice members A1:
$\mathrm{EF}=2.961 \cdot 10^{8} \mathrm{~N} \quad-$ axial stiffness;
Elements of the top and bottom chords, support diagonals and support vertical A2:
$\mathrm{EF}=5.922 \cdot 10^{8} \mathrm{~N} \quad-$ axial stiffness;
Elements modeling the constraints in the support nodes in the directions $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}$ and v_{C} (null elements):
$\mathrm{EF}=10^{10} \mathrm{~N} \quad-$ axial stiffness;
Boundary conditions:
$\theta=30^{\circ} \quad-$ angle of the support area in the node C ;
Properties of the material:
$\alpha=10^{-5} 1 /{ }^{\circ} \mathrm{C} \quad$ - linear expansion coefficient;
Loads and actions:
$\mathrm{F}_{\mathrm{E}}=1.5 \cdot 10^{5} \mathrm{~N}$
$\mathrm{F}_{\mathrm{F}}=1.0 \cdot 10^{5} \mathrm{~N}$
$\Delta \mathrm{T}=150^{\circ} \mathrm{C}$
$\mathrm{v}_{\mathrm{A}}=0.020 \mathrm{~m}$
$\mathrm{v}_{\mathrm{B}}=0.030 \mathrm{~m}$
$\mathrm{v}_{\mathrm{C}}=0.015 \mathrm{~m}$.
Finite element model: Design model - plane hinged bar system. Lattice members: A1 - 8 elements of type 1, elements of the top and bottom chords, support diagonals and support vertical A2 - 9 elements of type 1;

Verification Examples

elements modeling the constraints in the support nodes in the directions $\mathrm{v}_{\mathrm{A}}, \mathrm{v}_{\mathrm{B}}$ and $\mathrm{v}_{\mathrm{C}}-3$ elements of type 154. Boundary conditions in the direction u_{A} are provided by imposing the respective rigid constraint. Number of nodes in the design model - 13 .

Results in SCAD

Design and deformed models

Values of vertical displacements $v(Z)(m)$

Values of longitudinal forces $N(N)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Vertical displacement $\mathrm{v}_{\mathrm{D}}(\mathrm{Z}), \mathrm{m}$	$-1.6180 \cdot 10^{-2}$	$-1.6177 \cdot 10^{-2}$	0.02
Longitudinal force $N_{\mathrm{BD}}, \mathrm{N}$	43633.0	43633.5	0.00

Plane Hinged Bar System with Elements of Different Material Subjected to Temperature Variation

Objective: Determination of the stress state of a plane hinged bar system with elements of different material subjected to temperature variation.

Initial data file: T1_v11.3.spr

Problem formulation:

Three bars of the plane system are connected by hinges in the common node (O) and are simply supported in the opposite nodes (B, C, D). Support nodes are arranged on one horizontal straight line symmetrically with respect to the vertical axis (OC), the common node lies on the vertical axis. The vertical bar (OC) is made of steel, the inclined bars (OB, OD) are made of copper. The system is subjected to the temperature variation Δt relative to the assembly temperature. Determine longitudinal forces N in each bar.

References: S.P. Timoshenko, Strength of Materials, Volume 1: Elementary Theory and Problems, Moscow, Nauka, 1965, p. 34.

Initial data:

$\mathrm{E}_{\mathrm{S}}=2.0 \cdot 10^{6} \mathrm{kgf} / \mathrm{cm}^{2}$

- elastic modulus of steel;
$\mathrm{E}_{\mathrm{c}}=1.0 \cdot 10^{6} \mathrm{kgf} / \mathrm{cm}^{2}$
- elastic modulus of copper;
$\alpha_{\mathrm{s}}=1.25 \cdot 10^{-5} 1 /{ }^{\circ} \mathrm{C}$
- linear thermal expansion coefficient of steel;
$\alpha_{c}=1.65 \cdot 10^{-5} 1 /{ }^{\circ} \mathrm{C} \quad-$ linear thermal expansion coefficient of copper;
$1=100.0 \mathrm{~cm}$
$\varphi=45^{\circ}$
- length of the vertical bar;
$\mathrm{A}_{\mathrm{s}}=5.0 \cdot 5.0 \mathrm{~cm}^{2} \quad$ - cross-sectional area of a vertical steel bar;
$\mathrm{A}_{\mathrm{c}}=5.0 \cdot 5.0 \mathrm{~cm}^{2} \quad$ - cross-sectional area of an inclined copper bar;
$\Delta \mathrm{t}=50^{\circ} \mathrm{C} \quad$ - temperature variation of the system.
Finite element model: Design model - plane hinged bar system, 3 elements of type 1. Boundary conditions are provided by imposing constraints in the support nodes in the directions of the degrees of freedom X, Z. The effect of the temperature variation of the system Δt relative to the assembly temperature is specified as uniform along the longitudinal axes of all bar elements. Number of nodes in the design model -4 .

Results in SCAD

Longitudinal force diagram $N(\mathrm{~kg})$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Longitudinal force N (bar OC), kgf	13386.7	13386.7	0.00
Longitudinal force N (bars OB and OD), kgf	-9465.8	-9465.8	0.00

Notes: In the analytical solution, the longitudinal forces N in the bars of the system are determined according to the following formulas:

$$
N_{O C}=\frac{\Delta t \cdot\left(\frac{\alpha_{c}}{\cos ^{2}(\varphi)}-\alpha_{s}\right) \cdot E_{s} \cdot A_{s}}{1+\frac{1}{2 \cdot \cos ^{3}(\varphi)} \cdot \frac{E_{s} \cdot A_{s}}{E_{c} \cdot A_{c}}} ; \quad N_{O B}=N_{O D}=-\frac{\Delta t \cdot\left(\frac{\alpha_{c}}{\cos ^{2}(\varphi)}-\alpha_{s}\right) \cdot E_{s} \cdot A_{s}}{2 \cdot \cos (\varphi)+\frac{1}{\cos ^{2}(\varphi)} \cdot \frac{E_{s} \cdot A_{s}}{E_{c} \cdot A_{c}}} .
$$

Plane Hinged Bar System with Elements of the Same Material Subjected to Temperature Variation

Objective: Determination of the stress state of a plane hinged bar system with elements of the same material subjected to temperature variation.

Initial data file: T2_v11.3.spr

Problem formulation: Three bars of the plane system are connected by hinges in the common node (O) and are simply supported in the opposite nodes ($\mathrm{B}, \mathrm{C}, \mathrm{D}$). Support nodes are arranged on one horizontal straight line symmetrically with respect to the vertical axis (OC), the common node lies on the vertical axis. Vertical (OC) and inclined (OB, OD) bars are made of steel. The system is subjected to the temperature variation $\Delta \mathrm{t}$ relative to the assembly temperature. Determine normal stresses σ in the cross-sections of the bars of the system.

References: S.P. Timoshenko, Strength of Materials, Volume 1: Elementary Theory and Problems, Moscow, Nauka, 1965, p. 35.

Initial data:

$\mathrm{E}_{\mathrm{s}}=2.0 \cdot 10^{6} \mathrm{kgf} / \mathrm{cm}^{2} \quad$ - elastic modulus of steel;
$\alpha_{\mathrm{s}}=1.25 \cdot 10^{-5} 1 /{ }^{\circ} \mathrm{C} \quad$ - linear thermal expansion coefficient of steel;
$1=100.0 \mathrm{~cm} \quad-$ length of the vertical bar;
$\varphi=45^{\circ} \quad$ - angle between inclined and vertical bars;
$\mathrm{A}=5.0 \cdot 5.0 \mathrm{~cm}^{2} \quad$ - cross-sectional area of vertical and inclined bars;
$\Delta t=50^{\circ} \mathrm{C} \quad$ - temperature variation of the system.
Finite element model: Design model - plane hinged bar system, 3 elements of type 1. Boundary conditions are provided by imposing constraints in the support nodes in the directions of the degrees of freedom X, Z. The effect of the temperature variation of the system Δt relative to the assembly temperature is specified as uniform along the longitudinal axes of all bar elements. Number of nodes in the design model -4 .

Results in SCAD

Design and deformed models

Longitudinal force diagram $N(k g f)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Normal stresses σ (bar OC), $\mathrm{kgf} / \mathrm{cm}^{2}$	517.768	$12944.2 /(5.0 * 5.0)=$ $=517.768$	0.00
Normal stresses σ (bars OB and OD), $\mathrm{kgf} / \mathrm{cm}^{2}$	-366.116	$-9152.9 /(5.0 * 5.0)=$ $=-366.116$	0.00

Notes: In the analytical solution the normal stresses σ in the cross-sections of bars of the system are determined according to the following formulas:

$$
\sigma_{O C}=\frac{2 \cdot \Delta t \cdot \alpha_{s} \cdot E_{s} \cdot \cos (\varphi) \cdot \sin ^{2}(\varphi)}{2 \cdot \cos ^{3}(\varphi)+1} ; \quad \sigma_{O B}=\sigma_{O D}=\frac{\Delta t \cdot \alpha_{s} \cdot E_{S} \cdot \sin ^{2}(\varphi)}{2 \cdot \cos ^{3}(\varphi)+1} .
$$

Test CS01

Objective: Determination of the stress state in the elements of a spatial hinged-bar system subjected to a concentrated force.

Initial data file: CS01_v11.3.SPR

Problem formulation: Three bars of the spatial system are connected by hinges in a common node (4) and are simply supported in the opposite nodes (1,2,3). Support nodes are arranged in one horizontal plane, the common node lies outside this plane and is loaded with a vertical concentrated force P. Determine longitudinal forces N in each bar.

References: F. P. Beer, E. R. Johnston Jr., D. F. Mazurek, P. J. Cornwell, E. R. Eisenberg, Vector Mechanics for Engineers, Statics and Dynamics, New York, McGraw-Hill Co., 1962, p. 47.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{~Pa}$

- elastic modulus,
$\mathrm{A}=1.0 \mathrm{~m}^{2} \quad$ - cross-sectional area of the bars;
$\mathrm{P}=50 \mathrm{~N}$
- value of the concentrated force.

Finite element model: Design model - spatial hinged bar system, 3 bar elements of type 4. Boundary conditions in the support nodes are provided by imposing constraints in the directions of the degrees of freedom: $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$. Number of nodes in the design model -4 .

Coordinates of nodes:

Node	$\mathrm{X}(\mathrm{m})$	$\mathrm{Y}(\mathrm{m})$	$\mathrm{Z}(\mathrm{m})$
1	0.0	0.0	0.0
2	0.0	72.0	0.0
3	96.0	0.0	0.0
4	48.0	24.0	-72.0

Results in SCAD

Design and deformed models

Longitudinal force diagram $N(N)$

Comparison of solutions:

Values of longitudinal forces $N(\mathrm{~N})$

Bar (nodes)	Theory	SCAD	Deviations, \%
$1(1-4)$	10.39	10.39	0.00
$2(2-4)$	22.91	22.91	0.00
$3(3-4)$	31.18	31.18	0.00

Notes: In the analytical solution, the longitudinal forces N in the elements of the spatial hinged-bar system subjected to a concentrated load are determined according to the following formulas:

$$
\begin{gathered}
N_{1}=-\frac{P \cdot\left(x_{3} \cdot y_{2}-x_{3} \cdot y_{4}-x_{4} \cdot y_{2}\right) \cdot \sqrt{x_{4}^{2}+y_{4}^{2}+z_{4}^{2}}}{x_{3} \cdot y_{2} \cdot z_{4}} ; \\
N_{2}=-\frac{P \cdot y_{4} \cdot \sqrt{x_{4}^{2}+\left(y_{2}-y_{4}\right)^{2}+z_{4}^{2}}}{y_{2} \cdot z_{4}} ; \\
N_{3}=-\frac{P \cdot x_{4} \cdot \sqrt{\left(x_{3}-x_{4}\right)^{2}+y_{4}^{2}+z_{4}^{2}}}{x_{3} \cdot z_{4}} .
\end{gathered}
$$

Cantilever Beam Subjected to a Concentrated Load

Objective: Analysis for bending in the force plane under a concentrated force without taking into account the transverse shear deformations. The values of the maximum transverse displacement, rotation angle and bending moment are checked.

Initial data file: Example 4.1.SPR

Problem formulation: The cantilever beam is loaded by a concentrated force P applied to its free end. Determine the maximum values of the transverse displacement w, rotation angle θ and bending moment M.

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. - Kiev: Naukova Dumka, 1988, p. 263.

Initial data:

$E=2.0 \cdot 10^{11} \mathrm{~Pa} \quad-$ elastic modulus,
$v=0.3 \quad$ - Poisson's ratio,
$L=3 \mathrm{~m} \quad$ - beam length;
$I=2.44 \cdot 10^{-6} \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia;
$P=5 \mathrm{kN} \quad$ - value of the concentrated force.
Finite element model: Design model - general type system, 10 bar elements of type 5, 11 nodes.

Results in SCAD:

\qquad

Bending moment diagram $M(k N \cdot m)$

Values of transverse displacements $w(\mathrm{~mm})$

Values of rotation angles $\theta(\mathrm{rad})$
Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Transverse displacement $w, \mathrm{~mm}$	-92.21	-92.21	0.00
Rotation angle θ, rad	0.04611	0.04611	0.00
Bending moment $M, \mathrm{kN} \cdot \mathrm{m}$	-15.0	-15.0	0.00

46

Notes: In the analytical solution, the maximum values of the transverse displacement w, rotation angle θ and bending moment M are determined according to the following formulas:

$$
w=-\frac{P \cdot L^{3}}{3 \cdot E \cdot I} ; \quad \theta=\frac{P \cdot L^{2}}{2 \cdot E \cdot I} ; \quad M=-P \cdot L
$$

Cantilever Beam Subjected to a Concentrated Shear Force

Objective: Determination of the strain state of a cantilever beam subjected a concentrated shear force.
Initial data files:

CS06_c_v11.3.SPR	bar model
CS06_I_v11.3.SPR	plane-stress model

Problem formulation: The cantilever beam of a rectangular cross-section is subjected to a concentrated shear force P applied at its free end. Determine the displacement z of the free end of the beam taking into account the effect of the transverse shear.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{~Pa} \quad-$ elastic modulus,
$v=0.0 \quad$ - Poisson's ratio,
$\mathrm{L}=10.0 \mathrm{~m} \quad-$ beam length;
$\mathrm{t}=0.1 \mathrm{~m} \quad$ - width of the beam cross-section;
$\mathrm{h}=1.0 \mathrm{~m} \quad$ - height of the beam cross-section;
$\mathrm{k}=1.2 \quad$ - shear coefficient;
$\mathrm{P}=1.0 \mathrm{~N} \quad-$ value of the concentrated force
Finite element model: Two design models are considered:
Bar model (B), design model - plane frame, 10 elements of type 10. The spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions at the clamped end are provided by imposing constraints in the directions of the degrees of freedom: X, Z, UY. Number of nodes in the design model 11.

Plane-stress model (P), 10 eight-node elements of type 30 . The spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions at the clamped end are provided by imposing constraints in the directions of the degrees of freedom: X, Z. Number of nodes in the design model - 53 .

Results in SCAD

\qquad

Design model. Bar model

Deformed model. Bar model

Displacements z (m). Bar model

Design model. Plane-stress model

Deformed model. Plane-stress model

Displacements z(m). Plane-stress model

Comparison of solutions:

Model	Displacements z, m	Deviations, \%
Bar (B)	$-1.341 \cdot 10^{-3}$	0.00

Model	Displacements z, m	Deviations, \%
Plane-stress (P)	$-1.340 \cdot 10^{-3}$	0.07
Theory	$-1.341 \cdot 10^{-3}$	-

Notes: In the analytical solution, the displacement z of the free end of the beam taking into account the effect of the transverse shear is determined according to the following formula:

$$
z=\frac{4 \cdot P \cdot L^{3}}{E \cdot t \cdot h^{3}} \cdot\left(1+\frac{k \cdot(1+v) \cdot h^{2}}{2 \cdot L^{2}}\right)
$$

Vertical Cantilever Bar of Square Cross-Section with Longitudinal and

 Transverse Concentrated Loads at Its Free End

Objective: Check of the consistency of the results for models of different dimensions.
Initial data files:

File name	Description
Задача 4.9_c.SPR	Bar model
Задача 4.9_п.SPR	Shell element model
Задача 4.9_o.SPR	Solid element model

Problem formulation: Determine the displacements of the free end $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and maximum stresses in the clamped section σ_{z}.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.2 \quad$ - Poisson's ratio;
$\mathrm{b}=\mathrm{h}=0.5 \mathrm{~m} \quad$ - cross-sectional dimensions of the cantilever bar;
$l=10 \mathrm{~m} \quad-$ height of the cantilever bar;
$\mathrm{P}_{\mathrm{x}}=10 \mathrm{kN} \quad-$ value of the concentrated force acting along the X axis of the global coordinate system (loading 1);
$\mathrm{P}_{\mathrm{y}}=10 \mathrm{kN} \quad-$ value of the concentrated force acting along the Y axis of the global coordinate system (loading 2);
$\mathrm{N}=10000 \mathrm{kN} \quad$ - value of the concentrated force acting along the Z axis of the global coordinate system (loading 3).

Finite element model: Design model - general type system. Three design models are considered:
Bar model (B), 2 elements of type 5, 3 nodes;
Shell element model (P), 20 elements of type 50, 85 nodes;
Solid element model (S), 10 elements of type 37, 128 nodes.

Results in SCAD

Values of the displacements x, y, z in the bar model (mm)

Values of the displacements x, y, z in the shell element model (mm)

Values of the displacements x, y, z in the solid element model (mm)

Comparison of solutions:

Model	Loading 1			
	Displacements $\mathbf{x}(\mathbf{m m})$	Deviations, $\mathbf{\%}$	Stresses $\boldsymbol{\sigma}_{\mathbf{z}}(\mathbf{k P a})$	Deviations, \%
Bar (B)	21.333	0.00	4800	0.00
Shell element (P)	21.330	0.01	4819	0.40
Solid element (S)	21.336	0.01	4738	1.29
Theory	21.333	-	4800	-

Model	Loading 2			
	Displacements $\mathbf{y}(\mathbf{m m})$	Deviations, \%	Stresses $\boldsymbol{\sigma}_{\mathbf{z}}(\mathbf{k P a})$	Deviations, \%
Bar (B)	21.333	0.00	4800	0.00
Shell element (P)	21.359	0.12	4720	1.67
Solid element (S)	21.345	0.06	4743	1.19
Theory	21.333	-	4800	-

Model	Loading 3			
	Displacements $\mathbf{z (m m)}$	Deviations, \%	Stresses $\boldsymbol{\sigma}_{\mathbf{z}}(\mathbf{k P a})$	Deviations, \%
Bar (B)	-13.333	0.00	-40000	0.00
Shell element (P)	-13.333	0.00	-40000	0.00
Solid element (S)	-13.333	0.00	-40000	0.00
Theory	-13.333	-	-40000	-

Notes: In the analytical solution for non-deformed models, the displacements of the free end $\mathrm{x}, \mathrm{y}, \mathrm{z}$ and the maximum stresses in the clamped section σ_{z} are determined according to the following formulas:

$$
\begin{array}{cll}
x=\frac{4 \cdot P x \cdot l^{3}}{E \cdot b \cdot h^{3}} ; & y=\frac{4 \cdot P y \cdot l^{3}}{E \cdot h \cdot b^{3}} ; & z=\frac{N \cdot l}{E \cdot b \cdot h} \\
\sigma_{z}(P x)=\frac{6 \cdot P x \cdot l}{b \cdot h^{2}} ; & \sigma_{z}(P y)=\frac{6 \cdot P y \cdot l}{h \cdot b^{2}} ; & \sigma_{z}(N)=\frac{N}{b \cdot h} .
\end{array}
$$

Simply Supported Beam Subjected to a Concentrated Force and Uniformly Distributed Pressure

Objective: Combined loading (lateral pressure, concentrated force) in one plane without taking into account the transverse shear deformations. Displacements and forces are checked.

Initial data file: 4.3.SPR

Problem formulation: The simply supported beam is subjected to a concentrated force P and uniformly distributed pressure q. Displacements w, rotation angles θ, shear forces Q and bending moments M are determined.

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. - Kiev: Naukova Dumka, 1988.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus;
$\mu=0.3 \quad$ - Poisson's ratio;
$\mathrm{l}=3 \mathrm{~m} \quad$ - beam length;
$\mathrm{F}=14.2 \cdot 10^{-4} \mathrm{~m}^{2} \quad$ - cross-sectional area;
$\mathrm{I}=2.44 \cdot 10^{-6} \mathrm{~m}^{4} \quad-$ moment of inertia;
$\mathrm{P}=-5 \mathrm{kN} \quad-$ value of the concentrated force;
$\mathrm{q}=10 \mathrm{kN} / \mathrm{m} \quad-$ value of pressure;
$\mathrm{a}=\mathrm{b}=1.5 \mathrm{~m} \quad$ - geometric size.

Finite element model:

Design model - plane frame, 10 bar elements, 11 nodes.

Results in SCAD

Bending moment diagram $M\left(k N^{*} m\right)$

Shear force diagram $Q(k N)$
\qquad

Values of transverse displacements $w(\mathrm{~mm})$

0,004322.	0,004207	0,003861	0,003285	0,002478	0,001441	-0,000196	-0,002432	-0,004714	-0,006489	-0,007204

Values of rotation angles θ (rad)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Deflection in the point C, mm	-5.043	-5.043	0.00
Rotation angle in the point B, rad	$-7.204 \cdot 10^{-3}$	$-7.204 \cdot 10^{-3}$	0.00
Bending moment in the point C, $\mathrm{kN} \cdot \mathrm{m}$	1.875	1.875	0.00
Shear force in the point A, kN	1.25	1.25	0.00
Shear force in the point B, kN	-8.75	-8.75	0.00

Notes: In the analytical solution, the deflection in the point C can be calculated according to the following formula ("Handbook on Strength of Materials" p. 295, 297):

$$
w_{C}=\frac{P \cdot a^{2} \cdot b^{2}}{3 \cdot E \cdot I \cdot(a+b)}+\frac{q \cdot a \cdot b^{3} \cdot(4 \cdot a+b)}{24 \cdot E \cdot I \cdot(a+b)} .
$$

The rotation angle in the point B can be calculated according to the following formula ("Handbook on Strength of Materials" p. 295, 297):

$$
\theta_{B}=\frac{P \cdot b \cdot\left(2 \cdot a^{2}+a \cdot b\right)}{6 \cdot E \cdot I \cdot(a+b)}-\frac{q \cdot b^{2} \cdot\left(4 \cdot a^{2}+4 \cdot a \cdot b+b^{2}\right)}{24 \cdot E \cdot I \cdot(a+b)} .
$$

The bending moment in the point C can be calculated according to the following formula:

$$
M_{C}=\frac{P \cdot a \cdot b}{a+b}+\frac{q \cdot a \cdot b^{2}}{2 \cdot(a+b)} .
$$

The shear force in the point A can be calculated according to the following formula:

$$
Q_{A}=\frac{P \cdot b}{a+b}+\frac{q \cdot b^{2}}{2 \cdot(a+b)} .
$$

The shear force in the point B can be calculated according to the following formula:

$$
Q_{B}=-\frac{P \cdot a}{a+b}-\frac{q \cdot(2 \cdot a+b) \cdot b}{2 \cdot(a+b)} .
$$

Three-Step Simply Supported Beam Subjected to Concentrated Forces

Objective: Strain state of a three-step simply supported beam subjected to concentrated forces without taking into account the transverse shear deformations. Transverse displacements and rotation angles are checked.

Initial data file: 4.5.SPR

Problem formulation: The three-step simply supported beam is subjected to three concentrated forces P. Determine the rotation angles of support sections and transverse displacements in the force application points.

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. - Kiev: Naukova Dumka, 1988.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa}-\quad$ - elastic modulus,
$l=1 \mathrm{~m}$

- half length of the beam span of each section;
$\mathrm{F}=1 \cdot 10^{-2} \mathrm{~m}^{2}$
- cross-sectional area;
$\mathrm{I}_{1}=5 \cdot 10^{-6} \mathrm{~m}^{4} \quad-$ moment of inertia;
$\mathrm{P}=1 \mathrm{kN} \quad$ - load value.
$\mathrm{I}_{1}: \mathrm{I}_{2}: \mathrm{I}_{3}=1: 2: 3$
$\mathrm{F}_{1}: \mathrm{F}_{2}: \mathrm{F}_{3}=1: 2: 3$

Finite element model: Design model - general type system, 6 bar elements of type 5, 7 nodes.

Results in SCAD

0	-3,02	-4,71	-4,94,	-4,01	-2,23,	0

Values of transverse displacements $w(\mathrm{~mm})$

$0,00327.000252$	0,00077	$-0,00035$	$-0,00148$	$-0,00206$.	$-0,00231$

Values of rotation angles $\theta(\mathrm{rad})$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%

Transverse displacements, mm			
$w(l)$	-3.02	-3.02	0.00
$w(3 l)$	-4.94	-4.94	0.00
$w(5 l)$	-2.23	-2.23	0.00
Rotation angles, rad			
$\theta(0)$	0.00327	0.00327	0.00
$\theta(6 l)$	-0.00231	-0.00231	0.00

Notes: In the analytical solution, the rotation angles of support sections and deflections in the force application points are determined according to the following formulas:

$$
\begin{gathered}
w(l)=-\frac{653 \cdot P \cdot l^{3}}{216 \cdot E \cdot I_{l}} ; \quad w(3 \cdot l)=-\frac{89 \cdot P \cdot l^{3}}{18 \cdot E \cdot I_{l}} ; \quad w(5 \cdot l)=-\frac{481 \cdot P \cdot l^{3}}{216 \cdot E \cdot I_{l}} \\
\theta(0)=\frac{707 \cdot P \cdot l^{2}}{216 \cdot E \cdot I_{l}} ; \quad \theta(6 \cdot l)=-\frac{499 \cdot P \cdot l^{2}}{216 \cdot E \cdot I_{l}}
\end{gathered}
$$

Doubly Clamped Beam Subjected to a Uniformly Distributed Load

Objective: Loading of a doubly clamped beam in one plane without taking into account the transverse shear deformations. The values of the maximum transverse displacement and the bending moments are checked.

Initial data file: 4.4.SPR

Problem formulation: The doubly-clamped beam is subjected to a uniformly distributed load q. Determine the maximum transverse displacement w and bending moments M.

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. - Kiev: Naukova Dumka, 1988.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus,
$\mu=0.3 \quad$ - Poisson's ratio,
$1=3 \mathrm{~m} \quad$ - beam length;
$\mathrm{F}=14.2 \cdot 10^{-4} \mathrm{~m}^{2} \quad$ - cross-sectional area;
$\mathrm{I}=2.44 \cdot 10^{-6} \mathrm{~m}^{4} \quad$ - moment of inertia;
$\mathrm{q}=10 \mathrm{kN} / \mathrm{m} \quad$ - load value.
Finite element model: Design model - plane frame, 10 bar elements of type 2, 11 nodes.

Results in SCAD

Bending moment diagram $M\left(k N^{*} m\right)$

$-0,56$	$-1,77$	$-3,05$	$-3,98$	$-4,32$	$-3,98$	$-3,05$	$-1,77$	$-0,56$	0

Values of transverse displacements $w(\mathrm{~mm})$.

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Transverse displacement in the middle of the beam span, mm	-4.32	-4.32	0.00
Bending moment in the middle of the beam span, $\mathrm{kN} \cdot \mathrm{m}$	3.75	3.75	0.00
Bending moment at the beam support, $\mathrm{kN} \cdot \mathrm{m}$	-7.5	-7.5	0.00

Notes: In the analytical solution, the deflection at the center of the beam can be calculated according to the following formula ("Handbook on Strength of Materials" p. 352):

$$
w=-\frac{q \cdot l^{4}}{384 \cdot E \cdot I} ;
$$

Bending moments at the clamping are calculated according to the following formula:

$$
M=-\frac{q \cdot l^{2}}{12} ;
$$

Bending moment in the middle of the beam:

$$
M=\frac{q \cdot l^{2}}{24} .
$$

Doubly Clamped Beam Subjected to a Uniformly Distributed Load, Concentrated Longitudinal and Shear Forces and a Bending Moment

Objective: Determination of the stress-strain state of a doubly clamped beam subjected to a uniformly distributed load, concentrated longitudinal and shear forces and a bending moment.

Initial data file: SSLL01_v11.3.SPR

Problem formulation: The doubly clamped beam is subjected to a load P uniformly distributed over the entire length of the span l, unidirectional concentrated longitudinal forces $F 1$ and $F 2$, applied at the distance of $0.3 l$ from the left and right end respectively, concentrated shear force F , applied at the distance of $0.3 l$ from the right end, and a concentrated bending moment C , applied at the distance of $0.3 l$ from the left end. Determine the vertical displacement Z , longitudinal force N and bending moment M in the middle of the beam span (point G), and the horizontal reaction at the left end of the beam H (point A).

References: S. Timoshenko, Resistance des materiaux, t.1, Paris, Eyrolles, 1976, p. 26. M. Courtand et P. Lebelle, Formulaire du beton arme, t.2, Paris, Eyrolles, 1976, p. 219.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad-$ elastic modulus,
$\mu=0.2 \quad$ - Poisson's ratio,
$l=1.0 \mathrm{~m}$
$\mathrm{J}=1.7 \cdot 10^{-8} \mathrm{~m}$

- beam length;
$P=24000 \mathrm{~N} / \mathrm{m}$
- cross-sectional moment of inertia cross-sectional moment of inertia;
- value of the uniformly distributed load;
$F 1=30000 \mathrm{~N} \quad-$ value of the concentrated longitudinal force;
$F 2=10000 \mathrm{~N} \quad-$ value of the concentrated longitudinal force;
$\mathrm{F}=20000 \mathrm{~N} \quad-$ value of the concentrated shear force;
$\mathrm{C}=24000 \mathrm{~N} \cdot \mathrm{~m} \quad-$ value of the concentrated bending moment.
Finite element model: Design model - general type system, 4 bar elements of type 10 . Boundary conditions at the clamped ends are provided by imposing constraints in the directions of the degrees of freedom: X, Y, Z, UX, UY, UZ. Number of nodes in the design model - 5 .

Results in SCAD

Values of vertical displacements Z (m)

Longitudinal force diagram $N(N)$

Bending moment diagram $M\left(k N^{*} m\right)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Vertical displacement Z (point G), m	$-4.9023 \cdot 10^{-2}$	$-4.9000 \cdot 10^{-2}$	0.05
Longitudinal force N (point G), N	-6000.0	-6000.0	0.00
Bending moment M (point G), $\mathrm{N} \cdot \mathrm{m}$	2800.0	2800.0	0.00
Horizontal reaction H (point A), N	24000.0	24000.0	0.00

Two-Span Simply Supported Beam with an Intermediate Compliant Support Subjected to Concentrated Shear Forces Applied in the Middle of the Spans

Objective: Determination of the stress-strain state of a two-span simply supported beam with an intermediate compliant support subjected to concentrated shear forces applied in the middle of the spans.

Initial data file: SSLL03_v11.3.SPR

Problem formulation: The two-span simply supported beam with an intermediate compliant support is subjected to concentrated shear forces F, applied in the middle of the spans (at the distance l from the end supports). Determine the vertical displacement Z and the vertical reaction N of the intermediate compliant support, and the bending moment M in the beam above the intermediate compliant support (point B).

References: C. Massonnet, Application des ordinateurs au calcul des structures, Paris, Eyrolles, 1968, p. 233.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus,
$2 \cdot l=6.0 \mathrm{~m} \quad$ - length of the beam span;
$\mathrm{A}=0.4762 \cdot 10^{-3} \mathrm{~m}^{2} \quad$ - cross-sectional area;
$\mathrm{I}=6,3 \cdot 10^{-4} \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia;
$\mathrm{k}=2.1 \cdot 10^{11} \mathrm{~N} / \mathrm{m} \quad$ - stiffness of the intermediate compliant support;
$\mathrm{F}=4.2 \cdot 10^{4} \mathrm{~N} \quad-$ value of the concentrated shear forces.

Finite element model: Design model - plane frame, 4 bar elements of type 2. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom: X, Z - for the left support; Z for the right support, and by imposing a constraint of finite rigidity in the direction of the degree of freedom Z - for the intermediate support (member type 51). Number of nodes in the design model -5 .

Results in SCAD

Values of vertical displacements Z (m)

Values of vertical support reactions $N(N)$

Bending moment diagram $M\left(k N^{*} m\right)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Vertical displacement Z (point B), m	$-1.0000 \cdot 10^{-2}$	$-1.0000 \cdot 10^{-2}$	0.00
Vertical reaction H (point B), N	21000.0	21000.0	0.00
Bending moment M (point B), $\mathrm{N} \cdot \mathrm{m}$	63000.0	63000.0	0.00

Beam on the Elastic Horizontal Subgrade Subjected to Concentrated Vertical Forces

Objective: Determination of the stress-strain state of a beam on the elastic horizontal subgrade subjected to concentrated vertical forces.

Initial data files:

File name	Description
SSLL15_var_1_v11.3.SPR	Design model - bar elements on the elastic subgrade
SSLL15_var_2_v11.3.SPR	Design model - bar elements on elastic supports in the form of elements of constraints of finite rigidity of type 51

Problem formulation: The beam on the elastic horizontal subgrade with the stiffness k constant along the length is subjected to three concentrated vertical forces of the same value F , applied at the edges (points A and B) and in the middle of the span (point C). Determine the vertical displacements Z in the middle of the beam span (point C) and at its edges (points A and B), rotation angles UY of the beam edges, as well as the bending moment M in the middle of the beam span.

References: M. Courtand et P. Lebelle, Formulaire du beton arme, t.2, Paris, Eyrolles,1976, p. 382.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus;
$\mathrm{l}=0.5 \cdot \pi \cdot(10.0)^{0.5}=4.967294133 \mathrm{~m} \quad$ - beam length;
$\mathrm{b}=1.0 \mathrm{~m}$

- beam width;
$\mathrm{I}_{\mathrm{y}}=1.0 \cdot 10^{-4} \mathrm{~m}^{4}$
- cross-sectional moment of inertia of the beam;
$\mathrm{k}_{\mathrm{z}}=8.4 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{3}$
- subsoil parameter;
$\mathrm{F}=1.0 \cdot 10^{4} \mathrm{~N}$
- value of the concentrated vertical force.

Finite element model: Two variants of the design model are considered.

Variant 1:

Design model - grade beam / plate, 12 bar elements of type 3 on the elastic subgrade directed along the Z 1 axis of the local coordinate system. Number of nodes in the design model - 13 .

Variant 2:

Design model - grade beam / plate, 12 bar elements of type 3 on the elastic supports in the form of 13 elements of constraints of finite rigidity of type 51 directed along the Z axis of the global coordinate system. Stiffness of intermediate elastic supports: $\mathrm{k}_{\mathrm{z}} \cdot \mathrm{b} \cdot \mathrm{l} / 12=347711 \mathrm{~N} / \mathrm{m}$, stiffness of end elastic supports: $0.5 \cdot \mathrm{k}_{\mathrm{z}} \cdot \mathrm{b} \cdot 1 / 12=173855 \mathrm{~N} / \mathrm{m}$. In order to prevent the dimensional instability of the system, a constraint in the direction of the degree of freedom UX is imposed along the beam symmetry axis and the minimum torsional stiffness of the beam is introduced $\mathrm{GI}_{\mathrm{x}}=1.0 \mathrm{~N} \cdot \mathrm{~m}^{2}$. Number of nodes in the design model -13 .

Results in SCAD

Design and deformed models. Variant 1

Design and deformed models. Variant 2

Values of vertical displacements $Z(m)$ for the design model according to variant 1

Values of vertical displacements $Z(m)$ for the design model according to variant 2

Values of rotation angles UY (rad) for the design model according to variant 1

Values of rotation angles UY (rad) for the design model according to variant 2

Values of bending moments $M(N \cdot m)$ for the design model according to variant 1

Values of bending moments $M(N \cdot m)$ for the design model according to variant 2

Comparison of solutions:

Parameter	Theory	SCAD DM according to variant 1	Deviations, \%	SCAD DM according to variant 2	Deviations, \%
Vertical displacement $\mathrm{Z}_{\mathrm{C}}, \mathrm{m}$	$-6.844 \cdot 10^{-3}$	$-6.843 \cdot 10^{-3}$	0.01	$-6.844 \cdot 10^{-3}$	0.00
Vertical displacement $\mathrm{Z}_{\mathrm{A}}, \mathrm{m}$	$-7.854 \cdot 10^{-3}$	$-7.859 \cdot 10^{-3}$	0.06	$-7.845 \cdot 10^{-3}$	0.11
Rotation angle $\mathrm{UY} \mathrm{Y}_{\mathrm{A}}, \mathrm{rad}$	$-7.060 \cdot 10^{-4}$	$-7.060 \cdot 10^{-4}$	0.00	$-6.945 \cdot 10^{-4}$	1.63
Bending moment $M_{\mathrm{C}}, \mathrm{N} \cdot \mathrm{m}$	-5759.0	-5758.8	0.00	-5742.6	0.28

Simply Supported Beam on the Elastic Horizontal Subgrade Subjected to a Vertical Uniformly Distributed Load, Concentrated Vertical Force and Bending Moment

Objective: Determination of the stress-strain state of a simply supported beam on the elastic horizontal subgrade subjected to a vertical uniformly distributed load, concentrated force and bending moment.

Initial data files:

File name	Description
SSLL16_var_1_v11.3.SPR	Design model - bar elements on the elastic subgrade
SSLL16_var_2_v11.3.SPR	Design model - bar elements on elastic supports in the form of elements of constraints of finite rigidity of type 51

Problem formulation: The simply supported beam on the elastic horizontal subgrade with the stiffness k constant along the length is subjected to a vertical uniformly distributed load P , concentrated vertical force F , applied in the middle of the span (point D) and concentrated bending moments -C and C , applied at the edges (points A and B). Determine the vertical displacement Z in the middle of the beam span (point D), rotation angles UY of the beam edges (points A and B), as well as the bending moment M in the middle of the beam span and the shear force Q at the edge of the beam.

References: M. Courtand et P. Lebelle, Formulaire du beton arme, t.2, Paris, Eyrolles,1976, p. 385.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{11} \mathrm{~Pa}$
$\mathrm{l}=0.5 \cdot \pi \cdot(10.0)^{0.5}=4.967294133 \mathrm{~m}$
$\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{I}_{\mathrm{y}}=1.0 \cdot 10^{-4} \mathrm{~m}^{4}$
$\mathrm{k}_{\mathrm{z}}=8.4 \cdot 10^{5} \mathrm{~N} / \mathrm{m}^{3}$
$\mathrm{P}=5.0 \cdot 10^{3} \mathrm{~N} / \mathrm{m}$
$\mathrm{F}=1.0 \cdot 10^{4} \mathrm{~N}$
C $=1.5 \cdot 10^{4} \mathrm{~N} \cdot \mathrm{~m}$

- elastic modulus;
- beam length;
- beam width;
- cross-sectional moment of inertia of the beam;
- subsoil parameter;
- value of the vertical uniformly distributed load;
- value of the concentrated vertical force;
- value of the concentrated bending moment.

Finite element model: Two variants of the design model are considered.

Variant 1:

Design model - grade beam / plate, 24 bar elements of type 3 on the elastic subgrade directed along the Z1 axis of the local coordinate system. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z for roller support nodes. Number of nodes in the design model -25 .

Variant 2:

Design model - grade beam / plate, 24 bar elements of type 3 on the elastic supports in the form of 25 elements of constraints of finite rigidity of type 51 directed along the Z axis of the global coordinate system. Stiffness of intermediate elastic supports: $\mathrm{k}_{\mathrm{z}} \cdot \mathrm{b} \cdot \mathrm{l} / 24=173855 \mathrm{~N} / \mathrm{m}$, stiffness of end elastic supports: $0.5 \cdot \mathrm{k}_{\mathrm{z}} \cdot \mathrm{b} \cdot 1 / 12=86928 \mathrm{~N} / \mathrm{m}$. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z for roller support nodes. In order to prevent the dimensional instability of the system, a constraint in the direction of the degree of freedom UX is imposed along the beam symmetry axis and the minimum torsional stiffness of the beam is introduced $\mathrm{GI}_{\mathrm{x}}=1.0 \mathrm{~N} \cdot \mathrm{~m}^{2}$. Number of nodes in the design model-25.

Verification Examples

Results in SCAD

Design and deformed models. Variant 1

Design and deformed models. Variant 2

Values of vertical displacements $Z(m)$ for the design model according to variant 1

Values of vertical displacements $Z(m)$ for the design model according to variant 2

Values of rotation angles $U Y(\mathrm{rad})$ for the design model according to variant 1

Values of rotation angles $U Y(\mathrm{rad})$ for the design model according to variant 2

Values of bending moments $M(N \cdot m)$ for the design model according to variant 1

Values of bending moments $M(N \cdot m)$ for the design model according to variant 2

Values of shear forces $Q(N)$ for the design model according to variant 1

Values of shear forces $Q(N)$ for the design model according to variant 2

Comparison of solutions:

Parameter	Theory	SCAD DM according to variant 1	Deviations, $\boldsymbol{\%}$	SCAD DM according to variant 2	Deviations, $\boldsymbol{\%}$
Vertical displacement $\mathrm{Z}_{\mathrm{D}}, \mathrm{m}$	$-4.233 \cdot 10^{-3}$	$-4.233 \cdot 10^{-3}$	0.00	$-4.233 \cdot 10^{-3}$	0.00
Rotation angle $\mathrm{UY} \mathrm{A}_{\mathrm{A}}$, rad	$3.045 \cdot 10^{-3}$	$3.045 \cdot 10^{-3}$	0.00	$3.045 \cdot 10^{-3}$	0.00
Bending moment $M_{\mathrm{D}}, \mathrm{N} \cdot \mathrm{m}$	33840.0	33839.9	0.00	33827.2	0.04
Shear force $Q_{\mathrm{A}}, \mathrm{N}$	11674.0	11674.3	0.00	11683.4	0.08

Doubly Clamped Beam Subjected to the Transverse Displacement of One of its Ends

Objective: Determination of the stress state of a doubly clamped beam subjected to the transverse displacement of one of its ends.

Initial data file: CS09_v11.3.SPR
Problem formulation: The doubly clamped beam of a rectangular cross-section is subjected to a transverse displacement v of one of its ends. Determine the shear force Q and the bending moment M at the displaced end.

References: J. M. Gere and W. Weaver, Jr., Analysis of Framed Structures, New York, D. Van Nostrand Co., 1965.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{~Pa} \quad$ - elastic modulus,
$\mathrm{L}=80.0 \mathrm{~m} \quad$ - beam length;
$\mathrm{b}=2.0 \mathrm{~m} \quad-$ width of the beam cross-section;
$\mathrm{h}=2.0 \mathrm{~m} \quad$ - height of the beam cross-section;
$\mathrm{v}=1.0 \mathrm{~m} \quad-$ value of the transverse displacement.
Finite element model: Design model - plane frame, 4 elements of type 2. The spacing of the finite element mesh along the longitudinal axis (along the X axis of the global coordinate system) is 20.0 m . Boundary conditions at the clamped ends are provided by imposing constraints in the directions of the degrees of freedom: X, Z, UY. The action of the given transverse displacement is specified by the displacement of the respective constraint along the Z axis of the global coordinate system. Number of nodes in the design model -5 .

Results in SCAD

Design and deformed models
\square

Shear force diagram $Q(N)$

Bending moment diagram M(N•m)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Shear force Q at the displaced end, N	937.5	937.5	0.00
Bending moment M at the displaced end, $\mathrm{N} \cdot \mathrm{m}$	37500.0	37500.0	0.00

Notes: In the analytical solution, the shear force Q and the bending moment M at the displaced end are determined according to the following formulas:

$$
Q=\frac{12 \cdot E \cdot I}{L^{3}} ; \quad M=\frac{\sigma \cdot E \cdot I}{L^{2}}, \text { where: } \quad I=\frac{b \cdot h^{3}}{12} \text {. }
$$

Plane System of Two Coaxial Bars Subjected to Temperature Variation

Objective: Determination of the stress state of a plane system of two coaxial bars subjected to temperature variation.

Initial data file: B1_v11.3.SPR

Problem formulation: The system consists of two coaxial horizontal bars of square cross-section, rigidly connected in the common node and clamped at the opposite nodes. The system is subjected to the temperature variation $\Delta \mathrm{t}$ relative to the assembly temperature. Determine normal stresses σ in the crosssections of the bars of the system.

References: S.P. Timoshenko, Strength of Materials, Volume 1: Elementary Theory and Problems, Moscow, Nauka, 1965, p. 35.

Initial data:

$\mathrm{E}_{\mathrm{s}}=2.0 \cdot 10^{6} \mathrm{kgf} / \mathrm{cm}^{2} \quad$ - elastic modulus of steel;
$\alpha_{\mathrm{s}}=1.25 \cdot 10^{-5} 1 /{ }^{\circ} \mathrm{C} \quad$ - linear thermal expansion coefficient of steel;
$\mathrm{L}_{1}=100.0 \mathrm{~cm} \quad-$ length of the left bar;
$\mathrm{F}_{1}=1.0 \cdot 1.0 \mathrm{~cm}^{2} \quad-$ cross-sectional area of the left bar;
$\mathrm{L}_{2}=100.0 \mathrm{~cm} \quad-$ length of the right bar;
$\mathrm{F}_{2}=1.0 \cdot 2.0 \mathrm{~cm}^{2} \quad$ - cross-sectional area of the right bar;
$\Delta t=60{ }^{\circ} \mathrm{C} \quad$ - temperature variation of the system.
Finite element model: Design model - plane frame, 2 elements of type 2. Boundary conditions are provided by imposing constraints in the end nodes of the system in the directions of the degrees of freedom $X, Z, U Y$. The effect of the temperature variation of the system Δt relative to the assembly temperature is specified as uniform along the longitudinal axes of all bar elements. Number of nodes in the design model 3.

Results in SCAD

Longitudinal force diagram N (kgf)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%

Normal stresses σ (left bar), $\mathrm{kgf} / \mathrm{cm}^{2}$	-2000.000	$-2000.0 /(1.0 * 1.0)=$ $=-2000.000$	0.00
Normal stresses σ (right bar), $\mathrm{kgf} / \mathrm{cm}^{2}$	-1000.000	$-2000.0 /(1.0 * 2.0)=$ $=-1000.000$	0.00

Notes: In the analytical solution, the normal stresses σ in the cross-sections of the bars of the system are determined according to the following formulas:

$$
\sigma_{l}=\frac{\Delta t \cdot \alpha_{s} \cdot E_{s} \cdot\left(L_{l}+L_{2}\right) \cdot F_{2}}{L_{l} \cdot F_{2}+L_{2} \cdot F_{1}} ; \quad \sigma_{r}=\frac{\Delta t \cdot \alpha_{s} \cdot E_{s} \cdot\left(L_{l}+L_{2}\right) \cdot F_{l}}{L_{l} \cdot F_{2}+L_{2} \cdot F_{l}} .
$$

Stress-Strain State of a Simply Supported Beam Subjected to LongitudinalTransverse Bending

Objective: Longitudinal-transverse bending in one plane.
Initial data files:

File name	Description
$4.8 _$s_c.SPR	Longitudinal-transverse bending under a longitudinal compressive force
$4.8 _$s_t.SPR	Longitudinal-transverse bending under a longitudinal tensile force

Problem formulation: A simply supported beam under pure bending is additionally loaded by a longitudinal force. Determine the maximum transverse displacements $w(\mathrm{x})$ and bending moments $M(\mathrm{x})$ under a longitudinal compressive and tensile force.

References: Strength Analysis in Mechanical Engineering / S. D. Ponomarev, V. L. Biderman, K. K. Likharev, et al., In three volumes. Volume 1. M.: Mashgiz, 1956.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{10} \mathrm{~Pa} \quad$ - elastic modulus;
$\mu=0.3 \quad$ - Poisson's ratio;
$\mathrm{F}=1 \cdot 10^{-2} \mathrm{~m}^{2} \quad$ - cross-sectional area;
$\mathrm{I}=8.333 \cdot 10^{-6} \mathrm{~m}^{4} \quad-$ cross-sectional moment of inertia;
$\mathrm{M}=10 \mathrm{kN} \cdot \mathrm{m} \quad-$ value of the bending moment;
$\mathrm{N}= \pm 200 \mathrm{kN} \quad-$ value of the concentrated force;
$1=1.0 \mathrm{~m} \quad$ - beam length.
Finite element model: The calculation is performed in the geometrically linear formulation for an energetically equivalent model in the form of a bar on the elastic subgrade resisting the rotations of its sections with a linear stiffness parameter $\mathrm{k}_{\varphi}=N$. Design model - plane frame, 16 bar elements of type 2,17 elements of concentrated rotational (clock) springs with stiffness $C_{U Y}=-12.5 \mathrm{kN} \cdot \mathrm{m} / \mathrm{rad}(-6.25 \mathrm{kN} \cdot \mathrm{m} / \mathrm{rad})$ for a bar under compression and bending and $C_{U Y}=12.5 \mathrm{kN} \mathrm{m} / \mathrm{rad}(6.25 \mathrm{kN} \cdot \mathrm{m} / \mathrm{rad})$ for a bar under tension and bending of type 51,17 nodes.

Results in SCAD

Values of transverse displacements w under a longitudinal compressive force (mm)

Bending moment diagram M under a longitudinal compressive force ($k N \cdot m$)

Values of transverse displacements w under a longitudinal tensile force (mm)

Bending moment diagram M under a longitudinal tensile force ($\mathrm{kN} \cdot \mathrm{m}$)

Comparison of solutions:

Parameter	Longitudinal compressive force			Longitudinal tensile force		
	Theory	SCAD	Deviations, $\%$	Theory	SCAD	Deviations, $\%$
Transverse displacements $w(0.5 \cdot l), \mathrm{mm}$	-19.959	-19.980	0.11	-11.986	-11.978	0.07
Bending moment $M(0.5 \cdot l), \mathrm{kN} \cdot \mathrm{m}$	13.992	13.996	0.03	7.603	7.604	0.01

Notes: In the analytical solution, the equation of the elastic line $w(\mathrm{x})$ and the equation of the bending moment $M(\mathrm{x})$ under a longitudinal compressive force are determined according to the following formulas:

$$
\begin{gathered}
w(x)=\frac{M}{N} \cdot\left[\frac{\cos (k \cdot l)-1}{\sin (k \cdot l)} \cdot \sin (k \cdot x)-\cos (k \cdot x)+1\right] \\
M(x)=M \cdot\left[\frac{l-\cos (k \cdot l)}{\sin (k \cdot l)} \cdot \sin (k \cdot x)+\cos (k \cdot x)\right]
\end{gathered}
$$

where:

$$
k=\sqrt{\frac{N}{E \cdot I}} .
$$

In the analytical solution, the equation of the elastic line $w(\mathrm{x})$ and the equation of the bending moment $M(\mathrm{x})$ under a longitudinal tensile force are determined according to the following formulas:

$$
\begin{gathered}
w(x)=\frac{M}{N} \cdot\left[\frac{1-\operatorname{ch}(k \cdot l)}{\operatorname{sh}(k \cdot l)} \cdot \operatorname{sh}(k \cdot x)+\operatorname{ch}(k \cdot x)-1\right] \\
M(x)=M \cdot\left[\frac{\operatorname{ch}(k \cdot l)-1}{\operatorname{sh}(k \cdot l)} \cdot \operatorname{sh}(k \cdot x)+\operatorname{ch}(k \cdot x)\right],
\end{gathered}
$$

where:

$$
k=\sqrt{\frac{N}{E \cdot I}} .
$$

System of Cross Bars Subjected to a Distributed Load and a Concentrated Force in Their Plane

Objective: Determination of the stress-strain state of a system of cross bars subjected to a distributed load and a concentrated force in their plane.

Initial data file: SSLL10_v11.3.SPR

Problem formulation: The system consists of two cross bars of square cross-section, horizontal (BD) and vertical (CE), rigidly connected in the common node (point A). The horizontal bar is clamped in the left and right nodes (points D and B). The vertical bar is clamped in the lower node (point E) and simply supported in the upper one (point C). A vertical concentrated force F is applied in the middle of the left span of the horizontal bar (point G), and a vertical uniformly distributed load p is applied to the right span of the horizontal bar (AB). Determine the rotation angle UY in the common node of cross bars (point A) and bending moments M in the bars on both sides of the node.

References: S. Timoshenko et D.H. Young, Theorie des constructions, Paris, Librairie Polytechnique Beranger, 1949, p. 412-416.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus of the bars of the system;
$\mathrm{L}_{\mathrm{AD}}=1.0 \mathrm{~m} \quad$ - length of the left span of the horizontal bar;
$\mathrm{b}_{\mathrm{AD}}=1.0 \mathrm{~m} \quad-$ side of the cross-section of the left span of the horizontal bar;
$\mathrm{L}_{\mathrm{AB}}=4.0 \mathrm{~m} \quad-$ length of the right span of the horizontal bar;
$\mathrm{b}_{\mathrm{AB}}=4.0 \mathrm{~m} \quad$ - side of the cross-section of the right span of the horizontal bar;
$\mathrm{L}_{\mathrm{AC}}=1.0 \mathrm{~m} \quad$ - length of the upper part of the vertical bar;
$\mathrm{b}_{\mathrm{AC}}=1.0 \mathrm{~m} \quad-$ side of the cross-section of the upper part of the vertical bar;
$\mathrm{L}_{\mathrm{AE}}=2.0 \mathrm{~m} \quad$ - length of the lower part of the vertical bar;
$\mathrm{b}_{\mathrm{AE}}=2.0 \mathrm{~m} \quad$ - side of the cross-section of the lower part of the vertical bar;
$\mathrm{F}=1.0 \cdot 10^{5} \mathrm{~N} \quad-$ value of the vertical concentrated force;
$\mathrm{p}=1.0 \cdot 10^{3} \mathrm{~N} / \mathrm{m} \quad$ - value of the vertical uniformly distributed load.

Finite element model: Design model - plane frame, 5 bar elements of type 10. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z for the simply supported node (point C) and in the directions of the degrees of freedom X, Z, UY for the clamped nodes (points E, D, B). Number of nodes in the design model -6 .

Results in SCAD

Design and deformed models

Values of rotation angles UY (rad)

Values of bending moments $M(N \cdot m)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Rotation angle UY (point A), rad	$-2.2712 \cdot 10^{-1}$	$-2.2740 \cdot 10^{-1}$	0.12
Bending moment M (bar AD), $\mathrm{N} \cdot \mathrm{m}$	-12348.6	-12347.5	0.01
Bending moment M (bar AB), $\mathrm{N} \cdot \mathrm{m}$	-11023.7	-11021.0	0.02
Bending moment M (bar AC), $\mathrm{N} \cdot \mathrm{m}$	113.6	113.7	0.09
Bending moment M (bar AE), $\mathrm{N} \cdot \mathrm{m}$	-1211.3	-1212.8	0.12

Cantilever Frame Subjected to a Concentrated Force

Objective: Determination of the stress-strain state of a cantilever frame subjected to a concentrated force.

Initial data file: SSLL05_v11.3.SPR

Problem formulation: The cantilever frame consists of two horizontal bars of the same length L, clamped on the left (points A, C) and joined by a vertical bar of the length 1 on the right (points B, D). Horizontal bars have considerable tensile/compressive stiffness, a vertical bar has both considerable tensile/compressive and bending stiffness. A vertical concentrated force F is applied in the joint between the lower horizontal bar and the vertical bar (point D). Determine the vertical displacements Z in the joints between the horizontal bars and the vertical bar (points B, D), as well as the bending moments M_{y}, shear forces Q_{z} and longitudinal forces N_{x} in the clamped nodes of the horizontal bars (points A, C).

References: A. Campa, R. Chappert et R. Picand, La mecanique par les problemes, fasc. 4: Resistance des materiaux, Paris, Foucher, 1987.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus of the horizontal bars;
$\mathrm{L}=2.0 \mathrm{~m} \quad$ - length of the horizontal bars;
$\mathrm{l}=0.2 \mathrm{~m} \quad$ - length of the vertical bar;
$\mathrm{I}_{\mathrm{z}}=4 / 3 \cdot 10^{-8} \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia of the horizontal bars;
$\mathrm{F}=1.0 \cdot 10^{3} \mathrm{~N} \quad-$ value of the vertical concentrated force.

Finite element model: Design model - plane frame, 3 bar elements of type 10. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z, UY (points A, C). Tensile/compressive stiffness ($\mathrm{E} \cdot \mathrm{A}$) of horizontal and vertical bars is taken as $1.0 \cdot 10^{12} \mathrm{~N}$, bending stiffness of the vertical bar (E•I) is taken as $1.0 \cdot 10^{12} \mathrm{~N} \cdot \mathrm{~m}^{2}$. Number of nodes in the design model -4 .

Results in SCAD

Design and deformed models

Values of vertical displacements Z (m)

Bending moment diagram $M_{y}(k N \cdot m)$

Shear force diagram $Q_{z}(k N)$

Longitudinal force diagram $N_{x}(k N)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Vertical displacement Z (point B), m	$-1.2500 \cdot 10^{-1}$	$-1.2498 \cdot 10^{-1}$	0.02
Vertical displacement Z (point D), m	$-1.2500 \cdot 10^{-1}$	$-1.2498 \cdot 10^{-1}$	0.02
Bending moment M_{y} (point A), N $\cdot \mathrm{m}$	-500.0	-500.0	0.00
Bending moment M_{y} (point C), $\mathrm{N} \cdot \mathrm{m}$	-500.0	-500.0	0.00
Shear force Q_{Z} (point A), N	500.0	500.0	0.00
Shear force Q_{Z} (point C), N	500.0	500.0	0.00
Shear force N_{x} (point A), N	5000.0	5000.0	0.00
Shear force N_{x} (point C), N	-5000.0	-5000.0	0.00

Single-Span Simply Supported Plane Frame with a Dual-Pitched Girder Subjected to a Vertical Uniformly Distributed Load, Concentrated Vertical and Horizontal Forces and a Bending Moment

Objective: Determination of the stress-strain state of a single-span simply supported plane frame with a dual-pitched girder subjected to a vertical uniformly distributed load, concentrated vertical and horizontal forces and a bending moment.

Initial data file: SSLL14_v11.3.spr

Problem formulation: The single-span simply supported frame with a rigid connection between the dualpitched girder and the columns is subjected to a vertical load P_{zx} uniformly distributed along the length of the left half-span of the girder $0.5 \cdot \mathrm{~L}$, concentrated vertical force F1 in the ridge joint (point C), concentrated horizontal force F2 and bending moment M in the joint between the girder and the left column. Determine the vertical displacement Z in the ridge joint (point C), longitudinal N and shear Q force in the support node of the left column (point A).

References: J.C. Bianchi, Rapport de la SOCOTEC, Paris, non publie, 1964.

Initial data:

Material:
$\mathrm{E}=2.1 \cdot 10^{11} \mathrm{~Pa}$
Columns L1:
$\mathrm{h}=8.0 \mathrm{~m}$
$\mathrm{EA}_{1}=1.0 \cdot 10^{10} \mathrm{~N}$
$E I_{1}=2.1 \cdot 10^{11} \cdot 5.0 \cdot 10^{-4}=10.5 \cdot 10^{7} \mathrm{~N} \cdot \mathrm{~m}^{2}$
Girder L2:
$\mathrm{L}=20.0 \mathrm{~m}$
$\mathrm{a}=4.0 \mathrm{~m}$
$\mathrm{b}=\left((0.5 \cdot 20.0)^{2}+4.0^{2}\right)^{0.5}$
$\mathrm{EA}_{2}=1.0 \cdot 10^{10} \mathrm{~N}$
$\mathrm{EI}_{2}=2.1 \cdot 10^{11} \cdot 2.5 \cdot 10^{-4}=5.25 \cdot 10^{7} \mathrm{~N} \cdot \mathrm{~m}^{2}$
Loads and actions:
$\mathrm{P}_{\mathrm{zx}}=3.0 \cdot 10^{3} \mathrm{~N} / \mathrm{m}$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{z}} & =3.0 \cdot 10^{3} \cdot 0.5 \cdot 20.0 /\left((0.5 \cdot 20.0)^{2}+4.0^{2}\right)^{0.5} \\
& =2.78543 \cdot 10^{3} \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

$\mathrm{F} 1=2.0 \cdot 10^{4} \mathrm{~N}$
$\mathrm{F} 2=1.0 \cdot 10^{4} \mathrm{~N}$
$\mathrm{M}=1.0 \cdot 10^{5} \mathrm{~N} \cdot \mathrm{~m}$

- elastic modulus;
- height;
- axial stiffness;
- bending stiffness;
- span length;
- rise;
- length of the slope;
- axial stiffness;
- bending stiffness;
- vertical load uniformly distributed along the length of the left half-span of the girder $0.5 \cdot \mathrm{~L}$;
- the same load distributed along the length of the left slope of the girder b;
- concentrated vertical force in the ridge joint;
- concentrated horizontal force in the joint between the girder and the left column;
- concentrated bending moment in the joint between the girder and the left column.

Finite element model: Design model - plane frame, girder - 2 elements of type 2, columns -2 elements of type 2. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z for pinned support nodes. Number of nodes in the design model -5 .

Results in SCAD

Design and deformed models

Values of vertical displacements Z (m)

Values of longitudinal forces $N(N)$

Values of shear forces $Q(N)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, $\boldsymbol{\%}$
Vertical displacement $\mathrm{Z}_{\mathrm{C}}, \mathrm{m}$	$-3.0720 \cdot 10^{-2}$	$-3.0752 \cdot 10^{-2}$	0.10
Longitudinal force $N_{\mathrm{A}}, \mathrm{N}$	-31.500	-31.500	0.00
Shear force $N_{\mathrm{A}}, \mathrm{N}$	20239.4	20238.7	0.00

Spatial Bar System with Elastic Constraints Subjected to a Concentrated Force

Objective: Determination of the stress-strain state of the spatial bar system with elastic constraints subjected to a concentrated force.

Initial data file: SSLL04_v11.3.SPR

Problem formulation: The spatial system consists of four bars connected in series. End bars lie orthogonally in parallel horizontal planes, intermediate bars are vertical and are connected by hinges relatively to the angular degrees of freedom (point 3). There are rigid constraints of linear and angular degrees of freedom in the plane of the cross-section of the respective end bar and elastic constraints of linear and angular degrees of freedom out of the plane of the cross-section of the respective end bar on both ends of the spatial system (points 1,5). A vertical concentrated force F is applied in the joint between the upper horizontal and vertical bars (point 4). Determine the vertical displacement Z for the joint between vertical bars (point 3), horizontal displacement Y along the upper end bar and the rotation angle UX in the vertical plane containing this bar for the upper constraint of the spatial system (point 5), as well as the torque and bending moments $M_{\mathrm{x}}, M_{\mathrm{y}}, M_{\mathrm{z}}$ for the upper and lower constraints of the spatial system (points 1 , 5).

References: M. Laredo, Resistance des materiaux, Paris, Dunod, 1970, p. 165.
Initial data:
$\mathrm{E}=2.1 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus,
$\mathrm{G}=0.7875 \cdot 10^{11} \mathrm{~Pa} \quad$ - shear modulus,
$l=2.0 \mathrm{~m} \quad$ - length of the horizontal bars;
$0.5 l=1.0 \mathrm{~m} \quad$ - length of the vertical bars;
$\mathrm{A}=1.0 \cdot 10^{-3} \mathrm{~m}^{2} \quad$ - cross-sectional area of the bars;
$\mathrm{I}_{\mathrm{x}}=2 \cdot 10^{-6} \mathrm{~m}^{4} \quad-$ moment of inertia in the plane of the cross-section of the bars (torsion);
$\mathrm{I}_{\mathrm{y}}=\mathrm{I}_{\mathrm{z}}=2 \cdot 10^{-6} \mathrm{~m}^{4} \quad$ - moments of inertia out of the plane of the cross-section of the bars (bending);
$\mathrm{k}=5.25 \cdot 10^{4} \mathrm{~N} / \mathrm{m} \quad-$ stiffness of constraints with respect to the linear degree of freedom;
$\mathrm{k}_{\mathrm{u}}=5.25 \cdot 10^{4} \mathrm{~N} \cdot \mathrm{~m} / \mathrm{rad}$ - stiffness of constraints with respect to the angular degrees of freedom;
$\mathrm{F}=1.0 \cdot 10^{4} \mathrm{~N} \quad-$ value of the vertical concentrated force.
Finite element model: Design model - general type system, 4 bar elements of type10. Boundary conditions are provided by imposing rigid constraints in the directions of the degrees of freedom X, Z, UY and constraints of finite rigidity in the directions of the degrees of freedom Y, UX, UZ (member type 51) - for the end of the upper bar of the spatial system (point 5); by imposing rigid constraints in the directions of the degrees of freedom $Y, Z, U X$ and constraints of finite rigidity in the directions of the degrees of freedom X, UY, UZ (member type 51) - for the end of the lower bar of the spatial system (point 1). Number of nodes in the design model - 5 .

Results in SCAD

Design and deformed models

[^0]

Values of horizontal displacements $Y(m)$

Values of rotation angles $U X$ (rad)

Torque diagram $M_{x}\left(k N^{*} m\right)$

Bending moment diagram $M_{y}\left(k N^{*} m\right)$

Bending moment diagram $M_{z}\left(k N *_{m}\right)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Vertical displacement Z (point 3), m	$-3.7004 \cdot 10^{-1}$	$-3.7004 \cdot 10^{-1}$	0.00
Horizontal displacement Y (point 5), m	$-2.9762 \cdot 10^{-2}$	$-2.9762 \cdot 10^{-2}$	0.00
Rotation angle UX (point 5), rad	$1.6071 \cdot 10^{-1}$	$1.6073 \cdot 10^{-1}$	0.01
Torque M_{x} (point 5), $\mathrm{N} \cdot \mathrm{m}$	1562.5	1562.3	0.01
Bending moment M_{y} (point 5), $\mathrm{N} \cdot \mathrm{m}$	-8437.5	-8438.1	0.01
Bending moment M_{Z} (point 5), $\mathrm{N} \cdot \mathrm{m}$	-3125.0	3124.6	0.01
Torque M_{x} (point 1), $\mathrm{N} \cdot \mathrm{m}$	-1562.5	-1562.5	0.00
Bending moment M_{y} (point 1), $\mathrm{N} \cdot \mathrm{m}$	-8437.5	-8437.1	0.00
Bending moment M_{z} (point 1), $\mathrm{N} \cdot \mathrm{m}$	3125.0	3125.0	0.00

Ring Subjected to a Distributed Load Acting in Its Plane

Objective: Analysis for bending in the ring plane under a concentrated force without taking into account the transverse shear deformations.

Initial data file: 4.7.SPR

Problem formulation: The ring is subjected to a distributed load q acting in its plane. Determine: the normal force in the ring section N and the change in the ring diameter δ.

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. - Kiev: Naukova Dumka, 1988.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa}-$ elastic modulus,
$\mu=0.3 \quad-\quad$ Poisson's ratio,
$\mathrm{R}=1 \mathrm{~m} \quad$ - ring radius;
$\mathrm{F}=0,001 \mathrm{~m}^{2} \quad-\quad$ cross-sectional area;
$\mathrm{q}=100 \mathrm{kN} / \mathrm{m} \quad-\quad$ value of the distributed load.
Finite element model: Design model - general type system, 72 bar elements of type 10, 72 nodes.

Results in SCAD

Values of displacements δ (mm)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Change in the ring diameter δ, mm	0.50	0.50	0.00
Normal force in the ring section N, kN	100.00	99.14	0.86

Notes: In the analytical solution, the change in the ring diameter is determined according to the following formulas ("Handbook on Strength of Materials" p. 384) :

$$
\delta=\frac{q \cdot R^{2}}{E \cdot F} .
$$

Normal force in the ring section:

$$
N=q \cdot R .
$$

Simply Supported Semicircular Arch of Constant Cross-Section Subjected to a Concentrated Force Acting in Its Plane

Objective: Determination of the strain state of a simply supported semicircular arch of constant crosssection subjected to a concentrated force acting in its plane.

Initial data file: SSLL08_v11.3.SPR

Problem formulation: The semicircular arch of constant cross-section with pinned and roller supports subjected to a concentrated force F acting in its plane at the level of the key, directed downward along the normal to the longitudinal axis. Determine the deflection of the longitudinal axis of the arch Z , displacement of the roller support X and rotation angles of the support hinges UY.

References: P. Dellus, Resistance de materiaux, Paris, Technique et Vulgarisation, 1958.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus of a semicircular arch;
$\mathrm{r}=1.0 \mathrm{~m} \quad-$ arc radius of the longitudinal axis of the semicircular arch;
$\mathrm{d}_{\mathrm{e}}=0.020 \mathrm{~m} \quad-$ outer diameter of the ring cross-section of the arch;
$\mathrm{d}_{\mathrm{i}}=0.016 \mathrm{~m} \quad-$ inner diameter of the ring cross-section of the arch;
$F=100 \mathrm{~N} \quad-$ value of the concentrated force.
Finite element model: Design model - plane frame, 48 bar elements of type 10. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z - for the pinned support and Z - for the roller support. Number of nodes in the design model - 49 .

Results in SCAD

Design and deformed models

Values of vertical displacements Z (m)

Values of horizontal displacements $X(m)$

Values of rotation angles $U Y$ (rad)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Deflection of the longitudinal axis of the arch Z, m	$-1.9206 \cdot 10^{-2}$	$-1.9211 \cdot 10^{-2}$	0.03
Displacement of the roller support X, m	$5.3912 \cdot 10^{-2}$	$5.3902 \cdot 10^{-2}$	0.02
Rotation angle of the roller support UY, rad	$-3.0774 \cdot 10^{-2}$	$-3.0788 \cdot 10^{-2}$	0.05
Rotation angle of the pinned support UY, rad	$3.0774 \cdot 10^{-2}$	$3.0788 \cdot 10^{-2}$	0.05

Notes: In the analytical solution, the deflection of the longitudinal axis of the arch Z, the displacement of the roller support X and the rotation angles of the support hinges $U Y$ are determined according to the following formulas:

$$
Z=\frac{\pi}{8} \cdot \frac{F \cdot r}{E \cdot A}+\left(\frac{3 \cdot \pi}{8}-1\right) \cdot \frac{F \cdot r^{3}}{E \cdot I} ; \quad X=\frac{1}{2} \cdot \frac{F \cdot r}{E \cdot A}-\frac{1}{2} \cdot \frac{F \cdot r^{3}}{E \cdot I} ; \quad U Y= \pm\left(\frac{\pi}{4}-\frac{l}{2}\right) \frac{F \cdot r^{2}}{E \cdot I}, \text { where: }
$$

$$
I=\frac{\pi \cdot d_{e}^{2}}{4} \cdot\left(1-\left(\frac{d_{i}}{d_{e}}\right)^{2}\right) ; \quad I=\frac{\pi \cdot d_{e}^{4}}{64} \cdot\left(1-\left(\frac{d_{i}}{d_{e}}\right)^{4}\right)
$$

Strain State of a Split Circular Ring Subjected to Two Mutually Perpendicular Forces P_{x} and P_{y}, Acting in the Plane of the Ring

Objective: Strain state of a split circular ring under bending in the plane without taking into account the transverse shear deformations.

Initial data file: 4.6.SPR

Problem formulation: The split circular ring is subjected to two mutually perpendicular forces P_{x} and P_{y}, acting in the plane of the ring axes. Determine the strain state of the ring.

References: Strength Analysis in Mechanical Engineering / S. D. Ponomarev, V. L. Biderman, K. K. Likharev, et al., In three volumes. Volume 1. M.: Mashgiz, 1956.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus;
$\mathrm{R}=1.3 \mathrm{~m} \quad$ - radius of the ring axis;
$\mathrm{F}=1 \cdot 10^{-2} \mathrm{~m}^{2} \quad$ - cross-sectional area;
$\mathrm{I}=5 \cdot 10^{-6} \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia;
$\mathrm{P}_{\mathrm{x}}=\mathrm{P}_{\mathrm{y}}=1 \mathrm{kN} \quad-$ value of the concentrated force.
Finite element model: Design model - plane model, 120 bar elements of type 2, 121 nodes.

Results in SCAD

Values of displacements u (mm)

Values of displacements v (mm)

Comparison of solutions:

Angle $\boldsymbol{\varphi}$, degree	Displacements along the x axis		Displacements along the y axis			
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
0	-6.902	-6.900	0.03	-20.706	-20.703	0.01
45	2.690	2.691	0.04	-16.777	-16.774	0.02
90	6.275	6.275	0.00	-8.472	-8.470	0.02
135	3.984	3.984	0.00	-2.419	-2.417	0.08
180	0.943	0.942	0.11	-0.943	-0.941	0.21
225	0.154	0.153	0.65	-1.125	-1.124	0.09
270	0.316	0.315	0.32	-0.627	-0.627	0.00
315	0.114	0.114	0.00	-0.074	-0.075	1.35
360	0.000	0.000	0.00	0.000	0.000	0.00

Notes: In the analytical solution the displacements of the points of the ring in the directions x and y are determined according to the following formulas:

$$
u(\varphi)=\frac{P_{x} \cdot R^{3}}{E \cdot I} \cdot \beta_{l}(\varphi)+\frac{P_{y} \cdot R^{3}}{E \cdot I} \cdot \beta_{2}(\varphi),
$$

where:

$$
\begin{gathered}
\beta_{l}(\varphi)=-0.5 \cdot(2 \cdot \pi-\varphi)-\sin (\varphi)+0.5 \cdot \sin (\varphi) \cdot \cos (\varphi) ; \\
\beta_{2}(\varphi)=1+(2 \cdot \pi-\varphi) \cdot \sin (\varphi)-\cos (\varphi)+0.5 \cdot \sin ^{2}(\varphi) ; \\
\nu(\varphi)=\frac{P_{x} \cdot R^{3}}{E \cdot I} \cdot \gamma_{l}(\varphi)+\frac{P_{y} \cdot R^{3}}{E \cdot I} \cdot \gamma_{2}(\varphi),
\end{gathered}
$$

where:

$$
\begin{gathered}
\gamma_{1}(\varphi)=-1+\cos (\varphi)+0.5 \cdot \sin ^{2}(\varphi), \\
\gamma_{2}(\varphi)=-0.5 \cdot(2 \cdot \pi-\varphi)-(2 \cdot \pi-\varphi) \cdot \cos (\varphi)-\sin (\varphi)-0.5 \cdot \sin (\varphi) \cdot \cos (\varphi) .
\end{gathered}
$$

Cantilever Curved Beam with a Transverse Concentrated Force at Its Free End

Objective: Check of the accuracy of the determination of the displacement value for the free end of a beam in the direction of the concentrated force for models of different dimensions.

Initial data files:

File name	Description
4.38_c.SPR	Bar model
4.38_I.SPR	Shell element model
4.38_o.SPR	Solid element model

Problem formulation: The cantilever curved beam with a longitudinal circular axis having a length of the split ring and with a rectangular cross-section constant along the axis is subjected to a transverse concentrated force P applied at its free end. Determine the displacement of the free end of the beam w in the direction of the concentrated force.

References: Sacharov A., Altenbach J.: Finite Elements in Solid Mechanics. -Kiev: High School. 1982, Leipzig: Fahbuhferlag. 1982;
G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. - Kiev: Naukova Dumka, 1975.

Initial data:

$\mathrm{E}=100.0 \mathrm{kPa} \quad$ - elastic modulus;
$v=0.0 \quad$ - Poisson's ratio;
$\mathrm{R}=0.20 \mathrm{~m} \quad-$ arc radius of the longitudinal axis of the cantilever curved beam;
$\alpha=360^{\circ} \quad$ - central angle of the arc length of the longitudinal axis of the cantilever curved
beam;
$\mathrm{b}=\mathrm{h}=0.01 \mathrm{~m} \quad-$ cross-sectional dimensions of the cantilever curved beam;
$\mathrm{P}=10^{-8} \mathrm{kN} \quad-$ value of the transverse concentrated force on the free end of the beam.

Finite element model: Design model - general type system. Three design models are considered:
Bar model (B), 120 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 3.0°, 121 nodes;

Shell element model (P), 480 eight-node elements of type 50 , the spacing of the finite element mesh along the longitudinal axis is 3.0°, and along the height of the beam is $0.0025 \mathrm{~m}, 1689$ nodes;

Solid element model (S), 1920 twelve-node elements of type 37 , the spacing of the finite element mesh along the longitudinal axis is 3.0°, and along the height and width of the beam is $0.0025 \mathrm{~m}, 10865$ nodes.

Results in SCAD

Design model. Bar model

Design model. Shell element model

Design model. Solid element model

Deformed model and the values of the displacements of the free end of the beam w in the bar model (mm)

Deformed model and the values of the displacements of the free end of the beam w in the shell element model (mm)

Deformed model and the values of the displacements of the free end of the beam w in the solid element model (mm)

Comparison of solutions:

Model	Displacements w, mm	Deviations, \%
Bar (B)	3.015	0.03
Shell element (P)	3.017	0.03
Solid element (S)	3.017	0.03
Theory	3.016	-

Notes: In the analytical solution the displacement of the free end of the beam w in the direction of the transverse concentrated force is determined according to the following formula (G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. - Kiev: Naukova Dumka, 1975, p. 392):

$$
w=\frac{12 \cdot P \cdot R^{3}}{E \cdot b \cdot h^{3}} \cdot\left(\frac{\alpha}{2}-\frac{\sin (2 \cdot \alpha)}{4}\right) .
$$

Cantilever Circular Bar of Constant Cross-Section with Concentrated Forces and a Moment Acting in Its Plane at Its Free End

Objective: Determination of the strain state of a cantilever circular bar of constant cross-section with concentrated forces and a moment acting in its plane at its free end.

Initial data file:

File name	Description
SSLL06_вариант_1_v11.3.SPR	Cantilever circular bar lies in the - poZ plane frame.
system	

Problem formulation: The cantilever circular bar of constant cross-section is subjected to concentrated horizontal (normal) F1 and vertical (tangential) F2 forces and a moment M acting in its plane and applied at its free end. Determine the horizontal X and vertical Z displacements, as well as the rotation angle UY of the free end of the bar (point B).

References: J.S. Przemieniecki, Theory of matrix structural analysis, New York, McGraw-Hill, 1968.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad-$ elastic modulus of the cantilever circular bar;
$\mathrm{r}=3.0 \mathrm{~m} \quad-\operatorname{arc}$ radius of the longitudinal axis of the cantilever circular bar;
$\alpha=90^{\circ} \quad$ - central angle of the arc length of the longitudinal axis of the cantilever circular
bar;
$d_{e}=0.020 \mathrm{~m} \quad-$ outer diameter of the ring cross-section of the bar;
$\mathrm{d}_{\mathrm{i}}=0.016 \mathrm{~m} \quad-$ inner diameter of the ring cross-section of the bar;
$\mathrm{F} 1=10 \mathrm{~N} \quad-$ value of the horizontal concentrated force;
$\mathrm{F} 2=5 \mathrm{~N} \quad-$ value of the vertical concentrated force;
$\mathrm{M}=8 \mathrm{~N} \cdot \mathrm{~m} \quad-$ value of the concentrated moment.
Finite element model: Design model - plane frame, 24 bar elements of type 10. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Z}, \mathrm{UY}$ (point A). Number of nodes in the design model -25 .

Results in SCAD

Design and deformed models

Values of horizontal displacements X (m)

Values of vertical displacements Z (m)

Values of rotation angles $U Y$ (rad)
Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Horizontal displacement X (point B), m	$3.7908 \cdot 10^{-1}$	$3.7882 \cdot 10^{-1}$	0.07
Vertical displacement Z (point B), m	$2.4173 \cdot 10^{-1}$	$2.4174 \cdot 10^{-1}$	0.01
Rotation angle UY (point B), rad	$-1.6539 \cdot 10^{-1}$	$-1.6535 \cdot 10^{-1}$	0.02

Notes: In the analytical solution the horizontal X and vertical Z displacements, as well as the rotation angle UY of the free end of the bar are determined according to the following formulas:

$$
\begin{gathered}
X=\frac{r^{2}}{E \cdot I} \cdot\left(M+F 1 \cdot r \cdot \frac{\pi}{4}+F 2 \cdot r \cdot \frac{1}{2}\right) ; \\
Z=\frac{r^{2}}{E \cdot I} \cdot\left(M \cdot\left(\frac{\pi}{2}-1\right)+F 1 \cdot r \cdot \frac{1}{2}+F 2 \cdot r \cdot\left(\frac{3 \cdot \pi}{4}-2\right)\right) ; \\
U Y=-\frac{r}{E \cdot I} \cdot\left(M \cdot \frac{\pi}{2}+F 1 \cdot r+F 2 \cdot r \cdot\left(\frac{\pi}{2}-1\right)\right), \text { where: } \\
I=\frac{\pi \cdot d_{e}^{4}}{64} \cdot\left(1-\left(\frac{d_{i}}{d_{e}}\right)^{4}\right) .
\end{gathered}
$$

Cantilever Circular Bar of Constant Cross-Section with a Concentrated Force out of Its Plane at Its Free End

Objective: Determination of the stress-strain state of a cantilever circular bar of constant cross-section with a concentrated force acting out of its plane at its free end.

Initial data file:

File name	Description
SSLL07_вариант_1_v11.3.SPR	Design model - general type system. Cantilever circular bar lies in the
XOZ plane of the global coordinate system	

Problem formulation: The cantilever circular bar of constant cross-section is subjected to a concentrated force F acting in its plane and applied at its free end. Determine the displacement Y of the free end of the bar out of its plane (point B), as well as the torque M_{x} and out-of-plane bending moment M_{z} for the crosssection corresponding to the central angle θ from the clamped end.

References: S. Timoshenko, Strength of materials, Part 1: Elementary theory and problem, 3ed, 1955; R.J. Roark, Formulas for stress and strain, 4ed, New York, McGraw-Hill, 1965.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus of the cantilever circular bar;
$v=0.3$

- Poisson's ratio;
$\mathrm{r}=1.0 \mathrm{~m}$
- arc radius of the longitudinal axis of the cantilever circular bar;
$\theta=90^{\circ}$
- central angle of the arc length of the longitudinal axis of the cantilever circular
bar;
$d_{e}=0.020 \mathrm{~m} \quad-$ outer diameter of the ring cross-section of the bar;
$\mathrm{d}_{\mathrm{i}}=0.016 \mathrm{~m} \quad-$ inner diameter of the ring cross-section of the bar;
$\mathrm{F}=100 \mathrm{~N} \quad-$ value of the concentrated force.
Finite element model: Design model - general type system, 15 bar elements of type 10. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}$, UY, UZ (point A). Number of nodes in the design model - 16 .

Results in SCAD

Design and deformed models

Values of displacements out of the plane of the bar $Y(m)$

Torque diagram $M_{x}(k N \cdot m)$

Bending moment diagram out of the plane of the bar $M_{z}(k N \cdot m)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Displacement out of the plane of the bar Y (point B), m	$-1.34462 \cdot 10^{-1}$	$-1.34364 \cdot 10^{-1}$	0.07
Torque $M_{\mathrm{x}}\left(\theta=15^{\circ}\right), \mathrm{N} \cdot \mathrm{m}$	-74.118	-73.981	0.18
Bending moment out of the plane of the bar $M_{\mathrm{z}}\left(\theta=15^{\circ}\right), \mathrm{N} \cdot \mathrm{m}$	-96.593	-96.593	0.00

Notes: In the analytical solution the displacement Y of the free end of the bar out of its plane (point B), as well as the torque M_{x} and out-of-plane bending moment M_{z} for the cross-section corresponding to the central angle θ from the clamped end are determined according to the following formulas:

$$
\begin{gathered}
Y=\frac{F \cdot r^{3}}{E \cdot I} \cdot\left(\frac{1+3 \cdot \lambda}{2} \cdot \frac{\pi}{2}-2 \cdot \lambda\right) \text {, where: } \\
I_{z}=\frac{\pi \cdot d_{e}^{4}}{64} \cdot\left(1-\left(\frac{d_{i}}{d_{e}}\right)^{4}\right), \quad \lambda=\frac{E \cdot I_{z}}{G \cdot I_{x}}=1+v
\end{gathered}
$$

(for the ring cross-section);

$$
\begin{gathered}
M_{x}=F \cdot r \cdot \cos (\theta) ; \\
M_{z}=F \cdot r \cdot(1-\sin (\theta)) .
\end{gathered}
$$

Single-Span Beam with a Prestressed Tie Subjected to a Uniformly Distributed Load

Objective: Determination of the stress-strain state of a beam with a tie taking into account the transverse shear deformations in the beam.

Initial data file: SSLL13_v11.3.spr

Problem formulation: The single-span beam with a tie tightened by the displacement value δ by the struts is subjected to a uniformly distributed load q. Determine the longitudinal force N in the tie CE, the bending moment M in the section of the stiffening beam H in the middle of its span, the vertical displacement z in the joint between the strut and the stiffening beam (point D).

References: M. Laredo, Resistence des materiaux, Paris, Dunod, 1970, p. 77.

Initial data:

Tie A1:
$\mathrm{EF}=9.450 \cdot 10^{8} \mathrm{~N} \quad-$ axial stiffness;
Strut A2:
$\mathrm{EF}=7.308 \cdot 10^{8} \mathrm{~N}$

- axial stiffness;

Stiffening beam AB:
$\mathrm{EF}=3.1836 \cdot 10^{9} \mathrm{~N}$

- axial stiffness;
$\mathrm{EIy}=4.5654 \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
- bending stiffness;

GFy $=5.09376 \cdot 10^{8} \mathrm{~N}$

- shear stiffness;

Loads and actions:
$\delta=6.52 \cdot 10^{-3} \mathrm{~m}$

- displacement in the tie;
$\mathrm{P}=5.0 \cdot 10^{4} \mathrm{~N} / \mathrm{m}$
- transverse uniformly distributed load on the stiffening beam.

Finite element model: Design model - plane frame, tie A1 - 4 elements of type 1, struts A2 - 2 elements of type 1, stiffening beam $\mathrm{AB}-3$ elements of type 2 taking into account the shear, elements modeling the prestressing of the tie in the CE section - 2 elements of type 154 with the axial stiffness $\mathrm{EF}=1.0 \cdot 10^{18} \mathrm{~N}$. The tie in the CE section is represented by two elements of equal length increased with respect to half the length of the section by imposing rigid inserts in the longitudinal direction. The length of the elements is increased in order to separate their nodes near the symmetry axis of the structure at the prestressing stage. A null element is attached to each of these nodes, with the help of which they are displaced in the longitudinal direction. In order to prevent the dimensional instability of the system the displacements of nodes are combined by elements in the transverse direction by the degree of freedom Z in the section of the tie CE. Boundary conditions in the direction of the degree of freedom Z in the support nodes A and B are provided by imposing the respective rigid constraint. Number of nodes in the design model - 10 .

Results in SCAD

Design and deformed models

Values of vertical displacements Z (m)

Values of longitudinal forces $N(N)$

Values of bending moments $M(N m)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Bending moment $M_{\mathrm{H}}, \mathrm{N} \cdot \mathrm{m}$	49249.5	49249.5	0.00
Longitudinal force $N_{\mathrm{CE}}, \mathrm{N}$	584584.0	584584.1	0.00
Vertical displacement $\mathrm{Z}_{\mathrm{D}}, \mathrm{m}$	$-5.428 \cdot 10^{-4}$	$-5.428 \cdot 10^{-4}$	0.00

Two-Span Single-Storey Frame Subjected to a Constant Transverse Unit Force Moving Along the Girder Spans with a Small Speed. Plotting of Influence Lines of Internal Forces in the Frame Sections

Objective: Determination of the values of the bending moment in the section of the middle of the left girder span of a two-span single-storey frame depending on the position of a constant transverse unit force moving along the girder spans with a small speed.

Initial data file: Influence_Line.SPR

Problem formulation: The constant transverse unit force P moves along the girder of the two-span single-storey frame with a small speed. The girder is rigidly connected with the middle and right edge columns, which have pinned supports, and the end of its left span is simply supported. Determine the values of the bending moment in the section of the middle of the left girder span of the frame M_{1-1} depending on the position of the transverse force and plot the influence line.

References: A. F. Smirnov, A. V. Aleksandrov, B. Ya. Lashchenikov, N. N. Shaposhnikov, Structural Mechanics. Bar Systems, Moscow, Stroyizdat, 1981, p. 352-356.

Initial data:

$l=6.0 \mathrm{~m} \quad$ - length of the girders of the frame;
$h=6.0 \mathrm{~m} \quad$ - height of the columns of the frame;
$\mathrm{EA}=1.0 \cdot 10^{6} \mathrm{kN}$
$\mathrm{EI}=83.3333 \mathrm{kN} \cdot \mathrm{m}^{2}$
$\mathrm{P}=1.0 \mathrm{kN}$

- axial stiffness of the structural members of the frame;
- bending stiffness of the structural members of the frame;
- value of the transverse unit force.

Finite element model: Design model - plane frame, 24 elements of type 2 . The spacing of the finite element mesh along the longitudinal axes of the structural elements (along the X1 axes of the local coordinate systems) is 1.0 m . Boundary conditions are provided by imposing constraints on the support nodes of the columns in the directions of the degrees of freedom X, Z and on the support node of the left girder span in the direction of the degree of freedom Z .
The problem is solved by the kinematic method:

- the elements of the middle of the left girder span are divided with the formation of a pair of duplicate nodes each one belonging to one of these adjacent elements;
- the displacements of the pair of duplicate nodes are merged for all degrees of freedom except for UY;
- unit concentrated opposite bending moments $\mathrm{M}_{\mathrm{y}}=1.0 \mathrm{kN} \cdot \mathrm{m}$ are applied to the nodes of the pair.

The result of the influence line of the bending moment in the section of the left frame span [nodes 26, 8] should be considered in the form of deformations according to the following formula: -Z/[UY26UY8]/1000. It is necessary to divide the expression by 1000 if the dimension Z is given in mm .
Number of nodes in the design model - 26 .

Results in SCAD

Values of rotation angles $U Y$ (rad)

Values of the bending moment in the section of the middle of the left girder span of the frame $M_{l-l}(\mathrm{kN} \cdot \mathrm{m})$ depending on the position of the transverse force

Influence lines of the bending moment in the section of the middle of the left girder span of the frame M_{1-1}

Comparison of solutions:

Values of the bending moment in the section of the middle of the left girder span of the frame $M_{1-1}(\mathrm{kN} \cdot \mathrm{m})$ depending on the position of the transverse force

Position of the transverse force from the edge of the left span, \mathbf{m}	Theory	SCAD	Deviation, \%
0.00	0.000	0.000	0.00
1.00	0.343	0.343	0.00
2.00	0.714	0.713	0.14
3.00	1.137	1.137	0.00
4.00	0.641	0.642	0.16
5.00	0.254	0.254	0.00
6.00	0.000	0.000	0.00
7.00	-0.125	-0.125	0.00
8.00	-0.165	-0.165	0.00
9.00	-0.144	-0.145	0.69

Position of the transverse force from the edge of the left span, \mathbf{m}	Theory	SCAD	Deviation, \%
10.00	-0.093	-0.093	0.00
11.00	-0.036	-0.036	0.00
12.00	0.000	0.000	0.00

Bending of a Rectangular Deep Beam Rigidly Suspended along the Sides Subjected to a Uniformly Distributed Load Applied to Its Upper Side

Objective: Determination of the strain state of a rectangular deep beam rigidly suspended along the sides subjected to a uniformly distributed load applied to its upper side.

Initial data file: KSLS01_v11.3.SPR

Problem formulation: The uniformly distributed load p acting in the plane of the deep beam along the y axis is applied to the upper side of the rectangular deep beam rigidly suspended along the sides. Determine the components of the strain tensor in the Cartesian coordinates $u(\mathrm{x}, \mathrm{z})$ and $v(\mathrm{x}, \mathrm{z})$ for the midsurface of the deep beam in its plane.

References: A.S. Kalmanok, Analysis of Deep Beams, Moscow, Gosstroyizdat, 1956.

Initial data:

$\mathrm{E}=2.65 \cdot 10^{6} \mathrm{~Pa} \quad$ - elastic modulus;
$v=0.15 \quad$ - Poisson's ratio;
$\mathrm{h}=0.1 \mathrm{~m} \quad-$ thickness of the deep beam;
$\mathrm{a}=1.6 \mathrm{~m} \quad-$ length of the deep beam span;
$\mathrm{b}=1.6 \mathrm{~m} \quad-$ height of the deep beam;
$\mathrm{p}=500.0 \mathrm{~N} / \mathrm{m} \quad-$ uniformly distributed load.
Finite element model: Design model - plane hinged bar system, 200 deep beam elements of type 21. The spacing of the finite element mesh along the x and z axes of the global coordinate system is 0.08 m . Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z for the side and in the direction of the degree of freedom X at the symmetry axis. Number of nodes in the design model - 231 .

Results in SCAD

191	192	193	194	195	196	197	198	199	200
181	182	183	184	185	186	187	188	189	190
171	172	173	174	175	176	177	178	179	180
161	162	163	164	165	166	167	168	169	170
151	152	153	154	155	156	157	158	159	160
141	142	143	144	145	146	147	148	149	150
131	132	133	134	135	136	137	138	139	140
121	122	123	124	125	126	127	128	129	130
111	112	113	114	115	116	117	118	119	120
101	102	103	104	105	106	107	108	109	110
91	92	93	94	95	96	97	98	99	100
81	82	83	84	85	86	87	88	89	90
71	72	73	74	75	76	77	78	79	${ }^{0}$
61	62	63	64	65	66	67	68	69	70
51	52	53	54	55	56	57	58	59	60
41	42	43	44	45	46	47	48	49	50
31	32	33	34	35	36	37	38	39	40
21	22	23	24	25	26	27	28	29	30
11	12	13	14	15	16	17	18	19	20
1	2	3	4	5	6	7	8	9	10

Design model

Deformed model

Values of displacements along the deep beam span u (m)

Values of displacements along the deep beam height v (m)

Comparison of solutions:

Coordinates		Displacements $\boldsymbol{u}, \mathbf{m}$			Displacements $\boldsymbol{v}, \mathbf{m}$		
\mathbf{x}	\mathbf{z}	Theory	SCAD	Deviations, $\mathbf{\%}$	Theory	SCAD	Deviations, $\mathbf{\%}$
0.0	0.0	$-0.719 \cdot 10^{-3}$	$-0.713 \cdot 10^{-3}$	0.83	$0.000 \cdot 10^{-3}$	$0.000 \cdot 10^{-3}$	-
0.0	0.8	$-0.220 \cdot 10^{-3}$	$-0.221 \cdot 10^{-3}$	0.45	$0.000 \cdot 10^{-3}$	$0.000 \cdot 10^{-3}$	-
0.0	1.6	$1.468 \cdot 10^{-3}$	$1.401 \cdot 10^{-3}$	4.56	$0.000 \cdot 10^{-3}$	$0.000 \cdot 10^{-3}$	-
0.4	0.0	$-0.508 \cdot 10^{-3}$	$-0.504 \cdot 10^{-3}$	0.79	$-0.672 \cdot 10^{-3}$	$-0.667 \cdot 10^{-3}$	0.74
0.4	0.8	$-0.148 \cdot 10^{-3}$	$-0.148 \cdot 10^{-3}$	0.00	$-0.950 \cdot 10^{-3}$	$-0.945 \cdot 10^{-3}$	0.53

Coordinates		Displacements $\boldsymbol{u}, \mathbf{m}$			Displacements $\boldsymbol{v}, \mathbf{m}$		
\mathbf{x}	\mathbf{z}	Theory	$\mathbf{S C A D}$	Deviations, $\boldsymbol{\%}$	Theory	SCAD	Deviations, $\boldsymbol{\%}$
0.4	1.6	$0.780 \cdot 10^{-3}$	$0.778 \cdot 10^{-3}$	0.26	$-2.032 \cdot 10^{-3}$	$-2.027 \cdot 10^{-3}$	0.25
0.8	0.0	$0.000 \cdot 10^{-3}$	$0.000 \cdot 10^{-3}$	-	$-0.950 \cdot 10^{-3}$	$-0.943 \cdot 10^{-3}$	0.74
0.8	0.8	$0.000 \cdot 10^{-3}$	$0.000 \cdot 10^{-3}$	-	$-1.326 \cdot 10^{-3}$	$-1.320 \cdot 10^{-3}$	0.45
0.8	1.6	$0.000 \cdot 10^{-3}$	$0.000 \cdot 10^{-3}$	-	$-2.510 \cdot 10^{-3}$	$-2.504 \cdot 10^{-3}$	0.24

Notes: In the analytical solution the components of the strain tensor in the Cartesian coordinates $u(x, z)$ and $v(x, z)$ for the midsurface of the deep beam in its plane can be calculated according to the following formulas:

$$
\begin{gathered}
u(x, z)=-\frac{p \cdot b}{E \cdot h} \cdot \sum_{m=1}^{m=\infty} \frac{a}{m \cdot \pi \cdot b} \cdot\left\{[2 \cdot m \cdot \pi \cdot \frac { b } { a } \cdot \operatorname { s h } (m \cdot \pi \cdot \frac { b } { a })] \cdot \left[\left(-2+(1+v) \cdot m \cdot \pi \cdot \frac{b}{a} \cdot \operatorname{cth}\left(m \cdot \pi \cdot \frac{b}{a}\right)\right) \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{b-z}{a}\right)-\right.\right. \\
\left.-(1+v) \cdot m \cdot \pi \cdot \frac{b-z}{a} \cdot \operatorname{ch}\left(m \cdot \pi \cdot \frac{b-z}{a}\right)\right]-\left[\operatorname{sh}^{2}\left(m \cdot \pi \cdot \frac{b}{a}\right)+\left(m \cdot \pi \cdot \frac{b}{a}\right)^{2}\right] \cdot\left[\left(-2+(1+v) \cdot m \cdot \pi \cdot \frac{b}{a} \cdot \operatorname{cth}\left(m \cdot \pi \cdot \frac{b}{a}\right)\right) \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{z}{a}\right)\right. \\
\left.-(1+v) \cdot m \cdot \pi \cdot \frac{z}{a} \cdot \operatorname{ch}\left(m \cdot \pi \cdot \frac{z}{a}\right)\right]-\left[\operatorname{sh}^{2}\left(m \cdot \pi \cdot \frac{b}{a}\right)-\left(m \cdot \pi \cdot \frac{b}{a}\right)^{2}\right]\left[\left(\left[2 \cdot v+(1+v) \cdot m \cdot \pi \cdot \frac{b}{a} \cdot \operatorname{cth}\left(m \cdot \pi \cdot \frac{b}{a}\right)\right) \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{z}{a}\right)-\right.\right. \\
\left.\left.-(1+v) \cdot m \cdot \pi \cdot \frac{z}{a} \cdot \operatorname{ch}\left(m \cdot \pi \cdot \frac{z}{a}\right)\right]\right\} \cdot \frac{\left.m+(-1)^{m+1}\right] \cdot \cos \left(m \cdot \pi \cdot \frac{x}{a}\right)}{m \cdot \pi \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{b}{a}\right) \cdot\left[\operatorname{sh}^{2}\left(m \cdot \pi \cdot \frac{b}{a}\right)-\left(m \cdot \pi \cdot \frac{b}{a}\right)^{2}\right]}
\end{gathered}
$$

$$
v(x, z)=\frac{p \cdot b}{E \cdot h} \cdot \sum_{m=1}^{m=\infty} \frac{a}{m \cdot \pi \cdot b} \cdot\left\{[2 \cdot m \cdot \pi \cdot \frac { b } { a } \cdot \operatorname { s h } (m \cdot \pi \cdot \frac { b } { a })] \cdot \left[\left(1-v+(1+v) \cdot m \cdot \pi \cdot \frac{b}{a} \cdot \operatorname{cth}\left(m \cdot \pi \cdot \frac{b}{a}\right)\right) \cdot \operatorname{ch}\left(m \cdot \pi \cdot \frac{b-z}{a}\right)-\right.\right.
$$

$$
\left.-(1+v) \cdot m \cdot \pi \cdot \frac{b-z}{a} \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{b-z}{a}\right)\right]+\left[\operatorname{sh}^{2}\left(m \cdot \pi \cdot \frac{b}{a}\right)+\left(m \cdot \pi \cdot \frac{b}{a}\right)^{2}\right] \cdot\left[\left(1-v+(1+v) \cdot m \cdot \pi \cdot \frac{b}{a} \cdot \operatorname{cth}\left(m \cdot \pi \cdot \frac{b}{a}\right)\right) \cdot \operatorname{ch}\left(m \cdot \pi \cdot \frac{z}{a}\right)-\right.
$$

$$
\left.-(1+v) \cdot m \cdot \pi \cdot \frac{z}{a} \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{z}{a}\right)\right]+\left[\operatorname{sh}^{2}\left(m \cdot \pi \cdot \frac{b}{a}\right)-\left(m \cdot \pi \cdot \frac{b}{a}\right)^{2}\right] \cdot\left[\left(3+v+(1+v) \cdot m \cdot \pi \cdot \frac{b}{a} \cdot c t h\left(m \cdot \pi \cdot \frac{b}{a}\right)\right) \cdot \operatorname{ch}\left(m \cdot \pi \cdot \frac{z}{a}\right)-\right.
$$

$$
\left.\left.-(1+v) \cdot m \cdot \pi \cdot \frac{z}{a} \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{z}{a}\right)\right]\right\} \cdot \frac{\left[1+(-1)^{m+1}\right] \cdot \sin \left(m \cdot \pi \cdot \frac{x}{a}\right)}{m \cdot \pi \cdot \operatorname{sh}\left(m \cdot \pi \cdot \frac{b}{a}\right) \cdot\left[\operatorname{sh}^{2}\left(m \cdot \pi \cdot \frac{b}{a}\right)-\left(m \cdot \pi \cdot \frac{b}{a}\right)^{2}\right]}
$$

Pure Bending of a Square Plate in the Plane Stress State Clamped on One Side and Simply Supported in the Center of the Opposite Side

Objective: Check of the equilibrium of the plate sections parallel to the support sides by the shear stresses.
Initial data files:

File name	Description
4.29_балка_КЭ_2.SPR	variant of the design model - support bar from elements of finite rigidity of type 2
4.29_балка_КЭ_100.SPR	2 variant of the design model - support bar from the rigid body element of type 100

Problem formulation: The square plate in the plane stress state clamped on one side and simply supported by a rigid bar on the opposite side is subjected to a pair of concentrated forces P, applied at the opposite ends of the bar and directed perpendicular to its axis. Check the equality of the values of the areas of shear stress diagrams τ for the plate sections parallel to the support sides and the values of the respective support reactions H.

References: Perelmuter A.V., Slivker V.I. Design models of structures and a possibility of their analysis. - Moscow: SCAD SOFT, 2011.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{5} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.25 \quad$ - Poisson's ratio;
$\delta=1.0 \mathrm{~m} \quad-$ thickness of the deep beam;
$\mathrm{a}=16.0 \mathrm{~m} \quad$ - plate side;
$\mathrm{P}=1000.0 \mathrm{kN} \quad-$ concentrated force.
Finite element model: Two variants of the design model are considered.

Variant 1:

Design model - plane frame, plate elements - 64 eight-node elements of type 30, bar elements - 16 elements of type $2\left(E A=3.0 \cdot 10^{15} \mathrm{kN}, \mathrm{EI}=3.0 \cdot 10^{12} \mathrm{kN} \cdot \mathrm{m}^{2}\right)$. The spacing of the finite element mesh in the directions parallel to the support sides is 1.0 m . Number of nodes in the design model - 225 .

Variant 2:

Design model - plane frame, plate elements - 64 eight-node elements of type 30, bar elements - 1 element of type 100 (rigid body with a master node in the center of the simply supported side of the plate). The spacing of the finite element mesh in the directions parallel to the support sides is 1.0 m . Number of nodes in the design model - 225 .

Results in SCAD

Design model. Variant 1

Values of support reactions $H(k N)$ for the design model according to variant 1

Values of support reactions $H(k N)$ for the design model according to variant 2

\square	4,6	1,48
\square	1,48	7,56
\square	7,56	13,63
\square	13,63	19,71
\square	19,71	25,79
\square	25,79	31,87
\square	31,87	37,94
\square	37,94	44,02
\square	44,02	50,1
\square	50,1	56,17
\square	56,17	62,25
\square	62,25	68,33
\square	68,33	74,41
\square	74,41	80,48

Isolines of stresses $\tau\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 1

Values of stresses $\tau\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 1

Isolines of stresses $\tau\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 2

Values of stresses $\tau\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 2

Comparison of solutions:

Comparison of the values of the areas of shear stress diagrams τ for the plate sections parallel to the support sides and located at the distance y from the simply supported side with the value of the support reaction H at the simply supported side.

Design model according to variant 1 $\mathrm{H}=872.45 \mathrm{kN}$

$\mathbf{y , m}$	$Q=\delta \cdot \int_{0}^{a} \tau \cdot d x, \mathbf{k N}$	Deviations, \%	\mathbf{y}, \mathbf{m}	$Q=\delta \cdot \int_{0}^{a} \tau \cdot d x, \mathbf{k N}$	Deviations, \%
0.0	857.71	1.69	0.0	857.67	1.69
2.0	867.07	0.62	2.0	867.06	0.62
4.0	872.87	0.05	4.0	872.88	0.05
6.0	872.60	0.02	6.0	872.61	0.02
8.0	872.59	0.02	8.0	872.59	0.02
10.0	872.61	0.02	10.0	872.62	0.02
12.0	872.70	0.03	12.0	872.71	0.03
14.0	872.10	0.04	14.0	872.11	0.04
16.0	871.11	0.15	16.0	871.12	0.15

Compression and Bending of a Symmetric Wedge by Concentrated Forces Applied to Its Vertex (Michell's Problem)

Objective: Determination of the stress state of a symmetric wedge of unit thickness in polar coordinates subjected to compression and bending by concentrated forces applied to its vertex.

Initial data file: 4.22.SPR

Problem formulation: The compressive force $P_{\mathrm{x} 1}$ acting along the symmetry axis of the wedge OX1 and the bending force $P_{x 2}$, which is a skew-symmetric load with respect to the symmetry axis of the wedge OX1, are applied to the vertex of the wedge of unit thickness. Determine the stress tensor components in polar coordinates $\sigma_{\mathrm{r}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ at a radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the vertex of the wedge.

References: S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.2$

- Poisson's ratio;
$\mathrm{h}=1.0 \mathrm{~m}$
- thickness of the wedge;
$2 \cdot \alpha=30^{\circ} \quad-$ apex angle of the wedge;
$\mathrm{R}=15.0 \mathrm{~m} \quad$ - radius of the fixed end of the wedge;
$\mathrm{P}_{\mathrm{x} 1}=-5.0 \mathrm{kN} \quad-$ concentrated force compressing the wedge (horizontal);
$\mathrm{P}_{\mathrm{x} 2}=5.0 \mathrm{kN} \quad-$ concentrated force bending the wedge (vertical).
Finite element model: Design model - general type system, wedge elements- 280 eight-node elements of type 50 . The spacing of the finite element mesh in the radial direction is 0.5 m , and in the tangential direction is 3°. The direction of the output of internal forces is radial tangential. Since in the case of a cylindrical surface of a small radius a the force $P_{\mathrm{x} 1}$ at the vertex of the wedge cannot be represented as a resultant of stresses distributed according to the law of the analytical solution given below, the edge of the wedge is modeled by a rigid body with a master node at the vertex of the wedge and the slave nodes at the radial distance of $a=1.0 \mathrm{~m}$ from the vertex of the wedge (member type -100). Since there are no forces distributed according to the law of the analytical solution at the fixed end of the wedge, in order to obtain an exact solution at the radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the action of the force $P_{\mathrm{x} 2}$ the radial distance to the fixed end is taken as $\mathrm{R}=15.0 \mathrm{~m}$. Number of nodes in the design model -918 .

Results in SCAD

Design model

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the compressive force $P_{\mathrm{x} 1}$ and the bending force $P_{\mathrm{x} 2}$

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the compressive force $P_{\mathrm{x} 1}$ and the bending force $P_{\mathrm{x} 2}$

\square	$-0,587$	$-0,541$
\square	$-0,541$	$-0,494$
\square	$-0,494$	$-0,448$
\square	$-0,448$	$-0,402$
\square	$-0,402$	$-0,355$
\square	$-0,355$	$-0,309$
\square	$-0,309$	$-0,263$
\square	$-0,263$	$-0,216$
\square	$-0,216$	$-0,17$
\square	$-0,17$	$-0,124$
\square	$-0,124$	$-0,077$
\square	$-0,077$	$-0,031$
\square	$-0,031$	0,016
\square	0,016	0,062

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the compressive force $P_{\mathrm{x} 1}$ and the bending force $P_{\mathrm{x} 2}$

Comparison of solutions:

Stress tensor components at a radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the vertex of the wedge under the compressive force $P_{\mathrm{x} 1}$

Angle $\boldsymbol{\theta}$	Theory	Stresses $\boldsymbol{\sigma}_{\text {rr }}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	-1.8873	SCAD	Deviations, \%
-15°	-1.9539	-1.8845	0.15
$0^{\boldsymbol{o}}$	-1.8873	-1.9508	0.16
$+15^{\boldsymbol{o}}$	-1.8845	0.15	

Angle $\boldsymbol{\theta}$	Theory	Stresses $\boldsymbol{\sigma}_{\boldsymbol{\theta} \boldsymbol{\theta}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	0.0000	SCAD	Deviations, \%
-15°	0.0000	-0.0005	-
0°	0.0000	-0.0007	-
$+15^{\circ}$	-0.0005	-	

Angle $\boldsymbol{\theta}$	Theory	Stresses $\boldsymbol{\sigma}_{\mathbf{r} \boldsymbol{}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	0.0000	-0.0498	Deviations, $\%$
-15°	0.0000	0.0000	-
0°	0.0000	0.0498	-
$+15^{\circ}$		-	

Stress tensor components at a radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the vertex of the wedge under the bending force $P_{x 2}$

Angle $\boldsymbol{\theta}$	Theory	Stresses $\boldsymbol{\sigma}_{\text {rr }}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	-21.9350	SCAD	Deviations, \%
-15°	0.0000	-21.9098	0.11
0°	21.9350	0.0000	-
$+15^{\circ}$	21.9098	0.11	

Angle $\boldsymbol{\theta}$	Theory	Stresses $\boldsymbol{\sigma}_{\boldsymbol{\theta} \boldsymbol{\theta}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	0.0000	-0.0086	Deviations, $\%$
-15°	0.0000	0.0000	-
0°	0.0000	0.0086	-
$+15^{\circ}$		-	

Angle $\boldsymbol{\theta}$	Theory	Stresses $\boldsymbol{\sigma}_{\mathbf{r} \boldsymbol{\theta}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	SCD	Deviations, \%	
-15°	0.0000	0.5314	-
0°	0.0000	0.0494	-
$+15^{\circ}$	0.0000	-05314	-

Notes: In the analytical solution the stresses $\sigma_{\mathrm{rt}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ in the body of the wedge subjected to the compressive force $P_{\mathrm{x} 1}$ are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979, p. 273):

$$
\sigma_{r r}=\frac{2 \cdot P \cdot \cos \theta}{r \cdot(2 \cdot \alpha+\sin (2 \cdot \alpha))} ; \quad \sigma_{\theta \theta}=0 ; \quad \sigma_{r \theta}=0 .
$$

In the analytical solution the stresses $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ in the body of the wedge subjected to the bending force $P_{\mathrm{x} 2}$ are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979, p. 275):

$$
\sigma_{r r}=\frac{2 \cdot P \cdot \sin \theta}{r \cdot(2 \cdot \alpha-\sin (2 \cdot \alpha))} ; \quad \sigma_{\theta \theta}=0 ; \quad \sigma_{r \theta}=0 .
$$

Bending of a Symmetric Wedge by a Concentrated Moment Applied to Its Vertex (Inglis Problem)

Objective: Determination of the stress state of a symmetric wedge of unit thickness in polar coordinates subjected to bending by a concentrated moment applied to its vertex.

Initial data file: 4.23.SPR

Problem formulation: The moment M acting in the plane of the wedge $\mathrm{X}_{1} \mathrm{OX}_{2}$ is applied to the vertex of the wedge of unit thickness. Determine the stress tensor components in polar coordinates $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ at a radial distance $r=5.0 \mathrm{~m}$ from the vertex of the wedge.

References: S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.2 \quad$ - Poisson's ratio;
$\mathrm{h}=1.0 \mathrm{~m} \quad$ - thickness of the wedge;
$2 \cdot \alpha=30^{\circ} \quad$ - apex angle of the wedge;
$\mathrm{R}=15.0 \mathrm{~m} \quad-$ radius of the fixed end of the wedge;
$\mathrm{M}=-25.0 \mathrm{kN} \quad$ - concentrated moment bending the wedge.
Finite element model: Design model - general type system, wedge elements - 280 eight-node elements of type 50. The spacing of the finite element mesh in the radial direction is 0.5 m , and in the tangential direction is 3°. The direction of the output of internal forces is radial tangential. Since in the case of a cylindrical surface of a small radius a the moment M at the vertex of the wedge cannot be represented as a resultant of stresses distributed according to the law of the analytical solution given below, the edge of the wedge is modeled by a rigid body with a master node at the vertex of the wedge and the slave nodes at the radial distance of $a=1.0 \mathrm{~m}$ from the vertex of the wedge (member type -100). Since there are no forces distributed according to the law of the analytical solution at the fixed end of the wedge, in order to obtain an exact solution at the radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the action of the moment M the radial distance to the fixed end is taken as $\mathrm{R}=15.0 \mathrm{~m}$. Number of nodes in the design model -918 .

Results in SCAD

Design model

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the bending moment M

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the bending moment M

\square	$-3,641$	$-3,336$
\square	$-3,336$	$-3,032$
\square	$-3,032$	$-2,727$
\square	$-2,727$	$-2,423$
\square	$-2,423$	$-2,118$
\square	$-2,118$	$-1,814$
\square	$-1,814$	$-1,509$
\square	$-1,509$	$-1,205$
\square	$-1,205$	$-0,9$
\square	$-0,9$	$-0,596$
\square	$-0,596$	$-0,292$
\square	$-0,292$	0,013
\square	0,013	0,317
\square	0,317	0,622

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the bending moment M

Verification Examples

Comparison of solutions:

Stress tensor components at a radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the wedge top under the bending moment M.

Angle $\boldsymbol{\theta}$	Theory	SCAD	Deviations, \%
	21.4822	21.4264	0.26
-15°	0.0000	0.0000	-
0°	-21.4822	-21.4264	0.26
$+15^{\circ}$			

Angle $\boldsymbol{\theta}$	Theory	SCAD	Deviations, \%
	0.0000	-0.0059	-
-15°	0.0000	0.0000	-
0°	0.0000	0.0059	-
$+15^{\circ}$		$\left.\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	

Angle $\boldsymbol{\theta}$	Theory	Stresses $\boldsymbol{\sigma}_{\mathbf{r} \boldsymbol{\theta}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	0.0000	SCAD	Deviations, \%
-15°	-2.8781	0.5071	-
0°	0.0000	-2.9418	2.21
$+15^{\circ}$	0.5071	-	

Notes: In the analytical solution the stresses $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ in the body of the wedge subjected to the bending moment M are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. Moscow: High school, 1979, p. 276):

$$
\sigma_{r r}=-\frac{2 \cdot M \cdot \sin (2 \cdot \theta)}{r^{2} \cdot(2 \cdot \alpha-\operatorname{tg}(2 \cdot \alpha)) \cdot \cos (2 \cdot \alpha)} ; \quad \sigma_{\theta \theta}=0 ; \quad \sigma_{r \theta}=\frac{M \cdot(\cos (2 \cdot \alpha)-\cos (2 \cdot \theta))}{r^{2} \cdot(2 \cdot \alpha-\operatorname{tg}(2 \cdot \alpha)) \cdot \cos (2 \cdot \alpha)} .
$$

Bending of a Symmetric Wedge by a Uniformly Distributed Load Applied to the Surface of One of the Faces of the Wedge (Levi Problem)

Objective: Determination of the stress state of a symmetric wedge of unit thickness in polar coordinates subjected to bending by a uniformly distributed load applied to the surface of one of the faces of the wedge.

Initial data file: 4.24.SPR

Problem formulation: The uniformly distributed load q acting in the plane of the wedge along the $O x_{2}$ axis is applied to the surface of one of the faces of the wedge of unit thickness. Determine the stress tensor components in polar coordinates $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ at a radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the vertex of the wedge.

References: S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.2 \quad$ - Poisson's ratio;
$\mathrm{h}=1.0 \mathrm{~m} \quad$ - thickness of the wedge;
$\alpha=30^{\circ} \quad$ - apex angle of the wedge;
$\mathrm{R}=15.0 \mathrm{~m} \quad$ - radius of the fixed end of the wedge;
$\mathrm{q}=10.0 \mathrm{kN} / \mathrm{m} \quad$ - uniformly distributed load bending the wedge.
Finite element model: Design model - general type system, wedge elements - 290 eight-node elements of type 50 and 10 six-node elements of type 45 . The spacing of the finite element mesh in the radial direction is 0.5 m , and in the tangential direction is 3°. The direction of the output of internal forces is radial tangential. Since there are no forces distributed according to the law of the analytical solution at the fixed end of the wedge, in order to obtain an exact solution at the radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the action of the uniformly distributed load q the radial distance to the fixed end is taken as $\mathrm{R}=15.0 \mathrm{~m}$. Number of nodes in the design model -961 .

Results in SCAD

Design model

\square	$-107,356$	$-92,734$
\square	$-92,734$	$-78,111$
\square	$\cdot 78,111$	$-63,489$
\square	$-63,489$	$-48,866$
\square	$-48,866$	$-34,244$
\square	$-34,244$	$-19,621$
\square	$-19,621$	$-4,999$
\square	$-4,999$	9,624
\square	9,624	24,246
\square	24,246	38,869
\square	38,869	53,491
\square	53,491	68,114
\square	68,114	82,736
\square	82,736	97,359

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the action of the uniformly distributed load q

\square	
\square	$\cdot 9,927$
	$\cdot 9,223$
$\square \cdot 9,223$	$-8,519$
$\square \cdot 8,519$	$\cdot 7,815$
$\square \cdot 7,815$	$\cdot 7,112$
$\square \cdot 7,112$	$\cdot 6,408$
$\square \cdot 6,408$	$-5,704$
$\square \cdot 5,704$	$-5,0$
$\square \cdot 5,0$	$-4,296$
$\square \cdot 4,296$	$\cdot 3,592$
$\square \cdot 3,592$	$\cdot 2,888$
$\square \cdot 2,888$	$\cdot 2,185$
$\square \cdot 2,185$	$-1,481$
$\square \cdot 1,481$	$\cdot 0,777$
$\square \cdot 0,777$	$\cdot 0,073$

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the action of the uniformly distributed load q

\square	$-14,342$	$-13,505$
\square	$-13,505$	$-12,668$
\square	$-12,668$	$-11,83$
\square	$-11,83$	$-10,993$
\square	$-10,993$	$-10,155$
\square	$-10,155$	$-9,318$
\square	$-9,318$	$-8,48$
\square	$-8,48$	$-7,643$
\square	$-7,643$	$-6,806$
\square	$-6,806$	$-5,968$
\square	$-5,968$	$-5,131$
\square	$-5,131$	$-4,293$
\square	$-4,293$	$-3,456$
\square	$-3,456$	$-2,618$

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the action of the uniformly distributed load q

Comparison of solutions:

Stress tensor components at a radial distance $\mathrm{r}=5.0 \mathrm{~m}$ from the vertex of the wedge under the uniformly distributed load q.

Angle $\boldsymbol{\theta}$	Stresses $\boldsymbol{\sigma}_{\mathbf{r r}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$		Stresses $\boldsymbol{\sigma}_{\boldsymbol{\theta} \boldsymbol{\theta}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$		Stresses $\boldsymbol{\sigma}_{\mathbf{r} \boldsymbol{}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$	
	Theory	SCAD	Theory	SCAD	Theory	SCAD
$0^{\boldsymbol{o}}$	97.4110	97.3548	-10.0000	-9.9243	0.0000	-2.7111
15°	-5.0000	-5.0011	-5.0000	-5.0000	-14.3903	-14.2629
30°	-107.4110	-107.3501	0.000	-0.0757	0.0000	-2.7108

Notes: In the analytical solution the stresses $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ in the body of the wedge subjected to the uniformly distributed load q are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979, p. 276):

$$
\begin{gathered}
\sigma_{r r}=\frac{q}{2 \cdot K} \cdot[2 \cdot \alpha-2 \cdot \theta-(1-\cos (2 \cdot \theta)) \cdot \operatorname{tg} \alpha-\sin (2 \cdot \theta)] ; \\
\sigma_{\theta \theta}=\frac{q}{2 \cdot K} \cdot[2 \cdot \alpha-2 \cdot \theta-(1+\cos (2 \cdot \theta)) \cdot \operatorname{tg} \alpha+\sin (2 \cdot \theta)] ; \\
\sigma_{r \theta}=\frac{q}{2 \cdot K} \cdot[1-\operatorname{tg} \alpha \cdot \sin (2 \cdot \theta)-\cos (2 \cdot \theta)],
\end{gathered}
$$

where:

$$
K=\operatorname{tg} \alpha-\alpha
$$

Triangular Dam Subjected to Its Self-Weight and Hydrostatic Pressure

Objective: Determination of the stress state of a triangular dam of unit thickness in Cartesian coordinates subjected to its self-weight and hydrostatic pressure.

Initial data file: 4.25.SPR

Problem formulation: A horizontal load distributed according to the linear law with a unit volume weight γ acting in the plane of the dam is applied to the surface of the vertical face of the triangular dam of unit thickness. The dam is also subjected to the self-weight γ_{1}. Determine the stress tensor components in Cartesian coordinates $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \tau_{\mathrm{xy}}$ in the horizontal section of the dam located at the depth of $\mathrm{y}_{0}=5.0 \mathrm{~m}$ from the top of the dam.

References: V. I. Samul, Fundamentals of the Elasticity and Plasticity Theory. - Moscow: High school, 1982.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus of the dam material;
$\mu=0.2 \quad$ - Poisson's ratio of the dam material;
$\mathrm{h}=1.0 \mathrm{~m} \quad$ - thickness of the dam;
$\beta=30^{\circ} \quad$ - apex angle of the dam;
$\mathrm{H}=15.0 \mathrm{~m} \quad$ - height of the dam;
$\gamma=10.0 \mathrm{kN} / \mathrm{m}^{3} \quad$ - specific weight of liquid;
$\gamma_{1}=20.0 \mathrm{kN} / \mathrm{m}^{3} \quad$ - specific weight of the dam material.
Finite element model: Design model - plane frame, plate elements - 452 eight-node elements of type 30 and 23 six-node elements of type 25 . The spacing of the finite element mesh in the horizontal OX and vertical OY directions is 0.25 m . The direction of the output of internal forces is along the OX and OY axes of the global coordinate system. Since there are no forces distributed according to the law of the analytical solution at the fixed end of the dam, in order to obtain an exact solution at the depth $y_{0}=5.0 \mathrm{~m}$ from the top of the dam under the self-weight and the hydrostatic pressure, the height of the dam to the fixed end is taken as $\mathrm{H}=15.0 \mathrm{~m}$. Number of nodes in the design model -1506 .

Design model

Values of stresses $\sigma_{x}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of stresses $\sigma_{y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

\square	$-87,42$	$-81,11$
\square	$-81,11$	$-74,8$
\square	$-74,8$	$-68,5$
\square	$-68,5$	$-62,19$
\square	$-62,19$	$-55,88$
\square	$-55,88$	$-49,57$
\square	$-49,57$	$-43,27$
\square	$-43,27$	$-36,96$
\square	$-36,96$	$-30,65$
\square	$-30,65$	$-24,35$
\square	$-24,35$	$-18,04$
\square	$-18,04$	$-11,73$
\square	$-11,73$	$-5,42$
\square	$-5,42$	0,88

Values of stresses $\tau_{x y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of stresses $\sigma_{x}, \sigma_{y}, \tau_{x y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ in the horizontal section of the dam located at the depth of $y_{0}=5.0 \mathrm{~m}$ from the top of the dam

Comparison of solutions:

Stress tensor components in Cartesian coordinates $\sigma_{x}, \sigma_{y}, \tau_{\mathrm{xy}}$ in the horizontal section of the dam located at the depth of $\mathrm{y}_{0}=5.0 \mathrm{~m}$ from the top of the dam.

Parameter	On the inclined face of the dam $\left(\mathbf{x}=\mathbf{y}_{\mathbf{0}} \cdot \mathbf{t g} \boldsymbol{\beta}=\mathbf{2 . 8 8 6 8} \mathbf{~ m}\right)$		
	Theory	$\mathbf{S C A D}$	Deviations, \%
$\sigma_{\mathrm{x}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	-50.00	-50.69	1.38
$\sigma_{\mathrm{y}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	-150.00	-152.55	1.70
$\tau_{\mathrm{xy}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	-86.60	-87.42	0.95

Parameter	Theory	$\mid 3$ On the vertical face of the dam $(\mathbf{x}=\mathbf{0 . 0 0 0 0} \mathbf{~ m})$	
	-50.00	SCAD	Deviations, \%
$\sigma_{\mathrm{x}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	50.00	-50.00	0.00
$\sigma_{\mathrm{y}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	0.00	49.43	1.14
$\tau_{\mathrm{xy}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	-0.43	-	

Notes: In the analytical solution the stresses $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \tau_{\mathrm{xy}}$ in the body of the dam subjected to its self-weight and hydrostatic pressure are determined according to the following formulas (V. I. Samul, Fundamentals of the Elasticity and Plasticity Theory. - Moscow: High school, 1982, p. 77):

$$
\sigma_{x}=-\gamma \cdot y ; \quad \sigma_{y}=\left(\frac{\gamma_{1}}{\operatorname{tg} \beta}-\frac{2 \cdot \gamma}{\operatorname{tg}^{3} \beta}\right) \cdot x+\left(\frac{\gamma}{\operatorname{tg}^{2} \beta}-\gamma_{1}\right) \cdot y ; \quad \tau_{x y}=-\frac{\gamma \cdot x}{\operatorname{tg}^{2} \beta} .
$$

Plane Subjected to a Concentrated Moment and a Concentrated Force

Objective: Determination of the stress state of a plane of unit thickness in polar coordinates subjected to a concentrated moment and a concentrated force.

Initial data file: 4.26.SPR

Problem formulation: The concentrated moment M and the concentrated force P_{1} acting along the $O x_{1}$ axis are applied in the origin of the plane of the unit thickness. Determine the stress tensor components in polar coordinates $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ at different radial distances r from the origin of the plane at the angle to the $O x_{I}$ axis $\theta=0^{\circ}$.

References: S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa}$

- elastic modulus;
$v=0.2$
- Poisson's ratio;
$\mathrm{h}=1.0 \mathrm{~m}$
- thickness of the plane;
$\mathrm{R}=10.0 \mathrm{~m} \quad-$ radius bounding the area of the plane along the fixed edge;
$\mathrm{M}=100.0 \mathrm{kN} \cdot \mathrm{m} \quad$ - concentrated moment acting in the plane;
$\mathrm{P}_{1}=100.0 \mathrm{kN} \quad-$ concentrated force acting in the plane along the OX1 axis.
$\mathrm{P}_{2}=0.0 \mathrm{kN} \quad-$ concentrated force acting in the plane along the OX 2 axis.

Finite element model: Design model - plane frame, plate elements - 972 eight-node elements of type 30 . The spacing of the finite element mesh in the radial direction from $r=0.00 \mathrm{~m}$ to $\mathrm{r}=0.50 \mathrm{~m}$ is 0.05 m , from $\mathrm{r}=0.50 \mathrm{~m}$ to $\mathrm{r}=1.00 \mathrm{~m}$ is 0.10 m , from $\mathrm{r}=1.00 \mathrm{~m}$ to $\mathrm{r}=5.00 \mathrm{~m}$ is 0.50 m , from $\mathrm{r}=5.00 \mathrm{~m}$ to $\mathrm{r}=10.00 \mathrm{~m}$ is 1.00 m , and in the tangential direction the spacing is 10°. The direction of the output of internal forces is radial tangential. A concentrated moment M and a concentrated force P_{l} in the vicinity of their application point on the cylindrical surface of a small radius a cannot be represented as a resultant of stresses distributed according to the laws of the analytical solution given below. Therefore, the area of the plane bounded by this cylindrical surface is modeled by a rigid body with a master node at the point of the application of concentrated forces and the slave nodes at the radial distance of $a=0.05 \mathrm{~m}$ from it (member type -100). In order to exclude the effect of the boundary conditions on the accuracy of the solution, the radial distance to the fixed edge of the plane is taken as $\mathrm{R}=10.0 \mathrm{~m}$. Number of nodes in the design model 2989.

Results in SCAD

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated moment M

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated moment M

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated moment M

Stress diagram $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated moment M for the angle to the OX1 axis $\theta=0^{\circ}$

\square	$\cdot 302,49$	$-259,28$
\square	$-259,28$	$-216,07$
\square	$-216,07$	$-172,85$
\square	$-172,85$	$-129,64$
\square	$-129,64$	$-86,43$
\square	$-86,43$	$-43,21$
\square	$-43,21$	0.000000
\square	0.000000	43,21
\square	43,21	86,43
\square	86,43	129,64
\square	129,64	172,85
\square	172,85	216,07
\square	216,07	259,28
\square	259,28	302,49

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated force P_{1}

Stress diagram $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated force P_{l} for the angle to the OX1 axis $\theta=0^{\circ}$

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated force P_{I}

Stress diagram $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated force P_{1} for the angle to the OX1 axis $\theta=0^{\circ}$

\square	$-273,17$	$-234,14$
\square	$\cdot 234,14$	$-195,12$
\square	$\cdot 195,12$	$-156,1$
\square	$-156,1$	$-117,07$
\square	$\cdot 117,07$	$-78,05$
\square	$\cdot 78,05$	$-39,02$
\square	$\cdot 39,02$	0
\square	0	39,02
\square	39,02	78,05
\square	78,05	117,07
\square	117,07	156,1
\square	156,1	195,12
\square	195,12	234,14
\square	234,14	273,17

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated force P_{I}

Stress diagram $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ under the concentrated force P_{l} for the angle to the OX1 axis $\theta=0^{\circ}$

Comparison of solutions:

Stress tensor components for the angle to the Ox_{1} axis $\theta=0^{\circ}$ under the concentrated moment M

Radius r (\mathbf{m})	Theory	SCAD	Deviations, \%
	0.00	0.00	-
0.2	0.00	0.00	-
0.3	0.00	0.00	-
0.4	0.00	0.00	-
0.5	0.00	0.00	-
1.0	0.00	0.00	-
1.5	0.00	0.00	-
2.0	0.00	0.00	-
2.5	0.00	0.00	-
3.0			-

Radius r (\mathbf{m})	Theory	SCAD	Deviations, \%	
	0.00	0.00	-	
0.2	0.00	0.00	-	
0.3	0.00	0.00	-	
0.4	0.00	0.00	-	
0.5	0.00	0.00	-	
1.0	0.00	0.00	-	
1.5	0.00	0.00	-	
2.0	0.00	0.00	-	
2.5	0.00	0.00	-	
3.0				

Verification Examples

Radius r (\mathbf{m})	Theory	SCAD	Stresses $\boldsymbol{\sigma}_{\mathbf{r} \boldsymbol{\theta}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$
	397.89	385.79	Deviations, \%
0.2	176.84	174.22	1.48
0.3	99.47	98.49	0.99
0.4	63.66	62.93	1.15
0.5	15.92	15.43	3.08
1.0	7.07	6.67	5.65
1.5	3.98	3.86	3.02
2.0	2.55	2.50	1.96
2.5	1.77	1.74	1.69
3.0			

Stress tensor components for the angle to the Ox_{1} axis $\mathrm{Ox}_{1} \theta=0^{\circ}$ under the concentrated force P_{1}.

Radius \mathbf{r} (\mathbf{m})	Theory	SCAD	Deviations, \%
	-127.32	-122.67	3.65
0.2	-84.88	-83.26	1.91
0.3	-63.66	-62.84	1.29
0.4	-50.93	-50.36	1.12
0.5	-25.46	-25.08	1.49
1.0	-16.98	-16.65	1.94
1.5	-12.73	-12.61	0.94
2.0	-10.19	-10.15	0.39
2.5	-8.49	-8.50	0.12
3.0			

Radius \mathbf{r} (\mathbf{m})	Theory	SCAD	Deviations, \%
	31.83	27.80	12.66
0.2	21.22	19.69	7.21
0.3	15.92	15.08	5.28
0.4	12.73	12.16	4.48
0.5	6.37	6.09	4.40
1.0	4.24	3.96	6.60
1.5	3.18	2.92	8.18
2.0	2.55	2.27	10.98
2.5	2.12	1.82	14.15
3.0			

Radius r (\mathbf{m})	Theory	SCAD	Deviations, \%
	0.00	0.00	-
0.2	0.00	0.00	-
0.3	0.00	0.00	-
0.4	0.00	0.00	-
0.5	0.00	0.00	-
1.0	0.00	0.00	-
1.5	0.00	0.00	-
2.0	0.00	0.00	-
2.5	0.00	0.00	-
3.0			-

Notes:

1. In the analytical solution the stresses σ_{r}, $\sigma_{\theta \theta}$, $\sigma_{\mathrm{r} \theta}$ in the plane under the concentrated moment are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979, p. 299):

$$
\sigma_{r r}=0 ; \quad \sigma_{\theta \theta}=0 ; \quad \sigma_{r \theta}=-\frac{M}{2 \cdot \pi \cdot r^{2}} .
$$

In the analytical solution the stresses $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ in the plane under the concentrated force are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979, p. 300):

$$
\begin{gathered}
\sigma_{r r}=-\frac{3+v}{4 \cdot \pi \cdot r} \cdot\left(P_{1} \cdot \cos \theta+P_{2} \cdot \sin \theta\right) \\
\sigma_{\theta \theta}=\frac{1-v}{4 \cdot \pi \cdot r} \cdot\left(P_{1} \cdot \cos \theta+P_{2} \cdot \sin \theta\right) \\
\sigma_{r \theta}=\frac{1-v}{4 \cdot \pi \cdot r} \cdot\left(P_{1} \cdot \sin \theta-P_{2} \cdot \cos \theta\right)
\end{gathered}
$$

2. It is impossible to perform an accurate modeling of the problem considered in the source in SCAD, because an infinite plane is considered, and the solution has a singularity. Therefore, the verification matrix contains deviations from the theoretical solution in the point located at the distance of $1,5 \mathrm{~m}$ from the origin.

Bending of a Curved Beam of a Narrow Rectangular Cross-Section by a Force Applied to Its Free End (Golovin's Problem)

Objective: Determination of the stress state of a curved beam of a narrow rectangular cross-section subjected to bending by a concentrated force applied to its free end.

Initial data file: 4.21.SPR

Problem formulation: A force P acting parallel to the edge in the plane of the circular axis of the beam is applied to the free end of the cantilever curved beam of the unit thickness. Determine the stress tensor components in polar coordinates $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ for the beam cross-section at $\theta=90^{\circ}$ to the edge of the free end of the beam (section n-n).

References: S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.2 \quad$ - Poisson's ratio;
$\mathrm{h}=1.0 \mathrm{~m} \quad-$ thickness of the beam;
$\mathrm{r}_{1}=5 \mathrm{~m} \quad-$ inner radius of the beam;
$\mathrm{r}_{2}=15 \mathrm{~m} \quad-$ outer radius of the beam;
$\mathrm{P}=5.0 \mathrm{kN} \quad-$ concentrated force bending the beam (horizontal).
Constraints: full restraint of the nodes of the clamped edge of the beam (section m-m)
Finite element model: Design model - general type system, beam elements - 300 eight-node elements of type 50. The spacing of the finite element mesh in the radial direction is 1.0 m , and in the tangential direction is 9°. The direction of the output of internal forces is radial tangential. Since the boundary conditions at the end surface of the free end of the curved beam $\left(\theta=0^{\circ}\right)$ are given in integral form in the analytical solution, they are softened by introducing a rigid body (member type -100), the nodes of which are located along the end surface. Number of nodes in the design model-981.

Results in SCAD

Design model

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Stress diagram $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the beam cross-section at $\theta=90^{\circ}$ to the edge of the free end of the beam (section n-n)

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
nx

Stress diagram $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the beam cross-section at $\theta=90^{\circ}$ to the edge of the free end of the beam (section $n-n$)

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Comparison of solutions:

	Stresses $\boldsymbol{\sigma}_{\mathbf{r r}}\left(\mathbf{k N} / \mathbf{m}^{\mathbf{2}}\right)$			Stresses $\boldsymbol{\sigma}_{\boldsymbol{\theta}}\left(\mathbf{k N} / \mathbf{m}^{2}\right)$		
	$\mathbf{r}=\mathbf{5 . 0 0 0 0} \mathbf{~ m}$	$\mathbf{r}=\mathbf{7 . 4 3 4 9} \mathbf{~ m}$	$\mathbf{r = 1 5 . 0 0 0 0} \mathbf{~ m}$	$\mathbf{r}=\mathbf{5 . 0 0 0 0} \mathbf{m}$	$\mathbf{r}=\mathbf{1 0 . 0 8 7 6}$ \mathbf{m}	$\mathbf{r = 1 5 . 0 0 0 0 \mathbf { m }}$
Theory	0.0000	-0.8375	0.0000	-5.3581	0.0000	1.7860
SCAD	-0.0744	-0.8515	0.0109	-5.3022	0.0078	1.7893
Deviations, $\boldsymbol{\%}$	-	1.67	-	1.04	-	0.18

Notes: In the analytical solution the stresses $\sigma_{\mathrm{r} \mathrm{r}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ in the body of the cantilever curved beam subjected to the force P applied at its free end and directed parallel to its edge are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979, p. 271):

$$
\begin{aligned}
& \sigma_{r r}=\frac{P}{K_{0}} \cdot\left(r-\frac{r_{1}^{2}+r_{2}^{2}}{r}+\frac{r_{1}^{2} \cdot r_{2}^{2}}{r^{3}}\right) \cdot \sin \theta ; \\
& \sigma_{\theta \theta}=\frac{P}{K_{0}} \cdot\left(3 \cdot r-\frac{r_{1}^{2}+r_{2}^{2}}{r}-\frac{r_{1}^{2} \cdot r_{2}^{2}}{r^{3}}\right) \cdot \sin \theta ; \\
& \sigma_{r r}=-\frac{P}{K_{0}} \cdot\left(r-\frac{r_{1}^{2}+r_{2}^{2}}{r}+\frac{r_{1}^{2} \cdot r_{2}^{2}}{r^{3}}\right) \cdot \cos \theta ; \\
& K_{0}=r_{1}^{2}-r_{2}^{2}+\left(r_{1}^{2}+r_{2}^{2}\right) \cdot \ln \left(r_{2} / r_{1}\right) .
\end{aligned}
$$

Unilateral Tension of a Plate with a Small Circular Hole (Kirsch Problem)

Objective: Determination of the stress state of a plate of considerable width and unit thickness with a small circular hole in polar coordinates subjected to unilateral uniform tension.

Initial data files:

File name	Description
$4.27 _$b_20_9_grad.SPR	1 variant of the design model - coarse FE mesh
$4.27 _$b_60_4.5_grad.SPR	2 variant of the design model - fine FE mesh

Problem formulation: The square plate of considerable width and unit thickness with a small circular hole of radius a is subjected to unilateral uniform tension by stresses σ in the direction of the x_{I} axis applied in its center. Determine the stress tensor components in polar coordinates σ_{r}, $\sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ at different radial distances r from the origin at the angles to the x_{I} axis $\theta=0^{\circ}$ and $\theta=90^{\circ}$.

References: S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.2$
$\mathrm{h}=1.0 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}=1.0 \mathrm{~m} \quad-$ radius of the hole;
$2 \cdot \mathrm{~b}=20.0 \mathrm{~m}(60.0 \mathrm{~m}) \quad$ - width of the plate;
$\sigma=100.0 \mathrm{kN} / \mathrm{m} \quad-$ tensile stress in the direction of the x_{l} axis.
Finite element model: Two variants of the design model are considered.

Variant 1:

Design model - plane frame, width of the plate $2 \cdot \mathrm{~b}=20.0 \mathrm{~m}$, plate elements - 1088 eight-node elements of type 30 and 32 six-node elements of type 25 . The spacing of the finite element mesh in the radial direction from $\mathrm{r}=1.00 \mathrm{~m}$ to $\mathrm{r}=2.00 \mathrm{~m}$ is 0.10 m , from $\mathrm{r}=2.00 \mathrm{~m}$ to $\mathrm{r}=10.00 \mathrm{~m}$ is 0.50 m and in the tangential direction the spacing is 9°. The direction of the output of internal forces is radial tangential. Number of nodes in the design model - 3409.

Variant 2:

Design model - plane frame, width of the plate $2 \cdot \mathrm{~b}=60.0 \mathrm{~m}$, plate elements - 5024 eight-node elements of type 30 and 40 six-node elements of type 25 . The spacing of the finite element mesh in the radial direction from $\mathrm{r}=1.00 \mathrm{~m}$ to $\mathrm{r}=3.00 \mathrm{~m}$ is 0.10 m , from $\mathrm{r}=3.00 \mathrm{~m}$ to $\mathrm{r}=5.00 \mathrm{~m}$ is 0.20 m , from $\mathrm{r}=5.00 \mathrm{~m}$ to $\mathrm{r}=$ 9.00 m is 0.40 m , from $\mathrm{r}=9.00 \mathrm{~m}$ to $\mathrm{r}=21.00 \mathrm{~m}$ is 0.80 m , from $\mathrm{r}=21.00 \mathrm{~m}$ to $\mathrm{r}=29.00 \mathrm{~m}$ is 1.60 m , and in the tangential direction the spacing is 4.5°. The direction of the output of internal forces is radial tangential. Number of nodes in the design model - 15312 .

Results in SCAD

Design model. Variant 1

Design model. Variant 2

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 1

Stress diagram $\sigma_{r r}\left(k N / m^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=0^{\circ}$ for the design model according to variant 1
nz

Stress diagram $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=90^{\circ}$ for the design model according to variant 1

Values of stresses $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 2

Stress diagram $\sigma_{r r}\left(k N / m^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=0^{\circ}$ for the design model according to variant 2

Stress diagram $\sigma_{r r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=90^{\circ}$ for the design model according to variant 2

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 1

Stress diagram $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=0^{\circ}$ for the design model according to variant 1

Stress diagram $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=90^{\circ}$ for the design model according to variant 1

\square	$-100,05$	$-71,48$
\square	$\cdot 71,48$	$-42,91$
\square	$-42,91$	$-14,33$
\square	$-14,33$	14,24
\square	14,24	42,82
\square	42,82	71,39
\square	71,39	99,96
\square	99,96	128,54
\square	128,54	157,11
\square	157,11	185,68
\square	185,68	214,26
\square	214,26	242,83
\square	242,83	271,41
\square	271,41	299,98

Values of stresses $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 2
nX

Stress diagram $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=0^{\circ}$ for the design model according to variant 2

Stress diagram $\sigma_{\theta \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{I}$ axis $\theta=90^{\circ}$ for the design model according to variant 2

\square	$-68,92$	$-59,07$
\square	$-59,07$	$-49,23$
\square	$-49,23$	$-39,38$
\square	$-39,38$	$-29,54$
\square	$-29,54$	$-19,69$
\square	$-19,69$	$-9,85$
\square	$-9,85$	0
\square	0	9,85
\square	9,85	19,69
\square	19,69	29,54
\square	29,54	39,38
\square	39,38	49,23
\square	49,23	59,07
\square	59,07	68,92

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 1

Stress diagram $\sigma_{r \theta}\left(k N / m^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=0^{\circ}$ for the design model according to variant 1

Stress diagram $\sigma_{r \theta}\left(k N / m^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=90^{\circ}$ for the design model according to variant 1

Values of stresses $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ for the design model according to variant 2

Stress diagram $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=0^{\circ}$ for the design model according to variant 2

Stress diagram $\sigma_{r \theta}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$ at the angle to the $O x_{1}$ axis $\theta=90^{\circ}$ for the design model according to variant 2

Comparison of solutions:

Stress tensor components in polar coordinates $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$.

Solution	Stresses $\sigma_{\text {rr }}\left(\mathbf{k N} / \mathbf{m}^{2}\right)$					Stresses $\sigma_{\theta \theta}\left(\mathbf{k N} / \mathrm{m}^{2}\right)$			
	$\theta=0^{\circ}$			$\theta=90^{\circ}$		$\theta=0^{\text {o }}$			$\theta=90^{\circ}$
	$\begin{gathered} \mathrm{r}= \\ 1.000 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ (\sqrt{6} / 5) \cdot \mathrm{a} \\ =1.095 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ (\sqrt{3} / 2) \cdot \mathrm{a}= \\ 1.225 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ 1.000 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ (\sqrt{2}) \cdot \mathrm{a}= \\ 1.414 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ 1.000 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ (\sqrt{3}) \cdot \mathrm{a}= \\ 1.732 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ (\sqrt{6}) \cdot \mathrm{a}= \\ 2.449 \mathrm{~m} \end{gathered}$	$\begin{gathered} \mathrm{r}= \\ 1.000 \mathrm{~m} \end{gathered}$
Theory	0.00	$\begin{gathered} -\sigma / 24= \\ -4.17 \end{gathered}$	0.00	0.00	$\begin{gathered} 3 \cdot \sigma / 8= \\ 37.50 \end{gathered}$	$\begin{gathered} \hline-\sigma= \\ -100.00 \end{gathered}$	0.00	$\begin{gathered} \sigma / 24= \\ 4.17 \end{gathered}$	$\begin{gathered} 3 \cdot \sigma= \\ 300.00 \end{gathered}$
SCAD, DM var. 1	-1.32	-5.65	-1.26	2.77	39.43	-100.63	-1.18	3.56	307.46
$\begin{gathered} \text { Deviations, } \\ \% \end{gathered}$	-	-	-	-	5.15	0.63	-	-	2.49
SCAD, DM var. 2	-0.76	-4.78	-0.36	1.31	37.94	-100.05	-0.04	4.16	299.85
$\begin{gathered} \text { Deviations, } \\ \% \end{gathered}$	-	-	-	-	1.17	0.05	-	-	0.05

Notes: In the analytical solution the stresses $\sigma_{\mathrm{rr}}, \sigma_{\theta \theta}, \sigma_{\mathrm{r} \theta}$ in the plate with a small circular hole subjected to unilateral uniform tension are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. - Moscow: High school, 1979, p. 302):

$$
\begin{gathered}
\sigma_{r r}=\frac{\sigma}{2} \cdot\left(1-\frac{a^{2}}{r^{2}}\right)+\frac{\sigma}{2} \cdot\left(1-4 \cdot \frac{a^{2}}{r^{2}}+3 \cdot \frac{a^{4}}{r^{4}}\right) \cdot \cos (2 \cdot \theta) ; \\
\sigma_{\theta \theta}=\frac{\sigma}{2} \cdot\left(1+\frac{a^{2}}{r^{2}}\right)-\frac{\sigma}{2} \cdot\left(1+3 \cdot \frac{a^{4}}{r^{4}}\right) \cdot \cos (2 \cdot \theta) ; \\
\sigma_{r \theta}=-\frac{\sigma}{2} \cdot\left(1+2 \cdot \frac{a^{2}}{r^{2}}-3 \cdot \frac{a^{4}}{r^{4}}\right) \cdot \sin (2 \cdot \theta),
\end{gathered}
$$

Stress-Strain State of a Simply Supported Circular Plate Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of the stress-strain state of a simply supported circular plate of constant thickness subjected to a uniformly distributed transverse load.

Initial data file: 4.14.SPR

Problem formulation: The simply supported circular plate of constant thickness is subjected to the uniformly distributed transverse load. Determine the deflection w, the radial slope θ, the radial M_{r} and tangential M_{θ} bending moments along the axis and along the external contour of the plate.

References: S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.3 \quad$ - Poisson's ratio;
$\mathrm{R}=1.2 \mathrm{~m} \quad-$ outer radius of the plate;
$\mathrm{h}=2.0 \cdot 10^{-2} \mathrm{~m} \quad$ - thickness of the plate;
$\mathrm{q}=10 \mathrm{kPa} \quad-$ uniformly distributed transverse load.
Finite element model: Design model - general type system, plate elements - 528 eight-node elements of type 50 and 48 six-node elements of type 45 . The direction of the output of internal forces is radial tangential. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z along the external contour of the plate. Number of nodes in the design model - 1729.

Results in SCAD

Design model

Values of deflections w (mm)

\square	$-0,011485$	$-0,009844$
\square	$-0,009844$	$-0,008204$
\square	$-0,008204$	$-0,006563$
\square	$-0,006563$	$-0,0044922$
\square	$-0,004922$	$-0,003281$
\square	$-0,003281$	$-0,001641$
\square	$-0,001641$	0,000000
\square	0,000000	0,001641
\square	0,001641	0,003281
\square	0,003281	0,004922
\square	0,004922	0,006563
\square	0,006563	0,008204
\square	0,008204	0,009844
\square	0,009844	0,011485

Values of radial slopes θ (rad)

Values of radial bending moments $M_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Values of tangential bending moments $M_{\theta}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Comparison of solutions:

Parameter	Along the axis of the plate			Along the external contour of the plate		
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
$w, \mathrm{~mm}$	-9.015	-9.024	0.10	0.000	0.000	-
θ, rad	0.000000	0.000000	-	0.011340	0.011392	0.46
$M_{\mathrm{r}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	2.970	2.972	0.07	0.000	0.063	-
M_{θ}, $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	2.970	2.972	0.07	1.260	1.226	2.70

Notes: . In the analytical solution the deflection w, the radial slope θ, the radial M_{r} and tangential M_{θ} bending moments along the axis of the plate can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948, p. 66):

$$
\begin{gathered}
w=-\frac{q \cdot R^{4} \cdot(5+\mu)}{64 \cdot D \cdot(1+\mu)}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)} \\
\theta=0 \\
M_{r}=\frac{q \cdot R^{2} \cdot(3+\mu)}{16}
\end{gathered}
$$

$$
M_{\theta}=\frac{q \cdot R^{2} \cdot(3+\mu)}{16} .
$$

In the analytical solution the deflection w, the radial slope θ, the radial M_{r} and tangential M_{θ} bending moments along the external contour of the plate can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948, p. 66):

$$
\begin{gathered}
w=0 ; \\
\theta=\frac{q \cdot R^{3}}{8 \cdot D \cdot(1+\mu)}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)} ; \\
M_{r}=0 ; \\
M_{\theta}=\frac{q \cdot R^{2} \cdot(1-\mu)}{8} .
\end{gathered}
$$

Stress-Strain State of a Clamped Circular Plate Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of the stress-strain state of a clamped circular plate of constant thickness subjected to a uniformly distributed transverse load.

Initial data file: 4.15.SPR

Problem formulation: The clamped circular plate of constant thickness is subjected to the uniformly distributed transverse load. Determine the deflection w, the radial slope θ, the radial M_{r} and tangential M_{θ} bending moments along the axis and along the external contour of the plate.

References: S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.3$

- Poisson's ratio;
$\mathrm{R}=1.2 \mathrm{~m} \quad$ - outer radius of the plate;
$\mathrm{h}=2.0 \cdot 10^{-2} \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{q}=10 \mathrm{kPa} \quad-$ uniformly distributed transverse load.
Finite element model: Design model - general type system, plate elements - 528 eight-node elements of type 50 and 48 six-node elements of type 45 . The direction of the output of internal forces is radial tangential. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY along the external contour of the plate. Number of nodes in the design model - 1729.

Results in SCAD

Design model

Values of deflections w (mm)

Values of radial slopes θ (rad)

Values of radial bending moments $M_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Values of tangential bending moments $M_{\theta}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Comparison of solutions:

Parameter	Along the axis of the plate			Along the external contour of the plate		
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
$w, \mathrm{~mm}$	-2.211	-2.198	0.59	0.000	0.000	-
θ, rad	0.00000	0.000000	-	0.000000	0.000000	-
$M_{\mathrm{r}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	1.170	1.167	0.26	-1.800	-1.736	3.56
$M_{\theta}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	1.170	1.167	0.26	-0.540	-0.505	6.48

Notes: In the analytical solution the deflection w, the radial slope θ, the radial M_{r} and tangential M_{θ} bending moments along the axis of the plate can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948, p. 65):

$$
\begin{gathered}
w=-\frac{q \cdot R^{4}}{64 \cdot D}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)} ; \\
\theta=0 \\
M_{r}=\frac{q \cdot R^{2} \cdot(1+\mu)}{16} ;
\end{gathered}
$$

$$
M_{\theta}=\frac{q \cdot R^{2} \cdot(1+\mu)}{16}
$$

In the analytical solution the deflection w, the radial slope θ, the radial M_{r} and tangential M_{θ} bending moments along the external contour of the plate can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948, p. 66):

$$
\begin{gathered}
w=0 \\
\theta=0 ; \\
M_{r}=-\frac{q \cdot R^{2}}{8} ; \\
M_{\theta}=-\frac{q \cdot R^{2} \cdot \mu}{8} .
\end{gathered}
$$

Stress-Strain State of a Simply Supported Annular Plate Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of the stress-strain state of a simply supported annular plate of constant thickness subjected to a uniformly distributed transverse load.

Initial data file: 4.16.SPR

Problem formulation: The simply supported annular plate of constant thickness is subjected to the uniformly distributed transverse load. Determine the deflection w, the radial M_{r} and tangential M_{θ} bending moments along the internal and external contour of the plate.

References: S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.3$

- Poisson's ratio;
$\mathrm{R}=1.2 \mathrm{~m}$
- outer radius of the plate;
$\mathrm{r}=0.6 \mathrm{~m} \quad-$ inner radius of the plate;
$\mathrm{h}=2.0 \cdot 10^{-2} \mathrm{~m} \quad-$ thickness of the plate;
$p=10 \mathrm{kPa} \quad$ - uniformly distributed transverse load.
Finite element model: Design model - general type system, plate elements - 288 eight-node elements of type 50 . The direction of the output of internal forces is radial tangential. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z along the external contour of the plate. Number of nodes in the design model - 960 .

Results in SCAD

Values of deflections w (mm)

Values of radial bending moments $M_{\mathrm{r}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Values of tangential bending moments $M_{\theta}(k N \cdot m / m)$

Comparison of solutions:

Parameter	Along the internal contour of the plate			Along the external contour of the plate		
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
$w, \mathrm{~mm}$	-8.933	-8.863	0.78	0.000	0.000	-
$M_{\mathrm{r}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	0.000	0.001	-	0.000	0.052	-
$M_{\theta}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	3.462	3.474	0.35	1.574	1.547	1.72

Notes: In the analytical solution the deflection w, the radial M_{r} and tangential M_{θ} bending moments along the internal contour of the plate can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948. p. 71):

$$
\begin{gathered}
w=-\frac{q}{64 \cdot D} \cdot\left[\frac{R^{2}-r^{2}}{1+\mu} \cdot\left(R^{2} \cdot(5+\mu)-r^{2} \cdot(7+2 \cdot \mu)\right)-\frac{4 \cdot R^{2} \cdot r^{2}}{1-\mu} \cdot \ln \frac{r}{R} \cdot\left(3+\mu+\frac{4 \cdot r^{2}}{R^{2}-r^{2}} \cdot(1+\mu) \cdot \ln \frac{r}{R}\right)\right], \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)} ; \\
M_{r}=0 ; \\
M_{\theta}=\frac{q}{8} \cdot\left[R^{2} \cdot(3+\mu)-r^{2} \cdot(1-\mu)+\frac{4 \cdot R^{2} \cdot r^{2}}{R^{2}-r^{2}} \cdot \ln \frac{r}{R} \cdot(1+\mu)\right] .
\end{gathered}
$$

In the analytical solution the deflection w, the radial M_{r} and tangential M_{θ} bending moments along the external contour of the plate can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948. p. 71):

$$
\begin{gathered}
w=0 ; \\
M_{r}=0 ; \\
M_{\theta}=\frac{q}{8} \cdot\left[R^{2} \cdot(1-\mu)+r^{2} \cdot(1+3 \cdot \mu)+\frac{4 \cdot R^{4}}{R^{2}-r^{2}} \cdot \ln \frac{r}{R} \cdot(1+\mu)\right] .
\end{gathered}
$$

Rectangular Narrow Cantilever Plate Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of the strain state of a rectangular narrow cantilever plate subjected to a uniformly distributed transverse load.

Initial data file: SSLS01_v11.3.SPR

Problem formulation: The rectangular narrow cantilever plate is subjected to the transverse load uniformly distributed over its area P. Determine the transverse displacement Z of the free edge of the plate.

References: S. Timoshenko, Resistance des materiaux, t.1, Paris, Librairie Polytechnique Beranger, 1949.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{11} \mathrm{~Pa} \quad$ - elastic modulus;
$v=0.0$

- Poisson's ratio;
$1=1.0 \mathrm{~m} \quad$ - length of the plate;
$\mathrm{b}=0.1 \mathrm{~m} \quad$ - width of the plate;
$\mathrm{h}=0.005 \mathrm{~m} \quad$ - thickness of the plate;
$P=1.7 \cdot 10^{3} \mathrm{~N} / \mathrm{m}^{2} \quad$ - value of the uniformly distributed transverse load.
Finite element model: Design model - grade beam / plate, 10 plate elements of type 11. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY for the clamped edge. Number of nodes in the design model -22 .

Results in SCAD

Deformed model

	-9,02e-002	-8,327e-002
	-8,327e-002	7,633
	-7,633e-002	,
	-6,939e-002	6,245e-00
	-6,245e-002	-5,5
	-5,551e-002	4,8
	-4,857e-002	4,163e
	-4,163e-002	3.
	-3,469e-002	2,776
	-2,776e-002	-2,0
	-2,082e-002	-1,388e-002
	-1,388e-002	-6,939e-003
	-6,939e-003	0.000000

Values of transverse displacements Z (m)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Transverse displacement of the free edge Z, m	$-9.714 \cdot 10^{-2}$	$-9.714 \cdot 10^{-2}$	0.00

Notes: In the analytical solution the transverse displacement Z of the free edge of the plate is determined according to the following formula:

$$
Z=\frac{3 \cdot P \cdot l^{4}}{2 \cdot E \cdot h^{3}}
$$

Torsion of a Rectangular Narrow Cantilever Plate by a Pair of Concentrated Forces

Objective: Determination of the strain state of a rectangular narrow cantilever plate subjected to a pair of transverse concentrated forces applied at the corners of its free edge.

Initial data file: SSLS27_v11.3.SPR

Problem formulation: The rectangular narrow cantilever plate is subjected to a pair of transverse concentrated forces F_{z} (points B, C) applied in the corners of the free edge. Determine: the transverse displacement Z of the corner of the free edge of the plate (point C).

References: J. Robinson, Element evaluation. A set of assessment parts and standard tests, Proceeding of Finite Element Methods in the commercial environment, vol. 1, October 1978.
J.L. Batoz, M.B. Tahar, Evaluation of new quadrilateral thin plate boundary element, International Journal for numerical methods in engineering, vol. 18, Jon Wiley and Sons, 1982.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{~Pa} \quad-$ elastic modulus,
$v=0.25 \quad$ - Poisson's ratio,
$\mathrm{l}=1.0 \mathrm{~m} \quad$ - width of the cantilever plate,
$\mathrm{L}=12.0 \mathrm{~m} \quad$ - length of the cantilever plate,
$\mathrm{h}=0.05 \mathrm{~m} \quad$ - thickness of the plate,
$\mathrm{Fz},=1.0 \mathrm{~N} \quad-$ value of the transverse concentrated force.
Finite element model: Design model - grade beam / plate, 500 plate elements of type 11. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY for the clamped edge (line AD). Number of nodes in the design model - 561 .

Results in SCAD

Design model

Values of transverse displacements Z (m)

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Transverse displacement Z of the corner of the free edge of the plate (point C), m	$3.537 \cdot 10^{-2}$	$3.530 \cdot 10^{-2}$	0.20

Square Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Load

Objective: Determination of maximum displacements and bending moments in a square plate simply supported along the perimeter and subjected to a uniformly distributed load p.

Initial data file: 4.17.SPR

Problem formulation: The square isotropic plate of constant thickness is simply supported along the perimeter and subjected to the uniformly distributed load p. Determine: maximum displacements and bending moments.

References: Strength, Stability, Vibrations. Handbook in three volumes. Volume 1. Ed. I.A. Birger and Ya.G. Panovko. - M.: Mechanical engineering, 1968, p. 532-535

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad-$ elastic modulus,
$\mu=0.3$
$\mathrm{a}=1.5 \mathrm{~m} \quad-$ size of the plate sides,
$\mathrm{h}=0.01 \mathrm{~m} \quad$ - thickness of the plate,
$\mathrm{p}=10 \mathrm{kPa} \quad$ - normal pressure,
Constraints: hinge restraint of nodes along the contour out of the XOY plane (displacement $w=0$)
Finite element model: Design model - grade beam, plate. Plate elements - 144 eight-node elements of type 20. Number of nodes in the design model - 481.

Results in SCAD

Design model

Values of displacements w (mm)

Values of bending moments $M_{\mathrm{x}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

\square	0	0,07
\square	0.07	0,15
\square	0,15	0,23
\square	0,23	0,31
\square	0.31	0,38
\square	0,38	0,46
\square	0,46	0,54
\square	0,54	0,61
\square	0.61	0,69
\square	0.69	0,77
\square	0.77	0,85
\square	0,85	0,92
\square	0.92	1,0
\square	1.0	1,08

Values of bending moments $M_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Displacement in the center of the plate $w, \mathrm{~mm}$	11.22	11.23	0.09
Bending moment $M_{\mathrm{x}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	1.078	1.077	0.09
Bending moment $M_{\mathrm{y}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	1.078	1.077	0.09

Notes: In the analytical solution the displacement w and the bending moments M_{x} and M_{y} in the center of the plate subjected to the uniformly distributed load are determined according to the following formulas (Handbook in three volumes. Volume 1. Ed. I.A. Birger and Ya.G. Panovko. - M.: Mechanical engineering, 1968, p. 532-535):

$$
\begin{gathered}
w=0.00406 \cdot \frac{p \cdot a^{4}}{D} \text {, where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)} ; \\
M_{x}=M_{y}=0.0479 \cdot p \cdot a^{2} .
\end{gathered}
$$

Rectangular Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of the stress-strain state of a rectangular plate simply supported along the perimeter and subjected to a uniformly distributed transverse load.

Initial data files:

File name	Description
SSLS24_b_1a_v11.3.SPR	Design model with the ratios of the sides of the plate b/a = 1.0
SSLS24_b_2a_v11.3.SPR	Design model with the ratios of the sides of the plate b/a = 2.0
SSLS24_b_5a_v11.3.SPR	Design model with the ratios of the sides of the plate b/a = 5.0

Problem formulation: The rectangular plate simply supported along the perimeter is subjected to the transverse load uniformly distributed over its area p. Determine the transverse displacement Z and bending moments $M_{\mathrm{x}}, M_{\mathrm{y}}$ in the center of the plate for different ratios of its sides b / a.

References: S. Timoshenko, S. Woinowski, Theorie des plaques et des coques, Paris, Librairie Polytechnique Beranger, 1961.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{~Pa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{h}=0.01 \mathrm{~m} \quad$ - thickness of the plate;
$\mathrm{a}=1.0 \mathrm{~m} \quad-$ short side of the plate (along the X axis of the global coordinate system);
$\mathrm{b}=1.0 \mathrm{~m}, 2.0 \mathrm{~m}, 5.0 \mathrm{~m}-$ long side of the plate (along the Y axis of the global coordinate system);
$\mathrm{p}=1.0 \mathrm{~N} / \mathrm{m}^{2} \quad-$ value of the uniformly distributed transverse load.
Finite element model: Three design models are considered.
Design model $1(\mathrm{~b} / \mathrm{a}=1.0)$ - grade beam / plate, shell elements - 100 plate elements of type 20. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z , UY for the edges parallel to the X axis of the global coordinate system, and Z, UX for the edges parallel to the Y axis of the global coordinate system. Number of nodes in the design model - 121 .
Design model $2(\mathrm{~b} / \mathrm{a}=2.0)$ - grade beam / plate, shell elements -200 plate elements of type 20. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UY for the edges parallel to the X axis of the global coordinate system, and Z, $U X$ for the edges parallel to the Y axis of the global coordinate system. Number of nodes in the design model - 231.
Design model $3(\mathrm{~b} / \mathrm{a}=5.0)$ - grade beam / plate, shell elements - 500 plate elements of type 20. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z , UY for the edges parallel to the X axis of the global coordinate system, and Z , UX for the edges parallel to the Y axis of the global coordinate system. Number of nodes in the design model - 561 .

Results in SCAD

Design models 1, 2, 3

Deformed models 1, 2, 3

	-4,103e-003	-3,
	-3,787e-003	$-3,472 \mathrm{e}-003$
	-3,4	-3,
	-3,156e-003	-2,841e-003
	-2,	-2,525e-003
	-2,525	-2,2
	-2,209e-	-1,894e-003
	-1,894e	-1,578e-003
	-1,578e-0	-1,262e-003
	-1,262e-003	-9,469e-004
	-9,469e-004	-6,312e-004
	-6,312e-004	$-3,156 \mathrm{e}-004$
	-3,156e-00	0.000000

Values of transverse displacements Z (m) for the design model 1

Values of transverse displacements Z (m) for the design model 2

	1,416e-002	
	-1,315e-002	-1,214e-002
	-1,214e-002	-1,113e-002
	-1,113e-002	-1,012e-002
	-1,012e-002	-9,105e-003
	-9,105e-003	-8,093e-003
	-8,093e-003	-7,082e-003
	-7,082e-003	-6,07e-003
	-6,07e-003	-5,058e-003
	-5,058e-003	-4,047e-003
\square	-4,047e-003	-3,035e-003
	-3,035e-003	-2,023e-003
	-2,023e-003	-1,012e-003
	-1012e-003	

[^1]

Values of bending moments $M_{x}(N \cdot m / m)$ for the design model 1

Values of bending moments $M_{x}(N \cdot m / m)$ for the design model 2

Values of bending moments $M_{x}(N \cdot m / m)$ for the design model 3

\square	0.000000	$3,367 \mathrm{e}-003$
\square	$3,367 \mathrm{e}-003$	$6,734 \mathrm{e}-003$
\square	$6,734 \mathrm{e}-003$	$1,01 \mathrm{e}-002$
\square	$1,01 \mathrm{e}-002$	$1,347 \mathrm{e}-002$
\square	$1,347 \mathrm{e}-002$	$1,683 \mathrm{e}-002$
\square	$1,683 \mathrm{e}-002$	$2,02 \mathrm{e}-002$
\square	$2,02 \mathrm{e}-002$	$2,357 \mathrm{e}-002$
\square	$2,357 \mathrm{e}-002$	$2,693 \mathrm{e}-002$
\square	$2,693 \mathrm{e}-002$	$3,03 \mathrm{e}-002$
\square	$3,03 \mathrm{e}-002$	$3,367 \mathrm{e}-002$
\square	$3,367 \mathrm{e}-002$	$3,704 \mathrm{e}-002$
\square	$3,704 \mathrm{e}-002$	$4,04 \mathrm{e}-002$
\square	$4,04 \mathrm{e}-002$	$4,377 \mathrm{e}-002$
\square	$4,377 \mathrm{e}-002$	$4,714 \mathrm{e}-002$

Values of bending moments $M_{y}(N \cdot m / m)$ for the design model 1

\square	$-8,476 \mathrm{e}-005$	$3,223 \mathrm{e}-003$
\square	$3,223 \mathrm{e}-003$	$6,531 \mathrm{e}-003$
\square	$6,531 \mathrm{e}-003$	$9,84 \mathrm{e}-003$
\square	$9,84 \mathrm{e}-003$	$1,315 \mathrm{e}-002$
\square	$1,315 \mathrm{e}-002$	$1,646 \mathrm{e}-002$
\square	$1,646 \mathrm{e}-002$	$1,976 \mathrm{e}-002$
\square	$1,976 \mathrm{e}-002$	$2,307 \mathrm{e}-002$
\square	$2,307 \mathrm{e}-002$	$2,638 \mathrm{e}-002$
\square	$2,638 \mathrm{e}-002$	$2,969 \mathrm{e}-002$
\square	$2,969 \mathrm{e}-002$	$3,3 \mathrm{e}-002$
\square	$3,3 \mathrm{e}-002$	$3,63 \mathrm{e}-002$
\square	$3,63 \mathrm{e}-002$	$3,961 \mathrm{e}-002$
\square	$3,961 \mathrm{e}-002$	$4,292 \mathrm{e}-002$
\square	$4,292 \mathrm{e}-002$	$4,623 \mathrm{e}-002$

Values of bending moments $M_{y}(N \cdot m / m)$ for the design model 2

Values of bending moments $M_{y}(N \cdot m / m)$ for the design model 3

Comparison of solutions:

Design model $1(\mathrm{~b} / \mathrm{a}=1.0)$

Parameter	Theory	SCAD	Deviation, \%
Transverse displacement Z in the center of the plate, m	$-4.436 \cdot 10^{-3}$	$-4.419 \cdot 10^{-3}$	0.38
Bending moments M_{x} in the center of the plate, $\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	$4.789 \cdot 10^{-2}$	$4.714 \cdot 10^{-2}$	1.57
Bending moments M_{y} in the center of the plate, $\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	$4.789 \cdot 10^{-2}$	$4.714 \cdot 10^{-2}$	1.57

Design model $2(\mathrm{~b} / \mathrm{a}=2.0)$

Parameter	Theory	SCAD	Deviation, \%
Transverse displacement Z in the center of the plate, m	$-1.106 \cdot 10^{-2}$	$-1.104 \cdot 10^{-2}$	0.18
Bending moments M_{x} in the center of the plate, $\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	$1.017 \cdot 10^{-2}$	$1.018 \cdot 10^{-2}$	0.10
Bending moments M_{y} in the center of the plate, $\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	$4.635 \cdot 10^{-2}$	$4.607 \cdot 10^{-2}$	0.60

Design model $3(\mathrm{~b} / \mathrm{a}=5.0)$

Parameter	Theory	SCAD	Deviation, \%
Transverse displacement Z in the center of the plate, m	$-1.416 \cdot 10^{-2}$	$-1.416 \cdot 10^{-2}$	0.00
Bending moments M_{x} in the center of the plate, $\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	$1.246 \cdot 10^{-1}$	$1.254 \cdot 10^{-1}$	0.64
Bending moments M_{y} in the center of the plate, $\mathrm{N} \cdot \mathrm{m} / \mathrm{m}$	$3.774 \cdot 10^{-2}$	$3.798 \cdot 10^{-2}$	0.64

Notes: In the analytical solution the transverse displacement Z and bending moments $M_{\mathrm{x}}, M_{\mathrm{y}}$ in the center of the plate for different ratios of its sides b / a can be determined according to the following formulas:

$$
Z=\alpha \cdot \frac{p \cdot a^{4}}{D} ; \quad \quad M_{x}=\beta \cdot p \cdot a^{2} ; \quad \quad M_{y}=\beta_{1} \cdot p \cdot a^{2}
$$

where:
at

$$
\frac{a}{b}=1.0
$$

$$
\alpha=0.004062
$$

$$
\beta=0.047886
$$

$$
\beta_{1}=0.047886
$$

at

$$
\frac{a}{b}=2.0
$$

$$
\alpha=0.010129
$$

$$
\beta=0.101683
$$

$$
\beta_{1}=0.046350
$$

at

$$
\begin{array}{r}
\frac{a}{b}=5.0 \quad \alpha=0.012971, \quad \beta= \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)}
\end{array}
$$

Rectangular Plate Simply Supported at Three Vertices Subjected to a Concentrated Force and Concentrated Moments out of Its Plane

Objective: Determination of the strain state of a rectangular plate simply supported at three vertices and subjected to a concentrated force and concentrated moments out of its plane.

Initial data file: SSLS26_v11.3.SPR

Problem formulation: The rectangular plate simply supported at three vertices (points A, B, D) is subjected to a concentrated force F_{z} out of its plane applied to the free vertex (point C), and concentrated moments M_{x} and M_{y}, applied in pairs to all four vertices (points A, B, C, D) with unilateral bending in planes parallel to the adjacent sides. Determine the displacement Z of the free vertex (point C) out of the plane of the plate.

References: J.L. Batoz, An explicit formulation for an efficient triangular plate-bending element, International Journal for Numerical Methods in Engineering, vol.18, John Wiley and Sons, 1982.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{3} \mathrm{~Pa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{h}=1.0 \mathrm{~m} \quad$ - thickness of the plate;
$\mathrm{a}=40.0 \mathrm{~m} \quad-$ long side of the plate (along the X axis of the global coordinate system);
$\mathrm{b}=20.0 \mathrm{~m} \quad-$ short side of the plate (along the Y axis of the global coordinate system);
$\mathrm{F}_{\mathrm{z}}=2.0 \mathrm{~N} \quad-$ value of the transverse concentrated force;
$\mathrm{M}_{\mathrm{x}}=20.0 \mathrm{~N} \cdot \mathrm{~m} \quad$ - value of the concentrated moments bending the plate along the short side (with respect to the X axis of the global coordinate system);
$\mathrm{M}_{\mathrm{y}}=10.0 \mathrm{~N} \cdot \mathrm{~m} \quad-$ value of the concentrated moments bending the plate along the long side (with respect to the Y axis of the global coordinate system).

Finite element model: Design model - grade beam / plate, shell elements - 100 plate elements of type 20. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z in the vertices of the plate on the X and Y axes of the global coordinate system (points $\mathrm{A}, \mathrm{B}, \mathrm{C}$). Number of nodes in the design model -121 .

Results in SCAD

Design model

Deformed model

Values of transverse displacements Z (m)

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Displacement Z of the free vertex (point C), m	$-1.248 \cdot 10^{1}$	$-1.248 \cdot 10^{1}$	0.00

Stress-Strain State of a Clamped Hexagonal Plate Subjected to a Uniformly Distributed Load

Objective: Determination of displacements and bending moments in the center of a hexagonal plate clamped on all sides and subjected to a uniformly distributed load q.

Initial data file: 4.19.SPR

Problem formulation: The regular hexagonal plate of constant thickness clamped on all sides is subjected to normal pressure q. Determine: the axial displacement w and bending moments $M_{\mathrm{x}}, M_{\mathrm{y}}$ in the center of the plate.

References: Vainberg D. V., Handbook on Strength, Stability and Oscillations of Plates. Kiev: Budivelnik, 1973.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus,
$\mu=0.3$

- Poisson's ratio,
$\mathrm{a}=0.134 \mathrm{~m} \quad$ - side of the hexagonal plate,
$\mathrm{h}=0.003 \mathrm{~m} \quad$ - thickness of the plate,
$\mathrm{q}=1000 \mathrm{kPa}$
- normal pressure,

Constraints: rigid restraint of nodes along the contour (displacement $w=0$)

Finite element model: Design model - general type system. Plate elements - 389 four-node elements of type 44 and 73 three-node elements of type 42 . Number of nodes in the design model -451 .

Results in SCAD

Values of displacements w (mm)

$\square \square$	$-2,33$	$\cdot 2,08$
\square	$-2,08$	$-1,83$
\square	$-1,83$	$-1,58$
\square	$-1,58$	$-1,33$
\square	$-1,33$	$-1,079$
\square	$-1,079$	$-0,829$
\square	$-0,829$	$-0,579$
\square	$-0,579$	$-0,329$
\square	$-0,329$	$-0,079$
\square	$-0,079$	0,171
\square	0,171	0,421
\square	0,421	0,671
\square	0,671	0,921
\square	0,921	1,171

Values of bending moments $M_{\mathrm{x}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

\square	$-1,922$	$-1,701$
\square	$-1,701$	$-1,48$
\square	$-1,48$	$-1,259$
\square	$-1,259$	$-1,038$
\square	$-1,038$	$-0,817$
\square	$-0,817$	$-0,597$
\square	$-0,597$	$-0,376$
\square	$-0,376$	$-0,155$
\square	$-0,155$	0,066
\square	0,066	0,287
\square	0,287	0,508
\square	0,508	0,729
\square	0,729	0,95
\square	0,95	1,171
\square		

Values of bending moments $M_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Displacement in the center of the plate w, mm	6.51	6.46	0.77
Bending moment $M_{\mathrm{x}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	1.163	1.171	0.69
Bending moment $M_{\mathrm{y}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	1.163	1.171	0.69

Notes: In the analytical solution the displacement w and bending moments M_{x} and M_{y} in the center of the plate can be determined according to the following formulas (Vainberg D. V., Handbook on Strength, Stability and Oscillations of Plates. Kiev: Budivelnik, 1973):

$$
\begin{gathered}
w=0.009979 \cdot \frac{q \cdot a^{4}}{D}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)} ; \\
M_{x}=M_{y}=0.049835 \cdot(1+\mu) \cdot q \cdot a^{2} .
\end{gathered}
$$

Clamped Rectangular Plate of Constant Thickness Subjected to Thermal Loading

Objective: Determine the bending moments and stresses in a rectangular plate clamped on all sides at the linear temperature variation across the thickness of the plate.

Initial data file: 4.20.SPR

Problem formulation: The rectangular plate of constant thickness clamped on all sides is considered. The temperature is constant in the planes parallel to the midsurface and varies linearly across the thickness of the plate. Determine: the displacement w, bending moments $M_{\mathrm{x}}, M_{\mathrm{y}}$ and maximum thermal stress σ.

References: S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. - M.:Nauka, 1963.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus,
$\mu=0.3$

- Poisson's ratio,
$\mathrm{a}_{\mathrm{x}}=1.5 \mathrm{~m} \quad-$ width of the plate,
$\mathrm{a}_{\mathrm{y}}=2.5 \mathrm{~m} \quad$ - length of the plate,
$\mathrm{h}=0.02 \mathrm{~m} \quad$ - thickness of the plate,
$\alpha=1.5 \cdot 10^{-5} 1 / \mathrm{C}^{0} \quad$ - linear thermal expansion coefficient of the material,
$\Delta \mathrm{T}=20 \mathrm{C}^{0} \quad$ - temperature difference between the upper and lower surfaces of the plate

Constraints: rigid restraint of nodes along the contour (displacement $u=v=w=\theta_{\mathrm{x}}=\theta_{\mathrm{y}}=\theta_{\mathrm{z}}=0$)
Finite element model: Design model - general type system. Plate elements - 200 four-node elements of type 41. Number of nodes in the design model - 231.

Values of displacements w (mm)

Values of bending moments $M_{\mathrm{x}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Values of bending moments $M_{\mathrm{y}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Values of stresses on the upper surface of the plate $\sigma\left(k N / m^{2}\right)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Displacement $w, \mathrm{~mm}$	0.00	0.00	-
Bending moments $M_{\mathrm{x}}=M_{\mathrm{y}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	2.857	2.857	0.00
Maximum thermal stress, kPa	42857	42857	0.00

Notes: In the analytical solution the bending moments $M_{\mathrm{x}}, M_{\mathrm{y}}$ and maximum thermal stress σ in the clamped plate subjected to the linear temperature variation across the thickness of the plate can be determined according to the following formulas (S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. - M.:Nauka, 1963, p. 64):

$$
\begin{gathered}
M_{x}=M_{y}=D \cdot \frac{\alpha \cdot \Delta T \cdot(1+\mu)}{h}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)}, \\
\sigma=\frac{\alpha \cdot \Delta T \cdot E}{2 \cdot(1-\mu)},
\end{gathered}
$$

Simply Supported Thick Square Plate Subjected to a Uniformly Distributed Transverse Load

Objective:

Determination of the strain state of a simply supported thick square plate subjected to a uniformly distributed transverse load.

Initial data files:

File name	Description
толстая_плита_a_h_2.SPR	Design model for the plate side-to-thickness ratios
a/h $=2.0$	

Problem formulation:

The simply supported thick square plate is subjected to a uniformly distributed transverse load p. Determine the deflection w in the center of the plate taking into account the transverse shear deformations.

References: L. G. Donnell, Beam, Plates, and Shells, Moscow, Nauka, 1982, p. 313-316.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kPa} \quad-$ elastic modulus,
$v=0.2 \quad$ - Poisson's ratio,
$\mathrm{h}=2.0 ; 4.0 ; 8.0 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}=16.0 \mathrm{~m} \quad$ - side of the plate;
$\mathrm{p}=100.0 \mathrm{kN} / \mathrm{m}^{2} \quad$ - value of the uniformly distributed transverse load.

Finite element model:

Three design models for the following plate side-to-thickness ratios $\mathrm{a} / \mathrm{h}=8.0 ; 4.0 ; 2.0$ are considered. Four variants of each model with the following types of finite elements are considered: 44, 50 - quadrangular four-node and eight-node thin shell elements for the calculation according to the Kirchhoff-Love theory; 144, 150 - quadrangular four-node and eight-node thick shell elements for the calculation according to the Reissner-Mindlin theory.
Design models are created for the following meshes: $2 \times 2 ; 4 \times 4 ; 8 \times 8 ; 16 \times 16 ; 32 \times 32 ; 64 \times 64$.
Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Y, Z , UY for the edges along the X axis of the global coordinate system, and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}$ for the edges along the Y axis of the global coordinate system.

Results in SCAD

Deflections w of plates with the ratio $a / h=8.0, m$

Deflections w of plates with the ratio $a / h=4.0, m$

Deflections w of plates with the ratio $a / h=2.0, m$

Comparison of solutions:

Deflections w in the center of the plates with the ratio $a / h=8.0, \mathrm{~m}$

Member type	SCAD, mesh						Theory	Deviation
	$\mathbf{2 x 2}$	$\mathbf{4 x 4}$	$\mathbf{8 x 8}$	$\mathbf{1 6 x 1 6}$	$\mathbf{3 2 x 3 2}$	$\mathbf{6 4 x 6 4}$		
$\mathbf{4 4}$	0.001065	0.001213	0.001262	0.001274	0.001277	0.001278	0.001278	0.00%
$\mathbf{5 0}$	0.001276	0.001278	0.001278	0.001278	0.001278	0.001278		0.00%
$\mathbf{1 4 4}$	0.001472	0.001472	0.001449	0.001443	0.001441	0.001441	0.001369	5.26%
$\mathbf{1 5 0}$	0.001314	0.001364	0.001368	0.001368	0.001368	0.001368		0.07%

Deflections \boldsymbol{w} in the center of the plates with the ratio $\mathrm{a} / \mathrm{h}=4.0, \mathrm{~m}$

Member type	SCAD, mesh						Theory	Deviation
	2x2	4x4	8x8	16x16	32x32	64x64		
44	0.000133	0.000152	0.000158	0.000159	0.000160	0.000160	0.000160	0.00 \%
50	0.000159	0.000160	0.000160	0.000160	0.000160	0.000160		0.00\%
144	0.000258	0.000246	0.000242	0.000242	0.000241	0.000241	0.000205	17.56 \%
150	0.000205	0.000205	0.000205	0.000205	0.000205	0.000205		0.00 \%

Deflections \boldsymbol{w} in the center of the plates with the ratio $\mathrm{a} / \mathrm{h}=\mathbf{2 . 0}, \mathrm{m}$

Member type	SCAD, mesh						Theory	Deviation
	$\mathbf{2 \times 2}$	4x4	8x8	16x16	32x32	64x64		
44	0.000017	0.000019	0.000020	0.000020	0.000020	0.000020	0.000020	0.00 \%
50	0.000020	0.000020	0.000020	0.000020	0.000020	0.000020		0.00%
144	0.000065	0.000062	0.000061	0.000061	0.000061	0.000061	0.000043	41.86 \%
150	0.000043	0.000043	0.000043	0.000043	0.000043	0.000043		0.00 \%

Notes: In the analytical solution the deflections w in the center of the plate are determined according to the following formulas: without taking into account the transverse shear deformations

$$
\begin{gathered}
w=\frac{12 \cdot\left(1-v^{2}\right) \cdot a^{4} \cdot p}{E \cdot h^{3}} \cdot\left[\frac{5}{384}-\sum_{m=1}^{\infty} \frac{\sin \left(\frac{m \cdot \pi}{2}\right) \cdot\left(4+m \cdot \pi \cdot t h\left(\frac{m \cdot \pi}{2}\right)\right)}{m^{5} \cdot \pi^{5} \cdot c h\left(\frac{m \cdot \pi}{2}\right)}\right] \text { or } \\
w=\frac{192 \cdot\left(1-v^{2}\right) \cdot a^{4} \cdot p}{\pi^{6} \cdot E \cdot h^{3}} \cdot \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[\frac{1}{m \cdot n} \cdot \frac{1}{\left(m^{2}+n^{2}\right)^{2}} \cdot \sin \left(\frac{m \cdot \pi}{2}\right) \cdot \sin \left(\frac{n \cdot \pi}{2}\right)\right] ; \\
\text { At } v=0.2 \quad w \approx 0.004062 \cdot \frac{a^{4} \cdot p}{D}, \text { where: } \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} .
\end{gathered}
$$

taking into account the transverse shear deformations

$$
\begin{gathered}
w=\frac{12 \cdot\left(1-v^{2}\right) \cdot a^{4} \cdot p}{E \cdot h^{3}} \cdot\left[\frac{5}{384}-\sum_{m=1}^{\infty} \frac{\sin \left(\frac{m \cdot \pi}{2}\right) \cdot\left(4+m \cdot \pi \cdot t h\left(\frac{m \cdot \pi}{2}\right)\right)}{m^{5} \cdot \pi^{5} \cdot \operatorname{ch}\left(\frac{m \cdot \pi}{2}\right)}+\frac{8-3 \cdot v}{10 \cdot(1-v)} \cdot\left(\frac{h}{a}\right)^{2} \cdot\left(\frac{1}{32}-\sum_{m=1}^{\infty} \frac{\sin \left(\frac{m \cdot \pi}{2}\right)}{m^{3} \cdot \pi^{3} \cdot c h\left(\frac{m \cdot \pi}{2}\right)}\right)\right] \text { or } \\
w=\frac{192 \cdot\left(1-v^{2}\right) \cdot a^{4} \cdot p}{\pi^{6} \cdot E \cdot h^{3}} \cdot \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left[\frac{1}{m \cdot n} \cdot \frac{1}{\left(m^{2}+n^{2}\right)^{2}} \cdot\left[1+\frac{\pi^{2} \cdot h^{2}}{5 \cdot(1-v) \cdot a^{2}} \cdot\left(m^{2}+n^{2}\right)\right] \cdot \sin \left(\frac{m \cdot \pi}{2}\right) \cdot \sin \left(\frac{n \cdot \pi}{2}\right)\right] ; \\
\text { At } v=0.2 \quad w \approx 0.004062 \cdot \frac{a^{4} \cdot p}{D} \cdot\left[1+4.533786 \cdot\left(\frac{h}{a}\right)^{2}\right], \text { where: } \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} \cdot
\end{gathered}
$$

Two-Ribbed Beam Subjected to Uniformly Distributed Loads Applied in the Plane of the Ribs

Objective: Study of the distribution of the normal stresses in a two-ribbed beam subjected to uniformly distributed loads applied in the plane of the ribs.

Initial data file: 4.34.SPR

Problem formulation: The two-ribbed beam simply supported by ideal end diaphragms rigid in their plane and compliant out of their plane is subjected to the loads q uniformly distributed along the line along the ribs and applied in their plane. Determine the normal stresses σ_{xi} acting along the beam in the elements of its structure in the points of the cross-section $\mathrm{i}=1,4,5,6$ for the half $(l / 2)$ and quarter $(l / 4)$ of the beam span taking into account the following assumptions made when deriving the analytical solution:

- Bending deformations of the elements of the beam structure out of their plane are neglected;
- It is assumed that there are no displacements in the horizontal plane in the direction across the beam at the joints between the ribs and the flange;
- The difference between the stresses in the structural elements of the beam at the joints between the ribs and the flange is not taken into account.

References: A. V. Aleksandrov, B. Ya. Lashchenikov, N. N. Shaposhnikov, Structural Mechanics. ThinWalled Spatial Systems. - Moscow: Stroyizdat, 1983.

Initial data:

$\mathrm{E}=3 \cdot 10^{7} \mathrm{kPa}$

- elastic modulus;
$\mu=0.15$
- Poisson's ratio;
$\delta=0.1 \mathrm{~m}$
- thickness of the ribs and the flange;
$\mathrm{b}=1.0 \mathrm{~m}$
- height of the ribs;
$2 \cdot \mathrm{~b}=2.0 \mathrm{~m}$
- distance between the ribs;
$4 \cdot \mathrm{~b}=4.0 \mathrm{~m}$
- width of the flange;
$\mathrm{l}=7.85 \cdot \mathrm{~b}=7.85 \mathrm{~m}$
- length of the beam;
$\mathrm{q}=10.0 \mathrm{kN} / \mathrm{m}$
- load uniformly distributed along the line along the ribs.

Finite element model: Design model - general type system, beam elements - 768 eight-node grade beam elements of type 27. The spacing of the finite element mesh in the direction across the beam is 0.25 m and in the direction along the beam is 0.2453125 m . The direction of the output of internal forces is along the OX axis of the global coordinate system. Number of nodes in the design model - 2417 .

Results in SCAD

Design model

Design model

Deformed model

Values of the normal stresses in the beam flange $\sigma_{x i}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Diagram of the normal stresses in the beam flange $\sigma_{x i}(k N / m 2)$ for the cross-section in the middle of the grade beam span l/2

Diagram of the normal stresses in the beam flange $\sigma_{x i}(\mathrm{kN} / \mathrm{m} 2)$ for the cross-section in the quarter of the grade beam span l/4

Diagram of the normal stresses in the beam rib $\sigma_{x i}(k N / m 2)$ for the cross-section in the middle of the grade beam span l/2

Diagram of the normal stresses in the beam rib $\sigma_{x i}(\mathrm{kN} / \mathrm{m} 2)$
for the cross-section in the quarter of the grade beam span l/4

Comparison of solutions:

Normal stresses $\sigma_{\mathrm{xi}}(\mathrm{kN} / \mathrm{m} 2)$ acting along the beam in the elements of its structure in the points of the crosssection $\mathrm{i}=1,4,5,6$ for the half $(l / 2)$ and quarter $(l / 4)$ of the beam span

\mathbf{x}, \mathbf{m}	$\boldsymbol{m}=\mathbf{3 . 9 2 5}$				$\boldsymbol{l} \mathbf{4}=\mathbf{1 . 9 6 2 5}$			
\mathbf{i}	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{1}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
Theory	-564	2631	-472	-488	-435	1987	-345	-359
SCAD	-567	2631	-471	-487	-439	1989	-344	-358
Deviations, \%	0.53	0.00	0.21	0.20	0.92	0.10	0.29	0.28

Notes: In the analytical solution the normal stresses $\sigma_{\mathrm{xi}}(\mathrm{kN} / \mathrm{m} 2)$, acting along the beam in the elements of its structure in the points of the cross-section $\mathrm{i}=1,4,5,6$ for the half $(l / 2)$ and quarter $(l / 4)$ of the beam span taking into account seven harmonics of unknown generalized displacements for $\mu=0.15$ and $l=$ $7.85 \cdot \mathrm{~b}$ can be determined according to the following formulas (A. V. Aleksandrov, B. Ya. Lashchenikov, N. N. Shaposhnikov. Structural Mechanics. Thin-Walled Spatial Systems. - Moscow: Stroyizdat, 1983, p. 383):

$$
\begin{aligned}
\sigma_{x l}(l / 2)=-5.641 \cdot \frac{q}{\delta} ; & \sigma_{x 4}(l / 2)=26.305 \cdot \frac{q}{\delta} ;
\end{aligned} \quad \sigma_{x 5}(l / 2)=-4.718 \cdot \frac{q}{\delta} ; \quad \sigma_{x 6}(l / 2)=-4.881 \cdot \frac{q}{\delta} ;, ~ \begin{aligned}
\sigma_{x l}(l / 4)=-4.349 \cdot \frac{q}{\delta} ; & \sigma_{x 4}(l / 4)=19.873 \cdot \frac{q}{\delta} ; \quad \sigma_{x 5}(l / 4)=-3.450 \cdot \frac{q}{\delta} ; \quad \sigma_{x 6}(l / 4)=-3.587 \cdot \frac{q}{\delta} ;
\end{aligned}
$$

Curved Hollow Section Beam of a Bridge Superstructure Subjected to a Concentrated Force

Objective: Study of the distribution of the tangential stresses and vertical displacements in a curved hollow section beam of a bridge superstructure subjected to a concentrated vertical force applied in the middle of the span above the outer web.

Initial data file: 4.35.SPR

Problem formulation: The hollow section beam of a bridge superstructure with a longitudinal axis bent into a circular curve is simply supported by end diaphragms and subjected to a concentrated force P applied in the middle of the span above the outer web. Determine:

Verification Examples

- distribution of the tangential stresses σ_{x} acting along the beam on the external surfaces and in the midplanes of the upper and lower flanges across the cross-section in the middle of the span;
- distribution of the tangential stresses σ_{x}, acting along the beam on the external surface of the lower flange along the longitudinal axis;
- distribution of the vertical displacements w across the lower faces of the outer and inner webs along the longitudinal axis.

References: Worsak Kanok-Nukulchai, A simple and efficient finite element for general shell analysis, Int. J. num. meth. Engng, 14, 179-200 (1979); A.R.M. Fam and C. Turkstra, Model study of horizontally curved box girder, J. Engng Struct. Div., ASCE, 102, ST5, 1097-1108 (1976).

Initial data:

$\mathrm{E}=4.0 \cdot 10^{5} \mathrm{kPa} \quad$ - elastic modulus;
$\mathrm{v}=0.36 \quad$ - Poisson's ratio;
$\mathrm{R}=51.0 \mathrm{~m} \quad-$ radius of the longitudinal axis of the beam;
$\theta=45^{\circ} \quad$ - central angle containing a half of the beam span;
$\mathrm{P}=20 \mathrm{kN} \quad$ - concentrated vertical force applied in the middle of the beam span above the outer web;
$\mathrm{b}_{\mathrm{tf}}=18.0 \mathrm{~m} \quad-$ width of the upper flange;
$t_{\mathrm{tff}_{\mathrm{f}}}=0.246 \mathrm{~m} \quad$ - thickness of the upper flange;
$\mathrm{b}_{\mathrm{bf}}=12.0 \mathrm{~m} \quad-$ width of the lower flange;
$\mathrm{t}_{\mathrm{bf}}=0.195 \mathrm{~m}$

- thickness of the lower flange;
$\mathrm{h}_{\mathrm{ew}}=2.5 \mathrm{~m}$
- height of the outer web along the inner flange surfaces;
$\mathrm{t}_{\mathrm{ew}}=0.246 \mathrm{~m}$
- thickness of the outer web;
$\mathrm{h}_{\mathrm{iw}}=2.5 \mathrm{~m} \quad-$ height of the inner web along the inner flange surfaces;
$\mathrm{t}_{\mathrm{iw}}=0.239 \mathrm{~m} \quad-$ thickness of the inner web;
$\mathrm{t}_{\mathrm{ed}}=0.239 \mathrm{~m} \quad-$ thickness of the end diaphragm;
Finite element model: Design model - general type system, beam elements - 156 eight-node thick shell elements for the calculation according to the Reissner-Mindlin theory of type 150. The spacing of the finite element meshes of the upper and lower flanges in the radial direction is $\sim 3.0 \mathrm{~m}$ and in the tangential direction is 7.5°. The spacing of the finite element meshes of the outer and inner webs in the vertical direction is $\sim 2.7 \mathrm{~m}$ and in the tangential direction is 7.5°. The direction of the output of internal forces is radial tangential. Constraints providing simply supported conditions are installed in the vertical direction in the joints between the elements of the outer and inner webs and the elements of the end diaphragms and the lower flange. Constraints preventing the displacements of these joints in the horizontal plane in the radial direction are modeled by 4 bar elements of type 4 with the axial stiffness $\mathrm{EF}=4.0 \cdot 10^{7} \mathrm{kN}$ and the end nodes constrained in all linear degrees of freedom. The dimensional stability of the design model in the tangential direction is provided by imposing constraints according to its symmetry conditions. Number of nodes in the design model - 466 .

Results in SCAD

Design model

Deformed model

Values of tangential stresses σ_{x}, acting along the beam, in the midplane of the upper flange ($\mathrm{kN} / \mathrm{m}^{2}$)

Diagram of the distribution of the tangential stresses σ_{x}, acting along the beam, in the midplane of the upper flange across the cross-section in the middle of the span $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of tangential stresses σ_{x}, acting along the beam, on the external surface of the upper flange ($\mathrm{kN} / \mathrm{m}^{2}$)

Diagram of the distribution of the tangential stresses σ_{x}, acting along the beam, on the external surface of the upper flange across the cross-section in the middle of the span $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of tangential stresses σ_{x}, acting along the beam, in the midplane of the lower flange ($\mathrm{kN} / \mathrm{m}^{2}$)

Diagram of the distribution of the tangential stresses σ_{x}, acting along the beam, in the midplane of the lower flange across the cross-section in the middle of the span $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of tangential stresses σ_{x}, acting along the beam, on the external surface of the lower flange $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Diagram of the distribution of the tangential stresses σ_{x}, acting along the beam, on the external surface of the lower flange across the cross-section in the middle of the span $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of vertical displacements w of the outer web (m)

Values of vertical displacements w of the inner web (m)

Comparison of solutions.

Tangential stresses in the midplane of the upper flange in the middle of the span of the hollow section beam

Tangential stresses on the external surface of the upper flange in the middle of the span of the hollow section beam
$\begin{array}{ll}\Delta & \text { - results obtained experimentally (source) } \\ \square & \text { - results obtained by calculation using high-order finite elements (source) } \\ -\quad \text { - results obtained by calculation (SCAD) }\end{array}$

Verification Examples

\mathbf{y}	Experiment	SCAD	Deviations, \%
-7.75	-56.0	-55.97	0.05
-4.50	-67.5	-74.82	10.84
0.00	-51.4	-52.40	1.95
4.50	-37.7	-41.10	9.02
7.75	-58.0	-55.79	3.81

Tangential stresses in the midplane of the lower flange in the middle of the span of the hollow section beam
$\Delta \quad$ - results obtained experimentally (source)
$\square \quad-$ results obtained by calculation using high-order finite elements (source)

- - results obtained by calculation (SCAD)

Tangential stresses on the external surface of the lower flange in the middle of the span of the hollow section beam
$\triangle \quad$ - results obtained experimentally (source)
$\square \quad$ - results obtained by calculation using high-order finite elements (source)

- - results obtained by calculation (SCAD)

\mathbf{y}	Experiment	SCAD	Deviations, \%
-4.50	101.5	108.38	6.78
0.00	74.3	81.10	9.15
4.50	71.7	71.23	0.66

TETA, ${ }^{\circ}$
Tangential stresses on the external surface of the lower flange along the axis of the span of the hollow section beam
$\triangle \quad$ - results obtained experimentally (source)
$\square \quad-$ results obtained by calculation using high-order finite elements (source)

- - results obtained by calculation (SCAD)

$\boldsymbol{\theta}$	Experiment	SCAD	Deviations, \%
-20	48.2	51.91	7.70
0	76.4	81.10	6.15
20	48.2	51.91	7.70

Vertical deflections along the lower face of the outer web along the axis of the span of the hollow section beam
$\triangle \quad$ - results obtained experimentally (source)
$\square \quad-$ results obtained by calculation using high-order finite elements (source)

- - results obtained by calculation (SCAD)

$\boldsymbol{\theta}$	Experiment	SCAD	Deviations, \%
-35	0.0625	0.05631	9.90
-30	0.0904	0.08250	8.74
-25	0.1125	0.10650	5.33
-20	0.1336	0.12750	4.57
-15	0.1531	0.14520	5.16
-10	0.1652	0.15887	3.83
-5	0.1725	0.16762	2.83
-2.5	0.1734	0.17016	1.87
2.5	0.1734	0.17016	1.87
5	0.1725	0.16762	2.83
10	0.1652	0.15887	3.83
15	0.1531	0.14520	5.16
20	0.1336	0.12750	4.57
25	0.1125	0.10650	5.33
30	0.0904	0.08250	8.74
35	0.0625	0.05631	9.90

Vertical deflections along the lower face of the inner web
along the axis of the span of the hollow section beam
$\Delta \quad$ - results obtained experimentally (source)
$\square \quad-$ results obtained by calculation using high-order finite elements (source)

- - results obtained by calculation (SCAD)

$\boldsymbol{\theta}$	Experiment	SCAD	Deviations, \%
-35	0.0438	0.04510	2.97
-25	0.0830	0.08487	2.25
-20	0.0975	0.10101	3.60
-10	0.1202	0.12384	3.03
-2.5	0.1309	0.13108	0.14
2.5	0.1309	0.13108	0.14
10	0.1202	0.12384	3.03
20	0.0975	0.10101	3.60
25	0.0830	0.08487	2.25
35	0.0438	0.04510	2.97

Cylindrical Shell with Simply Supported Edges Subjected to Uniform Internal Pressure

Objective: Determination of the stress-strain state of a cylindrical shell with simply supported edges subjected to the internal pressure.

Initial data file: 4.31.SPR

Problem formulation: The cylindrical thin-walled shell simply supported along the edges is subjected to uniform internal pressure p. Determine the bending moments and longitudinal forces acting on the midsurface of the shell in the meridian $M_{\mathrm{x}}, N_{\mathrm{x}}$ and circumferential M_{φ}, N_{φ} directions, as well as the radial displacements w for the cross-section in the middle of the span.

References: S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{h}=0.02 \mathrm{~m} \quad$ - thickness of the shell;
$\mathrm{a}=10.0 \mathrm{~m} \quad$ - radius of the midsurface of the shell;
$l=2.0 \mathrm{~m} \quad$ - length of the shell;
$p=10.0 \mathrm{kPa} \quad-$ internal pressure.
Finite element model: Design model - general type system, shell elements - 9216 four-node elements of type 44. The spacing of the finite element mesh in the meridian direction is 0.0625 m and in the circumferential direction is 1.25°. Boundary conditions at the simply supported edges are provided by imposing constraints in the directions of the angular and linear displacements in their plane. Number of nodes in the design model - 9504.

Results in SCAD

Design and deformed models

Values of radial displacements w (mm)

\square	0.000000	0,188
\square	0,188	0,376
\square	0,376	0,565
\square	0.565	0.753
\square	0,753	0,941
\square	0,941	1,129
\square	1,129	1,318
\square	1,318	1,506
\square	1,506	1,694
\square	1,694	1,882
\square	1,882	2,071
\square	2,071	2,259
\square	2,259	2,447
\square	2,447	2,635

Values of radial displacements w (mm)
for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00°

\square	0,032552	0,166252
\square	0,166252	0,299951
\square	0,299951	0,433651
\square	0,433651	0.567351
\square	0,567351	0,701051
\square	0,701051	0,83475
\square	0,83475	0,96845
\square	0,96845	1,10215
\square	1,10215	1,235849
\square	1,235849	1,369549
\square	1,369549	1,503249
\square	1,503249	1,636948
\square	1,636948	1,770648
\square	1,770648	1,904348

Values of bending moments acting on the midsurface of the shell in the meridian direction $M_{\mathrm{x}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Values of bending moments acting on the midsurface of the shell in the meridian direction $M_{\mathrm{x}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$
for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00°

\square	0,009766	0,049876
\square	0,049876	0,089985
\square	0,089985	0,130095
\square	0,130095	0,170205
\square	0,170205	0,210315
\square	0,210315	0,250425
\square	0,250425	0,290535
\square	0,290535	0,330645
\square	0,330645	0,370755
\square	0,370755	0,410865
\square	0,410865	0,450975
\square	0,450975	0,491085
\square	0,491085	0,531194
\square	0,531194	0,571304

Values of bending moments acting on the midsurface of the shell in the circumferential direction $M_{\varphi}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

\square	0,009766	0,049876
\square	0,049876	0,089985
\square	0,089985	0,130095
\square	0,130095	0,170205
\square	0,170205	0,210315
\square	0,210315	0,250425
\square	0,250425	0,290535
\square	0,290535	0,330645
\square	0,330645	0,370755
\square	0,370755	0,410865
\square	0,410865	0,450975
\square	0,450975	0,491085
\square	0,491085	0,531194
\square	0,531194	0,571304

Values of bending moments acting on the midsurface of the shell in the circumferential direction $M_{\varphi}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$
for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00°

\square	$-1457,739$	$-1347,711$
\square	$-1347,711$	$-1237,683$
\square	$-1237,683$	$-1127,656$
\square	$-1127,656$	$-1017,628$
\square	$-1017,628$	$-907,601$
\square	$-907,601$	$-797,573$
\square	$-797,573$	$-687,545$
\square	$-687,545$	$-577,518$
\square	$-577,518$	$-467,49$
\square	$-467,49$	$-357,462$
\square	$-357,462$	$-247,435$
\square	$-247,435$	$-137,407$
\square	$-137,407$	$-27,379$
\square	$-27,379$	82,648

Values of longitudinal forces acting on the midsurface of the shell in the meridian direction $N_{\mathrm{x}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

\square	$-1457,739$	$-1347,711$
\square	$-1347,711$	$-1237,683$
\square	$-1237,683$	$-1127,656$
\square	$-1127,656$	$-1017,628$
\square	$-1017,628$	$-907,601$
\square	$-907,601$	$-797,573$
\square	$-797,573$	$-687,545$
\square	$-687,545$	$-577,518$
\square	$-577,518$	$-467,49$
\square	$-467,49$	$-357,462$
\square	$-357,462$	$-247,435$
\square	$-247,435$	$-137,407$
\square	$-137,407$	$-27,379$
\square	$-27,379$	82,648

Values of longitudinal forces acting on the midsurface of the shell in the meridian direction $N_{\mathrm{x}}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00°

$\square \square$	$-437,322$	3547,23
\square	3547,23	7531,781
\square	7531,781	11516,333
\square	11516,333	15500,884
\square	15500,884	19485,435
\square	19485,435	23469,987
\square	23469,987	27454,538
\square	27454,538	31439,09
\square	31439,09	35423,641
\square	35423,641	39408,192
\square	39408,192	43392,744
\square	43392,744	47377,295
\square	47377,295	51361,847
\square	51361,847	55346,398

Values of longitudinal forces acting on the midsurface of the shell in the circumferential direction $N_{\varphi}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of longitudinal forces acting on the midsurface of the shell in the circumferential direction $N_{\varphi}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00°

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
$w(l / 2), \mathrm{mm}$	2.640	2.635	0.19
$M_{\mathrm{x}}(l / 2), \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	0.178969	0.180453	0.83
$M_{\varphi}(l / 2), \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$	0.053691	0.054136	0.83
$N_{\mathrm{x}}(l / 2), \mathrm{kN} / \mathrm{m}$	0.000	$8.238 \cdot 0.02=0.165$	-
$N_{\varphi}(l / 2), \mathrm{kN} / \mathrm{m}$	1108.655	$55346.398 \cdot 0.02=1106.928$	0.16

Notes: In the analytical solution the bending moments and longitudinal forces acting on the midsurface of the shell in the meridian $M_{\mathrm{x}}, N_{\mathrm{x}}$ and circumferential M_{φ}, N_{φ} directions, as well as the radial displacements w for the cross-section in the middle of the span can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948, p. 377):

$$
\begin{aligned}
& w=\frac{p \cdot l^{4}}{64 \cdot D \cdot \alpha^{4}} \cdot\left(1-\frac{2 \cdot \cos (\alpha) \cdot \operatorname{ch}(\alpha)}{\cos (2 \cdot \alpha)+\operatorname{ch}(2 \cdot \alpha)}\right)=\frac{p \cdot a^{2}}{E \cdot h} \cdot\left(1-\frac{2 \cdot \cos (\alpha) \cdot \operatorname{ch}(\alpha)}{\cos (2 \cdot \alpha)+\operatorname{ch}(2 \cdot \alpha)}\right) ; \\
& M_{x}=\frac{p \cdot l^{2}}{4 \cdot \alpha^{2}} \cdot \frac{\sin (\alpha) \cdot \operatorname{sh}(\alpha)}{\cos (2 \cdot \alpha)+\operatorname{ch}(2 \cdot \alpha)}=\frac{p \cdot a \cdot h}{\sqrt{3 \cdot\left(1-v^{2}\right)}} \cdot \frac{\sin (\alpha) \cdot \operatorname{sh}(\alpha)}{\cos (2 \cdot \alpha)+\operatorname{ch}(2 \cdot \alpha)} ; \\
& M_{\varphi}=v \cdot M_{x}=\frac{p \cdot a \cdot h \cdot v}{\sqrt{3 \cdot\left(1-v^{2}\right)}} \cdot \frac{\sin (\alpha) \cdot \operatorname{sh}(\alpha)}{\cos (2 \cdot \alpha)+\operatorname{ch}(2 \cdot \alpha)} ; \\
& N_{x}=0 ; \quad N_{\varphi}=-\frac{E \cdot h}{a} \cdot w=-p \cdot a \cdot\left(1-\frac{2 \cdot \cos (\alpha) \cdot \operatorname{ch}(\alpha)}{\cos (2 \cdot \alpha)+\operatorname{ch}(2 \cdot \alpha)}\right), \text { where: } \\
& D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, \quad \beta=\sqrt[4]{\frac{3 \cdot\left(1-v^{2}\right)}{a^{2} \cdot h^{2}}}, \alpha=\frac{\beta \cdot l}{2} .
\end{aligned}
$$

Cylindrical Vertical Tank with a Wall of Constant Thickness with a Flat Bottom Subjected to Internal Fluid Pressure

Objective: Determination of the stress-strain state of a cylindrical vertical tank with a wall of constant thickness clamped in a flat bottom subjected to internal fluid pressure which varies linearly with height.

Initial data file: 4.32.SPR

Problem formulation: The cylindrical vertical tank with a wall of constant thickness is clamped in a flat bottom and subjected to internal pressure of the liquid with the specific weight γ. Determine the bending moments and longitudinal forces acting on the midsurface of the tank wall in the meridian $M_{\mathrm{x}}, N_{\mathrm{x}}$ and in the circumferential M_{φ}, N_{φ} directions, as well as the radial displacements w of the tank wall.

References: S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{h}=0.01 \mathrm{~m} \quad$ - thickness of the tank wall;
$\mathrm{a}=5.0 \mathrm{~m} \quad$ - radius of the midsurface of the tank wall;
$\mathrm{d}=5.0 \mathrm{~m} \quad$ - height of the tank;
$\gamma=10.0 \mathrm{kN} / \mathrm{m}^{3} \quad-$ specific weight of the liquid in the tank.
Finite element model: Design model - general type system, shell elements - 15840 four-node elements of type 44. The spacing of the finite element mesh in the meridian direction is 0.025 m at the height x from the bottom from 0.0 m to $1.5 \mathrm{~m} ; 0.050 \mathrm{~m}$ at the height x from the bottom from 1.5 m to $3.0 \mathrm{~m} ; 0.100 \mathrm{~m}$ at the height x from the bottom from 3.0 m to 5.0 m ; and in the circumferential direction the spacing is 2.5°. Boundary conditions at the clamping into the bottom are provided by imposing constraints in all directions of the angular and linear displacements. Number of nodes in the design model - 15984 .

Results in SCAD

Design model

Deformed model

Deformed model

Values of radial displacements w (mm)

\square	0.000000	0.04
\square	0.04	0.079
\square	0.079	0,119
\square	0,119	0,159
\square	0,159	0,198
\square	0,198	0,238
\square	0,238	0,277
\square	0,277	0,317
\square	0,317	0,357
\square	0.357	0.396
\square	0,396	0.436
\square	0.436	0.476
\square	0.476	0.515
\square	0,515	0,555

Values of radial displacements w (mm)
for the fragment of the model from the section with the central angle of 10.0°

Values of bending moments acting on the midsurface of the tank wall in the meridian direction $M_{\mathrm{x}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

\square	$-0,7267$	$-0,6638$
\square	$-0,6638$	$-0,601$
\square	$-0,601$	$-0,5381$
\square	$-0,5381$	$-0,4752$
\square	$-0,4752$	$-0,4124$
\square	$-0,4124$	$-0,3495$
\square	$-0,3495$	$-0,2866$
\square	$-0,2866$	$-0,2238$
$\square \square$	$-0,2238$	$-0,1609$
\square	$-0,1609$	$-0,098$
\square	$-0,098$	$-0,0351$
\square	$-0,0351$	0,0277
\square	0,0277	0,0906
\square	0,0906	0,1535

Values of bending moments acting on the midsurface of the tank wall in the meridian direction $M_{\mathrm{x}}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$
for the fragment of the model from the section with the central angle of 10.0°

Values of longitudinal forces acting on the midsurface of the tank wall in the circumferential direction $N_{\varphi}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of longitudinal forces acting on the midsurface of the tank wall in the circumferential direction $N_{\varphi}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
for the fragment of the model from the section with the central angle of 10.0°

Comparison of solutions:

\mathbf{x}, m	$w, \mathrm{~mm}$			$M_{\mathrm{x}}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$			$N_{\varphi}, \mathrm{kN} / \mathrm{m}$		
	Theory	$\begin{gathered} \text { SCA } \\ \text { D } \end{gathered}$	Deviati ons, \%	Theory	SCAD	Deviati ons, \%	Theory	SCAD	Deviati ons, \%
0.000	0.000	0.000	-	-0.7302	-0.7267	0.48	0.00	$-22.27 \cdot 0.01=-0.22$	-
0.025	0.011	0.011	0.00	-0.5321	-0.5253	1.28	4.52	$432.34 \cdot 0.01=4.32$	4.42
0.050	0.039	0.039	0.00	-0.3644	-0.3564	2.20	16.33	$1612.89 \cdot 0.01=16.13$	1.22
0.075	0.079	0.078	1.27	-0.2256	-0.2179	3.41	33.15	$3285.96 \cdot 0.01=32.86$	0.87
0.100	0.126	0.125	0.79	-0.1134	-0.1069	5.73	53.08	$5261.88 \cdot 0.01=52.62$	0.87
0.125	0.178	0.176	1.12	-0.0252	-0.0204	-	74.59	$7388.51 \cdot 0.01=73.89$	0.94
0.150	0.230	0.227	1.30	0.0419	0.0448	-	96.46	$9547.11 \cdot 0.01=95.47$	1.03
0.175	0.280	0.277	1.07	0.0907	0.0918	1.21	117.78	$\begin{gathered} 11648.07 \cdot 0.01= \\ 116.48 \end{gathered}$	1.10
0.200	0.328	0.324	1.22	0.1241	0.1235	0.48	137.88	$\begin{gathered} 13626.65 \cdot 0.01= \\ 136.27 \end{gathered}$	1.17
0.225	0.372	0.367	1.34	0.1448	0.1428	1.38	156.30	$\begin{gathered} 15439.08 \cdot 0.01= \\ 154.39 \end{gathered}$	1.22
0.250	0.411	0.406	1.22	0.1550	0.1520	1.94	172.76	$\begin{gathered} 17058.39 \cdot 0.01= \\ 170.58 \\ \hline \end{gathered}$	1.26
0.275	0.445	0.440	1.12	0.1572	0.1535	2.35	187.11	$\begin{gathered} 18471.73 \cdot 0.01= \\ 184.72 \end{gathered}$	1.28
0.300	0.475	0.468	1.47	0.1532	0.1491	2.68	199.32	$\begin{gathered} \hline 19676.68 \cdot 0.01= \\ 196.77 \end{gathered}$	1.28
0.325	0.499	0.492	1.40	0.1447	0.1405	2.90	209.44	$\begin{gathered} 20678.89 \cdot 0.01= \\ 206.79 \\ \hline \end{gathered}$	1.27
0.350	0.518	0.512	1.16	0.1332	0.1291	3.08	217.60	$\begin{gathered} 21489.82 \cdot 0.01= \\ 214.90 \end{gathered}$	1.24
0.375	0.533	0.527	1.13	0.1198	0.1160	3.17	223.93	$\begin{gathered} 22124.83 \cdot 0.01= \\ 221.25 \end{gathered}$	1.20
0.400	0.544	0.538	1.10	0.1054	0.1021	3.13	228.64	$\begin{gathered} 22601.65 \cdot 0.01= \\ 226.02 \end{gathered}$	1.15
0.425	0.552	0.546	1.09	0.0909	0.0881	3.08	231.90	$\begin{gathered} \hline 22939.13 \cdot 0.01= \\ 229.39 \end{gathered}$	1.08
0.450	0.557	0.551	1.08	0.0767	0.0745	2.87	233.93	$\begin{gathered} 23156.28 \cdot 0.01= \\ 231.56 \end{gathered}$	1.01
0.475	0.559	0.554	0.89	0.0633	0.0617	2.53	234.90	$23271.56 \cdot 0.01=$	0.93

\mathbf{x}, m	$\boldsymbol{w}, \mathrm{mm}$			$M_{x}, \mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$			$N_{\varphi}, \mathbf{k N} / \mathbf{m}$		
	Theory	$\begin{gathered} \text { SCA } \\ \text { D } \end{gathered}$	Deviati ons, \%	Theory	SCAD	Deviati ons, \%	Theory	SCAD	Deviati ons, \%
								232.72	
0.500	0.560	0.555	0.89	0.0510	0.0500	1.96	235.01	$\begin{gathered} 23302.38 \cdot 0.01= \\ 233.02 \end{gathered}$	0.85
0.550	0.555	0.552	0.54	0.0303	0.0302	0.33	233.29	$\begin{gathered} \hline 23172.87 \cdot 0.01= \\ 231.73 \end{gathered}$	0.67
0.600	0.547	0.545	0.37	0.0148	0.0155	4.73	229.89	$\begin{gathered} 22875.52 \cdot 0.01= \\ 228.76 \end{gathered}$	0.49
0.650	0.537	0.535	0.37	0.0043	0.0055	-	225.66	$\begin{gathered} \hline 22490.85 \cdot 0.01= \\ 224.91 \end{gathered}$	0.33
0.700	0.527	0.526	0.19	-0.0022	-0.0008	-	221.17	$\begin{gathered} 22074.31 \cdot 0.01= \\ 220.74 \end{gathered}=$	0.19
0.750	0.516	0.516	0.00	-0.0055	-0.0042	-	216.79	$\begin{gathered} 21660.60 \cdot 0.01= \\ 216.61 \\ \hline \end{gathered}$	0.08
0.800	0.506	0.506	0.00	-0.0067	-0.0055	-	212.70	$\begin{gathered} 21268.60 \cdot 0.01= \\ 212.69 \\ \hline \end{gathered}$	0.00
0.850	0.498	0.498	0.00	-0.0066	-0.0056	-	208.97	$\begin{gathered} 20906.05 \cdot 0.01= \\ 209.06 \end{gathered}$	0.04
0.900	0.490	0.490	0.00	-0.0057	-0.0049	-	205.59	$\begin{gathered} 20573.53 \cdot 0.01= \\ 205.74 \end{gathered}$	0.07
0.950	0.482	0.483	0.21	-0.0045	-0.0039	-	202.53	$\begin{gathered} 20267.56 \cdot 0.01= \\ 202.68 \end{gathered}$	0.07
1.000	0.475	0.476	0.21	-0.0032	-0.0028	-	199.71	$\begin{gathered} \hline 19982.79 \cdot 0.01= \\ 199.83 \\ \hline \end{gathered}$	0.06

Notes: In the analytical solution the bending moments and longitudinal forces acting on the midsurface of the tank wall in the meridian $M_{\mathrm{x}}, N_{\mathrm{x}}$ and circumferential M_{φ}, N_{φ} directions, as well as the radial displacements w of the tank wall can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948, p. 388):

$$
\begin{gathered}
w=\frac{\gamma \cdot a^{2} \cdot d}{E \cdot h} \cdot\left(1-\frac{x}{d}-e^{-\beta \cdot x} \cdot\left(\cos (\beta \cdot x)+\left(1-\frac{1}{\beta \cdot d}\right) \cdot \sin (\beta \cdot x)\right)\right) ; \\
M_{x}=\frac{\gamma \cdot a \cdot d \cdot h}{\sqrt{12 \cdot\left(1-v^{2}\right)} \cdot e^{-\beta \cdot x} \cdot\left(\sin (\beta \cdot x)-\left(1-\frac{1}{\beta \cdot d}\right) \cdot \cos (\beta \cdot x)\right) ;} \\
M_{\varphi}=v \cdot M_{x}=\frac{\gamma \cdot a \cdot d \cdot h \cdot v}{\sqrt{12 \cdot\left(1-v^{2}\right)}} \cdot e^{-\beta \cdot x} \cdot\left(\sin (\beta \cdot x)-\left(1-\frac{1}{\beta \cdot d}\right) \cdot \cos (\beta \cdot x)\right) ; \\
N_{x}=0 ; \quad N_{\varphi}=\frac{E \cdot h}{a} \cdot w=\gamma \cdot a \cdot d \cdot\left(1-\frac{x}{d}-e^{-\beta \cdot x} \cdot\left(\cos (\beta \cdot x)+\left(1-\frac{1}{\beta \cdot d}\right) \cdot \sin (\beta \cdot x)\right)\right), \text { where: } \\
\beta=\sqrt[4]{\frac{3 \cdot\left(1-v^{2}\right)}{a^{2} \cdot h^{2}}}
\end{gathered}
$$

Cylindrical Shell with Free Edges at a Temperature Gradient across the Thickness (in the Radial Direction)

Objective: Determination of the stress-strain state of a cylindrical shell with free edges subjected to a temperature gradient across the thickness.

Initial data file: 4.33.SPR

Problem formulation: The cylindrical thin-walled shell free from constraints is subjected to a temperature gradient across the thickness. The temperatures of the cylinder wall on its internal t_{1} and external surfaces t_{2} are constant. The temperature varies linearly across the thickness of the wall. Determine the stress tensor components on the internal and external surfaces of the shell in the meridian $\sigma_{\mathrm{x}}{ }^{\text {ext }}\left(\sigma_{\mathrm{x}}{ }^{\text {int }}\right)$ and circumferential $\sigma_{\varphi}{ }^{\text {ext }}\left(\sigma_{\varphi}{ }^{\text {int }}\right)$ directions, as well as the radial displacements w.

References: S.P. Timoshenko, Theory of Plates and Shells. - Moscow: OGIZ. Gostekhizdat, 1948.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{h}=0.02 \mathrm{~m} \quad-$ thickness of the shell wall;
$\mathrm{a}=1.0 \mathrm{~m} \quad$ - radius of the midsurface of the shell wall;
$1=4.0 \mathrm{~m} \quad$ - length of the shell;
$\alpha=0.12 \cdot 10^{-4} 1 /{ }^{\circ} \mathrm{C} \quad$ - linear expansion coefficient;
$\mathrm{t}_{1}=20^{\circ} \mathrm{C} \quad-$ temperature on the internal surface of the cylinder wall;
$\mathrm{t}_{2}=0^{\circ} \mathrm{C} \quad-$ temperature on the external surface of the cylinder wall.
Finite element model: Design model - general type system, shell elements - 12800 four-node elements of type 44. The spacing of the finite element mesh in the meridian direction is 0.025 m and in the circumferential direction is 4.5°. The dimensional stability of the design model is provided by imposing constraints according to its symmetry conditions. Number of nodes in the design model - 12880.

Results in SCAD

Design model

Deformed model

Values of radial displacements w (mm)

Values of radial displacements w (mm)
for the fragment of the model from the section with the central angle of 18.0°

Values of stresses on the external surface of the shell in the meridian direction $\sigma_{x}^{\text {ext }}(\mathrm{kN} / \mathrm{m} 2)$

\square	-37505	-34735
\square	-34735	-31965
\square	-31965	-29195
\square	-29195	-26424
\square	-26424	-23654
\square	-23654	-20884
\square	-20884	-18114
\square	-18114	-15343
\square	-15343	-12573
\square	-12573	-.9803
\square	-9803	-7033
\square	-7033	-4262
\square	-4262	-1492
\square	-1492	1278

Values of stresses on the internal surface of the shell in the meridian direction $\sigma_{x}^{\text {int }}(\mathrm{kN} / \mathrm{m} 2)$

Values of stresses on the external surface of the shell in the circumferential direction $\sigma_{\varphi}{ }^{\text {xt }}(\mathrm{kN} / \mathrm{m} 2)$

$\square \square$	-38791	-36434
\square	-36434	-34077
\square	-34077	-31720
\square	-31720	-29363
\square	-29363	-27006
\square	-27006	-24650
\square	-24650	-22293
\square	-22293	-19936
\square	-19936	-17579
\square	-17579	-15222
\square	-15222	-12865
\square	-12865	-10508
\square	-10508	-8151
\square	-8151	-5794

Values of stresses on the internal surface of the shell in the circumferential direction $\sigma_{\varphi}^{\text {int }}(\mathrm{kN} / \mathrm{m} 2)$

Comparison of solutions:

\mathbf{x}, m	$\boldsymbol{w}, \mathbf{m m}$		
	Theory	SCAD	Deviations, \%
0.200	$-18.61 \cdot 10^{-3}$	$-18.01 \cdot 10^{-3}$	3.22
0.250	$-13.71 \cdot 10^{-3}$	$-13.20 \cdot 10^{-3}$	3.72
0.300	$-8.14 \cdot 10^{-3}$	$-7.81 \cdot 10^{-3}$	4.05
0.350	$-3.76 \cdot 10^{-3}$	$-3.60 \cdot 10^{-3}$	4.26
0.400	$-1.01 \cdot 10^{-3}$	$-0.97 \cdot 10^{-3}$	3.96
0.450	$0.36 \cdot 10^{-3}$	$0.34 \cdot 10^{-3}$	5.56
0.500	$0.82 \cdot 10^{-3}$	$0.78 \cdot 10^{-3}$	4.88
0.550	$0.79 \cdot 10^{-3}$	$0.75 \cdot 10^{-3}$	5.06
0.600	$0.57 \cdot 10^{-3}$	$0.54 \cdot 10^{-3}$	5.26
0.650	$0.33 \cdot 10^{-3}$	$0.32 \cdot 10^{-3}$	3.03
0.700	$0.15 \cdot 10^{-3}$	$0.14 \cdot 10^{-3}$	6.67
0.750	$0.04 \cdot 10^{-3}$	$0.04 \cdot 10^{-3}$	0.00
0.800	$-0.02 \cdot 10^{-3}$	$-0.02 \cdot 10^{-3}$	-
0.850	$-0.04 \cdot 10^{-3}$	$-0.03 \cdot 10^{-3}$	-
0.900	$-0.03 \cdot 10^{-3}$	$-0.03 \cdot 10^{-3}$	-
0.950	$-0.02 \cdot 10^{-3}$	$-0.02 \cdot 10^{-3}$	-
1.000	$-0.01 \cdot 10^{-3}$	$-0.01 \cdot 10^{-3}$	-
1.100	0	0	-
1.200	0	0	-
1.300	0	0	-
1.400	0	0	-
1.500	0	0	-
1.600	0	0	-
1.700	0	0	-
1.800	0	0	-
1.900	0	0	-
2.000	0	0	-

\mathbf{x}, \mathbf{m}	$\boldsymbol{\sigma}_{\mathbf{x}}{ }^{\text {ext }}(\mathbf{k N} / \mathbf{m 2})$			$\boldsymbol{\sigma}_{\mathbf{x}}{ }^{\text {int }}(\mathbf{k N} / \mathbf{m 2})$		
	Theory	SCAD	Deviations, $\boldsymbol{\%}$	Theory	SCAD	Deviations, \%
	31761	32052	0.92	-31761	-32090	1.04
0.250	35560	3581	0.34	-35560	-35655	0.35
0.300	37206	37221	0.04	-37206	-37210	0.01
0.350	37553	37519	0.09	-37553	-37505	0.13

\mathbf{x}, m	$\sigma_{\mathrm{x}}{ }^{\text {ext }}(\mathrm{kN} / \mathrm{m} 2)$			$\sigma_{\mathrm{x}}{ }^{\text {int }}(\mathrm{kN} / \mathrm{m} 2)$		
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
0.400	37286	37241	0.12	-37286	-37229	0.15
0.450	36841	36804	0.10	-36841	-36796	0.12
0.500	36441	36418	0.06	-36441	-36414	0.07
0.550	36164	36154	0.03	-36164	-36152	0.03
0.600	36010	36007	0.01	-36010	-36007	0.01
0.650	35945	35947	0.01	-35945	-35947	0.01
0.700	35933	35936	0.01	-35933	-35937	0.01
0.750	35946	35949	0.01	-35946	-35949	0.01
0.800	35965	35967	0.01	-35965	-35968	0.01
0.850	35982	35983	0.00	-35982	-35983	0.00
0.900	35994	35994	0.00	-35994	-35994	0.00
0.950	36000	36000	0.00	-36000	-36000	0.00
1.000	36002	36002	0.00	-36002	-36002	0.00
1.100	36002	36002	0.00	-36002	-36002	0.00
1.200	36001	36001	0.00	-36001	-36001	0.00
1.300	36000	36000	0.00	-36000	-36000	0.00
1.400	36000	36000	0.00	-36000	-36000	0.00
1.500	36000	36000	0.00	-36000	-36000	0.00
1.600	36000	36000	0.00	-36000	-36000	0.00
1.700	36000	36000	0.00	-36000	-36000	0.00
1.800	36000	36000	0.00	-36000	-36000	0.00
1.900	36000	36000	0.00	-36000	-36000	0.00
2.000	36000	36000	0.00	-36000	-36000	0.00
0.000	45027	44606	0.93	-5373	-5794	7.84
0.025	37510	37025	1.29	-13846	-14584	5.33
0.050	32614	32413	0.62	-21047	-21639	2.81
0.075	29785	29786	0.00	-26849	-27290	1.64
0.100	28500	28633	0.47	-31284	-31586	0.97
0.150	28809	29047	0.83	-36646	-36735	0.24
0.200	30819	31034	0.70	-38637	-38608	0.08
0.250	32988	33133	0.44	-38748	-38677	0.18
0.300	34652	34726	0.21	-38072	-38003	0.18
0.350	35676	35700	0.07	-37256	-37208	0.13
0.400	36173	36169	0.01	-36598	-36572	0.07
0.450	36328	36313	0.04	-36176	-36167	0.02
0.500	36305	36289	0.04	-35960	-35961	0.00
0.550	36215	36203	0.03	-35883	-35888	0.01
0.600	36123	36116	0.02	-35883	-35888	0.01
0.650	36053	36050	0.01	-35914	-35918	0.01
0.700	36011	36011	0.00	-35949	-35951	0.01
0.750	35991	35992	0.00	-35976	-35977	0.00
0.800	35986	35987	0.00	-35993	-35994	0.00
0.850	35987	35988	0.00	-36002	-36002	0.00
0.900	35991	35992	0.00	-36005	-36005	0.00
0.950	35995	35995	0.00	-36005	-36005	0.00
1.000	35998	35998	0.00	-36004	-36003	0.00
1.100	36000	36000	0.00	-36001	-36001	0.00
1.200	36001	36000	0.00	-36000	-36000	0.00
1.300	36000	36000	0.00	-36000	-36000	0.00
1.400	36000	36000	0.00	-36000	-36000	0.00
1.500	36000	36000	0.00	-36000	-36000	0.00
1.600	36000	36000	0.00	-36000	-36000	0.00
1.700	36000	36000	0.00	-36000	-36000	0.00
1.800	36000	36000	0.00	-36000	-36000	0.00
1.900	36000	36000	0.00	-36000	-36000	0.00
2.000	36000	36000	0.00	-36000	-36000	0.00

x - ordinate along the axis of the cylindrical shell (meridian direction) measured from the free edge.
Notes: In the analytical solution the stresses on the internal and external surfaces of the shell in the meridian $\sigma_{\mathrm{x}}{ }^{\text {ext }}\left(\sigma_{\mathrm{x}}{ }^{\text {int }}\right)$ and circumferential $\sigma_{\varphi}^{\text {ext }}\left(\sigma_{\varphi}^{\text {int }}\right)$ directions, as well as the radial displacements w can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. Moscow: OGIZ. Gostekhizdat, 1948, p. 399), which give a good approximation "at points at a considerable distance from the edges of the shell":

$$
w=0.5 \cdot \alpha \cdot\left(t_{1}-t_{2}\right) \cdot a \cdot \sqrt{\frac{1+v}{3 \cdot(1-v)}} \cdot e^{-\beta \cdot x} \cdot(\sin (\beta \cdot x)-\cos (\beta \cdot x)) ;
$$

$$
\begin{gathered}
\sigma_{x}^{e x t}=\frac{E \cdot \alpha \cdot\left(t_{1}-t_{2}\right)}{2 \cdot(1-v)} \cdot\left[-1+e^{-\beta \cdot x} \cdot(\cos (\beta \cdot x)+\sin (\beta \cdot x))\right] ; \\
\sigma_{x}^{i n t}=\frac{E \cdot \alpha \cdot\left(t_{1}-t_{2}\right)}{2 \cdot(1-v)} \cdot\left[1-e^{-\beta \cdot x} \cdot(\cos (\beta \cdot x)+\sin (\beta \cdot x))\right] ; \\
\sigma_{\varphi}^{e \text { ett }}=\frac{E \cdot \alpha \cdot\left(t_{1}-t_{2}\right)}{2 \cdot(1-v)} \cdot\left[-1+v \cdot e^{-\beta \cdot x} \cdot(\cos (\beta \cdot x)+\sin (\beta \cdot x))-\sqrt{\frac{1-v^{2}}{3}} \cdot e^{-\beta \cdot x} \cdot(\sin (\beta \cdot x)-\cos (\beta \cdot x))\right] ; \\
\sigma_{\varphi}^{i n t}=\frac{E \cdot \alpha \cdot\left(t_{1}-t_{2}\right)}{2 \cdot(1-v)} \cdot\left[1-v \cdot e^{-\beta \cdot x} \cdot(\cos (\beta \cdot x)+\sin (\beta \cdot x))-\sqrt{\frac{1-v^{2}}{3}} \cdot e^{-\beta \cdot x} \cdot(\sin (\beta \cdot x)-\cos (\beta \cdot x))\right], \text { where: } \\
\beta=\sqrt[4]{\frac{3 \cdot\left(1-v^{2}\right)}{a^{2} \cdot h^{2}}} .
\end{gathered}
$$

Thick Square Slab Simply Supported along the Sides Subjected to a Transverse Load Distributed over the Upper Face According to the Cosine Law

Objective: Determination of the stress-strain state of a thick square slab simply supported along the sides subjected to a transverse load distributed over the upper face according to the cosine law in accordance with the spatial problem of the theory of elasticity.

SCAD version used: 21.1
Initial data files:

File name	Description
4.36a_gamma_3.SPR	Design model for the slab thickness of $4 \mathrm{~m}(\gamma=\mathrm{a} / \mathrm{h}=3)$

Problem formulation: The thick square slab is simply supported along the sides and subjected to a transverse load distributed over the upper face according to the cosine law $\mathrm{q} \cdot \cos ((\pi \cdot x) /(2 \cdot a)) \cdot \cos ((\pi \cdot y) /(2 \cdot a))$.
Determine:

- distribution of the horizontal normal stresses σ_{x} across the slab thickness z in its center

$$
(\mathrm{x}=0, \mathrm{y}=0)
$$

- distribution of the horizontal tangential stresses τ_{xy} across the slab thickness z on its lateral edge

$$
(\mathrm{x}=\mathrm{a}, \mathrm{y}=\mathrm{a})
$$

- value of the vertical normal stresses σ_{z} in the center of the slab $(x=0, y=0, z=0)$;
- value of the vertical tangential stresses τ_{xz} in the center of the lateral face of the slab

$$
(\mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{z}=0)
$$

- distribution of the vertical displacements z across the slab thickness z in its center $(x=0, y=0)$;
- distribution of the horizontal displacements x across the slab thickness in the center of its lateral face

$$
(x=a, y=0, z=0)
$$

References: M.K. Usarov, The problem of bending the thick orthotropic plate of three-dimensional formulation, Magazine of Civil Engineering, 2011, No. 4, p. 40-47.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{5} \mathrm{tf} / \mathrm{m}^{2} \quad$ - elastic modulus of the slab material;
$v=0.3 \quad$ - Poisson's ratio of the slab material;
$2 \cdot \mathrm{a}=30.0 \mathrm{~m} \quad$ - side of the slab;
$2 \cdot \mathrm{~h}=10.0 \mathrm{~m} \quad$ - thickness of the slab;
$\mathrm{q}=10.0 \mathrm{tf} / \mathrm{m}^{2} \quad-$ amplitude value of the transverse load distributed over the upper face of the slab according to the cosine law.

Finite element model: Design model - general type system, plate elements - 72000 solid eight-node isoparametric elements of type 36. The spacing of the finite element mesh of the slab in plan and along the thickness is 0.5 m . Internal forces are output along the axes of the global coordinate system. Constraints of the linear degrees of freedom Y, Z are installed in the nodes of the lateral faces of the slab $\mathrm{x}= \pm \mathrm{a}$.

Verification Examples

Constraints of the linear degrees of freedom X, Z are installed in the nodes of the lateral faces of the slab y $= \pm \mathrm{a} b$. Number of nodes in the design model -78141 .

Results in SCAD

Values of vertical displacements z (mm)
$-3,5887$

Values of vertical displacements $z(\mathrm{~mm})$ in the center of the slab $(x=0, y=0)$

Values of horizontal displacements $x(\mathrm{~mm})$ in the middle of the lateral faces of the slab $(x= \pm a, y=0, z=0)$

Values of horizontal normal stresses $\sigma_{x}\left(t f / m^{2}\right)$

Values of horizontal tangential stresses $\tau_{x y}\left(t f / m^{2}\right)$

Values of vertical normal stresses $\sigma_{z}\left(t f / m^{2}\right)$

Values of vertical tangential stresses $\tau_{x z}\left(t f / m^{2}\right)$

Comparison of solutions:

\mathbf{z} / \mathbf{h}	$\boldsymbol{\sigma}_{\mathbf{x}}, \mathbf{t f} / \mathbf{m}^{\mathbf{2}}(\mathbf{x}=\mathbf{y}=\mathbf{0})$			$\boldsymbol{\tau}_{\mathbf{x y}}, \mathbf{t f / \mathbf { m } ^ { 2 } (\mathbf { x } = \mathbf { y } = \mathbf { a })}$		
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
1.0	-21.240	-21.591	1.65	9.129	9.098	0.34
0.0	-0.481	-0.479	0.42	-0.882	-0.881	0.11
-1.0	18.639	18.942	1.63	-10.036	-10.005	0.31

\mathbf{z} / \mathbf{h}	$\boldsymbol{\sigma}_{\mathbf{z}}, \mathbf{t f} / \mathbf{m}^{\mathbf{2}}(\mathbf{x}=\mathbf{y}=\mathbf{0})$			$\tau_{\mathbf{x z}}, \mathbf{t f} / \mathbf{m}^{\mathbf{2}}(\mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{0})$		
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
0.0	-4.944	-4.939	0.10	7.023	6.996	0.38

\mathbf{z} / \mathbf{h}	$\mathbf{z}, \mathbf{m m}(\mathbf{x}=\mathbf{y}=\mathbf{0})$			$\mathbf{x}, \mathbf{m m}(\mathbf{x}=\mathbf{a}, \mathbf{y}=\mathbf{0})$		
	Theory	SCAD	Deviations, \%	Theory	SCAD	Deviations, \%
1.0	-3.5963	-3.5887	0.21	-1.1333	-1.1299	0.30
0.0	-3.4906	-3.4832	0.21	0.1095	0.1095	0.00
-1.0	-3.1440	-3.1368	0.23	1.2459	1.2426	0.26

Notes: In the analytical solution the horizontal normal stresses σ_{x} across the slab thickness z in its center (x $=0, y=0$), horizontal tangential stresses $\tau_{x y}$ across the slab thickness z on its lateral edge ($x=a, y=a$), vertical normal stresses σ_{z} in the center of the slab $(x=0, y=0, z=0)$, vertical tangential stresses τ_{xz} in the center of the lateral face of the slab $(x=a, y=0, z=0)$, vertical displacements z across the slab thickness z in its center $(x=0, y=0)$, horizontal displacements x across the slab thickness in the center of its lateral face $(\mathrm{x}=\mathrm{a}, \mathrm{y}=0, \mathrm{z}=0)$ for $\mathrm{v}=0.3$ and $\gamma=\mathrm{a} / \mathrm{h}=3$ can be determined according to the following formulas:

$$
\begin{array}{lll}
\frac{z}{h}=1.0: & \sigma_{x}=-2.1240 \cdot q ; & \tau_{x y}=-0.9129 \cdot q ; \\
& z=-3596.3 \cdot \frac{q \cdot 2 \cdot h}{E} ; \quad x=-1133.3 \cdot \frac{q \cdot 2 \cdot h}{E} ; & \\
\frac{z}{h}=0.0: & \tau_{x y}=-0.0481 \cdot q ; & z=-3490.6 \cdot \frac{q \cdot 2 \cdot h}{E} ; \quad x=109.5 \cdot \frac{q \cdot 2 \cdot h}{E} ; \\
& \tau_{x y}=0.7023 \cdot q & \\
\frac{z}{h}=-1.0: \quad \sigma_{x}=1.8639 \cdot q ; \quad \tau_{x y}=1.0036 \cdot q ; & z=-3144.0 \cdot \frac{q \cdot 2 \cdot h}{E} ; \quad x=1245.9 \cdot \frac{q \cdot 2 \cdot h}{E}
\end{array}
$$

Thick Circular Slab Clamped along the Side Surface Subjected to a Load Uniformly Distributed over the Upper Face

Objective: Determination of the stress-strain state of a thick circular slab clamped along the side surface subjected to a load uniformly distributed over the upper face in accordance with the spatial problem of the theory of elasticity.

SCAD version usedInitial data files:

File name	Description
4.37_4m.SPR	Design model for the slab thickness of 4 m
$4.37 _6 \mathrm{~m}$. SPR	Design model for the slab thickness of 6 m

Problem formulation: The thick circular slab is clamped along the side surface and subjected to a load q uniformly distributed over the upper face. Determine:
distribution of the radial σ_{r} and vertical σ_{z} normal stresses across the slab thickness in its center $(r=0)$;
distribution of the vertical displacements w across the slab thickness in its center $(r=0)$.
References: Solyanik-Krassa K.V. Axisymmetric Problem of the Theory of Elasticity. - M.: Stroyizdat. 1987. p. 336.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus;
$\mu=0.25 \quad$ - Poisson's ratio;
$2 \cdot \mathrm{a}=20.0 \mathrm{~m} \quad$ - diameter of the slab;
$2 \cdot \mathrm{~h}=4.0 \mathrm{~m} ; 6.0 \mathrm{~m} \quad$ - thickness of the slab;
$\mathrm{q}=10 \mathrm{kPa} \quad-$ load uniformly distributed over the upper face.

Finite element model

The spacing of the finite element mesh of the slab in plan in the radial direction is 0.5 m and there are 16 layers of finite elements along the thickness (models 1×1).

Elements of the design model:
4384 solid twenty-node isoparametric elements of type 37 (parallelepiped); 400 solid fifteen-node isoparametric elements of type 35 (triangular prism).

Number of nodes in the design model - 20866.
The calculation was performed taking into account the symmetry planes. The constraints were imposed: on the side surface in the directions of all the linear degrees of freedom;
on the YOZ plane - along the x axis;
on the XOZ plane - along the y axis.

Design models of 4.0 m and 6.0 m thick slabs

Results in SCAD

Values of vertical displacements $w(\mathrm{~mm})$ in 4.0 m and 6.0 m thick slabs

Comparison of solutions:

Thickness	Value	Point	Approximate theory	$S C A D$	Deviation (\%)
$4 m$	$\boldsymbol{w}(\mathrm{mm})$	$(0,0,2)$	-0.0436	-0.04538	4.08
		$(0,0,0)$	-0.0424	-0.0454	7.08
		(0,0,-2)	-0.0411	-0.04364	6.18
	$\begin{aligned} & \sigma_{r}=\sigma_{\theta} \\ & (k P a) \end{aligned}$	$(0,0,2)$	-34.51	-33.78	2.12
		$(0,0,0)$	-1.6667	-1.5547	6.72
		(0,0,-2)	31.1719	30.62	1.76
	$\begin{aligned} & \sigma_{z} \\ & (k P a) \end{aligned}$	$(0,0,2)$	-10	-10.16	0.16
		(0,0,0)	-5	-5.07	0.14
		(0,0,-2)	0	-0.05	-
$6 m$	\boldsymbol{w}	$(0,0,3)$	-0.02097	-0.02112	0.72
		$(0,0,0)$	-0.01916	-0.01994	4.07
		(0,0,-3)	-0.01722	-0.01851	7.49
	$\begin{aligned} & \sigma_{r}=\sigma_{\theta} \\ & (k P a) \end{aligned}$	$(0,0,3)$	-18.2292	-18.51	1.54
		$(0,0,0)$	-1.6667	-1.5149	9.12
		(0,0,-3)	14.896	14.4884	2.74
	σ_{z} (kPa)	$(0,0,3)$	-10	-9.797	2.03
		(0,0,0)	-5	-5.0569	1.14
		(0,0,-3)	0	0.043	-

Note 1: The approximate analytical values were calculated according to the formulas given on pages 124-125 of "Solyanik-Krassa K.V. Axisymmetric Problem of the Theory of Elasticity. - M.: Stroyizdat. 1987."

Note 2: The calculations were performed for meshes refined by a factor of 2 and 4 ($4 x 4$ models) to study the convergence of the method. The symmetry planes were taken into account. The maximum design model contained:
280576 solid twenty-node isoparametric elements of type 37 (parallelepiped);
25600 solid fifteen-node isoparametric elements of type 35 (triangular prism).
Number of nodes in the design model - 1222501.

Comparison of solutions:

Thickness	Value	Point	SCAD		$\begin{gathered} \text { Deviation } \\ (\%) \end{gathered}$
			4 x 4	1 x 1	
$4 m$	$\boldsymbol{w}(\mathrm{mm})$	$(0,0,2)$	-0.04534	-0.04538	0.09
		$(0,0,0)$	-0.0454	-0.0454	-
		$(0,0,-2)$	-0.04374	-0.04364	0.23
	$\begin{aligned} & \sigma_{r}=\sigma_{\theta} \\ & (k P a) \end{aligned}$	$(0,0,2)$	-33.6603	-33.78	0.36
		$(0,0,0)$	-1.5683	-1.5547	0.87
		$(0,0,-2)$	30.527	30.62	0.30
	$\begin{aligned} & \sigma_{z} \\ & (k P a) \end{aligned}$	$(0,0,2)$	-10.0062	-10.16	1.36
		$(0,0,0)$	-5.0037	-5.0742	1.41
		$(0,0,-2)$	0.00326	-0.05	-
$6 m$	\boldsymbol{w}	$(0,0,3)$	-0.02108	-0.02112	0.19
		$(0,0,0)$	-0.01995	-0.01994	0.05
		$(0,0,-3)$	-0.01852	-0.01851	0.05
	$\begin{aligned} & \sigma_{r}=\sigma_{\theta} \\ & (k P a) \end{aligned}$	$(0,0,3)$	-17.373	-17.557	1.06
		$(0,0,0)$	-1.5213	-1.5149	0.42
		$(0,0,-3)$	14.3485	14.4884	0.98
	$\begin{aligned} & \sigma_{z} \\ & (k P a) \end{aligned}$	$(0,0,3)$	-10.0006	-9.797	2.03
		$(0,0,0)$	-5.0367	-5.0694	0.65
		$(0,0,-3)$	0.0028	0.0434	-

Cylindrical Body Free from Restraints Subjected to a Longitudinal Load Uniformly Distributed over the Edges

Objective: Determination of the strain state of a cylindrical body free from restraints subjected to a longitudinal load uniformly distributed over the edges.

Initial data file: SSLV01_v11.5.SPR

Problem formulation: The cylindrical body free from restraints is subjected to a longitudinal load uniformly distributed over the edges F/A. Determine the meridional ΔL and radial $\Delta \mathrm{R}$ displacements of the points E, D, A (C) of the side surface of the cylinder at the distances from its transverse symmetry plane along the generatrix $L / 3,2 \cdot L / 3, L$ respectively, as well as the point B of the center of its edge surface.

References: P. Germain, Introduction a la mecanique des milieux continus, Paris, Masson, 1986.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{5} \mathrm{~Pa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{R}=1.0 \mathrm{~m} \quad-$ radius of the cylinder;
$L=4.0 \mathrm{~m} \quad$ - length of the cylinder;
$\mathrm{F} / \mathrm{A}=1.0 \cdot 10^{2} \mathrm{~Pa} \quad$ - load uniformly distributed over the edges.
Finite element model: Design model - axisymmetric problem, axisymmetric elements - 120 shell elements of type 61. The spacing of the finite element mesh in the meridian direction is 0.25 m and in the radial direction is 0.10 m . The dimensional stability of the design model is provided by imposing constraints according to its symmetry conditions. Number of nodes in the design model - 143 .

Results in SCAD

Design and deformed models

Values of meridional displacements $Z(\Delta L) m$

	0.000000	1.0725e-005
	1,0725e-005	2,145e-005
	2,145e-005	3,2175e-005
	3,2175e-00	4,29e-005
	4,29e-005	5,3625e-005
	5,3625e-005	6,435e-005
\square	6,435e-005	7,5075e-0
\square	7,5075e-005	8,58e-005
\square	8,58e-005	9,6525-005
\square	9,6525e-0	25e-00
\square	1,0725e-00	.1797e-00
\square	1,1797e-00	1,287e-004
\square	1,287e-004	1,3942e-004

Values of radial displacements $X(\Delta R) m$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Meridional displacement ΔL (point E), m	$-0.500 \cdot 10^{-3}$	$-0.500 \cdot 10^{-3}$	0.00
Radial displacement $\Delta \mathrm{R}$ (point E), m	$-0.150 \cdot 10^{-3}$	$-0.150 \cdot 10^{-3}$	0.00
Meridional displacement ΔL (point D , m	$-1.000 \cdot 10^{-3}$	$-1.000 \cdot 10^{-3}$	0.00
Radial displacement $\Delta \mathrm{R}$ (point D), m	$-0.150 \cdot 10^{-3}$	$-0.150 \cdot 10^{-3}$	0.00
Meridional displacement ΔL (points A and C), m	$-1.500 \cdot 10^{-3}$	$-1.500 \cdot 10^{-3}$	0.00
Radial displacement $\Delta \mathrm{R}$ (points A and C), m	$-0.150 \cdot 10^{-3}$	$-0.150 \cdot 10^{-3}$	0.00
Meridional displacement ΔL (point B), m	$-1.500 \cdot 10^{-3}$	$-1.500 \cdot 10^{-3}$	0.00
Radial displacement $\Delta \mathrm{R}$ (point B), m	$0.000 \cdot 10^{-3}$	$0.000 \cdot 10^{-3}$	0.00

Notes: In the analytical solution the meridional ΔL and radial $\Delta \mathrm{R}$ displacements can be determined according to the following formulas:

$$
\Delta L=\frac{P \cdot X}{E} ; \quad \Delta R=\frac{v \cdot P \cdot R}{E} .
$$

Square Panel of a Flat Slab Rigidly Connected to a Column of a Circular CrossSection Subjected to a Uniformly Distributed Transverse Load

Objective:

Determine the bending moments in the characteristic points of a square panel of a flat slab rigidly connected to a column of a circular cross-section subjected to a uniformly distributed transverse load.

Initial data file: Flate_plate_Circular_column.spr

Problem formulation:

The square panel of a flat slab rigidly connected to a column of a circular cross-section is subjected to a uniformly distributed transverse load q. Determine the bending moments M_{x}, M_{y} in the characteristic points of the square panel of the flat slab.

References:

S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, Moscow, Book House "LIBROKOM", 2009, p. 287-289.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad$ - elastic modulus,
$v=0.2 \quad$ - Poisson's ratio,
$\mathrm{h}=0.1 \mathrm{~m} \quad-$ thickness of the panel of the flat slab;
$\mathrm{a}=2.5 \mathrm{~m} \quad$ - side of the panel of the flat slab;
$\mathrm{c}=0.1 \cdot \mathrm{a}=0.25 \mathrm{~m} \quad$ - radius of the column cross-section;
$\mathrm{q}=100.0 \mathrm{~N} / \mathrm{m}^{2} \quad$ - value of the uniformly distributed transverse load.

Finite element model:

Design model - grade beam, plate; elements of the panel of the flat slab - 2412 quadrangular four-node thin plate elements for the calculation according to the Kirchhoff-Love theory of type 20 and 16 triangular three-node thin plate elements for the calculation according to the Kirchhoff-Love theory of type 15 ; element of the column cross-section -1 rigid body element of type 100 . The spacing of the finite element mesh of the panel of the flat slab in the directions of the axes of the global coordinate system is 0.05 m except for the support contour where the spacing of the finite element mesh in the radial direction is 0.05 m and in the circumferential direction is 11.25°. Internal forces are output along the axes of the global coordinate system. Boundary conditions are provided by imposing constraints in the directions of the
degrees of freedom UX for the edges of the panel parallel to the X axis of the global coordinate system, and UY for the edges of the panel parallel to the Y axis of the global coordinate system. The master node of the rigid body of the column is in the center of its cross-section and is restrained in the direction of the degree of freedom Z. Number of nodes in the design model - 2537.

Results in SCAD:

Design model

Deformed model

Bending moments $M_{x}, N \cdot m / m$

Bending moments $M_{y}, N \cdot m / m$

\square	$-41,1$	$-35,96$
\square	$-35,96$	$-30,83$
\square	$-30,83$	$-25,69$
\square	$-25,69$	$-20,55$
\square	$-20,55$	$-15,41$
\square	$-15,41$	$-10,28$
\square	$-10,28$	$-5,14$
\square	$-5,14$	0
\square	0	5,14
\square	5,14	10,28
\square	10,28	15,41
\square	15,41	20,55
\square	20,55	25,69
\square	25,69	30,83
\square	30,83	35,96
\square	35,96	41,1

Bending moments $M_{x y}, N \cdot m / m$

Comparison of solutions:

Bending moment	Panel point	Theory	SCAD	Deviations, \%
$M_{\mathrm{x}}=M_{\mathrm{y}}$	$x=a / 2, y=a / 2$	18.2500	17.8300	2.30
M_{x}	$x=a / 2, y=0$	24.9375	24.9800	0.17
M_{y}	$x=a / 2, y=0$	-10.0625	-10.1400	0.77
M_{x}	$x=c, y=0$	-105.1250	-105.2900	0.16

Notes: In the analytical solution the bending moments M_{x}, M_{y} in the characteristic points of the square panel of the flat slab are determined according to the following formulas:

$$
M=\beta \cdot q \cdot a^{2} .
$$

The coefficients β for the calculation of bending moments at $c=0.1 \cdot a$ and $v=0.2$

Bending moment	Panel point	$\boldsymbol{\beta}$
$M_{\mathrm{x}}=M_{\mathrm{y}}$	$x=a / 2, y=a / 2$	0.0292
M_{x}	$x=a / 2, y=0$	0.0399
M_{y}	$x=a / 2, y=0$	-0.0161
M_{x}	$x=c, y=0$	-0.1682

Square Panel of a Flat Slab Rigidly Connected to a Column of a Square CrossSection Subjected to a Uniformly Distributed Transverse Load

Objective:

Determination of the bending moments in the characteristic points of a square panel of a flat slab rigidly connected to a column of a square cross-section subjected to a uniformly distributed transverse load.

Initial data file: Flate_plate_Square_column.spr

Problem formulation:

The square panel of a flat slab rigidly connected to a column of a square cross-section is subjected to a uniformly distributed transverse load q. Determine the bending moments M_{x}, M_{y} in the characteristic points of the square panel of the flat slab.

References:

S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, Moscow, Book House "LIBROKOM", 2009, p. 287-289.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{~N} / \mathrm{m}^{2} \quad$ - elastic modulus,
$v=0.2 \quad$ - Poisson's ratio,
$\mathrm{h}=0.1 \mathrm{~m} \quad$ - thickness of the panel of the flat slab;
$\mathrm{a}=2.5 \mathrm{~m} \quad$ - side of the panel of the flat slab;
$\mathrm{u}=0.2 \cdot \mathrm{a}=0.5 \mathrm{~m} \quad$ - side of the column cross-section;
$\mathrm{q}=100.0 \mathrm{~N} / \mathrm{m}^{2} \quad-$ value of the uniformly distributed transverse load.

Finite element model:

Design model - grade beam, plate; elements of the panel of the flat slab - 2400 quadrangular four-node thin plate elements for the calculation according to the Kirchhoff-Love theory of type 20; element of the column cross-section - 1 rigid body element of type 100 . The spacing of the finite element mesh of the panel of the flat slab in the directions of the axes of the global coordinate system is 0.05 m . Internal forces are output along the axes of the global coordinate system. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom UX for the edges of the panel parallel to the X axis of the global coordinate system, and UY for the edges of the panel parallel to the Y axis of the global coordinate system. The master node of the rigid body of the column is in the center of its cross-section and is restrained in the direction of the degree of freedom Z. Number of nodes in the design model -2521 .

Results in SCAD:

Deformed model

-123,16	-114,06
-114,06	-104,97
-104,97	-95,87
-95.87	-86,78
-86,78	.77,68
-77,68	-68,59
-68,59	-59,49
-59,49	-50,4
-50,4	-41,3
-41,3	-32,21
$\square \cdot 32,21$	-23,11
- 23,11	-14,02
$\square \cdot 14.02$	-4,92
$\square \cdot 4.92$	4,18
4,18	13,27
$\square 13,27$	22,37

Bending moments $M_{x}, N \cdot m / m$

\square	$-123,16$	$-114,06$
\square	$-114,06$	$-104,97$
\square	$-104,97$	$-95,87$
\square	$-95,87$	$-86,78$
\square	$-86,78$	$-77,68$
\square	$-77,68$	$-68,59$
\square	$-68,59$	$-59,49$
\square	$-59,49$	$-50,4$
\square	$-50,4$	$-41,3$
\square	$-41,3$	$-32,21$
\square	$-32,21$	$-23,11$
\square	$-23,11$	$-14,02$
\square	$-14,02$	$-4,92$
\square	$-4,92$	4,18
\square	4,18	13,27
\square	13,27	22,37

Bending moments $M_{y}, N \cdot m / m$

Bending moments $M_{x y}, N \mathrm{~m} / \mathrm{m}$

Comparison of solutions:

Bending moment	Panel point	Theory	SCAD	Deviations
$M_{\mathrm{x}}=M_{\mathrm{y}}$	$x=a / 2, y=a / 2$	16.500	16.620	0.73
M_{x}	$x=a / 2, y=0$	21.750	22.370	2.85
M_{y}	$x=a / 2, y=0$	-9.125	-8.770	3.89
M_{x}	$x=u / 2, y=0$	-39.125	-43.210	9.45
M_{x}	$x=u / 2, y=u / 2$	$-\infty$	-123.16	-

Notes: In the analytical solution the bending moments M_{x}, M_{y} in the characteristic points of the square panel of the flat slab are determined according to the following formulas:

$$
M=\beta \cdot q \cdot a^{2} .
$$

Approximate values of the coefficients β for the calculation of bending moments at $u=0.2 \cdot a$ and $v=0.2$

Bending moment	Panel point	$\boldsymbol{\beta}$
$M_{\mathrm{x}}=M_{\mathrm{y}}$	$x=a / 2, y=a / 2$	0.0264
M_{x}	$x=a / 2, y=0$	0.0348
M_{y}	$x=a / 2, y=0$	-0.0146
M_{x}	$x=u / 2, y=0$	-0.0626
M_{x}	$x=u / 2, y=u / 2$	$-\infty$

Elastic Half-Space Subjected to a Transverse Load Uniformly Distributed over a Rectangular Surface. Love's Problem

Objective: Determination of the stress-strain state of the elastic half-space subjected to a transverse load uniformly distributed over a rectangular surface in accordance with the spatial problem of the theory of elasticity.

Initial data files: Lave.SPR

Problem formulation: The elastic half-space is subjected to the transverse load q uniformly distributed over a rectangular surface. Determine:

- distribution of the normal stresses $\sigma_{x}, \sigma_{y}, \sigma_{z}$ across the half-space;
- distribution of the tangential stresses $\tau_{\mathrm{xy}}, \tau_{\mathrm{xz}}, \tau_{\mathrm{yz}}$ across the half-space;
- distribution of the displacements u, v, w across the half-space.

References: Z.G. Ter-Martirosyan, Soil Mechanics, Moscow, MGSU Publishing House of the Association of Construction Institutions of Higher Education, 2009, p. 204;
V.A. Florin, Fundamentals of Soil Mechanics, Volume 1, Leningrad, State Publishing House of Literature on Construction, Architecture and Building Materials, 1959, p. 123;
V.A. Florin, Fundamentals of Soil Mechanics, Volume 2, Leningrad, State Publishing House of Literature on Construction, Architecture and Building Materials, 1959, p. 24.

Initial data:

$\mathrm{E}=30000 \mathrm{kN} / \mathrm{m}^{2} \quad$ - elastic modulus of the half-space;
$\mu=0.3 \quad$ - Poisson's ratio;
$\mathrm{a}=\mathrm{b}=2.0 \mathrm{~m}$

- length of the half of the side of a rectangular loaded surface;
$\mathrm{q}=100 \mathrm{kN} / \mathrm{m}^{2}$
- transverse load q uniformly distributed over a rectangular surface.

Finite element model: $96 \times 96 \times 48 \mathrm{~m}$ parallelepiped is analyzed. The design model (quarter of the parallelepiped cut off by the symmetry planes XOZ and YOZ) - general type system, elements of the elastic half-space - 13825320 -node isoparametric solid elements of type 37 . The spacing of the initial finite element mesh of the half-space in the load application area in plan and along the depth is $0,25 \mathrm{~m}$. The sizes of the finite elements increase with the distance from the load application area.
Internal forces are output along the axes of the global coordinate system. Upper faces of the elements of the half-space boundary are subjected to the surface transverse load within the following dimensions in plan $2 \mathrm{a} \times 2 \mathrm{~b}=4.0 \mathrm{~m} \times 4.0 \mathrm{~m}$.

The boundary conditions were defined as follows: normal displacements on the lower and side surfaces are restrained.

Number of nodes in the design model - 573985.

Results in SCAD

Deformed model of the surface of the elastic half-space

Values of vertical $\tau_{x z}$ tangential stresses $\left(t / m^{2}\right)$

Comparison of solutions:

Solution of the Love's problem by 20 -node isoparametric elements ($\mathrm{mm}, \mathrm{kN} / \mathrm{m}^{2}$)

Point	Parameter		Theory	SCAD	Deviations, \%
$\begin{gathered} (0,0,0) \\ \text { Node } 1 \end{gathered}$	w	mm	-13,616	-13,177	3,2
	$\sigma_{x}=\sigma_{y}$	$\mathrm{kN} / \mathrm{m}^{2}$	-80,0	-79,919	0,10
	σ_{z}	$\mathrm{kN} / \mathrm{m}^{2}$	-100,0	-100,079	0,09
(0,0,-2) Node 10005	w	mm	-9,017	-8,574	4,91
	$\sigma_{x}=\sigma_{y}$	$\mathrm{kN} / \mathrm{m}^{2}$	-8,29	-8,189	1,21
	σ_{z}	$\mathrm{kN} / \mathrm{m}^{2}$	-70,09	-70,109	0,03
(-2,2,-2) Node 10213	$\mathrm{u}=\mathrm{v}$	mm	0,488	0,492	0,82
	w	mm	-5,704	-5,262	7,75
	$\sigma_{x}=\sigma_{y}$	$\mathrm{kN} / \mathrm{m}^{2}$	-7,56	-7,496	0,85
	σ_{z}	$\mathrm{kN} / \mathrm{m}^{2}$	-23,25	-23,267	0,07
	$\tau_{x y}$	$\mathrm{kN} / \mathrm{m}^{2}$	-5,27	-5,288	0,34
	$\tau_{\mathrm{xz}}=\tau_{\mathrm{yz}}$	$\mathrm{kN} / \mathrm{m}^{2}$	12,11	12,166	0,46

Notes: In the analytical solution the distribution of the normal stresses $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$, tangential stresses $\tau_{\mathrm{xy}}, \tau_{\mathrm{xz}}$, τ_{yz} and displacements $\mathrm{u}, \mathrm{v}, \mathrm{w}$ across the half-space is determined according to the following formulas:

$$
\begin{aligned}
& \sigma_{x}(x, y, z)=\frac{q}{2 \cdot \pi} \cdot\left\{-(1-2 \cdot \mu) \cdot \operatorname{arctg}\left[\frac{(x-a) \cdot(y-b)}{(x-a)^{2}+z^{2}-z \cdot \sqrt{(x-a)^{2}-(y-b)^{2}+z^{2}}}\right]+\right. \\
& +2 \cdot \mu \cdot \operatorname{arctg}\left[\frac{(x-a) \cdot(y-b)}{z \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}\right]-\frac{z \cdot(x-a) \cdot(y-b)}{\left[(x-a)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}+ \\
& +(1-2 \cdot \mu) \cdot \operatorname{arctg}\left[\frac{(x-a) \cdot(y+b)}{(x-a)^{2}+z^{2}-z \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}\right]-
\end{aligned}
$$

$$
\left.\begin{array}{rl}
-2 \cdot \mu \cdot \operatorname{arctg}\left[\frac{(x-a) \cdot(y+b)}{z \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}\right]+\frac{z \cdot(x-a) \cdot(y+b)}{\left[(x-a)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}+ \\
+(1-2 \cdot \mu) \cdot \operatorname{arctg}\left[\frac{(x+a) \cdot(y-b)}{(x+a)^{2}+z^{2}-z \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}\right]- \\
-2 \cdot \mu \cdot \operatorname{arctg}\left[\frac{(x+a) \cdot(y-b)}{z \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}\right]+\frac{z \cdot(x+a) \cdot(y-b)}{\left[(x+a)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}- \\
\left.+2 \cdot \mu \cdot \operatorname{arctg}\left[\frac{(x+a) \cdot(y+b)}{z \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right]-\frac{(x+a) \cdot(y+b)}{\left[(x+a)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right]
\end{array}\right\} .
$$

$$
\begin{aligned}
& \sigma_{z}(x, y, z)=\frac{q}{2 \cdot \pi} \cdot\left\{\frac{z \cdot(x-a) \cdot(y-b) \cdot\left[(x-a)^{2}+(y-b)^{2}+2 \cdot z^{2}\right]}{\left[(x-a)^{2}+z^{2}\right] \cdot\left[(y-b)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}+\right. \\
& +\operatorname{arctg}\left[\frac{(x-a) \cdot(y-b)}{z \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}\right]- \\
& -\frac{z \cdot(x-a) \cdot(y+b) \cdot\left[(x-a)^{2}+(y+b)^{2}+2 \cdot z^{2}\right]}{\left[(x-a)^{2}+z^{2}\right] \cdot\left[(y+b)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}- \\
& -\operatorname{arctg}\left[\frac{(x-a) \cdot(y+b)}{z \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}\right]- \\
& -\frac{z \cdot(x+a) \cdot(y-b) \cdot\left[(x+a)^{2}+(y-b)^{2}+2 \cdot z^{2}\right]}{\left[(x+a)^{2}+z^{2}\right] \cdot\left[(y-b)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}- \\
& -\operatorname{arctg}\left[\frac{(x+a) \cdot(y-b)}{z \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}\right]+ \\
& +\frac{z \cdot(x+a) \cdot(y+b) \cdot\left[(x+a)^{2}+(y+b)^{2}+2 \cdot z^{2}\right]}{\left[(x+a)^{2}+z^{2}\right] \cdot\left[(y+b)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}+ \\
& \left.+\operatorname{arctg}\left[\frac{(x+a) \cdot(y+b)}{z \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right]\right\} . \\
& \tau_{x y}(x, y, z)=\frac{q}{2 \cdot \pi} \cdot\left\{-(1-2 \cdot \mu) \cdot \ln \left[\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}-z\right]+\right. \\
& +\frac{z}{\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}+ \\
& +(1-2 \cdot \mu) \cdot \ln \left[\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}-z\right]- \\
& -\frac{z}{\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}+ \\
& +(1-2 \cdot \mu) \cdot \ln \left[\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}-z\right]- \\
& -\frac{z}{\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}- \\
& -(1-2 \cdot \mu) \cdot \ln \left[\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}-z\right]+ \\
& \left.+\frac{z}{\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right\} .
\end{aligned}
$$

$$
\begin{aligned}
\tau_{x z}(x, y, z) & =\frac{q}{2 \cdot \pi} \cdot\left\{-\frac{z^{2} \cdot(y-b)}{\left[(x-a)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}+\right. \\
& +\frac{z^{2} \cdot(y+b)}{\left[(x-a)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}+ \\
& +\frac{z^{2} \cdot(y-b)}{\left[(x+a)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}- \\
& \left.-\frac{z^{2} \cdot(y+b)}{\left[(x+a)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right\} \\
\tau_{y z}(x, y, z) & =\frac{q}{2 \cdot \pi} \cdot\left\{-\frac{z^{2} \cdot(x-a)}{\left[(y-b)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}+\right. \\
+ & \frac{z^{2} \cdot(x+a)}{\left[(y-b)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}+ \\
+ & \frac{z^{2} \cdot(x-a)}{\left[(y+b)^{2}+z^{2}\right] \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}- \\
& \left.-\frac{z^{2} \cdot(x+a)}{\left[(y+b)^{2}+z^{2}\right] \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& u(x, y, z)=\frac{q \cdot(1+\mu)}{2 \cdot \pi \cdot E} \cdot\left\{2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}+(y-b)\right]-\right. \\
& -(1-2 \cdot \mu) \cdot(y-b) \cdot \ln \left[\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}-z\right]- \\
& -(1-2 \cdot \mu) \cdot(x-a) \cdot \operatorname{arctg}\left(\frac{y-b}{x-a}\right)- \\
& -(1-2 \cdot \mu) \cdot(x-a) \cdot \operatorname{arctg}\left[\frac{z \cdot(y-b)}{(x-a) \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}\right]- \\
& -2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}+(y+b)\right]+ \\
& +(1-2 \cdot \mu) \cdot(y+b) \cdot \ln \left[\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}-z\right]+ \\
& +(1-2 \cdot \mu) \cdot(x-a) \cdot \operatorname{arctg}\left(\frac{y+b}{x-a}\right)+ \\
& +(1-2 \cdot \mu) \cdot(x-a) \cdot \operatorname{arctg}\left[\frac{z \cdot(y+b)}{(x-a) \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}\right]- \\
& -2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}+(y-b)\right]+ \\
& +(1-2 \cdot \mu) \cdot(y-b) \cdot \ln \left[\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}-z\right]+ \\
& +(1-2 \cdot \mu) \cdot(x+a) \cdot \operatorname{arctg}\left(\frac{y-b}{x+a}\right)+ \\
& +(1-2 \cdot \mu) \cdot(x+a) \cdot \operatorname{arctg}\left[\frac{z \cdot(y-b)}{(x+a) \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}\right]+ \\
& +2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}+(y+b)\right]- \\
& -(1-2 \cdot \mu) \cdot(y+b) \cdot \ln \left[\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}-z\right]- \\
& -(1-2 \cdot \mu) \cdot(x+a) \cdot \operatorname{arctg}\left(\frac{y+b}{x+a}\right)- \\
& \left.-(1-2 \cdot \mu) \cdot(x+a) \cdot \operatorname{arctg}\left[\frac{z \cdot(y+b)}{(x+a) \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right]\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& v(x, y, z)=\frac{q \cdot(1+\mu)}{2 \cdot \pi \cdot E} \cdot\left\{2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}+(x-a)\right]-\right. \\
& -(1-2 \cdot \mu) \cdot(x-a) \cdot \ln \left[\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}-z\right]- \\
& -(1-2 \cdot \mu) \cdot(y-b) \cdot \operatorname{arctg}\left(\frac{x-a}{y-b}\right)- \\
& -(1-2 \cdot \mu) \cdot(y-b) \cdot \operatorname{arctg}\left[\frac{z \cdot(x-a)}{(y-b) \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}\right]- \\
& -2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}+(x-a)\right]+ \\
& +(1-2 \cdot \mu) \cdot(x-a) \cdot \ln \left[\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}-z\right]+ \\
& +(1-2 \cdot \mu) \cdot(y+b) \cdot \operatorname{arctg}\left(\frac{x-a}{y+b}\right)+ \\
& +(1-2 \cdot \mu) \cdot(y+b) \cdot \operatorname{arctg}\left[\frac{z \cdot(x-a)}{(y+b) \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}\right]- \\
& -2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}+(x+a)\right]+ \\
& +(1-2 \cdot \mu) \cdot(x+a) \cdot \ln \left[\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}-z\right]+ \\
& +(1-2 \cdot \mu) \cdot(y-b) \cdot \operatorname{arctg}\left(\frac{x+a}{y-b}\right)+ \\
& +(1-2 \cdot \mu) \cdot(y-b) \cdot \operatorname{arctg}\left[\frac{z \cdot(x+a)}{(y-b) \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}\right]+ \\
& +2 \cdot(1-\mu) \cdot z \cdot \ln \left[\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}+(x+a)\right]- \\
& -(1-2 \cdot \mu) \cdot(x+a) \cdot \ln \left[\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}-z\right]- \\
& -(1-2 \cdot \mu) \cdot(y+b) \cdot \operatorname{arctg}\left(\frac{x+a}{y+b}\right)- \\
& \left.-(1-2 \cdot \mu) \cdot(y+b) \cdot \operatorname{arctg}\left[\frac{z \cdot(x+a)}{(y+b) \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right]\right\} .
\end{aligned}
$$

$$
\begin{aligned}
w(x, y, z)= & \frac{q \cdot(1+\mu)}{2 \cdot \pi \cdot E} \cdot\left\{-2 \cdot(1-\mu) \cdot(x-a) \cdot \ln \left[\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}+(y-b)\right]-\right. \\
& -2 \cdot(1-\mu) \cdot(y-b) \cdot \ln \left[\sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}+(x-a)\right]+ \\
& +(1-2 \cdot \mu) \cdot z \cdot \operatorname{arctg}\left[\frac{(x-a) \cdot(y-b)}{z \cdot \sqrt{(x-a)^{2}+(y-b)^{2}+z^{2}}}\right]+ \\
+ & 2 \cdot(1-\mu) \cdot(x-a) \cdot \ln \left[\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}+(y+b)\right]+ \\
+ & 2 \cdot(1-\mu) \cdot(y+b) \cdot \ln \left[\sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}+(x-a)\right]- \\
& \quad(1-2 \cdot \mu) \cdot z \cdot \operatorname{arctg}\left[\frac{(x-a) \cdot(y+b)}{z \cdot \sqrt{(x-a)^{2}+(y+b)^{2}+z^{2}}}\right]+ \\
+ & 2 \cdot(1-\mu) \cdot(x+a) \cdot \ln \left[\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}+(y-b)\right]+ \\
+ & 2 \cdot(1-\mu) \cdot(y-b) \cdot \ln \left[\sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}+(x+a)\right]- \\
& \quad-(1-2 \cdot \mu) \cdot z \cdot \operatorname{arctg}\left[\frac{(x+a) \cdot(y-b)}{z \cdot \sqrt{(x+a)^{2}+(y-b)^{2}+z^{2}}}\right]- \\
- & 2 \cdot(1-\mu) \cdot(x+a) \cdot \ln \left[\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}+(y+b)\right]- \\
- & 2 \cdot(1-\mu) \cdot(y+b) \cdot \ln \left[\sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}+(x+a)\right]+ \\
& \left.\left.+(1-2 \cdot \mu) \cdot z \cdot \operatorname{arctg}\left[\frac{(x+a) \cdot(y+b)}{z \cdot \sqrt{(x+a)^{2}+(y+b)^{2}+z^{2}}}\right]\right]\right\}
\end{aligned}
$$

Linear Dynamics

Plane Truss Subjected to Instantaneous Pulses Concentrated in Non-Supporting Nodes of the Bottom Chord

Objective: Determination of the strain state of a plane truss subjected to instantaneous pulses concentrated in non-supporting nodes of the bottom chord.

Initial data files: 5.11.SPR, График_5.11.txt

Problem formulation: The plane two-span truss with parallel chords and a diagonal lattice with three panels of equal length in each span is supported by the bottom chord. Masses M are concentrated and concentrated instantaneous transverse pulses S are applied in the intermediate (non-supporting) nodes of the bottom chord. Determine the natural oscillation modes and natural frequencies ω of the plane truss, as well as the transverse displacements of the nodal masses Z with time.

References: Rabinovich I.M., Sinitsyn A.P., Luzhin O.V., Terenin V.M., Analysis of Structures Subject to Pulse Actions, Moscow, Stroyizdat, 1970, p. 153.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{tf} / \mathrm{m}^{2}$
$\mathrm{F}=1 \cdot 10^{-2} \mathrm{~m}^{2}$
$2 \cdot \mathrm{~F}=2 \cdot 10^{-2} \mathrm{~m}^{2}$
$\mathrm{a}=2.0 \mathrm{~m}$
$\mathrm{M}=16.0 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}$
$\mathrm{S}=4.0 \cdot \mathrm{tf} \cdot \mathrm{s}$
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{s}^{2}$

- elastic modulus;
- cross-sectional area of the truss elements except for the column above the middle support;
- cross-sectional area of the column above the middle support;
- height of the truss and length of the truss panel;
- value of the concentrated masses in the intermediate (non-supporting) nodes of the truss bottom chord;
- value of the concentrated instantaneous transverse pulses applied in the intermediate (non-supporting) nodes of the truss bottom chord; - gravitational acceleration.

Finite element model: Since the structure and the applied loads are symmetric, only a half of the truss is considered with the restraints of the bottom and top chords on the symmetry axis in the longitudinal (horizontal) direction (degree of freedom X) and halving the stiffness of the column above the middle support. Design model - plane hinged bar system, 11 bar elements of type 1. Boundary conditions of the support nodes of the truss bottom chord are provided by imposing constraints in the direction of the degree of freedom Z . The concentrated masses are specified by transforming the static nodal loads $M \cdot g$.
The calculation is performed in two stages: first the natural oscillation modes and natural frequencies ω are determined by the modal analysis, and then the transverse displacements of the nodal masses Z with time are determined by the direct integration of the equations of motion method. The action of the concentrated instantaneous transverse pulses is described by the graph of the load variation with time and is given in the form of nodal forces acting along the Z axis of the global coordinate system with the scale factor of 1.0 and the delay time 0.0 s . Intervals between the time points of the load variation graph are equal to $\Delta \mathrm{t}_{\mathrm{int}}=$ 0.00001 s and correspond to the integration step. When plotting the graph the pulse action is taken with a linear shape function, force value $P=400000 \mathrm{tf}$ and duration $\Delta \mathrm{t}_{\mathrm{int}}=0.00001 \mathrm{~s}$. The duration of the process is equal to $t=0.12 \mathrm{~s}$, which roughly corresponds to twice the value of the fundamental period of oscillations $4 \cdot \pi / \omega_{1}$. Critical damping ratios for the 1 -st and 2 -nd natural frequencies are taken with the minimum value $\xi=0.0001$. The conversion factor for the added static loading is equal to $k=0.981$ (mass generation). Number of nodes in the design model - 7. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

1 -st and 2-nd natural oscillation modes (symmetric)

Graph of the variation of the transverse displacements of the nodal mass Z7
(closest to the end support) with time (m)

Graph of the variation of the transverse displacements of the nodal mass Z6 (closest to the middle support) with time (m)

Amplitude values of the transverse displacements of the nodal mass Z7 (m) and the deformed models at the respective time points

Amplitude values of the transverse displacements of the nodal mass Z6 (m) and the deformed models at the respective time points

Comparison of solutions:

Natural frequencies $\omega, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	112.0	108.8	2.86
2	208.0	197.4	5.10

Amplitude values of the transverse displacements of the nodal masses Z

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Displacement, \mathbf{m}	Time, \mathbf{s}	Displacement, \mathbf{m}	Deviations, \%
	0.0142	0.002264	0.0144	0.002306	1.86
7	0.0420	-0.002280	0.0433	-0.002336	2.46
7	0.0702	0.002251	0.0720	0.002288	1.64
7	0.0982	-0.002287	0.1014	-0.002331	1.92
6	0.0139	0.002209	0.0145	0.002249	1.81
6	0.0422	-0.002192	0.0432	-0.002214	1.00
6	0.0701	0.002222	0.0724	0.002267	2.03
6	0.0982	-0.002185	0.1006	-0.002220	1.60

Graphs of the variation of the transverse displacements of the nodal masses Z7 and Z6 with time according to the theoretical solution (m)

Notes: In addition to taking the symmetry into account the following assumptions were made when deriving the analytical solution:

- the displacement of masses in the longitudinal (horizontal) direction is neglected;
- the difference between the mutual transverse (vertical) displacements of the lower and upper nodes of each vertical of the truss is neglected, and the masses are concentrated only in the lower nodes.

In the analytical solution the natural frequencies of oscillations ω of the plane truss are determined according to the following formulas:

$$
\omega_{7}=0.448 \cdot \sqrt{\frac{E \cdot F}{a \cdot M}} ; \quad \quad \omega_{6}=0.832 \cdot \sqrt{\frac{E \cdot F}{a \cdot M}} .
$$

In the analytical solution the transverse displacements of the nodal masses of the plane truss Z with time are determined according to the following formulas:

$$
\begin{gathered}
Z_{7}=1 \cdot \frac{1.016 \cdot S}{0.448 \cdot M} \cdot \sqrt{\frac{a \cdot M}{E \cdot F}} \cdot \sin \left(\omega_{1} \cdot t\right)-1 \cdot \frac{0.016 \cdot S}{0.832 \cdot M} \cdot \sqrt{\frac{a \cdot M}{E \cdot F}} \cdot \sin \left(\omega_{2} \cdot t\right) \\
Z_{6}= \\
=0.972 \cdot \frac{1.016 \cdot S}{0.448 \cdot M} \cdot \sqrt{\frac{a \cdot M}{E \cdot F}} \cdot \sin \left(\omega_{1} \cdot t\right)+1.028 \cdot \frac{0.016 \cdot S}{0.832 \cdot M} \cdot \sqrt{\frac{a \cdot M}{E \cdot F}} \cdot \sin \left(\omega_{2} \cdot t\right) .
\end{gathered}
$$

The deviations from the theory for the natural frequencies of oscillations are due to the fact that the "manual" calculation in the source is performed with significant errors.

Natural Oscillations of a Spatial Pipeline Clamped at the Edges (Hougaard's Problem)

Objective: Modal analysis of a spatial pipeline clamped at the edges.

Initial data file: 5.1.SPR

Problem formulation: Determine the natural oscillation modes and natural frequencies f of the spatial steel pipeline composed of three mutually orthogonal straight segments connected in series by fittings, clamped at the edges and filled with water.

References: William Hovgaard, Stresses in Three-dimensional Pipe Bends. Transactions of ASME, vol. 57, FSP 75-12, 1935.

Initial data:

$\mathrm{E}=24.0 \cdot 10^{6} \mathrm{psi}=1.654740 \cdot 10^{8} \mathrm{kPa} \quad-$ elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{D}_{\mathrm{e}}=7.288$ in $=0.185115 \mathrm{~m} \quad$ - outer diameter of the pipe cross-section;
$\mathrm{t}=0.241 \mathrm{in}=0.006121 \mathrm{~m} \quad-$ thickness of the pipe cross-section;
$\rho_{\mathrm{s}}=0.283 \mathrm{lb} / \mathrm{in}^{3}=7.833 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the pipe material (steel);
$\rho_{\mathrm{w}}=0.036 \mathrm{lb} / \mathrm{in}^{3}=0.996 \mathrm{t} / \mathrm{m}^{3} \quad-$ density of the filling material (water);
$\mathrm{L}_{\text {strl }}=108.9 \mathrm{in}=2.766 \mathrm{~m} \quad$ - length of the first straight section of the pipeline;
$\mathrm{L}_{\text {str2 }}=35.6$ in $=0.904 \mathrm{~m} \quad$ - length of the second straight section of the pipeline;
$\mathrm{L}_{\mathrm{str} 3}=41.0 \mathrm{in}=1.041 \mathrm{~m} \quad$ - length of the third straight section of the pipeline;
$\mathrm{R}_{\text {elb }}=36.3$ in $=0.922 \mathrm{~m} \quad$ - radius of the axis of the pipeline fittings;
stiffness properties and masses:
$E A=E \cdot\left(\pi \cdot D_{e}{ }^{2} / 4\right) \cdot\left(1-\left(1-2 \cdot t / D_{e}\right)^{2}\right)=569598 \mathrm{kN} \quad-$ axial stiffness of the pipe cross-section;
$E I_{b, s t r}=E \cdot\left(\pi \cdot D_{e}{ }^{4} / 64\right) \cdot\left(1-\left(1-2 \cdot t / D_{e}\right)^{4}\right)=2283.81 \mathrm{kN} \cdot \mathrm{m} \quad$ - bending stiffness of the cross-section of the straight segment of the pipe;
$E I_{b, \text { elb }}=E \cdot\left(\pi \cdot D_{e}{ }^{4} / 64\right) \cdot\left(1-\left(1-2 \cdot \mathrm{t} / \mathrm{D}_{\mathrm{e}}\right)^{4}\right) / \mathrm{k}=995.824 \mathrm{kN} \cdot \mathrm{m}$
$\mathrm{k}=\left(10+12 \cdot \lambda^{2}\right) /\left(1+12 \cdot \lambda^{2}\right)=2.293391$

- bending stiffness of the cross-section of the pipe fitting (taking into account the flattening), where:
- Von Karman coefficient of flexibility,
$\lambda=t \cdot R_{\text {elb }} /\left(\left(D_{\mathrm{e}}-2 \cdot t\right) / 4\right)=0.704654$
- geometric parameter;
$\mathrm{GI}_{\mathrm{t}}=\left(\mathrm{E} /(2 \cdot(1+v)) \cdot\left(\pi \cdot \mathrm{D}_{\mathrm{e}}^{4} / 32\right) \cdot\left(1-\left(1-2 \cdot \mathrm{t} / \mathrm{D}_{\mathrm{e}}\right)^{4}\right)=1756.78 \mathrm{kN} \cdot \mathrm{m} \quad\right.$ - torsional stiffness of the pipe crosssection;
$\mathrm{m}=\cdot\left(\pi \cdot \mathrm{D}_{\mathrm{e}}^{2} / 4\right) \cdot\left(\rho_{\mathrm{s}}-\left(\rho_{\mathrm{s}^{-}} \rho_{\mathrm{w}}\right)\left(1-2 \cdot \mathrm{t} / \mathrm{D}_{\mathrm{e}}\right)^{2}\right) \cdot \mathrm{g}=0.4938 \mathrm{kN} / \mathrm{m}$
- linear static load from the weight of the pipe filled with water.

Finite element model: Design model - general type system, pipeline elements - 38 bar elements of type 5. The spacing of the finite element mesh in the longitudinal direction (along the X1 axis of the local coordinate system) is $\approx 0.2 \mathrm{~m}$. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom $X, Y, Z, U X, U Y, U Z$ for the end nodes of the pipeline. The distributed mass is specified by transforming the static load from the weight of the pipe filled with water, m. Number of nodes in the design model -39 . The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

1-st and 2-nd natural oscillation modes

3-rd and 4-th natural oscillation modes

5-th and 6-th natural oscillation modes

7-th and 8-th natural oscillation modes

9-th natural oscillation mode

Comparison of solutions:

Natural frequencies $f, \mathrm{~Hz}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	10.18	10.01	1.67
2	19.54	19.29	1.28
3	25.47	24.55	3.61
4	48.09	46.79	2.70
5	52.86	50.77	3.95
6	75.94	82.21	8.26
7	80.11	84.29	5.22
8	122.34	126.58	3.47
9	123.15	128.51	4.35

Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Sudden Constant Load Applied to One of Them

Objective: Determination of the stress-strain state of a simply supported weightless beam with two concentrated masses and transverse sudden constant load applied to one of them.

Initial data files: 5.12_Sudd_L.SPR, График_5.12_Sudd_L.txt

Problem formulation: Two identical loads of mass m are attached to the simply supported beam of constant cross-section at a quarter span distance from each support. The mass of the beam is neglected in comparison with the masses of the loads. The force P is applied to one of the masses at the initial time and remains constant. Determine the natural oscillation modes and natural frequencies p of the simply supported beam, as well as the deflections η and bending moments M in the cross-sections of the beam with the attached masses with time.

References: S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I.
Feodos'yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic Analysis. Stability. Creep. Moscow, Mashgiz, 1952, p. 150.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{6} \mathrm{tf} / \mathrm{m}^{2} \quad$ - elastic modulus;
$v=0.2$
$\mathrm{b}=0.4 \mathrm{~m}$

- Poisson's ratio;
- width of the rectangular cross-section of the beam;
$\mathrm{h}=0.8 \mathrm{~m} \quad$ - height of the rectangular cross-section of the beam;
$1=8.0 \mathrm{~m}$
$\mathrm{m}=3.0 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}$
- beam span length;
- value of the concentrated masses attached to the beam;
$\mathrm{P}=76.8 \mathrm{tf}$
- value of the transverse sudden constant force applied to one of the masses;
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{d}^{2}$
$\mathrm{I}=\mathrm{b} \cdot \mathrm{h}^{3} / 12=0.017067$
- gravitational acceleration;
- cross-sectional moment of inertia of the beam.

Finite element model: Design model - plane frame, 32 bar elements of type 2. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node on the symmetry axis of the beam in the direction of the degree of freedom X . The concentrated masses are specified by transforming the static nodal loads $m \cdot g$.
The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are determined by the modal analysis, and then the deflections η and bending moments M in the cross-sections of the beam with the attached masses with time are determined by the direct integration of the equations of motion method. The action of the transverse sudden constant force is described by the graph of the load variation with time and is given in the form of a nodal force acting along the Z axis of the global coordinate system with the scale factor of 1.0 and the delay time 0.0 s . Intervals between the time points of the load variation graph are equal to $\Delta \mathrm{t}_{\mathrm{int}}=0.001571 \mathrm{c}\left(\mathrm{T}_{1} / 100\right)$ and correspond to the integration step. When plotting the graph, the action of the transverse sudden constant force is taken as $\mathrm{P}=76.8 \mathrm{tf}$ at all time points $\mathrm{n} \cdot \Delta \mathrm{t}_{\mathrm{int}}$. The duration of the process is equal to $\mathrm{t}=0.3142 \mathrm{~s}$, which corresponds to twice the value of the fundamental period of oscillations $2 \cdot \mathrm{~T}_{1}$. Critical damping ratios for the 1 -st and 2 -nd natural frequencies are taken with the minimum value $\xi=0.0001$. The conversion factor for the added static loading is equal to $\mathrm{k}=$ 0.981 (mass generation). Number of nodes in the design model - 33. The modal integration method is used

Verification Examples

in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Graph of the variation of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force with time (m)

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force with time (m)

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force
and the deformed model at the respective time point (m)

Amplitude value of the deflection η_{2} in the cross-section of the beam

Graph of the variation of the bending moment M_{1} in the cross-section of the beam with the attached mass subjected to the shear force, with time (tm $\cdot \mathrm{m}$)

Graph of the variation of the bending moment M_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force, with time (tm•m)

Amplitude values of the bending moment M_{1} in the cross-section of the beam with the attached mass subjected to the shear force ($\mathrm{tm} \cdot \mathrm{m}$)

Amplitude values of the bending moment M_{2} in the cross-section of the beam with the attached mass not subjected to the shear force (tm•m)

Comparison of solutions:

The dashed lines show the values of static deflections
Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

The dashed lines show the values of static bending moments

Graphs of the variation of the bending moments M_{1} and M_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (tf:m)

Natural frequencies $p, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	40.000	40.000	0.00
2	113.137	113.137	0.00

Amplitude value of the deflections η in the cross-sections of the beam with the attached masses, m

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
	0.0809	0.017928	0.0817	0.017911	0.09
2	0.0695	0.014474	0.0707	0.014485	0.08

Amplitude value of the bending moments M in the cross-sections of the beam with the attached masses, $\mathrm{tf} \cdot \mathrm{m}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Bending moment, $\mathbf{t f} \cdot \mathbf{m}$	Time, \mathbf{s}	Bending moment, $\mathbf{t f} \cdot \mathbf{m}$	Deviations, \%
	0.0346	-128.426	0.0361	-128.486	0.05
1	0.0493	-115.960	0.0503	-116.387	0.37
1	0.0824	-229.286	0.0833	-228.949	0.15
1	0.1180	-87.419	0.1194	-86.744	0.77
1	0.1334	-101.705	0.1351	-100.782	0.91
2	0.0226	+41.120	0.0236	+40.829	0.71
2	0.0599	-128.638	0.0613	-128.687	0.04
2	0.0849	-74.952	0.0864	-74.957	0.01
2	0.1052	-105.748	0.1068	-104.818	0.88
2	0.1423	+60.864	0.1430	+61.063	0.33

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are determined according to the following formulas:

$$
p_{1}=\sqrt{\frac{48 \cdot E \cdot I}{m \cdot l^{3}}} ; \quad p_{2}=\sqrt{\frac{384 \cdot E \cdot I}{m \cdot l^{3}}} .
$$

In the analytical solution the deflections η in the cross-sections of the beam with the attached masses with time are determined according to the following formulas:

$$
\begin{aligned}
& \eta_{I}(t)=\frac{P \cdot l^{3}}{768 \cdot E \cdot I} \cdot\left[8 \cdot\left(1-\cos \left(p_{1} \cdot t\right)\right)+\left(1-\cos \left(p_{2} \cdot t\right)\right)\right] \\
& \eta_{2}(t)=\frac{P \cdot l^{3}}{768 \cdot E \cdot I} \cdot\left[8 \cdot\left(1-\cos \left(p_{1} \cdot t\right)\right)-\left(1-\cos \left(p_{2} \cdot t\right)\right)\right]
\end{aligned}
$$

In the analytical solution the bending moments M in the cross-sections of the beam with the attached masses with time are determined according to the following formulas:

$$
\begin{aligned}
& M_{1}(t)=-\frac{P \cdot l}{16} \cdot\left[2 \cdot\left(1-\cos \left(p_{1} \cdot t\right)\right)+\left(1-\cos \left(p_{2} \cdot t\right)\right)\right] \\
& M_{2}(t)=-\frac{P \cdot l}{16} \cdot\left[2 \cdot\left(1-\cos \left(p_{1} \cdot t\right)\right)-\left(1-\cos \left(p_{2} \cdot t\right)\right)\right]
\end{aligned}
$$

Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Harmonic Exciting Force Applied to One of Them

Objective: Determination of the strain state of a simply supported weightless beam with two concentrated masses subjected to a transverse harmonic exciting force applied to one of them.

Initial data files:

5.12_Harm_L.SPR
График_5.12_Harm_L_Forc_Freq_1.txt
График_5.12_Harm_L_Forc_Freq_2.txt
График_5.12_Harm_L_Forc_Freq_3.txt
График_5.12_Harm_L_Forc_Freq_4.txt
График_5.12_Harm_L_Forc_Freq_5.txt
График_5.12_Harm_L_Forc_Freq_6.txt
График_5.12_Harm_L_Forc_Freq_7.txt

Problem formulation: Two identical loads of mass m are attached to the simply supported beam of constant cross-section at a quarter span distance from each support. The mass of the beam is neglected in comparison with the masses of the loads. The force P_{0} is applied to one of the masses at the initial time and varies harmonically with the frequency ω. Determine the natural oscillation modes and natural frequencies p of the simply supported beam, as well as the deflections η in the cross-sections of the beam with the attached masses with time.

References: S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. Feodos'yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic Analysis. Stability. Creep. Moscow, Mashgiz, 1952, p. 153.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{6} \mathrm{tf} / \mathrm{m}^{2} \quad$ - elastic modulus;
$v=0.2$

- Poisson's ratio;
$\mathrm{b}=0.4 \mathrm{~m}$
- width of the rectangular cross-section of the beam;
$\mathrm{h}=0.8 \mathrm{~m} \quad$ - height of the rectangular cross-section of the beam;
$1=8.0 \mathrm{~m}$
$\mathrm{m}=3.0 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}$
- beam span length;
- value of the concentrated masses attached to the beam;
$\mathrm{P}_{0}=76.8 \mathrm{tf}$
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{s}^{2}$
- amplitude value of the harmonic exciting force applied to one of the masses;
$\mathrm{I}=\mathrm{b} \cdot \mathrm{h}^{3} / 12=0.017067$
- gravitational acceleration;
- cross-sectional moment of inertia of the beam

The following values of frequencies of the harmonic exciting force ω_{i} depending on the values of natural frequencies of the beam p_{i} are considered:
$\omega_{\mathrm{j}}=0.5 \cdot \mathrm{p}_{1} ; 0.95 \cdot \mathrm{p}_{1} ; 1.05 \cdot \mathrm{p}_{1} ; 0.5 \cdot\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) ; 0.95 \cdot \mathrm{p}_{2} ; 1.05 \cdot \mathrm{p}_{2} ; 1.5 \cdot \mathrm{p}_{2}$.
Finite element model: Design model - plane frame, 32 bar elements of type 2. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom X . The concentrated masses are specified by transforming the static nodal loads $m \cdot g$.
The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are determined by the modal analysis, and then the deflections η in the cross-sections of the beam with the
attached masses with time are determined by the direct integration of the equations of motion method. The action of the transverse harmonic exciting force is described by the graph of the load variation with time and is given in the form of a nodal force acting along the Z axis of the global coordinate system with the scale factor of 1.0 and the delay time 0.0 s . Intervals between the time points of the load variation graph are equal to $\Delta \mathrm{t}_{\text {int }}=\mathrm{T}_{\mathrm{j}} / 100$, where T_{j} - period of the harmonic exciting force, and correspond to the integration step. When plotting the graph, the action of the transverse harmonic exciting force is taken as $P_{\mathrm{n}}=$ $P_{0} \cdot \cos \left(\omega_{\mathrm{j}} \cdot \mathrm{n} \cdot \Delta \mathrm{t}_{\mathrm{int}}\right)$ at the time points $\mathrm{n} \cdot \Delta \mathrm{t}_{\text {int }}$. The duration of the process is equal to $\mathrm{t}=2 \cdot \mathrm{~T}_{\mathrm{j}}$. Critical damping ratios for the 1 -st and 2 -nd natural frequencies are taken with the minimum value $\xi=0.0001$. The conversion factor for the added static loading is equal to $\mathrm{k}=0.981$ (mass generation). Number of nodes in the design model - 33. The modal integration method is used in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

1 -st and 2-nd natural oscillation modes

Graph of the variation of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force with time (m)
Frequency of the harmonic exciting force $\omega_{I}=0.5 \cdot p_{1}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force with time (m).

Frequency of the harmonic exciting force $\omega_{1}=0.5 \cdot p_{1}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).

Frequency of the harmonic exciting force $\omega_{I}=0.5 \cdot p_{I}$
|
0.012115

\qquad
\qquad

10089

\qquad

\qquad

1
\qquad

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).

Frequency of the harmonic exciting force $\omega_{1}=0.5 \cdot p_{1}$

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force with time (m).
Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

\qquad

\qquad

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Amplitude value of the deflection η_{1} in the cross-section of the beam
with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force, with time (m).

Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$

$1 .-0,01864$
${ }^{2} . \underbrace{-\ldots \ldots \ldots \ldots \ldots \ldots \ldots]}$
\qquad

$1.0 .0,041432$
$1, \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$
1.-.——————————————————. 0,008393 \qquad

\qquad

\qquad

! $-0,041014$.

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force, with time (m).

Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

\square

1. - $0,0,03906$
 —————:0,002164

1
 1.0 .00286

\qquad
\qquad
Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m). Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

\qquad

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m). Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Epenacten)

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force, with time (m).
Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

10.05627
\qquad
|

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m). Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force, with time (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force with time (m).

Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).

Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

0,001006

$-]_{x} . \ldots . \operatorname{c.c.c.c.c}-0,001459$

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).

Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

Comparison of solutions:

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m) Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

Natural frequencies $\mathrm{p}, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	40.000	40.000	0.00
2	113.137	113.137	0.00

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{1}=0.5 \cdot \mathrm{p}_{1}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, $\%$
1	0.0715	0.012129	0.0754	0.011629	4.12
1	0.0161	-0.023034	0.1634	-0.022804	1.00
1	0.2497	0.013302	0.2514	0.013543	1.81
1	0.3230	0.001094	0.3268	0.001423	-
1	0.3714	0.012253	0.3770	0.012156	0.79
1	0.4700	-0.021344	0.4650	-0.021635	1.36
1	0.5714	0.012072	0.5718	0.011818	2.10
2	0.0621	0.012314	0.0628	0.012115	1.62
2	0.1515	-0.020119	0.1508	-0.020250	0.65
2	0.2412	0.010905	0.2451	0.011364	4.21
2	0.3099	-0.001817	0.3142	-0.001890	-
2	0.3845	0.012586	0.3896	0.011918	5.31
2	0.4716	-0.021331	0.4776	-0.021019	1.46
2	0.5586	0.012664	0.5656	0.012968	2.40

Amplitude values of the deflections η in the cross-sections of the beam
with the attached masses
at the frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot \mathrm{p}_{1}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
1	0.0398	0.006829	0.0397	0.006657	2.52
1	0.1210	-0.020424	0.1223	-0.020227	0.96
1	0.2018	0.033848	0.2017	0.033642	0.61
1	0.2826	-0.046989	0.2843	-0.046665	0.69
2	0.0547	0.009260	0.0562	0.00900	2.81
2	0.1303	-0.020792	0.1289	-0.020352	2.12
2	0.2078	0.032790	0.2083	0.032331	1.40
2	0.2863	-0.044911	0.2876	-0.044388	1.16

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot \mathrm{p}_{1}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
	0.0374	0.006369	0.0389	0.006194	2.75
1	0.1161	-0.018850	0.1167	-0.018642	1.10
1	0.1938	0.030767	0.1945	0.030458	1.00
1	0.2710	-0.041915	0.2723	-0.041432	1.15
2	0.0534	0.008636	0.0539	0.008393	2.81
2	0.1249	-0.018428	0.1257	-0.018044	1.76
2	0.1959	0.029186	0.1945	0.028882	1.04
2	0.2695	-0.041172	0.2693	-0.041014	0.38

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
1	0.0267	0.003807	0.0263	0.003681	3.31
1	0.0631	-0.003795	0.0624	-0.003906	2.92
1	0.0859	-0.002215	0.0870	-0.002164	2.30
1	0.1016	-0.002783	0.1018	-0.002626	5.64
1	0.1387	0.004497	0.1396	0.004577	1.78
2	0.0440	0.004643	0.0443	0.004462	3.90
2	0.0823	-0.009649	0.0821	-0.009620	0.30
2	0.1207	0.005968	0.1251	0.006142	2.92
2	0.1579	-0.000288	0.1576	-0.000339	-

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot \mathrm{p}_{2}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
	0.0216	0.002575	0.0222	0.002477	3.81
1	0.0492	-0.003347	0.0491	-0.003410	1.88
1	0.0747	0.002938	0.0749	0.002889	1.67

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, m	Deviations, \%
1	0.1018	-0.006366	0.1018	-0.006251	1.81
2	0.0383	0.002731	0.0386	0.002605	4.61
2	0.0700	-0.005629	0.0702	-0.005627	0.04
2	0.0991	0.005222	0.0995	0.005254	0.61

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot \mathrm{p}_{2}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
	0.0203	0.002260	0.0201	0.002174	3.81
1	0.0460	-0.003028	0.0466	-0.003076	1.59
1	0.0705	0.003206	0.0709	0.003142	2.00
1	0.0967	-0.006393	0.0963	-0.006294	1.55
2	0.0366	0.002273	0.0370	0.002159	5.02
2	0.0667	-0.004473	0.0667	-0.004479	0.13
2	0.0942	0.004097	0.0942	0.004112	0.37

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot \mathrm{p}_{2}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
	0.0157	0.001346	0.0155	0.001289	4.23
1	0.0356	-0.001671	0.0355	-0.001709	2.27
1	0.0552	0.001788	0.0555	0.001733	3.08
2	0.0308	0.001072	0.0303	0.001006	6.16
2	0.0563	-0.001420	0.0562	-0.001459	2.75

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are determined according to the following formulas:

$$
p_{1}=\sqrt{\frac{48 \cdot E \cdot I}{m \cdot l^{3}}} ; \quad p_{2}=\sqrt{\frac{384 \cdot E \cdot I}{m \cdot l^{3}}} .
$$

In the analytical solution the deflections η in the cross-sections of the beam with the attached masses with time of the simply supported beam are determined according to the following formulas:

$$
\begin{aligned}
& \eta_{l}(t)=\frac{P_{0} \cdot l^{3}}{768 \cdot E \cdot I} \cdot\left[\left(\frac{8}{1-\frac{\omega^{2}}{p_{1}{ }^{2}}}+\frac{1}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}}\right) \cdot \cos (\omega \cdot t)-\left(\frac{8}{1-\frac{\omega^{2}}{p_{1}{ }^{2}}} \cdot \cos \left(p_{1} \cdot t\right)+\frac{1}{1-\frac{\omega^{2}}{p_{2}{ }^{2}} \cdot \cos \left(p_{2} \cdot t\right)}\right)\right] \\
& \eta_{2}(t)=\frac{P_{0} \cdot l^{3}}{768 \cdot E \cdot I} \cdot\left[\left(\frac{8}{1-\frac{\omega^{2}}{p_{1}{ }^{2}}}-\frac{1}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}}\right) \cdot \cos (\omega \cdot t)-\left(\frac{8}{1-\frac{\omega^{2}}{p_{1}{ }^{2}}} \cdot \cos \left(p_{1} \cdot t\right)-\frac{1}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}} \cdot \cos \left(p_{2} \cdot t\right)\right] .\right.
\end{aligned}
$$

Simply Supported Weightless Beam with Two Concentrated Masses and Transverse Harmonic Exciting Force Applied to One of Them Taking into Account the Energy Dissipation due to Internal Friction

Objective: Determination of the strain state of a simply supported weightless beam with two concentrated masses subjected to a transverse harmonic exciting force applied to one of them taking into account the energy dissipation due to internal friction.

Initial data files:

5.12_Harm_L_Damp.SPR
График_5.12_Harm_L_Forc_Freq_1.txt
График_5.12_Harm_L_Forc_Freq_2.txt
График_5.12_Harm_L_Forc_Freq_3.txt
График_5.12_Harm_L_Forc_Freq_4.txt
График_5.12_Harm_L_Forc_Freq_5.txt
График_5.12_Harm_L_Forc_Freq_6.txt
График_5.12_Harm_L_Forc_Freq_7.txt

Problem formulation: Two identical loads of mass m are attached to the simply supported beam of constant cross-section at a quarter span distance from each support. The mass of the beam is neglected in comparison with the masses of the loads. The force P_{0} is applied to one of the masses at the initial time and varies harmonically with the frequency ω. Determine the natural oscillation modes and natural frequencies p of the simply supported beam, as well as the deflections η in the cross-sections of the beam with the attached masses with time taking into account the energy dissipation due to internal friction.

References: S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. Feodos'yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic Analysis. Stability. Creep. Moscow, Mashgiz, 1952, p. 153.

Initial data:
$\mathrm{E}=3.0 \cdot 10^{6} \mathrm{tf} / \mathrm{m}^{2}$

- elastic modulus;
$v=0.2$
- Poisson's ratio;
$\mathrm{b}=0.4 \mathrm{~m}$
- width of the rectangular cross-section of the beam;
$\mathrm{h}=0.8 \mathrm{~m}$
- height of the rectangular cross-section of the beam;
- beam span length;
- value of the concentrated masses attached to the beam;
- amplitude value of the harmonic exciting force applied to one of the masses;
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{s}^{2}$
- gravitational acceleration;
$\mathrm{I}=\mathrm{b} \cdot \mathrm{h}^{3} / 12=0.017067$
- cross-sectional moment of inertia of the beam.

The following values of frequencies of the harmonic exciting force ω_{i} depending on the values of natural frequencies of the beam p_{i} are considered:
$\omega_{\mathrm{j}}=0.5 \cdot \mathrm{p}_{1} ; 0.95 \cdot \mathrm{p}_{1} ; 1.05 \cdot \mathrm{p}_{1} ; 0.5 \cdot\left(\mathrm{p}_{1}+\mathrm{p}_{2}\right) ; 0.95 \cdot \mathrm{p}_{2} ; 1.05 \cdot \mathrm{p}_{2} ; 1.5 \cdot \mathrm{p}_{2}$.
Critical damping ratios for the 1 -st and 2-nd natural frequencies are taken with the maximum value:
$\xi_{1,2}=0.9999$.

Finite element model: Design model - plane frame, 32 bar elements of type 2. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node

Verification Examples

of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom X . The concentrated masses are specified by transforming the static nodal loads $m \cdot g$.
The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are determined by the modal analysis, and then the deflections η in the cross-sections of the beam with the attached masses with time are determined by the direct integration of the equations of motion method. The action of the transverse harmonic exciting force is described by the graph of the load variation with time and is given in the form of a nodal force acting along the Z axis of the global coordinate system with the scale factor of 1.0 and the delay time 0.0 s . Intervals between the time points of the load variation graph are equal to $\Delta \mathrm{t}_{\mathrm{int}}=\mathrm{T}_{\mathrm{j}} / 100$, where T_{j} - period of the harmonic exciting force, and correspond to the integration step. When plotting the graph, the action of the transverse harmonic exciting force is taken as $P_{\mathrm{n}}=P_{0} \cdot \cos \left(\omega_{\mathrm{j}} \cdot \mathrm{n} \cdot \Delta \mathrm{t}_{\mathrm{int}}\right)$ at the time points $\mathrm{n} \cdot \Delta \mathrm{t}_{\mathrm{int}}$. The duration of the process is equal to $\mathrm{t}=2 \cdot \mathrm{~T}_{\mathrm{j}}$. The conversion factor for the added static loading is equal to $\mathrm{k}=0.981$ (mass generation). Number of nodes in the design model - 33. The modal integration method is used in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

1 -st and 2-nd natural oscillation modes

Graph of the variation of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force, with time (m).
Frequency of the harmonic exciting force $\omega_{I}=0.5 \cdot p_{I}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force, with time (m).

Frequency of the harmonic exciting force $\omega_{I}=0.5 \cdot p_{I}$

\qquad
$1 . \quad-0,0072$
${ }^{1} \ldots \ldots \ldots \ldots \ldots$
C
\qquad

1. -. - $0,0,07229$

L \qquad
(2)

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).

Frequency of the harmonic exciting force $\omega_{1}=0.5 \cdot p_{1}$

L

1 $-0,005612$

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).

Frequency of the harmonic exciting force $\omega_{1}=0.5 \cdot p_{1}$

Amplitude value of the deflection η_{1} in the cross-section of the beam
with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force, with time (m).

Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

$1 \quad-0.003685$
\qquad

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Eреma(cek)

Amplitude value of the deflection η_{1} in the cross-section of the beam
with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force, with time (m).
Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$

1 .0.00338

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot p_{1}$

Amplitude value of the deflection η_{1} in the cross-section of the beam
with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Graph of the variation of the deflection η_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force, with time (m).
Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m). Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m). Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force
and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force, with time (m).
Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed model at the respective time point (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam
with the attached mass not subjected to the shear force, with time (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

\qquad

Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m).
Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Amplitude value of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed model at the respective time point (m).

Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

Graph of the variation of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force, with time (m).

Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

Amplitude values of the deflection η_{1} in the cross-section of the beam with the attached mass subjected to the shear force and the deformed models at the respective time points (m).

Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

1,
Amplitude values of the deflection η_{2} in the cross-section of the beam with the attached mass not subjected to the shear force and the deformed models at the respective time points (m). Frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot p_{2}$

Comparison of solutions:

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{I}=0.5 \cdot p_{I}$

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot p_{1}$

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot p_{2}$

Graphs of the variation of the deflections η_{1} and η_{2} in the cross-sections of the beam with the attached masses with time according to the theoretical solution (m)

Frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot p_{2}$

Natural frequencies p, rad/s

Oscillation mode	Theory	SCAD	Deviations, \%
1	40.000	40.000	0.00
2	113.137	113.137	0.00

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{1}=0.5 \cdot \mathrm{p}_{1}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, m	Deviations, \%
	0.0595	0.005054	0.0628	0.004927	2.51
1	0.1996	-0.007251	0.2011	-0.007248	0.04
1	0.3569	0.007232	0.3582	0.007229	0.04
1	0.5139	-0.007232	0.5153	-0.007229	0.04
2	0.0685	0.003899	0.0691	0.003809	2.31
2	0.2079	-0.005627	0.2074	-0.005627	0.00
2	0.3652	0.005613	0.3645	0.005612	0.02
2	0.5223	-0.005613	0.5216	-0.005612	0.02

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{2}=0.95 \cdot \mathrm{p}_{1}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
1	0.0401	0.003330	0.0397	0.003235	2.85
1	0.1181	-0.005009	0.1190	-0.005014	0.10
1	0.2016	0.004822	0.2017	0.004819	0.06
1	0.2842	-0.004834	0.2843	-0.004831	0.06
2	0.0490	0.002478	0.0496	0.002404	2.99
2	0.1268	-0.003825	0.1256	-0.003828	0.08
2	0.2103	0.003684	0.2116	0.003677	0.19
2	0.2929	-0.003692	0.2942	-0.003685	0.19

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{3}=1.05 \cdot \mathrm{p}_{1}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, $\mathbf{\%}$
1	0.0375	0.003077	0.0389	0.002985	2.99
1	0.1088	-0.004609	0.1077	-0.004618	0.19
1	0.1845	0.004383	0.1855	0.004377	0.14
1	0.2592	-0.004402	0.2603	-0.004396	0.14
2	0.0464	0.002267	0.0479	0.002293	3.26
2	0.1175	-0.003497	0.1167	-0.003504	0.20
2	0.1932	0.003325	0.1945	0.003318	0.21
2	0.2679	-0.003339	0.2693	-0.003332	0.21

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{4}=0.5 \cdot\left(p_{1}+p_{2}\right)$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, $\boldsymbol{\%}$
1	0.0246	0.001770	0.0246	0.001714	3.16
1	0.0656	-0.002427	0.0657	-0.002453	1.07
1	0.1072	0.002082	0.1067	0.002072	0.48
1	0.1480	-0.002194	0.1478	-0.002196	0.09
2	0.0324	0.001179	0.0328	0.001136	3.65
2	0.0742	-0.001664	0.0739	-0.001685	1.26
2	0.1160	0.001388	0.1166	0.001382	0.43
2	0.1568	-0.001474	0.1576	-0.001473	0.07

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{5}=0.95 \cdot \mathrm{p}_{2}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, m	Deviations, \%
	0.0191	0.001221	0.0187	0.001178	3.52
1	0.0488	-0.001538	0.0491	-0.001564	1.69
1	0.0783	0.001259	0.0784	0.001247	0.95
1	0.1073	-0.001408	0.1076	-0.001414	0.43
2	0.0260	0.000741	0.0257	0.000712	3.91
2	0.0569	-0.000918	0.0573	-0.000939	2.29
2	0.0866	0.000689	0.0866	0.000679	1.45
2	0.1154	-0.000809	0.1158	-0.000813	0.49

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{6}=1.05 \cdot \mathrm{p}_{2}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, m	Deviations, \%
1	0.0177	0.001085	0.0180	0.001046	3.59
1	0.0447	-0.001329	0.0444	-0.001354	1.88
1	0.0714	0.001080	0.0709	0.001064	1.48
1	0.0976	-0.001229	0.0973	-0.001235	0.49
2	0.0244	0.000638	0.0243	0.000612	4.08
2	0.0526	-0.000748	0.0529	-0.000769	2.81
2	0.0793	0.000545	0.0794	0.000534	2.02
2	0.1054	-0.000667	0.1058	-0.000671	0.60

Amplitude values of the deflections η in the cross-sections of the beam with the attached masses
at the frequency of the harmonic exciting force $\omega_{7}=1.5 \cdot \mathrm{p}_{2}$

Nodal mass	Theory		SCAD		
	Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, m	Deviations, \%
1	0.0134	0.000692	0.0133	0.000666	3.76
1	0.0326	-0.000756	0.0326	-0.000778	2.91
1	0.0511	0.000616	0.0511	0.000599	2.76
1	0.0695	-0.000734	0.0696	-0.000743	1.23
2	0.0191	0.000355	0.0192	0.000339	4.51
2	0.0394	-0.000320	0.0392	-0.000337	5.31
2	0.0577	0.000219	0.0577	0.000205	6.39
2	0.0760	-0.000318	0.0740	-0.000311	2.20

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are determined according to the following formulas:

$$
p_{1}=\sqrt{\frac{48 \cdot E \cdot I}{m \cdot l^{3}}} ; \quad \quad p_{2}=\sqrt{\frac{384 \cdot E \cdot I}{m \cdot l^{3}}} .
$$

In the analytical solution the deflections η in the cross-sections of the beam with the attached masses with time taking into account the energy dissipation into internal friction are determined according to the following formulas (the Voigt viscous friction hypothesis):

$$
\begin{aligned}
& \eta_{1}\left(\zeta_{1}, \zeta_{2}, t\right)=\frac{P_{0} \cdot l^{3}}{768 \cdot E \cdot I} \cdot \frac{8}{1-\frac{\omega^{2}}{p_{1}^{2}}+4 \cdot \xi_{1}^{2} \cdot \frac{\frac{\omega^{2}}{p_{1}^{2}}}{1-\frac{\omega^{2}}{p^{2}}}} \cdot\left(\cos (\omega \cdot t)-e^{\left(-\xi_{1} \cdot p_{1} \cdot t\right)} \cdot \cos \left(p_{1} \cdot \sqrt{1-\xi_{1}^{2}} \cdot t\right)+\frac{2 \cdot \xi_{1} \cdot \frac{\omega}{p_{1}}}{1-\frac{\omega^{2}}{p_{1}^{2}}} \cdot \sin (\omega \cdot t)-\right. \\
& \left.\frac{\xi_{1}}{\sqrt{1-\xi_{1}{ }^{2}}} \cdot \frac{1+\frac{\omega^{2}}{p_{1}{ }^{2}}}{1-\frac{\omega^{2}}{p_{1}^{2}}} \cdot e^{\left(-\xi_{1} \cdot p_{1} \cdot t\right)} \cdot \sin \left(p_{1} \cdot \sqrt{1-\xi_{1}{ }^{2}} \cdot t\right)\right)+\frac{P_{0} \cdot l^{3}}{768 \cdot E \cdot I} \cdot \frac{1}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}+4 \cdot \xi_{2}{ }^{2} \cdot \frac{\frac{\omega^{2}}{p_{2}{ }^{2}}}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}}} . \\
& \left(\cos (\omega \cdot t)-e^{\left(-\xi_{2} \cdot p_{2} 2^{t}\right)} \cdot \cos \left(p_{2} \cdot \sqrt{1-\xi_{2}{ }^{2}} \cdot t\right)+\frac{2 \cdot \xi_{2} \cdot \frac{\omega}{p_{2}}}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}} \cdot \sin (\omega \cdot t)-\frac{\xi_{2}}{\sqrt{1-\xi_{2}{ }^{2}}} \cdot \frac{1+\frac{\omega^{2}}{p_{2}{ }^{2}}}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}} \cdot e^{\left(-\xi_{2} \cdot p_{2} \cdot t\right)} \cdot \sin \left(p_{2} \cdot \sqrt{1-\xi_{2}{ }^{2}} \cdot t\right)\right) \\
& \eta_{1}\left(\zeta_{1}, \zeta_{2}, t\right)=\frac{P_{0} \cdot l^{3}}{768 \cdot E \cdot I} \cdot \frac{8}{1-\frac{\omega^{2}}{p_{1}{ }^{2}}+4 \cdot \xi_{1}^{2} \cdot \frac{\frac{\omega^{2}}{p_{1}{ }^{2}}}{1-\frac{\omega^{2}}{p^{2}}}} \cdot\left(\cos (\omega \cdot t)-e^{\left(-\xi_{1} \cdot p_{1} \cdot t\right)} \cdot \cos \left(p_{1} \cdot \sqrt{1-\xi_{1}^{2}} \cdot t\right)+\frac{2 \cdot \xi_{1} \cdot \frac{\omega}{p_{1}}}{1-\frac{\omega^{2}}{p_{1}{ }^{2}}} \cdot \sin (\omega \cdot t)-\right. \\
& \left.\frac{\xi_{1}}{\sqrt{1-\xi_{1}{ }^{2}}} \cdot \frac{1+\frac{\omega^{2}}{p_{1}{ }^{2}}}{1-\frac{\omega^{2}}{p_{1}{ }^{2}}} \cdot e^{\left(-\xi_{1} \cdot p_{1} \cdot t\right)} \cdot \sin \left(p_{1} \cdot \sqrt{1-\xi_{1}{ }^{2}} \cdot t\right)\right)-\frac{P_{0} \cdot l^{3}}{768 \cdot E \cdot I} \cdot \frac{1}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}+4 \cdot \xi_{2}{ }^{2} \cdot \frac{\frac{\omega^{2}}{p_{2}{ }^{2}}}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}}} . \\
& \left(\cos (\omega \cdot t)-e^{\left(-\xi_{2} \cdot p_{2} \cdot t\right)} \cdot \cos \left(p_{2} \cdot \sqrt{1-\xi_{2}{ }^{2}} \cdot t\right)+\frac{2 \cdot \xi_{2} \cdot \frac{\omega}{p_{2}}}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}} \cdot \sin (\omega \cdot t)-\frac{\xi_{2}}{\sqrt{1-\xi_{2}{ }^{2}}} \cdot \frac{1+\frac{\omega^{2}}{p_{2}{ }^{2}}}{1-\frac{\omega^{2}}{p_{2}{ }^{2}}} \cdot e^{\left(-\xi_{5} \cdot p_{2} \cdot t\right)} \cdot \sin \left(p_{2} \cdot \sqrt{1-\xi_{2}{ }^{2}} \cdot t\right)\right)
\end{aligned}
$$

Simply Supported Beam with a Distributed Mass Subjected to a Transverse Harmonic Exciting Force Applied in the Middle of the Span

Objective: Determination of the strain state of a simply supported beam with a distributed mass subjected to a transverse harmonic exciting force applied in the middle of the span.

Initial data file:5.13.SPR

Problem formulation: The force P_{0} is applied in the middle of the span of the simply supported beam of constant cross-section with the uniformly distributed mass μ at the initial time and varies harmonically with the frequency ω. Determine the natural oscillation modes and natural frequencies p of the simply supported beam, as well as the deflection η in the cross-section in the middle of the beam span with time.

References: Timoshenko S.P., Course of the Theory of Elasticity, Kiev, Naukova Dumka, 1972, p. 343.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{6} \mathrm{tf} / \mathrm{m}^{2} \quad$ - elastic modulus;
$v=0.2$

- Poisson's ratio;
$\mathrm{b}=0.4 \mathrm{~m}$
- width of the rectangular cross-section of the beam;
$\mathrm{h}=0.8 \mathrm{~m} \quad-$ height of the rectangular cross-section of the beam;
$1=8.0 \mathrm{~m} \quad$ - beam span length;
$\gamma=2.5 \mathrm{tf} / \mathrm{m}^{3}$
$\mathrm{P}_{0}=76.8 \mathrm{tf}$
- specific weight of the beam material;
- amplitude value of the harmonic exciting force applied in the middle of the span;
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{s}^{2} \quad$ - gravitational acceleration;
$\mu=2.5 \cdot 0.4 \cdot 0.8 / 10.0=0.08 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}^{2} \quad$ - value of the uniformly distributed mass of the beam;
$\mathrm{I}=0.4 \cdot(0.8)^{3} / 12=0.017067 \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia of the beam.
The frequency of the harmonic exciting force ω is taken depending on the value of the fundamental natural frequency of the beam p_{1} :
$\omega=0.5 \cdot p_{1}$.
Finite element model: Design model - grade beam / plate, 32 bar elements of type 3. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z . The dimensional stability of the design model is provided by imposing a constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom UX. The distributed mass is specified by transforming the static load from the self-weight of the beam $\mu \cdot \mathrm{g}$. The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are determined by the modal analysis, and then the deflections η in the cross-section in the middle of the beam span with time are determined by the direct integration of the equations of motion method. The action of the transverse harmonic exciting force is described by the graph of the load variation with time and is given in the form of a nodal force acting along the Z axis of the global coordinate system with the scale factor of 1.0 and the delay time 0.0 s . Intervals between the time points of the load variation graph are equal to $\Delta \mathrm{t}_{\mathrm{int}}=$ $\mathrm{T} / 100$, where T - period of the harmonic exciting force, and correspond to the integration step. When plotting the graph, the action of the transverse harmonic exciting force is taken as $P_{n}=P_{0} \cdot \cos \left(\omega \cdot n \cdot \Delta t_{\text {int }}\right)$ at the time points $n \cdot \Delta t_{\mathrm{int}}$. The duration of the process is equal $\mathrm{to} \mathrm{t}=2 \cdot \mathrm{~T}$. Critical damping ratios for the 1 -st
and 2-nd natural frequencies are taken with the minimum value $\xi=0.0001$. The conversion factor for the added static loading is equal to $\mathrm{k}=0.981$ (mass generation). Number of nodes in the design model -33 . The modal integration method is used in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

10.0

Design model

Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time (m).

Amplitude values of the deflection η in the cross-section in the middle of the beam span and the deformed models at the respective time points (m).

Comparison of solutions:

Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time according to the theoretical solution (m)

Natural frequencies $p, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	123.370	123.370	0.00
2	493.480	493.480	0.00
3	1110.330	1110.325	0.00
4	1973.921	1973.887	0.00
5	3084.251	3084.120	0.00
6	4441.322	4440.919	0.01
7	6045.133	6044.087	0.02
8	7895.684	7893.275	0.03
9	9992.974	9987.907	0.05
10	12337.005	12327.069	0.08
11	14927.777	14909.367	0.12
12	17765.288	17732.721	0.18
13	20849.539	20794.097	0.27
14	24180.531	24089.155	0.38
15	27758.262	27611.778	0.53
16	31582.734	31353.470	0.73

Amplitude values of the deflection η in the cross-section in the middle of the beam span at the frequency of the harmonic exciting force $\omega=0.5 \cdot \mathrm{p}_{1}$

Theory		SCAD		
Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, \mathbf{m}	Deviations, \%
0.0210	0.002474	0.0224	0.002421	2.14
0.0510	-0.004428	0.0510	-0.004410	0.41
0.0809	0.002474	0.0815	0.002504	1.21
0.1017	0.000002	0.1019	0.000040	-
0.1228	0.002474	0.1223	0.002383	3.68
0.1528	-0.004428	0.1529	-0.004374	1.22
0.1828	0.002474	0.1834	0.002547	2.95

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are determined according to the following formulas:

$$
\frac{n^{2} \cdot \pi^{2}}{l^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}},
$$

where $\mathrm{n}=1,2,3,4, \ldots-$ natural mode number.
In the analytical solution the deflections η in the cross-sections in the middle of the beam span with time are determined according to the following formula:

$$
\eta(t)=\frac{2 \cdot P_{0} \cdot l^{3}}{\pi^{4} \cdot E \cdot I} \cdot \sum_{n=1}\left[\frac{\left(\sin \left(\frac{n \cdot \pi}{2}\right)\right)^{2}}{n^{4} \cdot\left(1-\frac{\mu \cdot l^{4} \cdot \omega^{2}}{n^{4} \cdot \pi^{4} \cdot E \cdot I}\right)} \cdot\left(\cos (\omega \cdot t)-\cos \left(\frac{n^{2} \cdot \pi^{2}}{l^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)\right)\right) ;
$$

Simply Supported Beam with a Distributed Mass Subjected to a Constant Shear Force Moving along the Span of the Beam at a Constant Speed

Objective: Determination of the strain state of a simply supported beam with a distributed mass subjected to a constant shear force moving along the span of the beam at a constant speed.

Initial data files:

File name	Description
DIN_B_ML1.SPR	The action of the constant shear force moving along the beam span is specified in the form of forces applied in all График_DIN_B_ML1.txt
	nodes of the design model according to the following
variant:	
The delay time for each nodal force is different. The	
graph describing the load variation with time is the same	
for all nodal forces.	

Problem formulation: The constant shear force P moves at a constant speed v along the span of the simply supported beam with a uniformly distributed mass μ. Determine the natural oscillation modes and natural frequencies p of the simply supported beam, as well as the deflection η in the cross-section in the middle of the beam span with time.

References: Timoshenko S.P., Course of the Theory of Elasticity, Kiev, Naukova Dumka, 1972, p. 345.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{6} \mathrm{tt} / \mathrm{m}$

- elastic modulus;
$v=0.2$
$\mathrm{b}=0.4 \mathrm{~m}$
- Poisson's ratio;
$\mathrm{h}=0.8 \mathrm{~m}$
- width of the rectangular cross-section of the beam;
$l=8.0 \mathrm{~m}$
$\gamma=2.5 \mathrm{tf} / \mathrm{m}^{3}$
- height of the rectangular cross-section of the beam;
- beam span length;
- specific weight of the beam material;
$P=76.8 \mathrm{tf}$
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{s}^{2}$
- value of the constant force moving along the beam span;
- gravitational acceleration;
$\mu=2.5 \cdot 0.4 \cdot 0.8 / 10.0=0.08 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}^{2} \quad$ - value of the uniformly distributed mass of the beam;
$\mathrm{I}=0.4 \cdot(0.8)^{3} / 12=0.017067 \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia of the beam.
The speed of the constant force v is taken depending on the values of the beam span and the fundamental natural period of the beam T_{1} :
$\mathrm{v}=l / \mathrm{T}_{1}$.
Finite element model: Design model - grade beam / plate, 32 bar elements of type 3. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom UX. The distributed mass is specified by transforming the static load from the self-weight of the beam $\mu \cdot \mathrm{g}$.
The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are determined by the modal analysis, and then the deflections η in the cross-section in the middle of the beam span are determined by the direct integration of the equations of motion method.
The action of the constant shear force moving along the beam span is specified in the form of forces applied in all nodes of the design model along the Z axis of the global coordinate system with the scale factor of 1.0 according to the following variants:
- The delay time for each nodal force is different and is determined as $\mathrm{t}_{0}=2 \cdot(\mathrm{~m}-1) \cdot \Delta \mathrm{t}_{\mathrm{int}}$, where m is the number of finite elements counted from the support node of the beam to the node considered along the load path. The graph describing the load variation with time is the same for all nodal forces. When plotting the graph the nodal force is taken with consecutive values: $0 ; 0.5 \cdot P ; P ; 0.5 \cdot P$; 0 at time points: $0 ; \Delta \mathrm{t}_{\mathrm{int}} ; 2 \cdot \Delta \mathrm{t}_{\mathrm{int}} ; 3 \cdot \Delta \mathrm{t}_{\mathrm{int}} ; 4 \cdot \Delta \mathrm{t}_{\mathrm{int}} ; 5 \cdot \Delta \mathrm{t}_{\mathrm{int}}$, measured from the delay time t_{0}, at subsequent time points the nodal force is equal to 0 .
- The delay time is the same for all nodal forces and is equal to $t_{0}=0$. Each nodal force has its corresponding graph describing the load variation with time. When plotting the graph the nodal force at the time points from 0 to $2 \cdot(\mathrm{~m}-1) \cdot \Delta \mathrm{t}_{\text {int }}$ is equal to 0 , at the time points from $2 \cdot(\mathrm{~m}-1) \cdot \Delta \mathrm{t}_{\text {int }}$ to $2 \cdot(\mathrm{~m}+1) \cdot \Delta \mathrm{t}_{\text {int }}$ inclusive is taken with consecutive values: $0 ; 0.5 \cdot P ; P ; 0.5 \cdot P ; 0$, at subsequent time points the nodal force is equal to 0 , where m is the number of finite elements counted from the support node of the beam to the node considered along the load path.
In both cases the intervals between the time points of the load variation graphs are equal to the time it takes to cover half the distance between the adjacent nodes of the design model at the speed v : $\Delta \mathrm{t}_{\mathrm{int}}=\mathrm{L} /(2 \cdot \mathrm{n} \cdot \mathrm{v})$ $=T_{1} /(2 \cdot n)$ and correspond to the integration step, where n is the number of finite elements in the design model. The duration of the process is equal to the time it takes the load moving at the speed v to cover the beam span $l: \mathrm{t}=l / \mathrm{v}=\mathrm{T}_{1}$. Critical damping ratios for the 1-st and 2-nd natural frequencies are taken with the minimum value $\xi=0.0001$. The conversion factor for the added static loading is equal to $\mathrm{k}=0.981$ (mass generation). Number of nodes in the design model - 33. The modal integration method is used in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

1-st -- 16-th natural oscillation modes

Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time (m)

Amplitude value of the deflection η in the cross-section in the middle of the beam span and the deformed models at the respective time point (m)

Comparison of solutions:

Natural frequencies $p, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	123.370	123.370	0.00
2	493.480	493.480	0.00
3	1110.330	1110.325	0.00
4	1973.921	1973.887	0.00
5	3084.251	3084.120	0.00
6	4441.322	4440.919	0.01
7	6045.133	6044.087	0.02
8	7895.684	7893.275	0.03
9	9992.974	9987.907	0.05
10	12337.005	12327.069	0.08
11	14927.777	14909.367	0.12
12	17765.288	17732.721	0.18

Oscillation mode	Theory	SCAD	Deviations, \%
13	20849.539	20794.097	0.27
14	24180.531	24089.155	0.38
15	27758.262	27611.778	0.53
16	31582.734	31353.470	0.73

The dashed line shows the value of the static deflection
Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time according to the theoretical solution (m)

Amplitude value of the deflection η in the cross-section in the middle of the beam span, m

Theory		SCAD		
Time, s	Deflection, m	Time, s	Deflection, m	Deviation, \%
0.0339	0.002842	0.0334	0.002837	0.18

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are determined according to the following formula:

$$
\frac{n^{2} \cdot \pi^{2}}{l^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}}
$$

where $n=1,2,3,4, \ldots-$ natural mode number.

In the analytical solution the deflections η in the cross-section in the middle of the beam span with time are determined according to the following formula:

$$
\eta(t)=\frac{2 \cdot P \cdot l^{3}}{\pi^{4} \cdot E \cdot I} \cdot \sum_{n=1}\left[\frac{\sin \left(\frac{n \cdot \pi}{2}\right)}{n^{4} \cdot\left(1-\frac{\mu \cdot l^{2} \cdot v^{2}}{n^{2} \cdot \pi^{2} \cdot E \cdot I}\right.} \cdot\left(\sin \left(\frac{n \cdot \pi \cdot v}{l} \cdot t\right)-\frac{l \cdot v}{n \cdot \pi} \cdot \sqrt{\frac{\mu}{E \cdot I}} \cdot \sin \left(\frac{n^{2} \cdot \pi^{2}}{l^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)\right)\right]
$$

Simply Supported Beam with a Distributed Mass Subjected to a Uniformly Distributed Instantaneous Pulse (Impact of a Beam with Immovable Supports)

Objective: Determination of the stress-strain of a simply supported beam with a distributed mass subjected to a uniformly distributed instantaneous pulse.

Initial data file: DIN_B_IL.SPR, График_DIN_B_IL.txt

Problem formulation: The simply supported beam of constant cross-section with the uniformly distributed mass μ is subjected to the instantaneous transverse pulse S uniformly distributed over the entire span L (impacts the immovable supports at a speed $\mathrm{v}_{0}=\mathrm{S} / \mu$). Determine the natural oscillation modes and natural frequencies p of the simply supported beam, as well as the deflection η and the bending moment M in the cross-section in the middle of the beam span with time.

References: Rabinovich I.M., Sinitsyn A.P., Luzhin O.V., Terenin V.M., Analysis of Structures Subject to Pulse Actions, Moscow, Stroyizdat, 1970, p. 83.
S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. Feodos'yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic Analysis. Stability. Creep. Moscow, Mashgiz, 1952, p. 364.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{6} \mathrm{tt} / \mathrm{m}^{2} \quad-$ elastic modulus;
$v=0.2 \quad$ - Poisson's ratio;
$\mathrm{b}=0.4 \mathrm{~m} \quad-$ width of the rectangular cross-section of the beam;
$\mathrm{h}=0.8 \mathrm{~m} \quad$ - height of the rectangular cross-section of the beam;
$L=8.0 \mathrm{~m} \quad$ - beam span length;
$\gamma=2.5 \mathrm{tf} / \mathrm{m}^{3} \quad$ - specific weight of the beam material;
$\mathrm{S}=0.8 \cdot \mathrm{tf} \cdot \mathrm{s} / \mathrm{m} \quad-$ value of the uniformly distributed instantaneous pulse;
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{s}^{2} \quad$ - gravitational acceleration;
$\mu=2.5 \cdot 0.4 \cdot 0.8 / 10.0=0.08 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}^{2} \quad$ - value of the uniformly distributed mass of the beam;
$\mathrm{I}=0.4 \cdot(0.8)^{3} / 12=0.017067 \mathrm{~m}^{4} \quad-$ cross-sectional moment of inertia of the beam.
Finite element model: Design model - grade beam / plate, 32 bar elements of type 3. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z . The dimensional stability of the design model is provided by imposing a constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom UX. The distributed mass is specified by transforming the static load from the self-weight of the beam $\mu \cdot \mathrm{g}$. The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are determined by the modal analysis, and then the deflections η in the cross-section in the middle of the beam span with time are determined by the direct integration of the equations of motion method. The action of the uniformly distributed instantaneous transverse pulse is described by the graph of the load variation with time and is given in the form of nodal forces acting along the Z axis of the global coordinate system with the scale factor equal to the length of the bar finite element $1 / \mathrm{n}=0.25 \mathrm{~m}$ (n is the number of finite elements in the design model), and the delay time 0.0 s . Intervals between the time points of the load variation graph are equal to $\Delta \mathrm{t}_{\text {int }}=0.00001 \mathrm{~s}$ and correspond to the integration step. When plotting the graph the pulse action is taken with a linear shape function, force value $\mathrm{P}=\mathrm{S} \cdot \Delta \mathrm{t}_{\mathrm{int}}=80000 \mathrm{tf}$ and duration $\Delta \mathrm{t}_{\mathrm{int}}=0.00001$

Verification Examples

s . The duration of the process is equal to $\mathrm{t}=0.05094 \mathrm{~s}$, which corresponds to the value of the fundamental period T_{1}. Critical damping ratios for the 1 -st and 2-nd natural frequencies are taken with the minimum value $\xi=0.0001$. The conversion factor for the added static loading is equal to $\mathrm{k}=0.981$ (mass generation). Number of nodes in the design model - 33. The modal integration method is used in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time (m)

Amplitude values of the deflection η in the cross-section in the middle of the beam span and the deformed models at the respective time points (m)

Graph of the variation of the bending moment M
in the cross-section in the middle of the beam span with time (tm•m)

Comparison of solutions:

Natural frequencies $p, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	123.370	123.370	0.00
2	493.480	493.480	0.00
3	1110.330	1110.325	0.00
4	1973.921	1973.887	0.00
5	3084.251	3084.120	0.00
6	4441.322	4440.919	0.01
7	6045.133	6044.087	0.02
8	7895.684	7893.275	0.03
9	9992.974	9987.907	0.05
10	12337.005	12327.069	0.08
11	14927.777	14909.367	0.12
12	17765.288	17732.721	0.18
13	20849.539	20794.097	0.27

Verification Examples

Oscillation mode	Theory	SCAD	Deviations, \%
14	24180.531	24089.155	0.38
15	27758.262	27611.778	0.53
16	31582.734	31353.470	0.73

Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time according to the theoretical solution (m)

Amplitude values of the deflection η in the cross-section in the middle of the beam span, m

Theory		SCAD		
Time, \mathbf{s}	Deflection, \mathbf{m}	Time, \mathbf{s}	Deflection, m	Deviations, \%
0.014617	0.103196	0.014660	0.102998	0.19
0.036313	-0.103196	0.036330	-0.102825	0.36

Amplitude value of the bending moment M in the cross-section in the middle of the beam span, $\mathrm{tf} \cdot \mathrm{m}$

Theory		SCAD		
Time, \mathbf{s}	Bending moment, $\mathbf{t f} \cdot \mathbf{m}$	Time, \mathbf{s}	Bending moment, $\mathbf{t f} \cdot \mathbf{m}$	Deviations, \%
0.015162	-1369.739	0.015240	-1203.795	12.12
0.035768	1369.739	0.035710	1177.088	14.06

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are determined according to the following formula:

$$
\frac{n^{2} \cdot \pi^{2}}{l^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}}
$$

where $n=1,2,3,4, \ldots-$ natural mode number.

In the analytical solution the deflection η and the bending moment M in the cross-section in the middle of the beam span with time are determined according to the following formula:

$$
\begin{aligned}
& \eta(t)=\frac{4 \cdot S \cdot l^{2}}{\pi^{3} \cdot \sqrt{\mu \cdot E \cdot I}} \cdot \sum_{n=1}\left[\frac{\sin \left(\frac{n \cdot \pi}{2}\right) \cdot \sin \left(\frac{n^{2} \cdot \pi^{2}}{l^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)}{n^{3}}\right] ; \\
& M(t)=\frac{4 \cdot S}{\pi} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot \sum_{n=1}\left[\frac{\sin \left(\frac{n \cdot \pi}{2}\right) \cdot \sin \left(\frac{n^{2} \cdot \pi^{2}}{l^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)}{n}\right]
\end{aligned}
$$

Simply Supported Beam with a Distributed Mass Subjected to a Kinematic Excitation of Supports (Seismic Action)

Objective: Determination of the stress-strain state of a simply supported beam with a distributed mass subjected to a kinematic excitation of supports.

Initial data file: DIN_B_SL.SPR, DIN_B_SL.SPC

Problem formulation: The simply supported beam of constant cross-section with the uniformly distributed mass μ is subjected to the kinematic excitation of supports according to the specified accelerogram:

$$
\ddot{z}(t)=\ddot{z}_{s 0} \cdot\left(1-\frac{t}{t_{d}}\right) .
$$

Determine the natural oscillation mode and the fundamental natural frequency f of the simply supported beam, as well as the maximum amplitude values of the deflection z and the bending moment M in the crosssection in the middle of the beam span with time t.

References: John M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Companies, New York, 1964, p. 262.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{psi}=2.1092 \cdot 10^{7} \mathrm{t} / \mathrm{m}^{2}$
$\mathrm{I}=333.333 \mathrm{in}^{4}=138.7448 \cdot 10^{-6} \mathrm{~m}^{4}$

- elastic modulus;
$\mathrm{h}=14 \mathrm{in}=0.3556 \mathrm{~m}$
- cross-sectional moment of inertia of the beam.
- height of the cross-section of the beam;
$\mathrm{L}=240 \mathrm{in}=6.0960 \mathrm{~m}$
- beam span length;
$\mu=0.2 \mathrm{lb} \cdot \mathrm{sec}^{2} / \mathrm{in}^{2}=0.1406 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}^{2}$
- value of the uniformly distributed mass of the beam;
$\ddot{z}_{s 0}= \pm 386.2200 \mathrm{in} / \mathrm{sec}^{2}= \pm 9.81 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{t}_{\mathrm{d}}=0.10 \mathrm{sec}=0.10 \mathrm{~s}$
$\mathrm{g}=386.2200 \mathrm{in} / \mathrm{sec}^{2}=9.81 \mathrm{~m} / \mathrm{s}^{2}$
- amplitude values of the acceleration of the supports according to the accelerogram;
- half-interval of the kinematic excitation of supports;
- gravitational acceleration.

Finite element model: Design model - grade beam / plate, 32 bar elements of type 3. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z . The dimensional stability of the design model is provided by imposing a constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom UX. The distributed mass is specified by transforming the static load from the self-weight of the beam $\mu \cdot \mathrm{g}$.
The kinematic excitation of supports is described by the graph of the acceleration variation with time (accelerogram) and is given in the form of the action along the Z axis of the global coordinate system (direction cosines to the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes: $0.00,0.00,1.00$) with the scale factor to the values of the accelerogram equal to 1.00 . The height of the beam structure in the model is directed along the Z axis of the global coordinate system. The dissipation factor (energy absorption factor) is taken with the minimum value of $\xi=0.000001$. The intervals between the time points of the graph of the acceleration variation with time are equal to $\Delta t=0.01 \mathrm{~s}$. When plotting the graph the acceleration is taken with the values $z(t)=\ddot{z}_{s 0} \cdot\left(1-n \cdot \Delta t / t_{d}\right)$ at the time points $n \cdot \Delta t$. The conversion factor for the added static loading is equal to $k=1.000$ (mass generation). Number of nodes in the design model - 33. The modal integration method is used in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Verification Examples

Results in SCAD

Design model and the specified accelerogram

1-st natural oscillation mode

Amplitude value of the deflection z in the cross-section in the middle of the beam span and the deformed model at the respective time point (m)

Amplitude value of the bending moment M in the cross-section in the middle of the beam span (tm•m)

Comparison of solutions:

Fundamental natural frequency $f, \mathrm{~Hz}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	6.098	6.101	0.05

Maximum amplitude value of the deflection z
in the cross-section in the middle of the beam span, m

Theory		SCAD	
Time, \mathbf{s}	Deflection, m	Deflection, m	Deviations, \%
0.0163982	-0.013951	-0.013841	0.80

Maximum amplitude value of the bending moment M in the cross-section in the middle of the beam span, $\mathrm{tf} \cdot \mathrm{m}$

Theory		SCAD	
Time, \mathbf{s}	Bending moment, tf $\cdot \mathbf{m}$	Bending moment, tf•m	Deviations, \%
0.0163982	10.843	10.766	0.73

Notes: In the analytical solution the fundamental natural frequency f of the simply supported beam is determined according to the following formula:

$$
f=\frac{\pi}{2 \cdot L^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} .
$$

In the analytical solution the deflection z and the bending moment M in the cross-section in the middle of the beam span with time are determined according to the following formula:

$$
\begin{aligned}
& z(t)=\frac{4 \cdot z_{s 0} \cdot L^{4} \cdot \mu}{\pi^{5} \cdot E \cdot I} \cdot\left[1-\cos \left(\frac{\pi^{2}}{L^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)+\frac{L^{2}}{\pi^{2} \cdot t_{d}} \cdot \sqrt{\frac{\mu}{E \cdot I}} \cdot \sin \left(\frac{\pi^{2}}{L^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)-\frac{1}{t_{d}} \cdot t\right] \text { at } \\
& t \leq 2 \cdot t_{d} ; \\
& M(t)=\frac{4 \cdot z_{s 0} \cdot L^{2} \cdot \mu}{\pi^{3}} \cdot\left[1-\cos \left(\frac{\pi^{2}}{L^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)+\frac{L^{2}}{\pi^{2} \cdot t_{d}} \cdot \sqrt{\frac{\mu}{E \cdot I}} \cdot \sin \left(\frac{\pi^{2}}{L^{2}} \cdot \sqrt{\frac{E \cdot I}{\mu}} \cdot t\right)-\frac{1}{t_{d}} \cdot t\right]
\end{aligned}
$$

$$
t \leq 2 \cdot t_{d} .
$$

Cantilever Weightless Column with a Concentrated Mass at the Free End Subjected to a Horizontal Kinematic Displacement of a Support (Seismogram Based Analysis)

Objective: Determination of the strain state of a cantilever weightless column with a concentrated mass at the free end subjected to a horizontal kinematic displacement of a support.

Initial data file: 5.14.SPR
Seismogram file: 5.14_chart.txt
Problem formulation: The mass m is attached to the free end of the cantilever weightless column with a square cross-section. A horizontal kinematic action varying according to the harmonic law $X_{s}=\Delta \cdot \sin (\theta \cdot \mathrm{t})$ is applied to the support of the column at the initial time. Determine the natural oscillation mode and frequency ω of the cantilever column, as well as the deflection X_{m} of the free end of the column with the attached mass with time.

References: Kiselev V.A., Structural Mechanics. Special Course. Dynamics and Stability of Structures. Moscow, Stroyizdat, 1980, p. 65.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kN} / \mathrm{m}^{2} \quad$ - elastic modulus of the column material;
$v=0.3$

- Poisson's ratio;
$\mathrm{b}=0.04 \mathrm{~m}$
- width of the rectangular cross-section of the column;
$\mathrm{h}=0.04 \mathrm{~m} \quad-$ height of the rectangular cross-section of the column;
$\mathrm{L}=1.0 \mathrm{~m} \quad$ - length of the column;
$\mathrm{m}=0.08 \mathrm{kN} \cdot \mathrm{s}^{2} / \mathrm{m} \quad-$ value of the concentrated mass attached to the free end of the column;
$\Delta=0.1 \mathrm{~m}$
$\mathrm{g}=10.00 \mathrm{~m} / \mathrm{s}^{2} \quad$ - gravitational acceleration;
$\mathrm{I}=\mathrm{b} \cdot \mathrm{h}^{3} / 12=2.133333 \cdot 10^{-7} \mathrm{~m}^{4}$ - cross-sectional moment of inertia of the column.

The following value of the frequency of the kinematic harmonic excitation θ depending on the value of the natural frequency of the column ω is considered: $\theta=0.5 \cdot \omega$.

Finite element model: Design model - general type system, 10 bar elements of type 5. Boundary conditions are provided by imposing constraints in the node of the clamped end of the column in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$. The concentrated mass is specified by transforming the static nodal load on the free end of the column $m \cdot g$.

The calculation is performed in two stages: first the natural oscillation mode and natural frequency ω are determined by the modal analysis, and then the deflection X_{m} of the free end of the column with the attached mass with time is determined by the direct integration of the equations of motion method. The action of the kinematic harmonic excitation is described by the graph of the variation of the horizontal displacement of the support with time and is given in the form of the specified displacement of the constraint along the X axis of the global coordinate system with the scale factor of 1.0 and the delay time 0.0 s . Intervals between the time points of the displacement variation graph are equal to $\Delta \mathrm{t}_{\mathrm{int}}=\mathrm{T}_{\theta} / 100$, where T_{θ} - period of the kinematic harmonic excitation, and correspond to the integration step. When plotting the graph, the action of the specified displacement of the constraint is taken as $X_{s}=\Delta \cdot \sin \left(\theta \cdot n \cdot \Delta t_{i n t}\right)$ at the time points $n \cdot \Delta t_{i n t}$. The duration of the process is equal to $t=2 \cdot T_{\theta}$. Critical damping ratios for the $1-s t$ and 2 -nd natural frequencies are taken with the minimum value $\xi=0.0001$. The conversion factor for the added static loading is equal to $\mathrm{k}=0.981$ (mass generation). Number of nodes in the design model -11 . The modal integration method is used in the calculation. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model and the 1-st oscillation mode

Graph of the variation of the horizontal displacement of the constraint X_{s} with time (mm).

Graph of the variation of the deflection X_{m} of the free end of the column with the attached mass with time (mm)

Amplitude values of the deflection X_{m} of the free end of the column with the attached mass and the deformed models at the respective time points (mm).
Comparison of solutions:

Graphs of the variation of the horizontal displacement of the constraint X_{s} and the deflection X_{m} of the free end of the column with the attached mass with time (m)

Frequency of the kinematic harmonic excitation $\theta=0.5 \cdot \omega$
Natural frequency $\omega, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Theory	SCAD	Deviations, \%
1	40.000	40.000	0.00

Amplitude values of the deflection X_{m} of the free end of the column with the attached mass at the frequency of the kinematic harmonic excitation $\theta=0.5 \cdot \omega, \mathrm{~mm}$

Theory			SCAD		
Time, s	Deflection, m	Time, s	Deflection, m	Deviation, \%	
0.000000	0.00	0.000000	0.00	-	
0.106814	172.90	0.106814	172.77	0.08	
0.157080	0.00	0.157080	0.59	-	
0.207345	-172.90	0.207345	-173.21	0.18	
0.314159	0.00	0.314159	1.10	-	
0.420973	172.90	0.420973	172.22	0.39	
0.471239	0.00	0.471239	1.68	-	
0.521504	-172.90	0.521504	-173.58	0.39	
0.628318	0.00	0.628318	2.20	-	

Notes: In the analytical solution the natural frequency ω of the cantilever column with the concentrated mass on the free end is determined according to the following formula:

$$
\omega=\sqrt{\frac{3 \cdot E \cdot I}{m \cdot L^{3}}} .
$$

In the analytical solution the deflection X_{m} of the free end of the column with the attached mass with time is determined according to the following formula:

$$
X_{m}(t)=\frac{\Delta}{\left(1-\frac{\theta^{2}}{\omega^{2}}\right)} \cdot\left(\sin (\theta \cdot t)-\frac{\theta}{\omega} \cdot \sin (\omega \cdot t)\right) .
$$

Natural Oscillations of a Simply Supported Circular Plate

Objective: Modal analysis of a simply supported circular plate.

Initial data file: 5.7.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported circular plate with the density of the material ρ.

References: Chelomei V.N., Vibrations in Technology, Handbook in six volumes: Bolotin V.V., Volume 1, Vibrations of Linear Systems, Moscow, Mechanical engineering, 1978, p. 207.

Initial data:

$\mathrm{E}=2.06 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad-$ Poisson's ratio;
$\rho=7.85 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.01 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{R}=0.5 \mathrm{~m} \quad$ - outer radius of the plate.
Finite element model: Design model - grade beam / plate, 1080 four-node plate elements of type 20 and 72 three-node plate elements of type 15 . The spacing of the finite element mesh in the radial direction is 0.03125 m and in the tangential direction is 5.0°. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z along the outer contour of the plate. The distributed mass is specified by transforming the static load from the self-weight of the plate ow $=\gamma \cdot \mathrm{h}$, where $\gamma=\rho \cdot \mathrm{g}=77.01$ $\mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model - 1153. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

1-st natural oscillation mode

2-nd natural oscillation mode

4-th natural oscillation mode

9-th natural oscillation mode

15-th natural oscillation mode

18-th natural oscillation mode

22-nd natural oscillation mode

30-th natural oscillation mode

50-th (47-th theoretical) natural oscillation mode

Comparison of solutions:

Natural frequencies ω, rad / s

Oscillation mode	Number of nodal circles m and diameters n	Theory	SCAD	Deviations, \%
1	0,0	306.0	305.8	0.07
2,3	0,1	861.8	862.4	0.07
4,5	0,2	1588.2	1590.5	0.14
6	1,0	1842.9	1839.3	0.20
7,8	0,3	2477.7	2483.2	0.22
9,10	1,1	3006.1	3011.2	0.17
11,12	0,4	3524.6	3532.7	0.23
13,14	1,2	4347.8	4366.4	0.43
15	2,0	4598.3	4582.6	0.34
16,17	0,5	4725.2	4738.1	0.27
18,19	1,3	5862.8	5890.3	0.47
20,21	0,6	6076.4	6097.0	0.34
22,23	2,1	6372.8	6390.0	0.27
24,25	0,7	7546.5	7581.9	0.47
26,27	1,4	7576.1	7607.4	0.41
28,29	2,2	8327.5	8402.9	0.91
30	3,0	8576.8	8534.9	0.49
31,32	0,8	9222.3	9267.5	0.49
33,34	1,5	9395.3	9441.9	0.50
35,36	2,3	10459.2	10539.6	0.77
37,38	0,9	10963.1	11004.7	0.38
39,40	3,1	11013.5	11076.0	0.57

Oscillation mode	Number of nodal circles m and diameters n	Theory	SCAD	Deviations, \%
41,42	1,6	11406.2	11471.2	0.57
43,44	2,4	12764.4	12865.5	0.79
45,46	0,10	12948.4	13031.2	0.64
47,48	3,2	13530.3	13742.7	1.57
49,50	1,7	13576.7	13667.2	0.67
51	4,0	13779.1	13690.3	0.64
52,53	0,11	15025.9	15131.7	0.70
54,55	2,5	15240.2	15359.6	0.78
56,57	1,8	15904.6	16028.2	0.78
58,59	3,3	16276.1	16457.3	1.11
60,61	4,1	16777.2	16859.0	0.49

Notes: In the analytical solution the natural frequencies ω of the simply supported circular plate with the density of the material ρ can be determined according to the following equation obtained on the basis of the factorization method:

$$
\frac{J_{n+1}(\beta \cdot R)}{J_{n}(\beta \cdot R)}+\frac{I_{n+1}(\beta \cdot R)}{I_{n}(\beta \cdot R)}=\frac{2 \cdot \beta \cdot R}{1-v} \text {, where: }
$$

$\beta=\left(\frac{\rho \cdot h \cdot \omega^{2}}{D}\right)^{\frac{1}{4}}, \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, n=0,1,2,3 \ldots-$ number of nodal diameters,
$J_{n}(\beta \cdot R), J_{n+1}(\beta \cdot R)$ - values of the Bessel function of the first kind of order n,
$I_{n}(\beta \cdot R), I_{n+1}(\beta \cdot R)$ - values of the modified Bessel function of the first kind of order n.

Natural Oscillations of a Clamped Circular Plate

Objective: Modal analysis of a clamped circular plate.

Initial data file: 5.6.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the clamped circular plate with the density of the material ρ.

References: Chelomei V.N., Vibrations in Technology, Handbook in six volumes: Bolotin V.V., Volume 1, Vibrations of Linear Systems, Moscow, Mechanical engineering, 1978, p. 207.

Initial data:

$\mathrm{E}=2.06 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad-$ Poisson's ratio;
$\rho=7.85 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.01 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{R}=0.5 \mathrm{~m} \quad$ - outer radius of the plate.
Finite element model: Design model - grade beam / plate, 1080 four-node plate elements of type 20 and 72 three-node plate elements of type 15. The spacing of the finite element mesh in the radial direction is 0.03125 m and in the tangential direction is 5.0°. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY along the outer contour of the plate. The distributed mass is specified by transforming the static load from the self-weight of the plate ow $=\gamma \cdot \mathrm{h}$, where $\gamma=\rho \cdot \mathrm{g}=$ $77.01 \mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model - 1153. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Design model

13-th natural oscillation mode

15-th natural oscillation mode

18-th natural oscillation mode

28-th natural oscillation mode

30-th natural oscillation mode

37-th natural oscillation mode

50-th (47-th theoretical) natural oscillation mode

Comparison of solutions:

Natural frequencies ω, rad / s

Oscillation mode	Number of nodal circles \mathbf{m} and diameters n	Theory	SCAD	Deviations, \%
1	0,0	633.5	633.8	0.05
2,3	0,1	1318.3	1321.7	0.26
4,5	0,2	2162.7	2170.6	0.37
6	1,0	2466.1	2463.8	0.09
7,8	0,3	3164.3	3178.9	0.46
9,10	1,1	3771.9	3784.3	0.33
11,12	0,4	4319.8	4340.1	0.47
13,14	1,2	5244.8	5280.1	0.67
15	2,0	5525.2	5511.5	0.25
16,17	0,5	5626.5	5655.5	0.52
18,19	1,3	6884.2	6931.9	0.69
20,21	0,6	7082.1	7123.6	0.59
22,23	2,1	7445.9	7477.9	0.43
24,25	0,7	8684.6	8742.7	0.67
26,27	1,4	8687.8	8748.6	0.70
28,29	2,2	9537.8	9652.0	1.20
30	3,0	9808.7	9769.4	0.40
31,32	0,8	10432.5	10511.5	0.76
33,34	1,5	10653.2	10730.3	0.72
35,36	2,3	11800.3	11917.6	0.99
37,38	0,9	12324.5	12429.0	0.85
39,40	3,1	12342.9	12408.9	0.53

Oscillation mode	Number of nodal circles m and diameters \mathbf{n}	Theory	SCAD	Deviations, \%
41,42	1,6	12778.0	12880.4	0.80
43,44	2,4	14232.0	14378.8	1.03
45,46	0,10	14359.4	14494.1	0.94
47,48	3,2	15050.6	15335.5	1.89
49,50	1,7	15060.4	15196.7	0.91
51	4,0	15316.4	15229.9	0.56
52,53	0,11	16536.2	16705.2	1.02
54,55	2,5	16830.7	17001.7	1.02
56,57	1,8	17498.5	17677.4	1.02
58,59	3,3	17931.5	18171.2	1.34
60,61	4,1	18463.5	18580.3	0.63

Notes: In the analytical solution the natural frequencies ω of the clamped circular plate with the density of the material ρ can be determined according to the following equation obtained on the basis of the factorization method:

$$
\frac{J_{n+l}(\beta \cdot R)}{J_{n}(\beta \cdot R)}+\frac{I_{n+l}(\beta \cdot R)}{I_{n}(\beta \cdot R)}=0 \text {, where: }
$$

$\beta=\left(\frac{\rho \cdot h \cdot \omega^{2}}{D}\right)^{\frac{1}{4}}, \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, n=0,1,2,3 \ldots-$ number of nodal diameters,
$J_{n}(\beta \cdot R), J_{n+1}(\beta \cdot R)-$ values of the Bessel function of the first kind of order n,
$I_{n}(\beta \cdot R), I_{n+1}(\beta \cdot R)$ - values of the modified Bessel function of the first kind of order n.

Natural Oscillations of a Square Cantilever Plate

Objective: Modal analysis of a square cantilever plate.

Initial data file: 5.5.SPR

Problem formulation: : Determine the natural oscillation modes and frequencies ω of the square cantilever plate with the density of the material ρ.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p. 382.

Initial data:

$\mathrm{E}=2.06 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad-$ Poisson's ratio;
$\rho=7.85 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.01 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}_{1}=1.0 \mathrm{~m} \quad-$ long side of the plate (along the X axis of the global coordinate system);
$\mathrm{a}_{2}=1.0 \mathrm{~m} \quad-$ short side of the plate (along the Y axis of the global coordinate system).
Finite element model: Design model - grade beam / plate, 400 plate elements of type 20. The spacing of the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 0.05 m . Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY for one of the edges parallel to the Y axis of the global coordinate system. The distributed mass is specified by transforming the static load from the self-weight of the plate ow $=\gamma \cdot h$, where $\gamma=\rho \cdot g=77.01 \mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model -441 . The determination of the natural oscillation modes and natural frequencies is performed by the Lanczos method. A consistent mass matrix is used in the calculation.

Results in SCAD

1-st natural oscillation mode

3-rd natural oscillation mode

Comparison of solutions：

Natural frequencies $\omega, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Nodal lines	Theory	SCAD	Deviations，\％
1		54.2	53，8	0，71
2	身	132.5	131，9	0，43
3	方	332.4	330,0	0，72
4	－	425.7	421，8	0，91
5	岛	483.2	480，3	0，61

Notes: In the analytical solution the natural frequencies ω of the square cantilever plate with the density of the material ρ can be determined according to the following formula obtained on the basis of the RayleighRitz method:

$$
\omega=\frac{\omega_{m}^{*}}{a_{I}^{2}} \cdot\left(\frac{D}{\rho \cdot h}\right)^{\frac{l}{2}}, \text { where at } \frac{a_{2}}{a_{1}}=1 \text { : }
$$

$$
\omega_{1}^{*}=3.494, \quad \omega_{2}^{*}=8.547, \quad \omega_{3}^{*}=21.44, \quad \omega_{2}^{*}=27.46, \quad \omega_{2}^{*}=31.17, \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} .
$$

Natural Oscillations of a Simply Supported Square Plate

Objective: Modal analysis of a simply supported square plate.

Initial data file: 5.2.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported square plate with the density of the material ρ.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p. 375.

Initial data:

$\mathrm{E}=2.06 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\rho=7.85 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.01 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}_{1}=1.0 \mathrm{~m} \quad-$ long side of the plate (along the X axis of the global coordinate system);
$\mathrm{a}_{2}=1.0 \mathrm{~m} \quad$ - short side of the plate (along the Y axis of the global coordinate system).
Finite element model: Design model - grade beam / plate, 400 plate elements of type 20. The spacing of the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 0.05 m . Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z for the edges parallel to the X and Y axes of the global coordinate system. The distributed mass is specified by transforming the static load from the self-weight of the plate ow $=\gamma \cdot \mathrm{h}$, where $\gamma=\rho \cdot \mathrm{g}=77.01$ $\mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model - 441. The determination of the natural oscillation modes and natural frequencies is performed by the Lanczos method. A consistent mass matrix is used in the calculation.

Results in SCAD

\square	0.000000	0,02269
\square	0,02269	0,045379
\square	0,045379	0,068069
\square	0,068069	0,090759
\square	0,090759	0,113449
\square	0,113449	0,136138
\square	0,136138	0,158828
\square	0,158828	0,181518
\square	0,181518	0,204207
\square	0,204207	0,226897
\square	0,226897	0,249587
\square	0,249587	0,272276
\square	0,272276	0,294966
\square	0,294966	0,317656

1-st natural oscillation mode

4-th natural oscillation mode

6-th natural oscillation mode

8 -th natural oscillation mode

9-th natural oscillation mode

11-th natural oscillation mode

12-th natural oscillation mode

13-th natural oscillation mode

14-th natural oscillation mode

15-th natural oscillation mode

16-th natural oscillation mode

19-th natural oscillation mode

20-th natural oscillation mode

Comparison of solutions.

Natural frequencies $\omega, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Number of half waves $\mathbf{m 1 , ~ m 2}$	Theory	SCAD	Deviations, \%
1	1,1	306.0	306,1	0,05
2	1,2	765.0	765,6	0,08
3	2,1	765.0	765,6	0,08
4	2,2	1224.0	1226,4	0,19
5	1,3	1530.0	1531,4	0,09
6	3,1	1530.0	1531,4	0,09
7	2,3	1989.0	1994,4	0,27
8	3,2	1989.0	1994,4	0,27
9	1,4	2601.0	2603,6	0,10
10	4,1	2601.0	2603,6	0,10
11	3,3	2754.0	2766,2	0,44
12	2,4	3060.0	3069,7	0,32
13	4,2	3060.0	3069,7	0,32
14	3,4	3825.0	3846,8	0,57
15	4,3	3825.0	3846,8	0,57
16	1,5	3978.0	3982,6	0,12
17	5,1	3978.0	3982,6	0,12
18	2,5	4437.0	4452,7	0,35
19	5,2	4437.0	4452,7	0,35
20	4,4	4896.0	4934,7	0,79

Notes: In the analytical solution the natural frequencies ω of the simply supported square plate with the density of the material ρ can be determined according to the following formula:

$$
\omega=\pi^{2} \cdot\left(\frac{m_{1}^{2}}{a_{2}{ }^{2}}+\frac{m_{2}^{2}}{a_{2}{ }^{2}}\right) \cdot\left(\frac{D}{\rho \cdot h}\right)^{\frac{1}{2}}, \text { where: } \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)}, \quad m_{1}, m_{2}=1,2,3 \ldots
$$

Natural Oscillations of a Simply Supported Rectangular Plate

Objective: Modal analysis of a simply supported rectangular plate.

Initial data file: 5.3.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported rectangular plate with the density of the material ρ.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p. 375.

Initial data:

$\mathrm{E}=2.06 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\rho=7.85 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.01 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}_{1}=1.5 \mathrm{~m} \quad-$ long side of the plate (along the X axis of the global coordinate system);
$\mathrm{a}_{2}=1.0 \mathrm{~m} \quad-$ short side of the plate (along the Y axis of the global coordinate system).
Finite element model: Design model - grade beam / plate, 600 plate elements of type 20. The spacing of the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 0.05 m . Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z for the edges parallel to the X and Y axes of the global coordinate system. The distributed mass is specified by transforming the static load from the self-weight of the plate ow $=\gamma \cdot \mathrm{h}$, where $\gamma=\rho \cdot \mathrm{g}=77.01$ $\mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model - 651. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

3-rd natural oscillation mode

4-th natural oscillation mode

8 -th natural oscillation mode

9-th natural oscillation mode

10-th natural oscillation mode

12-th natural oscillation mode

14-th natural oscillation mode

15-th natural oscillation mode

16-th natural oscillation mode

17-th natural oscillation mode

18-th natural oscillation mode

19-th natural oscillation mode

20-th natural oscillation mode

Comparison of solutions:

Natural frequencies $\omega, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Number of half waves m1, m2	Theory	SCAD	Deviations, \%
1	1,1	221.0	221.1	0.05
2	2,1	425.0	425.3	0.07
3	1,2	678.0	680.3	0.34
4	3,1	765.0	765.6	0.08
5	2,2	884.0	885.1	0.12
6	3,2	1224.0	1226.4	0.20
7	4,1	1241.0	1242.0	0.08
8	1,3	1445.0	1445.5	0.03
9	2,3	1649.0	1651.4	0.15
10	4,2	1700.0	1704.3	0.25
11	5,1	1853.0	1854.6	0.09
12	3,3	1989.0	1994.5	0.28
13	5,2	2312.0	2318.8	0.29
14	4,3	2465.0	2474.9	0.40
15	1,4	2516.0	2516.8	0.03
16	6,1	2601.0	2603.1	0.08
17	2,4	2720.0	2724.1	0.15
18	3,4	3060.0	3069.7	0.32
19	6,2	3060.0	3069.7	0.32
20	5,3	3077.0	3092.5	0.50

Notes: In the analytical solution the natural frequencies ω of the simply supported rectangular plate with the density of the material ρ can be determined according to the following formula:

$$
\omega=\pi^{2} \cdot\left(\frac{m_{1}{ }^{2}}{a_{2}{ }^{2}}+\frac{m_{2}{ }^{2}}{a_{2}{ }^{2}}\right) \cdot\left(\frac{D}{\rho \cdot h}\right)^{\frac{1}{2}}, \text { where: } \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-\mu^{2}\right)}, \quad m_{l}, m_{2}=1,2,3 \ldots
$$

Natural Oscillations of a Clamped Square Plate

Objective: Modal analysis of a clamped square plate.

Initial data file: 5.4.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the clamped square plate with the density of the material ρ.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p. 377.

Initial data:

$\mathrm{E}=2.06 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad-$ Poisson's ratio;
$\rho=7.85 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.01 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}_{1}=1.0 \mathrm{~m} \quad-$ long side of the plate (along the X axis of the global coordinate system);
$\mathrm{a}_{2}=1.0 \mathrm{~m} \quad-$ short side of the plate (along the Y axis of the global coordinate system).
Finite element model: Design model - grade beam / plate, 400 plate elements of type 20 . The spacing of the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 0.05 m . Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY for the edges parallel to the X and Y axes of the global coordinate system. The distributed mass is specified by transforming the static load from the self-weight of the plate ow $=\gamma \cdot h$, where $\gamma=\rho \cdot g=77.01 \mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model -441 . The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

1-st natural oscillation mode

5-th natural oscillation mode

6-th natural oscillation mode

7-th natural oscillation mode

9-th natural oscillation mode

10-th natural oscillation mode

12-th natural oscillation mode

16-th natural oscillation mode

17-th natural oscillation mode

Comparison of solutions:
Natural frequencies $\omega, \mathrm{rad} / \mathrm{s}$

Oscillation mode	Number of half waves m1, m2	Theory	SCAD	Deviations, \%
1	1,1	560.1	558.5	0.29
2	1,2	1143.2	1139.4	0.33
3	2,1	1143.2	1139.4	0.33
4	2,2	1686.6	1683.4	0.19
5	1,3	2054.0	2042.8	0.55
6	3,1	2054.0	2052.2	0.09
7	2,3	2571.5	2569.1	0.09
8	3,2	2571.5	2569.1	0.09
9	1,4	3276.5	3267.5	0.27
10	4,1	3276.5	3267.5	0.27
11	3,3	3424.6	3434.5	0.29
12	2,4	3782.2	3772.0	0.27
13	4,2	3782.2	3786.2	0.11
14	3,4	4611.8	4632.3	0.44
15	4,3	4611.8	4632.3	0.44
16	1,5	4806.6	4793.0	0.28
17	5,1	4806.6	4796.7	0.21
18	2,5	5307.4	5303.5	0.07
19	5,2	5307.4	5303.5	0.07
20	4,4	5774.8	5821.8	0.81

Notes: In the analytical solution the natural frequencies ω of the clamped square plate with the density of the material ρ can be determined according to the following formula obtained on the basis of the RayleighRitz method:

$$
\begin{gathered}
\omega=\pi^{2} \cdot\left(\frac{D}{\rho \cdot h} \cdot\left(\frac{A_{m}{ }^{4}}{a_{1}{ }^{4}}+\frac{A_{n}{ }^{4}}{a_{2}{ }^{4}}+2 \cdot \frac{B_{m} \cdot B_{n}}{a_{l}{ }^{2} \cdot a_{2}{ }^{2}}\right)\right)^{\frac{1}{2}}, \text { where: } \\
A_{m}=\left\{\begin{array}{cc}
1.506 & m=1 \\
m+0.5 & m \geq 2
\end{array}, \quad A_{n}=\left\{\begin{array}{cc}
1.506 & n=1 \\
n+0.5 & n \geq 2
\end{array}, \quad B_{m}=\left\{\begin{array}{c}
1.248 \\
A_{m} \cdot\left(A_{m}-\frac{2}{\pi}\right) \\
m \geq 2
\end{array}, \quad B_{m}=\left\{\begin{array}{l}
1.248 \\
A_{n} \cdot\left(A_{n}-\frac{2}{\pi}\right)
\end{array} \begin{array}{l}
n=1 \\
n \geq 2
\end{array},\right.\right.\right.\right. \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, \quad m_{1}, m_{2}=1,2,3 \ldots
\end{gathered}
$$

Natural Oscillations of a Simply Supported Circular Cylindrical Shell

Objective: Modal analysis of a simply supported circular cylindrical shell.

Initial data file: 5.8_S.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported circular cylindrical shell with the density of the material ρ.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p. 426.
V. L. Biderman, Theory of Mechanical Oscillations, Moscow, High School, 1980, p. 290.

Initial data:

$\mathrm{E}=1.96 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\rho=7.70 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.25 \cdot 10^{-3} \mathrm{~m} \quad$ - thickness of the cylindrical shell;
$\mathrm{R}=0.076 \mathrm{~m} \quad$ - radius of the midsurface of the cylindrical shell;
$\mathrm{L}=0.305 \mathrm{~m} \quad$ - length of the cylindrical shell.
Finite element model: Design model - general type system, 6400 four-node shell elements of type 50. The spacing of the finite element mesh in the meridian direction is $4.765625 \cdot 10^{-3} \mathrm{~m}$ (64 elements) and in the circumferential is 3.6° (100 elements). Boundary conditions of the simply supported edges are provided by imposing constraints in the directions of the linear displacements in their plane (degrees of freedom Y, Z). The dimensional stability of the design model is provided by imposing constraints of finite rigidity (100 elements of type 51) in the nodes of the cross-section on the symmetry plane of the cylindrical shell in the meridian direction $\left(\mathrm{k}_{\mathrm{x}}=1.0 \mathrm{kN} / \mathrm{m}\right)$. The distributed mass is specified by transforming the static load from the self-weight of the cylindrical shell: ow $=\gamma \cdot \mathrm{h}$, where $\gamma=\rho \cdot \mathrm{g}=75.537 \mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model - 6500. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

Design model

2-nd (1-st theoretical) natural oscillation mode

8-th (7-th theoretical) natural oscillation mode

14-th (13-th theoretical) natural oscillation mode

26-th (25-th theoretical) natural oscillation mode

38-th (37-th theoretical) natural oscillation mode

42-nd (41-st theoretical) natural oscillation mode

44-th (43-rd theoretical) natural oscillation mode

46-th (45-th theoretical) natural oscillation mode

Comparison of solutions:

Natural frequencies ω, Hz

Oscillation mode	Number of nodal circles m and meridians n	Theory	SCAD	Deviations, \%
1,2	2,5	354.4	354.9	0.14
3,4	2,6	408.3	408.9	0.15
5,6	2,4	409.5	410.1	0.15
7,8	2,7	522.1	522.9	0.15

Verification Examples

Oscillation mode	Number of nodal circles m and meridians n	Theory	SCAD	Deviations, \%
9,10	2, 3	642.1	642.8	0.11
11, 12	2, 8	671.1	672.0	0.13
13, 14	3, 7	723.2	724.9	0.24
15, 16	3, 6	768.5	770.3	0.23
17, 18	3, 8	784.3	785.9	0.20
19, 20	2, 9	846.2	847.3	0.13
21, 22	3, 9	914.9	916.6	0.19
23, 24	3, 5	962.3	964.5	0.23
25, 26	2,10	1044.3	1045.7	0.13
27, 28	3, 10	1090.7	1092.5	0.17
29, 30	4, 8	1095.6	1099.3	0.34
31, 32	4, 9	1115.7	1119.2	0.31
33, 34	4, 7	1194.2	1198.2	0.33
35, 36	4, 10	1223.2	1226.5	0.27
37, 38	2, 2	1241.3	1242.5	0.10
39, 40	2,11	1264.3	1265.9	0.13
41, 42	3,11	1299.1	1301.2	0.16
43, 44	3, 4	1368.6	1370.9	0.17
45, 46	4, 11	1391.6	1395.0	0.24
47, 48	4, 6	1444.4	1448.8	0.30
49, 50	5, 9	1470.4	1477.2	0.46
51, 52	5,10	1474.4	1480.6	0.42
53, 54	2,12	1505.8	1507.5	0.11
55, 56	3, 12	1534.3	1536.6	0.15
57, 58	5,11	1570.6	1576.5	0.38
59, 60	5, 8	1584.6	1591.9	0.46
61, 62	4, 12	1603.7	1607.1	0.21
63, 64	5,12	1735.5	1741.2	0.33
65, 66	2,13	1768.5	1770.3	0.10
67, 68	3, 13	1793.5	1795.9	0.13
69, 70	6,10	1837.2	1848.0	0.59
71, 72	5,7	1842.3	1850.1	0.42
73, 74	6, 11	1844.3	1854.3	0.54
75,76	4, 13	1849.2	1852.7	0.19
77, 78	4, 5	1892.8	1897.7	0.26
79, 80	6,12	1942.4	1951.9	0.49
81, 82	6, 9	1942.8	1954.3	0.59
83, 84	5,13	1951.0	1956.7	0.29
85, 86	2,14	2052.3	2054.1	0.09
87, 88	3, 14	2075.2	2077.7	0.12
89, 90	6,13	2111.1	2120.1	0.43
91, 92	4,14	2122.7	2126.3	0.17
93, 94	3, 3	2137.0	2140.0	0.14
95, 96	6, 8	2181.3	2193.4	0.55
97, 98	5,14	2205.6	2211.2	0.25
99, 100	7,11	2199.6	2215.4	0.72
101, 102	7,12	2223.0	2237.8	0.67
103, 104	5,6	2275.4	2283.7	0.36
105, 106	7,10	2281.7	2298.3	0.73
107, 108	7,13	2333.3	2347.3	0.60
109, 110	6,14	2333.8	2342.5	0.37
111, 112	2,15	2357.2	2358.9	0.07
113, 114	3, 15	2378.9	2381.2	0.10
115, 116	4, 15	2421.3	2424.8	0.14
117, 118	7, 9	2485.9	2503.2	0.70
119, 120	5,15	2492.0	2497.5	0.22
121, 122	7,14	2512.8	2526.3	0.54
123, 124	8,12	2565.0	2586.6	0.84

Oscillation mode	Number of nodal circles m and meridians n	Theory	SCAD	Deviations, \%
125,126	6,7	2574.4	2586.9	0.49
127,128	6,15	2598.7	2607.3	0.33
129,130	8,13	2613.1	2633.7	0.79
131,132	8,11	2614.4	2637.0	0.86
133,134	4,4	2630.0	2635.4	0.21
135,136	2,16	2683.2	2684.5	0.05
137,138	3,16	2704.1	2706.1	0.07
139,140	8,14	2742.8	2762.4	0.71
141,142	4,16	2743.2	2746.5	0.12
143,144	7,15	2747.0	2759.9	0.47
145,146	8,10	2776.0	2799.3	0.84
147,148	5,16	2806.0	2811.3	0.19
149,150	2,1	2832.3	2835.3	0.11

Notes: In the analytical solution the natural frequencies ω of the simply supported circular cylindrical shell with the density of the material ρ can be determined from the characteristic equation:

$$
\left(\frac{4 \cdot \pi^{2} \cdot \rho \cdot R^{2} \cdot\left(1-v^{2}\right)}{E}\right)^{3} \cdot \omega^{6}+K 2 \cdot\left(\frac{4 \cdot \pi^{2} \cdot \rho \cdot R^{2} \cdot\left(1-v^{2}\right)}{E}\right)^{2} \cdot \omega^{4}+K 1 \cdot\left(\frac{4 \cdot \pi^{2} \cdot \rho \cdot R^{2} \cdot\left(1-v^{2}\right)}{E}\right) \cdot \omega^{2}+K 0=0,
$$

where:
$K 2=-1-\frac{1}{2} \cdot(3-v) \cdot\left[\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right]-\frac{h^{2}}{12 \cdot R^{2}} \cdot\left\{\left[\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right]^{2}+2 \cdot(1-v) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right\}$

$$
\begin{gathered}
K 1=\frac{1}{2} \cdot(1-v) \cdot\left[\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right]^{2}+\frac{1}{2} \cdot\left(3-v-2 \cdot v^{2}\right) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+\frac{1}{2} \cdot(1-v) \cdot n^{2}+ \\
\frac{h^{2}}{12 \cdot R^{2}} \cdot\left\{\frac{1}{2} \cdot(3-v) \cdot\left[\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right]^{3}+2 \cdot(1-v) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{4}-\left(2-v^{2}\right) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2} \cdot n^{2}-\frac{1}{2}(3+v) \cdot n^{4}+\right. \\
\left.2 \cdot(1-v) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right\}+\frac{h^{4}}{144 \cdot R^{4}} \cdot\left\{2 \cdot(1-v) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{6}+\left(1-v^{2}\right) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{4} \cdot n^{2}\right\} \\
K 0=-\frac{1}{2} \cdot(1-v) \cdot\left(1-v^{2}\right) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{4}-\frac{1}{2} \cdot(1-v) \cdot \frac{h^{2}}{12 \cdot R^{2}} \cdot\left\{\left[\left(\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right]^{4}-2 \cdot\left(4-v^{2}\right) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{4} \cdot n^{2}-\right.\right. \\
\left.8 \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2} \cdot n^{4}-2 \cdot n^{6}+4 \cdot\left(1-v^{2}\right) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{4}+4 \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{2} \cdot n^{2}+n^{4}\right\}- \\
\frac{1}{2} \cdot(1-v) \cdot \frac{h^{4}}{144 \cdot R^{4}} \cdot\left\{4 \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{8}-4 \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{6} \cdot n^{2}+\left(1-v^{2}\right) \cdot\left(\frac{(m-1) \cdot \pi \cdot R}{L}\right)^{4} \cdot n^{4}\right\}
\end{gathered}
$$

$m=2,3,4 \ldots \quad$ - number of nodal lines in the circumferential direction, taking into account the lines along the end support contours,
$n=0,1,2, \ldots \quad$ - number of pairs of nodal lines in the meridian direction when each pair is located on one diameter.

Natural Oscillations of a Clamped Circular Cylindrical Shell

Objective: Modal analysis of a clamped circular cylindrical shell.

Initial data file: 5.8_C.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the clamped circular cylindrical shell with the density of the material ρ.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p. 437.
V. S. Gontkevich, Natural Vibrations of Orthotropic Cylindrical Shells, Proceedings of the Conference on the Theory of Shells and Plates, Kazan, KFAN, 1961.

Initial data:

$\mathrm{E}=1.96 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus;
$v=0.3 \quad-$ Poisson's ratio;
$\rho=7.70 \mathrm{t} / \mathrm{m}^{3} \quad$ - density of the material;
$\mathrm{h}=0.25 \cdot 10^{-3} \mathrm{~m} \quad$ - thickness of the cylindrical shell;
$\mathrm{R}=0.076 \mathrm{~m} \quad$ - radius of the midsurface of the cylindrical shell;
$\mathrm{L}=0.305 \mathrm{~m} \quad$ - length of the cylindrical shell.
Finite element model: Design model - general type system, 6400 four-node shell elements of type 50 . The spacing of the finite element mesh in the meridian direction is $4.765625 \cdot 10^{-3} \mathrm{~m}$ (64 elements) and in the circumferential is 3.6° (100 elements). Boundary conditions of the simply supported edges are provided by imposing constraints in the directions of all linear and angular displacements (degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ). The distributed mass is specified by transforming the static load from the self-weight of the cylindrical shell: ow $=\gamma \cdot \mathrm{h}$, where $\gamma=\rho \cdot \mathrm{g}=75.537 \mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model -6500 . The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

1-st (1-st theoretical) natural oscillation mode

3-rd (3-rd theoretical) natural oscillation mode

7-th (7-th theoretical) natural oscillation mode

13-th (13-th theoretical) natural oscillation mode

19-th (19-th theoretical) natural oscillation mode

21-st (21-st theoretical) natural oscillation mode

27-th (27-th theoretical) natural oscillation mode

31-st (29-th theoretical) natural oscillation mode

33-rd (33-rd theoretical) natural oscillation mode

35-th (35-th theoretical) natural oscillation mode

39-th (39-th theoretical) natural oscillation mode

43-rd (43-rd theoretical) natural oscillation mode

Comparison of solutions:

Natural frequencies ω, Hz

Oscillation mode	Number of nodal circles m and meridians n	Theory	SCAD	Deviations, \%
1,2	2,6	$533(529.2)$	522.2	2.03
3,4	2,5	$574(585.3)$	567.0	1.22
5,6	2,7	$593(579.2)$	578.9	2.38

Verification Examples

Oscillation mode	Number of noda circles m and meridians n	Theory	SCAD	Deviations, \%
7, 8	2, 8	717 (697.2)	700.3	2.33
9,10	2, 4	755 (787.9)	751.1	0.52
11, 12	2, 9	881 (857.8)	862.6	2.09
13, 14	3, 7	898 (910.0)	888.2	1.09
15, 16	3, 8	903 (897.8)	889.5	1.50
17, 18	3, 9	996 (979.9)	979.5	1.66
19, 20	3, 6	1011 (1047.7)	1004.6	0.63
21, 22	2,10	1075 (1048.9)	1054.6	1.90
23, 24	2, 3	1140 (1209.6)	1136.7	0.29
25, 26	3, 10	1151 (1127.1)	1131.1	1.73
27, 28	4, 9	1251 (1251.3)	1238.2	1.02
29, 30	3, 5	1272 (1344.8)	1267.7	0.34
31, 32	4, 8	1273 (1293.0)	1264.2	0.69
33, 34	2,11	1295 (1265.4)	1271.5	1.81
35, 36	4,10	1325 (1310.9)	1308.2	1.27
37, 38	3, 11	1348 (1319.3)	1325.7	1.65
39, 40	4, 7	1415 (1460.8)	1409.3	0.40
41, 42	4, 11	1471 (1446.7)	1450.2	1.41
43, 44	2,12	-- (1504.9)	1511.3	-
45, 46	3, 12	-- (1545.3)	1552.9	-
47, 48	5,10	-- (1611.9)	1597.9	-
49, 50	5, 9	-- (1657.6)	1627.9	-
51, 52	3,12	- (1637.7)	1644.9	-
53, 54	5,11	-- (1666.7)	1663.6	-
55, 56	4, 6	1700 (1781.0)	1696.6	0.20
57, 58	3, 4	1731 (1863.8)	1728.3	0.16
59, 60	5, 8	-- (1824.3)	1772.9	-
61, 62	2, 13	-- (1766.4)	1773.0	-
63, 64	5,12	-- (1800.5)	1804.6	-
65, 66	3, 13	-- (1799.0)	1807.3	-
67, 68	4, 13	-- (1869.9)	1879.4	-
69, 70	2, 2	-- (2045.1)	1889.1	-
71, 72	6,11	-- (1975.1)	1963.8	-
73, 74	6,10	-- (2007.8)	1982.0	-
75,76	5,13	-- (1994.2)	2002.9	-
77, 78	6,12	-- (2038.4)	2037.7	-
79, 80	5,7	-- (2131.6)	2051.4	-
81, 82	2,14	-- (2049.6)	2056.1	-
83, 84	3, 14	-- (2077.5)	2086.0	-
85, 86	6,9	-- (2154.2)	2109.1	-
87, 88	4,14	-- (2135.1)	2145.7	-
89, 90	4, 5	2165 (2295.4)	2163.0	0.09
91, 92	6,13	- (2179.6)	2186.2	-
93, 94	5,14	-- (2233.9)	2245.5	-
95,96	7, 11	-- (2352.7)	2334.1	-
97, 98	7,12	-- (2343.7)	2338.1	-
99, 100	6, 8	-- (2429.8)	2360.2	-
101, 102	2,15	-- (2354.1)	2360.4	-
103, 104	3, 15	-- (2379.1)	2387.6	-
105, 106	6,14	-- (2381.8)	2393.2	-
107, 108	7, 13	-- (2425.1)	2429.2	-
109, 110	7, 10	-- (2467.4)	2432.1	-
111, 112	4, 15	-- (2428.2)	2439.5	-
113, 114	5,6	-- (2606.7)	2488.7	-
115, 116	3, 3	2505 (2740.1)	2502.6	0.10
117, 118	5,15	-- (2510.3)	2523.6	-
119, 120	7,14	-- (2581.1)	2592.0	-
121, 122	7,14	-- (2700.8)	2644.8	-

Oscillation mode	Number of nodal circles m and meridians n	Theory	SCAD	Deviations, \%
123,124	7,9	$--(2632.0)$	2646.5	-
125,126	6,15	$--(2679.8)$	2685.7	-
127,128	2,16	$--(2701.6)$	2692.7	-
129,130	8,12	$-(2702.9)$	2711.1	-
131,132	3,16	$-(2723.2)$	2725.6	-
133,134	8,13	$--(2852.2)$	2752.7	-
135,136	6,7	$--(2777.7)$	2754.5	-
137,138	8,11	$-(2746.6)$	2757.9	-
139,140	4,16	$--(2796.9)$	2812.5	-
141,142	5,16	$--(2817.6)$	2831.6	-
143,144	7,15	$--(2829.0)$	2839.8	-
145,146	4,4	$2884(3082.7)$	2883.1	0.03
147,148	8,10	$-(2963.2)$	2922.5	-
149,150	6,16	$--(2921.1)$	2937.5	-

The values of the exact solution are given before brackets in the "Theory" column, and the values of the approximate solution by the Rayleigh-Ritz method with the displacement components expressed by beam functions are given in brackets.

Notes: In the analytical solution by the Rayleigh-Ritz method with the displacement components expressed by beam functions the natural frequencies ω of the clamped circular cylindrical shell with the density of the material ρ can be determined from the characteristic equation:

$$
\left(\frac{4 \cdot \pi^{2} \cdot \rho \cdot R^{2} \cdot\left(1-v^{2}\right)}{E}\right)^{3} \cdot \omega^{6}+K 2 \cdot\left(\frac{4 \cdot \pi^{2} \cdot \rho \cdot R^{2} \cdot\left(1-v^{2}\right)}{E}\right)^{2} \cdot \omega^{4}+K 1 \cdot\left(\frac{4 \cdot \pi^{2} \cdot \rho \cdot R^{2} \cdot\left(1-v^{2}\right)}{E}\right) \cdot \omega^{2}+K 0=0
$$

where:

$$
\begin{gathered}
K 2=-1-\frac{1}{2} \cdot\left[\left(\frac{2}{\delta_{m}}+\delta_{m}-v \cdot \delta_{m}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2}+(3-v) \cdot n^{2}\right]- \\
\frac{h^{2}}{12 \cdot R^{2}} \cdot\left\{\left[\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4}+2 \cdot \delta_{m} \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2} \cdot n^{2}+n^{4}\right]+2 \cdot(1-v) \cdot \delta_{m} \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2}+n^{2}\right\} \\
K 1=\frac{1}{2} \cdot(1-v) \cdot\left[\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4}+2 \cdot\left(\frac{1-v \cdot \delta_{m}{ }^{2}}{(1-v) \cdot \delta_{m}}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2} \cdot n^{2}+n^{4}\right]+ \\
\frac{1}{2} \cdot\left(\frac{2}{\delta_{m}}+\delta_{m}-v \cdot \delta_{m}-2 \cdot v^{2} \cdot \delta_{m}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2}+\frac{1}{2} \cdot(1-v) \cdot n^{2}+ \\
\frac{h^{2}}{12 \cdot R^{2}} \cdot\left\{\frac { 1 } { 2 } \cdot \left[\left(\frac{2}{\delta_{m}}+\delta_{m}-v \cdot \delta_{m}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{6}+\left(7+2 \cdot \delta_{m}{ }^{2}-\left(1+2 \cdot \delta_{m}{ }^{2}\right) \cdot v\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4} \cdot n^{2}+\right.\right. \\
\left.\left(\frac{2}{\delta_{m}}+7 \cdot \delta_{m}-3 \cdot v \cdot \delta_{m}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2} \cdot n^{4}+(3-v) \cdot n^{6}\right]+2 \cdot(1-v) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4}- \\
\left.\left(3 \cdot \delta_{m}-\frac{1}{\delta_{m}}-v^{2} \cdot \delta_{m}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2} \cdot n^{2}-\frac{1}{2} \cdot(3+v) \cdot n^{4}+2 \cdot(1-v) \cdot \delta_{m} \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2}+n^{2}\right\}
\end{gathered}
$$

$$
\begin{aligned}
& K 0=-\frac{1}{2} \cdot(1-v) \cdot\left(1-v^{2} \cdot \delta_{m}{ }^{2}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4}-\frac{1}{2} \cdot(1-v) \cdot \frac{h^{2}}{12 \cdot R^{2}} \cdot\left\{\left[\left(\frac{\lambda_{m} \cdot R}{L}\right)^{8}+2 \cdot\left(\frac{1+\delta_{m}{ }^{2}-2 \cdot v \cdot \delta_{m}}{(1-v) \cdot \delta_{m}}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{6} \cdot n^{2}+\right.\right. \\
& \left.\left(\frac{6-2 \cdot v \cdot\left(1+2 \cdot \delta_{m}{ }^{2}\right)}{1-v}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4} \cdot n^{4}+2 \cdot\left(\frac{1+\delta_{m}{ }^{2}-2 \cdot v \cdot \delta_{m}}{(1-v) \cdot \delta_{m}}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2} \cdot n^{6}+n^{8}\right]- \\
& 2 \cdot\left(\frac{4-2 \cdot v \cdot\left(1+\delta_{m}{ }^{2}\right)-v^{2} \cdot \delta_{m}{ }^{2} \cdot(1-v)}{1-v}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4} \cdot n^{4}-\left(\frac{4 \cdot\left(1+\delta_{m}{ }^{2}\right)-8 \cdot v \cdot \delta_{m}{ }^{2}}{(1-v) \cdot \delta_{m}}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2} \cdot n^{4}-2 \cdot n^{6}+ \\
& \left.4 \cdot\left(1-v^{2} \cdot \delta_{m}{ }^{2}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{4}+\left(\frac{2 \cdot\left(1+\delta_{m}{ }^{2}\right)-4 \cdot v \cdot \delta_{m}{ }^{2}}{1-v}\right) \cdot\left(\frac{\lambda_{m} \cdot R}{L}\right)^{2} \cdot n^{2}+n^{4}\right\} \\
& \delta_{m}=1-\frac{2}{\lambda_{m}} \cdot\left(\frac{\operatorname{sh}\left(\lambda_{m}\right) \cdot \operatorname{ch}\left(\lambda_{m}\right)-\lambda_{m} \cdot \operatorname{sh}\left(\lambda_{m}\right) \cdot \sin \left(\lambda_{m}\right)-\operatorname{sh}\left(\lambda_{m}\right) \cdot \cos \left(\lambda_{m}\right)-\operatorname{ch}\left(\lambda_{m}\right) \cdot \sin \left(\lambda_{m}\right)+\sin \left(\lambda_{m}\right) \cdot \cos \left(\lambda_{m}\right)}{\left(\operatorname{sh}\left(\lambda_{m}\right)-\sin \left(\lambda_{m}\right)\right)^{2}}\right)
\end{aligned}
$$

Eigenvalues of the m-th beam function are determined from the following equation:

$$
\operatorname{ch}\left(\lambda_{m}\right) \cdot \cos \left(\lambda_{m}\right)=1
$$

$m=2,3,4 \ldots \quad-$ number of nodal lines in the circumferential direction, taking into account the lines along the end support contours,
$n=0,1,2, \ldots \quad-\quad$ number of pairs of nodal lines in the meridian direction when each pair is located on one diameter.

The deviations from the theory for the initial natural frequencies are due to the fact that the natural modes and frequencies are determined by the program for a design model with all degrees of freedom of nodal displacements, i.e. tangential inertia forces were taken into account as well. These forces are especially noticeable in natural modes with a small number of half waves m in the circumferential direction.

The exact solution from the source does not take into account the tangential inertia forces. However, the page 440 of this handbook provides a formula for the estimation of the error introduced by this assumption. It gives a value of the correction to the square of the natural frequency:

$$
k=1 /(1+z) .
$$

For the first modes when $m=2$ the calculations gave the value $z=0,042$. Therefore, we can expect a 2% correction to the theoretical value.

Natural Oscillations of a Cantilever Open Cylindrical Shell

Objective: Modal analysis of a cantilever open cylindrical shell.

Initial data file: 5.9.SPR

Problem formulation: Determine the natural oscillation modes and frequencies ω of the cantilever open cylindrical shell with the density of the material ρ.

References: Olson M. D., Lindberg G. M., Vibration analysis of cantilevered curved plates using a new cylindrical shell finite element, Second conference on matrix methods in structural mechanics at Wright Patterson Air Force Base in Ohio, AFFDL-TR-68-155, 1969, p. 247-269.

Initial data:

$\mathrm{E}=30.0 \cdot 10^{6} \mathrm{PSI}=2.0685 \cdot 10^{8} \mathrm{kPa} \quad-$ elastic modulus;
$v=0.3 \quad$ - Poisson's ratio;
$\rho=0.28386 \mathrm{lb} / \mathrm{in}^{3}=7.8572 \mathrm{t} / \mathrm{m}^{3} \quad-$ density of the material;
$\mathrm{h}=0.12 \mathrm{in}=3.048 \cdot 10^{-3} \mathrm{~m} \quad$ - thickness of the cylindrical shell;
$\mathrm{R}=24 \mathrm{in}=0.6096 \mathrm{~m} \quad$ - radius of the midsurface of the cylindrical shell;
$\mathrm{L}=12 \mathrm{in}=0.3048 \mathrm{~m} \quad$ - length of the generatrix of the cylindrical shell;
$\mathrm{W}=12 \mathrm{in}=0.3048 \mathrm{~m} \quad$ - length of the arc of the director of the cylindrical shell.
Finite element model: Design model - general type system, 400 four-node shell elements of type 50. The spacing of the finite element mesh in the meridian and in the circumferential directions is 0.01524 m (20 elements). Boundary conditions of the clamped curvilinear edge are provided by imposing constraints in the directions of all linear and angular displacements (degrees of freedom X, Y, Z, UX, UY, UZ). The distributed mass is specified by transforming the static load from the self-weight of the cylindrical shell: ow $=\gamma \cdot$ h, where $\gamma=\rho \cdot \mathrm{g}=77.0791 \mathrm{kN} / \mathrm{m}^{3}$. Number of nodes in the design model -441 . The determination of the natural oscillation modes and natural frequencies is performed by the Lanczos method. A consistent mass matrix is used in the calculation.

Results in SCAD

以
*
Design model

1-st natural oscillation mode

5-th natural oscillation mode

6-th natural oscillation mode

8-th natural oscillation mode

9-th natural oscillation mode

12-th natural oscillation mode

Comparison of solutions:

Natural frequencies ω, Hz

Oscillation mode	Nodal lines	Experiment	SCAD	Deviations, \%
1	为	85.6	86,2	0,35
2	$\sqrt{5}$	135.5	139,2	0,57
3		258.9	248,2	0,95

Oscillation mode	Nodal lines	Experiment	SCAD	Deviations, \%
4		350.6	344,2	0,75
5		395.2	388,2	0,89
6		531.1	529,9	1,39
7	(in	743.2	730,9	1,33
8		751.2	732,9	1,22
9		792.1	776,5	0,87
10		809.2	805,4	1,21
11		996.8	999,1	1,97
12		1215.0	1210,5	1,85

Plane Frame Subjected to a Uniformly Distributed Instantaneous Pulse

Objective: Determination of the stress-strain state of a plane frame subjected to a uniformly distributed instantaneous pulse.

Initial data file: DI_F.SPR

Problem formulation: The three-storey single-span plane frame with clamped columns and mass uniformly distributed over the columns m_{1} and girders m_{2} is subjected to an instantaneous pulse s uniformly distributed along the contour of the first storey. Determine the amplitude values of the bending moment M in the girder of the first storey in the section of its connection with the left column taking into account the following assumption made when deriving the analytical solution: it is assumed that there are no linear displacements of the beam-to-column joints when the symmetric design model is subjected to a symmetric loading and the longitudinal deformations of the frame structural members are neglected.

References: Rabinovich I.M., Sinitsyn A.P., Luzhin O.V., Terenin V.M., Analysis of Structures Subject to Pulse Actions, Moscow, Stroyizdat, 1970, p. 91;
Korenev B.G., Rabinovich I.M., Dynamic Analysis of Buildings and Structures (Designer's handbook), Moscow, Stroyizdat, 1984, p. 79.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{7} \mathrm{tf} / \mathrm{m}^{2}$

- elastic modulus;
$\mathrm{h}=6.0 \mathrm{~m}$
- height of the frame columns;
$\mathrm{I}_{1}=1 \cdot 10^{-4} \mathrm{~m}^{4} \quad-$ cross-sectional moment of inertia of the frame columns;
$\mathrm{F}_{1}=2 \cdot 10^{-1} \mathrm{~m}^{2} \quad$ - cross-sectional area of the frame columns;
$\mathrm{m}_{1}=0.0204 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}^{2}$
- value of the mass uniformly distributed over the frame columns;
$\mathrm{l}=5.0 \mathrm{~m} \quad$ - length of the span of the frame girders;
$\mathrm{I}_{2}=2 \cdot 10^{-4} \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia of the frame girders;
$\mathrm{F}_{2}=4 \cdot 10^{-1} \mathrm{~m}^{2} \quad$ - cross-sectional area of the frame girders;
$\mathrm{m}_{2}=0.0510 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}^{2} \quad$ - value of the mass uniformly distributed over the frame girders;
$\mathrm{s}=0.3 \cdot \mathrm{tf} \cdot \mathrm{s} / \mathrm{m} \quad-$ value of the uniformly distributed instantaneous pulse;
$g=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad$ - gravitational acceleration.

Verification Examples

Finite element model: Design model - plane frame, 102 bar elements of type 2.
The spacing of the finite element mesh along the longitudinal axes of the columns and girders of the frame is 0.5 m . Boundary conditions of the support nodes of the columns of the first storey are provided by imposing constraints in the directions of the following degrees of freedom: X, Z, UY. Boundary conditions of the beam-to-column joints according to the assumption made when deriving the analytical solution are provided by imposing constraints in the directions of the following degrees of freedom: X, Z. Boundary conditions of the nodes in the center of the girder spans according to the assumption made when deriving the analytical solution are provided by imposing constraints in the directions of the following degrees of freedom: X, UY. The distributed mass is specified by transforming the static load on the columns $m_{1} \cdot g$ and on the girders $\mathrm{m}_{2} \cdot \mathrm{~g}$ of the frame. The action of the distributed instantaneous pulse is reduced to a number of nodal actions with the values $0.5 \cdot \mathrm{~s}$. Number of nodes in the design model - 101. The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD:

1-st, 2-nd, 3-rd natural oscillation modes

7-th, 8-th, 9-th natural oscillation modes

Amplitude values of the angular displacements $U Y_{i j}$ (rad) in the beam-to-column joints
according to the 1-st, 2-nd, 3-rd natural oscillation modes (modal analysis)

Amplitude values of the angular displacements $U Y_{i j}$ (rad) in the beam-to-column joints according to the 7 -th, 8 -th, 9 -th natural oscillation modes (modal analysis)

Bending moment diagrams at the amplitude values $M_{i}(t f \cdot m)$ according to the 1-st, 2-nd, 3-rd natural oscillation modes

Amplitude values of the bending moments $M_{i}(t f \cdot m)$ in the girder of the first floor in the sections of its connections with the columns according to the 1-st, 2-nd, 3-rd natural oscillation modes

Amplitude values of the bending moments $M_{i}(t f \cdot m)$ in the girder of the first floor in the sections of its connections with the columns according to the 7 -th, 8 -th, 9 -th natural oscillation modes

Bending moment diagram at the amplitude values M (tf.m) from the total pulse load

Amplitude values of the bending moments M (tf:m) in the girder of the first floor in the sections of its connections with the columns from the total pulse load

Comparison of solutions:

Natural periods T, s

Oscillation mode	Theory	SCAD	Deviations, \%
1	0.060607	0.060607	0.00
2	0.049785	0.049785	0.00
3	0.040435	0.040436	0.00
7	0.030924	0.030925	0.00
8	0.028903	0.028904	0.00
9	0.027787	0.027788	0.00

Amplitude values of the angular displacements $\mathrm{UY}_{\mathrm{ij}}(\mathrm{rad})$ in the beam-to-column joints
according to the 1 -st, 2-nd, 3-rd, 7 -th, 8-th, 9-th natural oscillation modes (modal analysis)

Oscillation mode	Storey	Theory	SCAD	Deviation, \%
1	1	+0.583753	$-0.279605 /-0.478978=$ $=+0.583753$	0.00
1	2	-0.961520	$+0.460547 /-0.478978=$ $=-0.961520$	0.00
1	3	+1.000000	$-0.478978 /-0.478978=$ $=+1.000000$	0.00

2	1	-1.012550	$\begin{gathered} -0.588135 /+0.580845= \\ =-1.012551 \end{gathered}$	0.00
2	2	+0.112727	$\begin{gathered} +0.065478 /+0.580845= \\ =+0.112729 \end{gathered}$	0.00
2	3	+1.000000	$\begin{gathered} +0.580845 /+0.580845= \\ =+1.000000 \end{gathered}$	0.00
3	1	+0.775708	$\begin{gathered} -0.319716 /-0.412155= \\ =+0.775718 \end{gathered}$	0.00
3	2	+1.173640	$\begin{gathered} -0.483726 /-0.412155= \\ =+1.173651 \end{gathered}$	0.00
3	3	+1.000000	$\begin{gathered} -0.412155 /-0.412155= \\ =+1.000000 \end{gathered}$	0.00
7	1	+0.428722	$\begin{gathered} +0.044730 /+0.104309= \\ =+0.428822 \end{gathered}$	0.00
7	2	+0.782640	$\begin{gathered} +0.081635 /+0.104309= \\ =+0.782627 \end{gathered}$	0.00
7	3	+1.000000	$\begin{gathered} +0.044730 /+0.104309= \\ =+1.000000 \end{gathered}$	0.00
8	1	-1.342142	$\begin{gathered} +0.172948 /-0.128856= \\ =-1.342180 \end{gathered}$	0.00
8	2	-0,677645	$\begin{gathered} +0.087323 /-0.128856= \\ =-0,677679 \end{gathered}$	0.00
8	3	+1.000000	$\begin{gathered} -0.128856 /-0.128856= \\ =+1.000000 \end{gathered}$	0.00
9	1	+2.023786	$\begin{gathered} +0.133206 /+0.065817= \\ =+2.023884 \end{gathered}$	0.00
9	2	-2.473762	$\begin{gathered} -0.162812 /+0.065817= \\ =-2.473707 \end{gathered}$	0.00
9	3	+1.000000	$\begin{gathered} +0.065817 /+0.065817= \\ =+1.000000 \end{gathered}$	0.00

Amplitude values of the bending moments $\mathrm{M}_{\mathrm{i}}(\mathrm{tf} \cdot \mathrm{m})$ in the girder of the first floor in the section of its connection with the left column according to the 1 -st, 2-nd, 3-rd, 7 -th, 8-th, 9-th natural oscillation modes

Oscillation mode	Theory	SCAD	Deviations, \%
1	+0.629	-0.629	0.00
2	-3.931	+3.930	0.03
3	-10.611	+10.610	0.01
7	+19.939	-19.941	0.01
8	+86.385	-86.385	0.00
9	+53.755	-53.759	0.01

Parameter	Theory	SCAD	Deviations, \%
Amplitude values of the bending moment M in the girder of the first floor in the section of its connection with the left column from the total pulse load, $\mathrm{tf} \cdot \mathrm{m}$	+165.576 $(+173.075)$	+175.241	5.84 (1.25)

The theoretical value of the bending moment in the girder corresponds to the time point $t=0.036 \mathrm{~s}$ from the start of the action of the pulse load;
The theoretical value of the bending moment in the girder given in the brackets was determined taking into account the phase shift of the harmonics.

Notes: In the analytical solution the natural periods T, amplitude values of the angular displacements $\mathrm{UY}_{\mathrm{ij}}$ in the beam-to-column joints at the modal analysis, amplitude values of the bending moments in the girder of the first storey in the section of its connection with the left column according to the natural oscillation modes M_{i} and from the total pulse load M are determined according to the following formulas:

$$
T_{i}=\frac{2 \cdot \pi}{\omega_{i}} ; \quad \omega_{i}=\frac{\lambda_{i}^{2}}{h^{2}} \cdot \sqrt{\frac{E \cdot I_{1}}{m_{1}}} ;
$$

$\lambda_{i}-$ are determined from the following expression:

$$
\left\{4 \cdot[\operatorname{ch}(\lambda) \cdot \sin (\lambda)-\operatorname{sh}(\lambda) \cdot \cos (\lambda)]^{3}-3 \cdot[\operatorname{sh}(\lambda)-\sin (\lambda)]^{2} \cdot[\operatorname{ch}(\lambda) \cdot \sin (\lambda)-\operatorname{sh}(\lambda) \cdot \cos (\lambda)]\right\} /[1-\operatorname{ch}(\lambda) \cdot \cos (\lambda)]^{3}+
$$

$$
+\beta^{2} \cdot \alpha^{2} \cdot\left\{5 \cdot[\operatorname{ch}(\lambda) \cdot \sin (\lambda)-\operatorname{sh}(\lambda) \cdot \cos (\lambda)] \cdot[\operatorname{ch}(\alpha \cdot \lambda) \cdot \sin (\alpha \cdot \lambda)-\operatorname{sh}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]^{2}+\right.
$$

$$
+5 \cdot[\operatorname{sh}(\alpha \cdot \lambda)-\sin (\alpha \cdot \lambda)]^{2} \cdot[\operatorname{ch}(\lambda) \cdot \sin (\lambda)-\operatorname{sh}(\lambda) \cdot \cos (\lambda)]-
$$

$$
-10 \cdot[\operatorname{sh}(\alpha \cdot \lambda)-\sin (\alpha \cdot \lambda)] \cdot[\operatorname{ch}(\lambda) \cdot \sin (\lambda)-\operatorname{sh}(\lambda) \cdot \cos (\lambda)] \cdot[\operatorname{ch}(\alpha \cdot \lambda) \cdot \sin (\alpha \cdot \lambda)-\operatorname{sh}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]\} /
$$

$$
/\left\{[1-\operatorname{ch}(\lambda) \cdot \cos (\lambda)] \cdot[1-\operatorname{ch}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]^{2}\right\}+
$$

$$
+\beta \cdot \alpha \cdot\left\{8 \cdot[\operatorname{ch}(\lambda) \cdot \sin (\lambda)-\operatorname{sh}(\lambda) \cdot \cos (\lambda)]^{2} \cdot[\operatorname{ch}(\alpha \cdot \lambda) \cdot \sin (\alpha \cdot \lambda)-\operatorname{sh}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]-\right.
$$

$$
-8 \cdot[\operatorname{sh}(\alpha \cdot \lambda)-\sin (\alpha \cdot \lambda)] \cdot[\operatorname{ch}(\lambda) \cdot \sin (\lambda)-\operatorname{sh}(\lambda) \cdot \cos (\lambda)]^{2}-
$$

$\left.-2 \cdot[\operatorname{sh}(\lambda)-\sin (\lambda)]^{2} \cdot[\operatorname{ch}(\alpha \cdot \lambda) \cdot \sin (\alpha \cdot \lambda)-\operatorname{sh}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]+2 \cdot[\operatorname{sh}(\lambda)-\sin (\lambda)]^{2} \cdot[\operatorname{sh}(\alpha \cdot \lambda)-\sin (\alpha \cdot \lambda)]\right\} /$

$$
/\left\{[1-\operatorname{ch}(\lambda) \cdot \cos (\lambda)]^{2} \cdot[1-\operatorname{ch}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]\right\}+
$$

$+\beta^{3} \cdot \alpha^{3} \cdot\left\{[\operatorname{ch}(\alpha \cdot \lambda) \cdot \sin (\alpha \cdot \lambda)-\operatorname{sh}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]^{3}+3 \cdot[\operatorname{sh}(\alpha \cdot \lambda)-\sin (\alpha \cdot \lambda)]^{2} \cdot[\operatorname{ch}(\alpha \cdot \lambda) \cdot \sin (\alpha \cdot \lambda)-\operatorname{sh}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]-\right.$ $\left.-3 \cdot[\operatorname{sh}(\alpha \cdot \lambda)-\sin (\alpha \cdot \lambda)] \cdot[\operatorname{ch}(\alpha \cdot \lambda) \cdot \sin (\alpha \cdot \lambda)-\operatorname{sh}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]^{2}-[\operatorname{sh}(\alpha \cdot \lambda)-\sin (\alpha \cdot \lambda)]^{3}\right\} /$

$$
\begin{gathered}
/\left\{[1-\operatorname{ch}(\alpha \cdot \lambda) \cdot \cos (\alpha \cdot \lambda)]^{3}\right\}=0, \text { where: } \\
\alpha=\frac{l}{h} \cdot \sqrt[4]{\frac{m_{2} \cdot I_{1}}{m_{1} \cdot I_{2}}}, \quad \beta=\frac{h}{l} \cdot \frac{I_{2}}{I_{1}} ; \\
U Y_{i 1}=\left\{\left[\operatorname{ch}\left(\lambda_{i}\right) \cdot \sin \left(\lambda_{i}\right)-\operatorname{sh}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)\right] \cdot\left[1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos (\alpha \cdot \lambda)_{i}\right]+\right. \\
\left.+\beta \cdot \alpha \cdot\left[\sin \left(\alpha \cdot \lambda_{i}\right) \cdot\left[\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right)+1\right]-\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right) \cdot\left[\cos \left(\alpha \cdot \lambda_{i}\right)+1\right]\right] \cdot\left[1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos (\lambda)_{i}\right]\right\} \cdot U Y_{i 3} / \\
/\left\{2 \cdot\left[\operatorname{ch}\left(\lambda_{i}\right) \cdot \sin \left(\lambda_{i}\right)-\operatorname{sh}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)\right] \cdot\left[1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos (\alpha \cdot \lambda)_{i}\right]+\right. \\
\left.+\beta \cdot \alpha \cdot\left[\sin \left(\alpha \cdot \lambda_{i}\right) \cdot\left[\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right)+1\right]-\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right) \cdot\left[\cos \left(\alpha \cdot \lambda_{i}\right)+1\right]\right] \cdot\left[1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos (\lambda)_{i}\right]\right\} \\
U Y_{i 2}=-\left\{\left[\operatorname{ch}\left(\lambda_{i}\right) \cdot \sin \left(\lambda_{i}\right)-\operatorname{sh}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)\right] \cdot\left[1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos (\alpha \cdot \lambda)_{i}\right]+\right. \\
\left.+\beta \cdot \alpha \cdot\left[\sin \left(\alpha \cdot \lambda_{i}\right) \cdot\left[\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right)+1\right]-\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right) \cdot\left[\cos \left(\alpha \cdot \lambda_{i}\right)+1\right]\right] \cdot\left[1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos (\lambda)_{i}\right]\right\} \cdot U Y_{i 3} / \\
U Y_{i 3}=1.0 ;
\end{gathered}
$$

$$
M=\sum_{i=1}^{N} M_{i} \cdot \sin \left(\omega_{i} \cdot t\right) \quad-\text { without taking into account the phase shift of the harmonics, }
$$

$t-$ are determined from the following expression:

$$
\begin{aligned}
& \sum_{i=1}^{N} \omega_{i} \cdot M_{i} \cdot \cos \left(\omega_{i} \cdot t\right)=0, \\
& M=\sum_{i=1}^{q-1}\left|M_{i}\right| \cdot \sin \left(\frac{\pi \cdot \omega_{i}}{2 \cdot \omega_{q}}\right)+\sum_{i=q}^{N}\left|M_{i}\right|, \text { at } \quad\left|M_{q}\right|>\left|M_{i}\right|,(i \neq q) \quad \text { - taking into account the phase shift of the } \\
& \text { harmonics, where: } \\
& M_{i}=A_{i} \cdot M_{g i}, \quad A_{i}=\frac{A_{i 1}}{A_{i 2} \cdot \omega_{i}}, \\
& A_{i 1}=\frac{2 \cdot s \cdot U Y_{i 1}}{\lambda_{i}^{2}} \cdot\left\{h^{2} \cdot \frac{\operatorname{ch}\left(\lambda_{i}\right)-\cos \left(\lambda_{i}\right)-\operatorname{sh}\left(\lambda_{i}\right) \cdot \sin \left(\lambda_{i}\right)}{1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)}-\frac{l^{2}}{\alpha^{2}} \cdot \frac{\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right)-\cos \left(\alpha \cdot \lambda_{i}\right)-\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right) \cdot \sin \left(\alpha \cdot \lambda_{i}\right)}{1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)}\right\}, \\
& A_{i 2}=\frac{m_{1} \cdot h^{3}}{\lambda_{i}{ }^{3}} \cdot\left\{\left(U Y_{i 1}{ }^{2}+U Y_{i 2}{ }^{2}+\frac{U Y_{i 3}{ }^{2}}{2}\right) \cdot\left[\lambda_{i} \cdot \frac{\left[\operatorname{sh}\left(\lambda_{i}\right)-\sin \left(\lambda_{i}\right)\right]^{2}}{\left[1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)\right]^{2}}-\frac{\operatorname{ch}\left(\lambda_{i}\right) \cdot \sin \left(\lambda_{i}\right)-\operatorname{sh}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)}{1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)}\right]+\right. \\
& \left.\left(U Y_{i 1} \cdot U Y_{i 2}+U Y_{i 2} \cdot U Y_{i 3}\right) \cdot\left[\lambda_{i} \cdot \frac{\left[\operatorname{sh}\left(\lambda_{i}\right)-\sin \left(\lambda_{i}\right)\right] \cdot\left[\operatorname{ch}\left(\lambda_{i}\right) \cdot \sin \left(\lambda_{i}\right)-\operatorname{sh}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)\right]}{\left[1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)\right]^{2}}-\lambda_{i} \cdot \frac{\operatorname{ch}\left(\lambda_{i}\right)-\cos \left(\lambda_{i}\right)}{1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)}-\frac{\operatorname{sh}\left(\lambda_{i}\right)-\sin \left(\lambda_{i}\right)}{1-\operatorname{ch}\left(\lambda_{i}\right) \cdot \cos \left(\lambda_{i}\right)}\right]\right\}+ \\
& +\frac{m_{2} \cdot l^{3}}{2 \cdot \alpha^{3} \cdot \lambda_{i}^{3}} \cdot\left\{(U Y _ { i 1 } { } ^ { 2 } + U Y _ { i 2 } { } ^ { 2 } + U Y _ { i 3 } { } ^ { 2 }) \cdot \left[\alpha \cdot \lambda_{i} \cdot \frac{\left[\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right)-\sin \left(\alpha \cdot \lambda_{i}\right)\right]^{2}}{\left[1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)\right]^{2}}-\frac{\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \sin \left(\alpha \cdot \lambda_{i}\right)-\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)}{1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)}-\right.\right. \\
& -\alpha \cdot \lambda_{i} \cdot \frac{\left[\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right)-\sin \left(\alpha \cdot \lambda_{i}\right)\right] \cdot\left[\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \sin \left(\alpha \cdot \lambda_{i}\right)-\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)\right]}{\left[1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)\right]^{2}}+\alpha \cdot \lambda_{i} \cdot \frac{\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right)-\cos \left(\alpha \cdot \lambda_{i}\right)}{1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)}+ \\
& \left.\left.+\frac{\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right)-\sin \left(\alpha \cdot \lambda_{i}\right)}{1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)}\right]\right\} . \\
& M_{g i}=\frac{E \cdot l_{2}}{l} \cdot \alpha \cdot \lambda_{i} \cdot \frac{\sin \left(\alpha \cdot \lambda_{i}\right) \cdot\left(\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right)+1\right)-\operatorname{sh}\left(\alpha \cdot \lambda_{i}\right) \cdot\left(\cos \left(\alpha \cdot \lambda_{i}\right)+1\right)}{1-\operatorname{ch}\left(\alpha \cdot \lambda_{i}\right) \cdot \cos \left(\alpha \cdot \lambda_{i}\right)} \cdot U Y_{i 2}
\end{aligned}
$$

Graph of the variation of the bending moments $M(t f \cdot m)$ with time $t(s)$ in the girder of the first floor in the sections of its connections with the columns from the total pulse load taking into account 3 and 6 symmetric natural oscillation modes

The significant deviation of the results ($>5 \%$) in the amplitude values of the bending moment is due to the fact that the summation over the modes in the source Analysis of Structures Subject to Pulse Actions is performed without taking into account the phase shift. Later recommendations contain the requirement to take into account the phase shift. In this case the deviation from the theory is 1.25%.

Dynamic Analysis of Buildings and StructuresDynamic Analysis of Buildings and StructuresAnalysis of Structures Subject to Pulse ActionsAnalysis of Structures Subject to Pulse Actions

Seismic Response of a Beam according to the Linear Spectral Theory

Objective: The linear spectral method (determination of the response of a structure subjected to the seismic action given by the accelerogram)

Initial data files: LinSpectral.SPR - design model DIN_B_RS.SPC - accelerogram

Problem formulation: The simply supported beam of constant cross-section with the uniformly distributed mass μ is subjected to the kinematic excitation of supports according to the specified accelerogram:

$$
\ddot{z}(t)=\ddot{z}_{s 0} \cdot\left(1-\frac{t}{t_{d}}\right) .
$$

It is necessary to determine (by the LST) seismic displacements and the corresponding maximum bending stress.

References: John M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Companies, New York, 1964, p.262;

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{psi}=2.1092 \cdot 10^{7} \mathrm{tf} / \mathrm{m}^{2} \quad$ - elastic modulus;
$\mathrm{I}=333.333 \mathrm{in}^{4}=138.7448 \cdot 10^{-6} \mathrm{~m}^{4} \quad$ - cross-sectional moment of inertia of the beam.
$\mathrm{h}=14 \mathrm{in}=0.3556 \mathrm{~m} \quad$ - height of the cross-section of the beam;
$\mathrm{L}=240$ in $=6.0960 \mathrm{~m} \quad$ - beam span length;
$\mu=0.2 \mathrm{lb} \cdot \mathrm{sec}^{2} / \mathrm{in}^{2}=0.1406 \mathrm{tf} \cdot \mathrm{s}^{2} / \mathrm{m}^{2} \quad-$ value of the uniformly distributed mass of the beam;
$\ddot{z}_{s 0}= \pm 386.2200 \mathrm{in} / \mathrm{sec}^{2}= \pm 9.81 \mathrm{~m} / \mathrm{s}^{2} \quad-$ amplitude values of the acceleration of the supports according to the accelerogram;
$\mathrm{t}_{\mathrm{d}}=0.10 \mathrm{sec}=0.10 \mathrm{~s}$

- half-interval of the kinematic excitation of supports;
$\mathrm{g}=386.2200 \mathrm{in} / \mathrm{sec}^{2}=9.81 \mathrm{~m} / \mathrm{s}^{2} \quad$ - gravitational acceleration;
Finite element model: Design model - 32 bar elements of type 3. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom UX. The distributed mass is specified by transforming the static load from the self-weight of the beam $\mu \cdot \mathrm{g}$.
The kinematic excitation of supports is described by the graph of the acceleration variation with time (accelerogram) and is given in the form of the action along the Z axis of the global coordinate system (direction cosines to the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes: $0.00,0.00,1.00$) with the scale factor to the values of the accelerogram equal to 1.00 . The height of the beam structure in the model is directed along the Z axis of the global coordinate system. The dissipation factor is taken as $\xi=0.000001$. The intervals between the time points of the graph of the acceleration variation with time are equal to $\Delta t=0.01 \mathrm{~s}$. When plotting the graph the acceleration is taken with the values $\ddot{z}(t)=\ddot{z}_{s 0} \cdot\left(1-n \cdot \Delta t / t_{d}\right)$ at the time points $n \cdot \Delta t$. The conversion factor for the added static loading is equal to $\mathrm{k}=1.000$ (mass generation). Number of nodes in the design model -33 . The determination of the natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is used in the calculation.

Results in SCAD

The 1 -st natural frequency and the 1 -st natural oscillation mode of the beam, seismic bending stresses on the bottom face of the beam and displacements are determined in the result of the calculation.

Design and deformed models

Normal stresses in the middle of the span

Comparison of solutions:

	Source	SCAD	Deviation
1-st natural frequency (Hz)	6,0979	6.0941	$0,06 \%$
Displacement of the beam in the middle of the span (m)	0,01422	0,01397	1.75%
Maximum normal stress $\left(\mathrm{T} / \mathrm{m}^{2}\right)$	14172,70	13915,93	1.85%

Non-uniform Damping. Return to the Static Equilibrium Position

Objective: check that once the load ceases to change with time (we will call this value the static load component), the mechanical system subjected to the short-term loads and under damping returns to the static equilibrium position corresponding to the static load component.

Cantilever beam with a local damper
Initial data files: beam_local_damp_1.SPR - design model
FileTimeFile.txt - time function

Problem formulation:

The cantilever beam with a $0.2 \times 0.5 \mathrm{~m}$ rectangular cross-section, length of $\mathrm{a}=3 \mathrm{~m}$, and the elastic modulus of $\mathrm{E}=23053.5 \mathrm{MN} / \mathrm{m}^{2}$ is considered. The specific weight is $\gamma=0.0245 \mathrm{MN} / \mathrm{m}^{3}$. The beam is divided into 3 finite elements. The matrix of concentrated masses is used. The maximum value of the force P is 0.01 MN .

The load vs. time relationship is given in the figure:

Finite element model: Design model - general type system, 6 general type bar elements (type 5) and one single-node damper (type 56). Number of nodes in the design model - 8. The matrix of concentrated masses is used in the calculation.

Results in SCAD

The vertical displacement of the cantilever end vs. time relationship at $\mathrm{c}=0.01 \mathrm{MN} \cdot \mathrm{s} / \mathrm{m}$ is given in the figure.

Vertical displacement of the cantilever end
Only the damping caused by the local damper is taken into account. When a load is suddenly applied, transverse oscillations of the beam appear and are rapidly damped. The value of the deflection corresponding to the state of static equilibrium at the force value of 0.01 MN is circled in the figure. The exact solution of the corresponding static problem is $\mathrm{w}_{\mathrm{st}}=\mathrm{Pa}^{3} /(3 \mathrm{EI})=-0.0018739 \mathrm{~m}$. When the dynamic problem is solved by the Newmark method, the integration step is taken as 0.001 s . The result is accurate to 3 significant digits. This suggests that after the damping of oscillations we come to a static solution of this problem. At $0.4 \mathrm{~s}<\mathrm{t} \leq 0.5 \mathrm{~s}$ the load decreases to zero. Oscillations appear again and are rapidly damped. At $t=1 \mathrm{~s}$ the value of the normal deflection is $\mathrm{w}=-1.533 \cdot 10^{-7} \mathrm{~m}$, which is a good approximation of zero, the exact value of the no-load static deflection, in comparison with the maximum (absolute value) deflection $\mathrm{w}_{\max }=-3.024 \cdot 10^{-3} \mathrm{~m}$.

Thus, the numerical solution obtained by the Newmark method, after the damping of oscillations, converges to the static solution of this problem, which confirms the reliability of the obtained results.

Non-uniform Damping

Objective: comparison of the solution of the problem (Fig. 1) by the Newmark method (SCAD) with the numerical solution obtained in MathCAD.

Figure 1. Two rigid weightless bodies are connected to each other and to the rigid support by springs with the stiffness k. The inertial properties of the system are represented by concentrated masses m. The local damper with the damping ratio c connects the end mass with the support.

Initial data files: Test_local_damping.SPR-design model
TimeHist_1.txt - time function
local_damping.xmed - MathCAD file
Finite element model: Design model - general type system, two finite elements of the elastic constraint (type 55), two finite elements of the rigid body (type 100) and one single-node damper (type 56). Number of nodes in the design model - 5. The matrix of concentrated masses is used in the calculation.

Solution description:

A deformed model is shown in Fig. 1. The following kinematic relations follow from it:

$$
\begin{equation*}
\psi_{1}=\frac{w_{1}}{a} ; \quad \psi_{2}=\frac{w_{2}-w_{1}}{a}-\psi_{1}=\frac{w_{2}-2 w_{1}}{a}, \tag{1}
\end{equation*}
$$

Here w_{1}, w_{2} - normal deflections, and ψ_{1}, ψ_{2} - deflection angles of rigid bars. The total potential energy of the system is given in the form

$$
\begin{equation*}
Э=\Pi+W=\frac{1}{2} k \psi_{1}^{2}+\frac{1}{2} k \psi_{2}^{2}-P w_{2}, \tag{2}
\end{equation*}
$$

where Π and W - potential energy of elastic deformations and change in the potential of external forces. The kinetic energy of the system T is given below:

$$
\begin{equation*}
T=\frac{1}{2} m \dot{w}_{1}^{2}+\frac{1}{2} m \dot{w}_{2}^{2} . \tag{3}
\end{equation*}
$$

Applying Hamilton's variational principle

$$
\begin{equation*}
\delta \int_{t 1}^{t 2} L d t=0 \tag{4}
\end{equation*}
$$

where $L=T-Э$, and adding the viscous friction forces we obtain the following equations of motion:

$$
\begin{equation*}
\mathbf{M} \ddot{\mathbf{x}}+\mathbf{C} \dot{\mathbf{x}}+\mathbf{K x}=\mathbf{p}(t) \tag{5}
\end{equation*}
$$

where

$$
\mathbf{M}=\left(\begin{array}{cc}
m & 0 \tag{6}\\
0 & m
\end{array}\right), \quad \mathbf{C}=\left(\begin{array}{cc}
0 & 0 \\
0 & c
\end{array}\right), \quad \mathbf{K}=\frac{k}{a^{2}}\left(\begin{array}{cc}
5 & -2 \\
-2 & 1
\end{array}\right), \quad \mathbf{x}=\binom{w_{1}}{w_{2}}, \quad \mathbf{p}(t)=\binom{0}{P(t)}
$$

The system of equations (5) is solved by MathCAD using the rkfixed procedure, which implements the fourth-order Runge-Kutta method. The function $P(t)$ is given by the following algorithm:

$$
\mathrm{P}(\mathrm{t}):=\left\lvert\, \begin{align*}
& \mathrm{p} \leftarrow 1 \text { if } \mathrm{t} \leq 0.01 \tag{7}\\
& \mathrm{p} \leftarrow-100 \cdot \mathrm{t}+2 \text { if } \mathrm{t}>0.01 \wedge \mathrm{t} \leq 0.02 \\
& \mathrm{p} \leftarrow 0 \text { if } \mathrm{t}>0.02 \\
& \text { return } \mathrm{p}
\end{align*} .\right.
$$

The integration interval is taken as $\mathrm{t} \in[0,1], \mathrm{a}=1 \mathrm{~m}, \mathrm{k}=1000 \mathrm{MN} \cdot \mathrm{m} / \mathrm{rad}, \mathrm{m}=10^{6} \mathrm{~kg}, \mathrm{c}=10$ $\mathrm{MN} \cdot \mathrm{s} / \mathrm{m}$, and the number of points approximating the unknown function is npoint $=1000$. The Runge-Kutta method is an explicit integration method, therefore, it is conditionally stable. At npoint $=10$ the unstable behavior of the solution is observed, the results for npoint $=100$ and npoint $=1000$ are slightly different at the right end of the interval, and the results for npoint $=1000$ and npoint $=10000$ are virtually identical. Therefore, we believe that the numerical solution for npoint $=1000$ leads to virtually accurate results.

The SCAD design model is shown in Fig. 2, and the comparison of the above solution with the results obtained by the Newmark method (SCAD) is given in Fig. 4. When the Newmark method is used, the integration step is taken as $\Delta t=0.0001 \mathrm{~s}$.

The load vs. time relationship corresponding to (7) is given in Fig. 3.

Node

Merged displacements $\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{U}_{x}, \mathbf{U}_{z}$

Elastic constraint U_{y} with the stiffness k

Concentrated mass m

Rigid body

宁
Local damper with the damping ratio \boldsymbol{c}

Rigid constraints

Figure 2. SCAD design model

Figure 3. Load vs. time relationship

Figure 4. Vertical displacement of the cantilever end
At the time point $t=0.1 \mathrm{~s}$ the displacement of the cantilever end reaches a value close to the maximum (absolute value) one, and the displacement obtained by MathCAD is $w_{2}=-6.5393 \cdot 10^{-4}$ (Fig. 1), and the displacement obtained by the Newmark method is $w_{3}=-6.5170 \cdot 10^{-4}$ (Fig. 3).

Thus, the results of numerical solutions obtained by MathCAD and the Newmark method (SCAD) are virtually identical which confirms the reliability of both these methods.

Linear Stability

Stability of a Simply Supported Beam Subjected to a Concentrated Longitudinal Force

Objective: Determination of the critical value of a concentrated longitudinal force acting on a simply supported beam corresponding to the moment of its buckling.

Initial data file: CB01_v11.3.SPR

Problem formulation: The beam of square cross-section simply supported on both ends is subjected to a concentrated longitudinal force P. Determine the critical value of the concentrated longitudinal force P_{cr}, corresponding to the moment of the buckling of the beam.

References: D. O. Brush and B. O. Almroth, Buckling of Bars, Plates and Shells, New York, McGraw-Hill Co., 1975, p. 22.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{~Pa} \quad-$ elastic modulus,
$\mathrm{L}=50.0 \mathrm{~m} \quad$ - beam length;
$\mathrm{h}=1.0 \mathrm{~m} \quad$ - side of the cross-section of the beam;
$\mathrm{P}=1.0 \cdot 10^{3} \mathrm{~N} \quad-$ initial value of the concentrated longitudinal force.

Finite element model: Design model - plane frame, 10 elements of type 10. The spacing of the finite element mesh along the longitudinal axis (along the X axis of the global coordinate system) is 5.0 m . Boundary conditions of the roller supported (left) end are provided by imposing constraints in the directions of the degrees of freedom X, Z and those of the simply supported (right) end are provided by imposing constraints in the direction of the degree of freedom Z . The action with the initial value of the concentrated longitudinal force P is specified on the simply supported (right) end. Number of nodes in the design model -11 .

Results in SCAD

Design model

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Critical value of the concentrated longitudinal force P_{cr}, N	9869.6$9.8696 \cdot 1000=$ $=9869.6$	0.00	

Notes: In the analytical solution the critical value of the concentrated longitudinal force $P_{\text {cr }}$ is determined according to the following formula:

$$
P_{c r}=\frac{\pi^{2} \cdot E \cdot I}{L^{2}}, \text { where: } \quad I=\frac{h^{4}}{12} .
$$

Stability of a Clamped Beam Subjected to a Concentrated Longitudinal Force

Objective: Determination of the critical value of a concentrated longitudinal force acting on a clamped beam corresponding to the moment of its buckling.

Initial data file: CB02_v11.3.SPR

Problem formulation: The beam of square cross-section clamped on both ends is subjected to a concentrated longitudinal force P. Determine the critical value of the concentrated longitudinal force $P_{\text {cr }}$, corresponding to the moment of the buckling of the beam.

References: D. O. Brush and B. O. Almroth, Buckling of Bars, Plates and Shells, New York, McGraw-Hill Co., 1975, p. 22.

Initial data:

$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{~Pa} \quad$ - elastic modulus,
$\mathrm{L}=50.0 \mathrm{~m} \quad$ - beam length;
$\mathrm{h}=1.0 \mathrm{~m} \quad$ - side of the cross-section of the beam;
$\mathrm{P}=1.0 \cdot 10^{4} \mathrm{~N} \quad-$ initial value of the concentrated longitudinal force.
Finite element model: Design model - plane frame, 10 elements of type 10. The spacing of the finite element mesh along the longitudinal axis (along the X axis of the global coordinate system) is 5.0 m .
Boundary conditions of the clamped (left) end are provided by imposing constraints in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Z}, \mathrm{UY}$ and those of the (right) end with a clamping floating along the beam axis are provided by imposing constraints in the directions of the degrees of freedom Z, UY. The action with the initial value of the concentrated longitudinal force P is specified on the (right) end with a clamping floating along the beam axis. Number of nodes in the design model -11 .

Results in SCAD

Comparison of solutions:

\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Parameter } & \text { Theory } & \text { SCAD } & \text { Deviation, \% } \\
\hline \text { Critical value of the concentrated longitudinal } \\
\text { force } P_{\mathrm{cr}}, \mathrm{N}\end{array}
$$ \mathrm{39478.4} \begin{array}{c}3.94783 \cdot 1000=

=39478.3\end{array}\right] 0.00\)| |
| :--- |

Notes: In the analytical solution the critical value of the concentrated longitudinal force $P_{\text {cr }}$ is determined according to the following formula:

$$
P_{c r}=\frac{4 \cdot \pi^{2} \cdot E \cdot I}{L^{2}} \text {, where: } \quad I=\frac{h^{4}}{12} \text {. }
$$

Stability of a Cantilever Column with a Step Change in Cross-Section Subjected to Longitudinal Compressive Forces Applied to the Intermediate and End Sections

Objective: Determination of the critical values of longitudinal compressive forces applied to the intermediate and end sections of the cantilever column with a step change in cross-section corresponding to the moment of its buckling. Determination of the unsupported lengths of the column steps.

Initial data files:

File name	Description
Leg_of_varying_section_Beam.SPR	Bar model
Leg_of_varying_section_Shell.SPR	Shell element model

- Problem formulation: The cantilever column with a step change in cross-section is subjected to longitudinal forces P_{i}, applied to the intermediate and end sections. Determine the critical values of the longitudinal compressive forces $\mathrm{P}_{\mathrm{cri}}$, corresponding to the moment of the buckling of the cantilever column. Determine the unsupported lengths of the column steps $\mathrm{L}_{0 \mathrm{i}}$.

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 166.
S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. Feodos'yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic Analysis.
Stability. Creep. Moscow, Mashgiz, 1952, p. 543, 555.

Initial data:

$\mathrm{L}_{1}=10.0 \mathrm{~m}$

- length of the first (upper) step of the column;
$\mathrm{L}_{2}=10.0 \mathrm{~m}$
- length of the second (middle) step of the column;
$\mathrm{L}_{3}=10.0 \mathrm{~m}$
- length of the third (lower) step of the column;
$\mathrm{D}_{1}=2.0 \mathrm{~m}$
- outer diameter of the circular hollow section of the first step of the column;
$\mathrm{D}_{2}=2.0 \mathrm{~m}$
- outer diameter of the circular hollow section of the second step of the column;
$\mathrm{D}_{3}=2.0 \mathrm{~m}$
- outer diameter of the circular hollow section of the third step of the column;
$\mathrm{t}_{1}=0.01 \mathrm{~m}$
- thickness of the circular hollow section of the first step of the column;
- thickness of the circular hollow section of the second step of the column;
$\mathrm{t}_{2}=0.02 \mathrm{~m}$
- thickness of the circular hollow section of the third step of the column;
$\mathrm{t}_{3}=0.04 \mathrm{~m}$
- elastic modulus of the column material;
$\mathrm{E}=2.06 \cdot 10^{8} \mathrm{kN} / \mathrm{m}^{2}$
- Poisson's ratio;
$v=0.3$
$\mathrm{P}_{1}=1.0 \cdot 10^{4} \mathrm{kN} / \mathrm{m}^{2}$
- initial value of the compressive longitudinal force applied to the upper edge of the first step of the column;
$\mathrm{P}_{2}=1.0 \cdot 10^{4} \mathrm{kN} / \mathrm{m}^{2} \quad$ - initial value of the compressive longitudinal force applied to the upper edge of the second step of the column;
$\mathrm{P}_{3}=2.0 \cdot 10^{4} \mathrm{kN} / \mathrm{m}^{2} \quad$ - initial value of the compressive longitudinal force applied to the upper edge of the third step of the column.

Finite element model: Two design models are considered:
Bar model, design model - plane frame, 30 bar elements of the plane frame of type 2 . The spacing of the finite element mesh along the longitudinal axis of the column (along the X1 axes of the local coordinate systems) is 1.0 m . Boundary conditions are provided by imposing constraints on the clamped node of the
column in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. Concentrated forces with the initial values $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are specified in the nodes of the upper edges of the column steps. Number of nodes 31.

Shell element model, design model - general type system, 60400 four-node shallow shell elements allowing for shear of type 150. The spacing of the finite element mesh of the column in the circumferential direction (along the X 1 axes of the local coordinate systems) is 3.6°, and along the longitudinal axis (along the Y 1 axes of the local coordinate systems) is 0.0625 m . Horizontal ring stiffeners 0.25 m wide are arranged with a vertical spacing of 1.00 m inside the column in order to prevent the local buckling of its shell. The spacing of the finite element mesh of the stiffeners in the radial direction (along the Y1 axes of the local coordinate systems) is 0.0625 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped edge in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. Loads uniformly distributed along the line with the initial values $\mathrm{P}_{1} /\left(\pi \cdot \mathrm{D}_{1}\right), \mathrm{P}_{2} /\left(\pi \cdot \mathrm{D}_{2}\right), \mathrm{P}_{3} /\left(\pi \cdot \mathrm{D}_{3}\right)$ are specified in the nodes of the upper edges of the column steps. Number of nodes -60500 .

Results in SCAD

[^2]

Shell element model

1-st buckling mode for the bar model

1-st buckling mode for the shell element model

2-nd buckling mode for the shell element model

Comparison of solutions:

Parameter	Theory	SCAD			
		Bar model	Deviation, \%	Shell element model	Deviation, \%
Critical value of the concentrated longitudinal force applied to the upper edge of the first step $\mathrm{P}_{\mathrm{cr} 1}, \mathrm{kN}$	32978	$\begin{gathered} 3.297920 \\ \cdot 10000= \\ =32979 \end{gathered}$	0.00	$\begin{gathered} 3.394470 . \\ \cdot 10000= \\ =33945 \end{gathered}$	2.93
Critical value of the concentrated longitudinal force applied to the upper edge of the second step $\mathrm{P}_{\mathrm{cr} 2}$, kN	32978	$\begin{gathered} 3.297920 \cdot \\ \cdot 10000= \\ =32979 \end{gathered}$	0.00	$\begin{gathered} 3.394470 \cdot \\ \cdot 10000= \\ =33945 \end{gathered}$	2.93
Critical value of the concentrated longitudinal force applied to the upper edge of the third step $\mathrm{P}_{\mathrm{cr} 3}$, kN	65957	$\begin{gathered} 3.297920 \cdot \\ \cdot 20000= \\ =65958 \end{gathered}$	0.00	$\begin{gathered} 3.394470 \\ \cdot 20000= \\ =67890 \end{gathered}$	2.93
Unsupported length of the first column step L_{01}, m	43.680	43.681	0.00	-	-
Unsupported length of the second column step $\mathrm{L}_{02}, \mathrm{~m}$	43.353	43.353	0.00	-	-
Unsupported length of the third column step $\mathrm{L}_{03}, \mathrm{~m}$	42.704	42.705	0.00	-	-

Notes: In the analytical solution the critical values of the longitudinal compressive forces $\mathrm{P}_{\text {crif }}$, corresponding to the moment of the buckling of the cantilever column and unsupported lengths of the column steps $\mathrm{L}_{0 \mathrm{i}}$ can be determined according to the following formulas:

$$
P_{c r 1}=k \cdot P_{1} ; \quad P_{c r 2}=k \cdot P_{2} ; \quad P_{c r 3}=k \cdot P_{3} ;
$$

$$
L_{01}=\pi \cdot \sqrt{\frac{E \cdot I_{1}}{k \cdot P_{1}}} ; \quad L_{02}=\pi \cdot \sqrt{\frac{E \cdot I_{2}}{k \cdot\left(P_{1}+P_{2}\right)}} ; \quad \quad L_{03}=\pi \cdot \sqrt{\frac{E \cdot I_{3}}{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}}, \text { where }
$$

k - stability factor of safety of the system is determined on the basis of the condition of equality to zero of the determinant of the system of governing equations:

$$
\begin{aligned}
& \sin \left[\sqrt{\frac{k \cdot P_{l}}{E \cdot I_{l}}} \cdot\left(L_{l}+L_{2}+L_{3}\right)\right] \quad \cos \left[\sqrt{\frac{k \cdot P_{l}}{E \cdot I_{l}}} \cdot\left(L_{l}+L_{2}+L_{3}\right)\right] \\
& \frac{P_{1}}{P_{1}+P_{2}} \cdot \sin \left[\sqrt{\frac{k \cdot P_{1}}{E \cdot I_{1}}} \cdot\left(L_{2}+L_{3}\right)\right] \frac{P_{1}}{P_{1}+P_{2}} \cdot \cos \left[\sqrt{\sqrt{\frac{k \cdot P_{1}}{E \cdot I_{1}}}} \cdot\left(L_{2}+L_{3}\right)\right] \quad-\sin \left[\sqrt{\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}}} \cdot\left(L_{2}+L_{3}\right)\right] \\
& \sqrt{\frac{k \cdot P_{1}}{E \cdot I_{l}}} \cdot \cos \left[\sqrt{\frac{k \cdot P_{1}}{E \cdot I_{l}}} \cdot\left(L_{2}+L_{3}\right)\right]-\sqrt{\frac{k \cdot P_{1}}{E \cdot I_{l}}} \cdot \sin \left[\sqrt{\frac{k \cdot P_{1}}{E \cdot I_{l}}} \cdot\left(L_{2}+L_{3}\right)\right]-\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot \cos \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot\left(L_{2}+L_{3}\right)\right] \\
& 0 \quad 0 \\
& \left.\frac{P_{1}+P_{2}}{P_{1}+P_{2}+P_{3}} \cdot \sin \sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot L_{3}\right] \\
& \sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot \cos \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot L_{3}\right]
\end{aligned}
$$

$$
\begin{array}{ccc}
0 & 0 & 0 \\
0 & \sqrt{\frac{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}{E \cdot I_{3}}} & 0 \\
-\cos \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot\left(L_{2}+L_{3}\right)\right] & 0 & 0 \\
\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot \sin \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot\left(L_{2}+L_{3}\right)\right] & 0 & 0 \\
\frac{P_{1}+P_{2}}{P_{1}+P_{2}+P_{3}} \cdot \cos \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot L_{3}\right] & -\sin \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}{E \cdot I_{3}}} \cdot L_{3}\right] & -\cos \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}{E \cdot I_{3}}} \cdot L_{3}\right] \\
-\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot \sin \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}\right)}{E \cdot I_{2}}} \cdot L_{3}\right] & -\sqrt{\frac{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}{E \cdot I_{3}}} \cdot \cos \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}{E \cdot I_{3}}} \cdot L_{3}\right] & \sqrt{\frac{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}{E \cdot I_{3}}} \cdot \sin \left[\sqrt{\frac{k \cdot\left(P_{1}+P_{2}+P_{3}\right)}{E \cdot I_{3}}} \cdot L_{3}\right]
\end{array}
$$

Stability of the System of Three Equally Loaded Columns of Different Rigidity Hingedly Interconnected by Girders

Objective: Determination of the critical value of the concentrated longitudinal forces of the same value acting on the system of three columns of different rigidity hingedly interconnected by girders corresponding to the moment of its buckling. Determination of the unsupported lengths of the columns.

Initial data file: Frame_5a1.spr

Problem formulation: Three columns of different rigidity embedded into the foundation and hingedly interconnected into a system by girders are subjected to the action of concentrated longitudinal forces of the same value N . The axial stiffness values of the girders and columns are assumed to be significant in order to exclude their effect on the solution of the problem. Determine the critical value of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system. Determine the unsupported lengths of the columns H_{0}.

References: N. P. Melnikov, V. M. Vakhurkin, B. G. Lozhkin, Stability Analysis of Bar Systems. Reference data and examples, Moscow, Design Institute of Steel Structures, Issue 1395, 1954, p. 34.

Initial data:

$\mathrm{L}=5.0 \mathrm{~m}$

- length of the girders of the frame;
$\mathrm{H}=7.5 \mathrm{~m}$
- height of the columns of the frame;
$\mathrm{EA}=1.0 \cdot 10^{9} \mathrm{kN}$
- axial stiffness of the columns;
$\mathrm{EI}_{\mathrm{C} 1}=1.14 \cdot 10^{4} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the left column;
$\mathrm{EI}_{\mathrm{C} 2}=2.28 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the middle column;
$\mathrm{EI}_{\mathrm{C} 3}=4.56 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the right column;
$\mathrm{N}=1.0 \cdot 10^{3} \mathrm{kN}$
- initial value of the concentrated longitudinal forces on the columns of the system.

Finite element model: Design model - plane frame, columns - 45 elements of type 2 (the spacing of the finite element mesh along the longitudinal axes is 0.5 m), girders -2 elements of type 100 (three-node rigid bodies with the constraints in the directions X and Z, master nodes in the middle of the girder spans, and slave nodes on the connected columns). Boundary conditions are provided by imposing constraints on the support nodes of the columns in the directions of the degrees of freedom X, Z, UY. The action with the initial value of the concentrated longitudinal forces N is specified in the beam-to-column joints. Number of nodes in the design model - 50 .

Results in SCAD

Design model

Buckling mode

Comparison of solutions:

\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { Parameter } & \text { Theory } & \text { SCAD } & \text { Deviation, \% } \\
\hline \begin{array}{c}\text { Critical value of the concentrated } \\
\text { longitudinal forces } N_{\mathrm{cr}}, \mathrm{kN}\end{array} & \begin{array}{c}1159.2 \\
(1166.8)\end{array} & \begin{array}{c}1.1591 \cdot 1000= \\
=1159.1\end{array} & \begin{array}{c}0.01 \\
(0.66)\end{array} \\
\hline \text { Unsupported length of the left column }(\mathrm{C} 1) \mathrm{H}_{0}, \mathrm{~m} & \begin{array}{c}9.8522 \\
(9.8198)\end{array}
$$ \& 9.8523 \& 0.00

(0.33)\end{array}\right]\)\begin{tabular}{c}
0.00

\hline Unsupported length of the middle column $(\mathrm{C} 2) \mathrm{H}_{0}$,

m

13.9331

(13.8873)
\end{tabular}

The values of the approximate solution by the equivalent frame method are given in brackets.
Notes: In the exact analytical solution the critical value of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H_{0} can be determined according to the following formulas:

$$
N_{c r}=v^{2} \cdot \frac{E I_{C l}}{H^{2}},
$$

where v (critical load parameter) is determined by solving the transcendental equation:

$$
\begin{gathered}
(\operatorname{tg}(v)-v) \cdot\left(\operatorname{tg}\left(\frac{\sqrt{2}}{2} \cdot v\right)-\frac{\sqrt{2}}{2} \cdot v\right)+\sqrt{2} \cdot(\operatorname{tg}(v)-v) \cdot\left(\operatorname{tg}\left(\frac{1}{2} \cdot v\right)-\frac{1}{2} \cdot v\right)+ \\
2 \cdot\left(\operatorname{tg}\left(\frac{\sqrt{2}}{2} \cdot v\right)-\frac{\sqrt{2}}{2} \cdot v\right) \cdot\left(\operatorname{tg}\left(\frac{1}{2} \cdot v\right)-\frac{1}{2} \cdot v\right)=0 \\
C 1: \quad H_{0}=\frac{\pi \cdot H}{v} ; \quad C 2: \quad H_{0}=\sqrt{2} \cdot \frac{\pi \cdot H}{v} ; \quad C 3: \quad H_{0}=2 \cdot \frac{\pi \cdot H}{v} .
\end{gathered}
$$

In the approximate analytical solution the critical value of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H_{0} can be determined according to the following formulas:

$$
\begin{gathered}
N_{c r}=\frac{7}{3} \cdot \frac{\pi^{2} \cdot E I_{C l}}{(2 \cdot H)^{2}} ; \\
C 1: \quad H_{0}=\pi \cdot \sqrt{\frac{E I_{C l}}{N_{c r}}} ; \quad C 2: \quad H_{0}=\sqrt{2} \cdot \sqrt{\frac{E I_{C l}}{N_{c r}}} ; \quad C 3: \quad H_{0}=2 \cdot \sqrt{\frac{E I_{C l}}{N_{c r}}} .
\end{gathered}
$$

Stability of the System of Three Differently Loaded Columns of the Same Rigidity

 Hingedly Interconnected by Girders

Objective: Determination of the critical values of the concentrated longitudinal forces with different values corresponding to the moment of buckling of the system in the structure of three columns of the same rigidity hingedly interconnected by girders. Determination of the unsupported lengths of the columns.

Initial data file: Frame_5a2.spr

Problem formulation: Three columns of the same rigidity embedded into the foundation and hingedly interconnected into a system by girders are subjected to the action of concentrated longitudinal forces with different values $k \cdot N$. The axial stiffness values of the girders and columns are assumed to be significant in order to exclude their effect on the solution of the problem. Determine the critical values of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system. Determine the unsupported lengths of the columns H_{0}.

References: N. P. Melnikov, V. M. Vakhurkin, B. G. Lozhkin, Stability Analysis of Bar Systems. Reference data and examples, Moscow, Design Institute of Steel Structures, Issue 1395, 1954, p. 36.

Initial data:

$\mathrm{L}=5.0 \mathrm{~m}$

- length of the girders of the frame;
$\mathrm{H}=7.5 \mathrm{~m} \quad$ - height of the columns of the frame;
$\mathrm{EA}=1.0 \cdot 10^{9} \mathrm{kN}$
- axial stiffness of the columns;
$\mathrm{EI}_{\mathrm{C}}=2.28 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the columns;
$1 \cdot \mathrm{~N}=0.5 \cdot 10^{3} \mathrm{kN}$
- initial value of the concentrated longitudinal force on the left column;
$2 \cdot \mathrm{~N}=1.0 \cdot 10^{3} \mathrm{kN} \quad-$ initial value of the concentrated longitudinal force on the middle column;
$4 \cdot \mathrm{~N}=2.0 \cdot 10^{3} \mathrm{kN} \quad-$ initial value of the concentrated longitudinal force on the right column.
Finite element model: Design model - plane frame, columns - 45 elements of type 2 (the spacing of the finite element mesh along the longitudinal axes is 0.5 m), girders - 2 elements of type 100 (three-node rigid bodies with the constraints in the directions X and Z , master nodes in the middle of the girder spans, and slave nodes on the connected columns). Boundary conditions are provided by imposing constraints on the support nodes of the columns in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Z}, \mathrm{UY}$. The action with the initial values of the concentrated longitudinal forces $\mathrm{k} \cdot \mathrm{N}$ is specified in the beam-to-column joints. Number of nodes in the design model - 50 .

Results in SCAD

Design model

Buckling mode

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Critical value of the concentrated longitudinal force on the left column $(\mathrm{C} 1) N_{\mathrm{cr}}, \mathrm{kN}$	426.6 (428.6)	$0.853157 \cdot 500=$ $=426.6$	0.00 (0.47)
Critical value of the concentrated longitudinal force on the middle column $(\mathrm{C} 2) N_{\mathrm{cr}}, \mathrm{kN}$	853.2 (857.2)	$0.853157 \cdot 1000=$ $=853.2$	0.00
(0.47)			
Critical value of the concentrated longitudinal force on the right column $(\mathrm{C} 3) N_{\mathrm{cr}}, \mathrm{kN}$	1706.3 (1714.5)	$0.853157 \cdot 2000=$ $=1706.3$	0.00
0.48$)$			
Unsupported length of the left column $(\mathrm{C} 1) \mathrm{H}_{0}, \mathrm{~m}$	22.9676 (22.9129)	22.9677	0.00
Unsupported length of the middle column $(\mathrm{C} 2) \mathrm{H}_{0}$, m	16.2405 (16.2019)	16.2406	$0.24)$
Unsupported length of the right column $(\mathrm{C} 3) \mathrm{H}_{0}, \mathrm{~m}$	11.4838 (11.4564)	11.4839	$0.24)$

The values of the approximate solution by the equivalent frame method are given in brackets
Notes: In the exact analytical solution the critical values of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H_{0} can be determined according to the following formulas:

$$
C 1: \quad N_{c r}=v^{2} \cdot \frac{E I_{C}}{H^{2}} \quad C 2: \quad N_{c r}=2 \cdot v^{2} \cdot \frac{E I_{C}}{H^{2}} \quad C 3: \quad 4 \cdot v^{2} \cdot \frac{E I_{C}}{H^{2}} \text {, }
$$

where v (critical load parameter) is determined by solving the transcendental equation:

$$
\begin{aligned}
& (\operatorname{tg}(v)-v) \cdot(\operatorname{tg}(\sqrt{2} \cdot v)-\sqrt{2} \cdot v)+\frac{\sqrt{2}}{4} \cdot(\operatorname{tg}(v)-v) \cdot(\operatorname{tg}(2 \cdot v)-2 \cdot v)+ \\
& +\frac{1}{8} \cdot(\operatorname{tg}(\sqrt{2} \cdot v)-\sqrt{2} \cdot v) \cdot(\operatorname{tg}(2 \cdot v)-2 \cdot v)=0 ; \\
& C 1: \quad H_{0}=\frac{\pi \cdot H}{v} ; \quad C 2: \quad H_{0}=\frac{\sqrt{2}}{2} \frac{\pi \cdot H}{v} ; \quad C 3: \quad H_{0}=\frac{1}{2} \cdot \frac{\pi \cdot H}{v} .
\end{aligned}
$$

In the approximate analytical solution the critical value of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H_{0} can be determined according to the following formulas:

$$
\begin{aligned}
C 1: \quad N_{c r}=\frac{3}{7} \cdot \frac{\pi^{2} \cdot E I_{C}}{(2 \cdot H)^{2}} \quad C 2: \quad N_{c r} & =\frac{6}{7} \cdot \frac{\pi^{2} \cdot E I_{C}}{(2 \cdot H)^{2}} \quad C 3: \quad N_{c r}=\frac{12}{7} \cdot \frac{\pi^{2} \cdot E I_{C}}{(2 \cdot H)^{2}} ; \\
H_{0} & =\pi \cdot \sqrt{\frac{E I_{C}}{N_{c r}}} .
\end{aligned}
$$

Stability of the System of Three Differently Loaded Columns of Different Rigidity Interconnected by Girders Infinitely Rigid in Bending

Objective: Determination of the critical values of the concentrated longitudinal forces with different values acting on the system of three columns of different rigidity interconnected by girders infinitely rigid in bending, corresponding to the moment of its buckling. Determination of the unsupported lengths of the columns.

Initial data file: Frame_5б.spr

Problem formulation: Three columns of different rigidity embedded into the foundation and interconnected into a system by girders infinitely rigid in bending are subjected to the action of concentrated longitudinal forces with different values $\mathrm{k} \cdot \mathrm{N}$. The axial stiffness values of the girders and columns are assumed to be significant in order to exclude their effect on the solution of the problem. Determine the critical values of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system. Determine the unsupported lengths of the columns H_{0}.

References: N. P. Melnikov, V. M. Vakhurkin, B. G. Lozhkin, Stability Analysis of Bar Systems. Reference data and examples, Moscow, Design Institute of Steel Structures, Issue 1395, 1954, p. 37.

Initial data:

$\mathrm{L}=5.0 \mathrm{~m}$

- length of the girders of the frame;
$\mathrm{H}=7.5 \mathrm{~m}$ - height of the columns of the frame;
$\mathrm{EA}=1.0 \cdot 10^{9} \mathrm{kN}$ - axial stiffness of the columns;
$\mathrm{EI}_{\mathrm{C} 1}=1.14 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the left column;
$\mathrm{EI}_{\mathrm{C} 2}=2.28 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the middle column;
$\mathrm{EI}_{\mathrm{C} 3}=4.56 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the right column;
$1 \cdot \mathrm{~N}=1.0 \cdot 10^{3} \mathrm{kN}$
- initial value of the concentrated longitudinal force on the left column;
$2 \cdot \mathrm{~N}=2.0 \cdot 10^{3} \mathrm{kN}$
- initial value of the concentrated longitudinal force on the middle column;
$3 \cdot \mathrm{~N}=3.0 \cdot 10^{3} \mathrm{kN}$
- initial value of the concentrated longitudinal force on the right column.

Finite element model: Design model - plane frame, columns - 45 elements of type 2 (the spacing of the finite element mesh along the longitudinal axes is 0.5 m), girders - 2 elements of type 100 (three-node rigid bodies with the constraints in the directions X, Z and UY , master nodes in the middle of the girder spans, and slave nodes on the connected columns). Boundary conditions are provided by imposing constraints on the support nodes of the columns in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Z}, \mathrm{UY}$. The action with the initial values of the concentrated longitudinal forces $\mathrm{k} \cdot \mathrm{N}$ is specified in the beam-to-column joints. Number of nodes in the design model - 50 .

Results in SCAD

Design model

Buckling mode

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Critical value of the concentrated longitudinal force on the left column $(\mathrm{C} 1) N_{\mathrm{cr}}, \mathrm{kN}$	2332.8 (2333.6)	$2.332764 \cdot 1000=$ $=2332.7$	0.00 (0.04)
Critical value of the concentrated longitudinal force on the middle column $(\mathrm{C} 2) N_{\mathrm{cr}}, \mathrm{kN}$	4665.6 (4667.2)	$2.332764 \cdot 2000=$ $=4665.5$	0.00 (0.04)
Critical value of the concentrated longitudinal force on the right column $(\mathrm{C} 3) N_{\mathrm{cr}}, \mathrm{kN}$	6998.5 (7000.8)	$2.332764 \cdot 3000=$ $=6998.3$	0.00 (0.04)
Unsupported length of the left column $(\mathrm{C} 1) \mathrm{H}_{0}, \mathrm{~m}$ 6.9448 (6.9437)	6.9449	0.00	
	6.9448 (6.9437)	6.9449	$0.02)$ (0.02)
Unsupported length of the right column $(\mathrm{C} 3) \mathrm{H}_{0}, \mathrm{~m}$	8.0192 (8.0178)	8.0193	0.00
(0.02)			

The values of the approximate solution by the equivalent frame method are given in brackets
Notes: In the exact analytical solution the critical values of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H_{0} can be determined according to the following formulas:

$$
C 1: \quad N_{c r}=v^{2} \cdot \frac{E I_{C l}}{H^{2}} \quad C 2: \quad N_{c r}=2 \cdot v^{2} \cdot \frac{E I_{C l}}{H^{2}} \quad C 3: 3 \cdot v^{2} \cdot \frac{E I_{C l}}{H^{2}},
$$

where v (critical load parameter) is determined by solving the transcendental equation:

$$
\begin{gathered}
6 \cdot v \cdot\left(\frac{\operatorname{tg}\left(\frac{v}{2}\right)}{2 \cdot \operatorname{tg}\left(\frac{v}{2}\right)-v}+\frac{2 \cdot \operatorname{tg}\left(\frac{\sqrt{3 \cdot v}}{4}\right)}{4 \cdot \operatorname{tg}\left(\frac{\sqrt{3 \cdot v}}{4}\right)-\sqrt{3 \cdot v}}\right)=0 ; \\
C 1: \quad H_{0}=\frac{\pi \cdot H}{v} ; \quad C 2: \quad H_{0}=\frac{\pi \cdot H}{v} ; \quad C 3: \quad H_{0}=\frac{2}{\sqrt{3}} \cdot \frac{\pi \cdot H}{v} .
\end{gathered}
$$

In the approximate analytical solution the critical value of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H_{0} can be determined according to the following formulas:

$$
\begin{gathered}
C 1: \quad N_{c r}=\frac{7}{6} \cdot \frac{\pi^{2} \cdot E I_{C l}}{H^{2}} \quad C 2: \quad N_{c r}=\frac{7}{3} \cdot \frac{\pi^{2} \cdot E I_{C l}}{H^{2}} \quad C 3: \quad N_{c r}=\frac{7}{2} \cdot \frac{\pi^{2} \cdot E I_{C l}}{H^{2}} ; \\
C 1: \quad H_{0}=\sqrt{\frac{6}{7}} \cdot H \quad C 2: \quad H_{0}=\sqrt{\frac{6}{7}} \cdot H \quad C 3: \quad H_{0}=\sqrt{\frac{8}{7}} \cdot H .
\end{gathered}
$$

Stability of the Frame of Two Simply Supported Equally Loaded Rigid Columns Rigidly Interconnected by a Girder

Objective: Determination of the critical value of the concentrated longitudinal forces of the same value acting on two simply supported equally loaded rigid columns of the frame rigidly interconnected by a girder corresponding to the moment of buckling of the frame.

Initial data file:: Frame_leg_hard.SPR

Problem formulation: Two simply supported rigid columns of the frame rigidly interconnected by a girder are subjected to the action of concentrated longitudinal forces of the same value N . The axial stiffness of the girder is assumed to be significant in order to exclude its effect on the solution of the problem. Determine the critical value of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the frame.

References: A. V. Perelmuter, V. I. Slivker, Handbook of Mechanical Stability in Engineering. Volume 2. Stability of Elastically Deformable Mechanical Systems, Moscow, SACD SOFT, 2010, p. 173.

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$

- length of the girder of the frame;
$\mathrm{H}=6.0 \mathrm{~m} \quad$ - height of the columns of the frame;
$\mathrm{EA}=1.0 \cdot 10^{8} \mathrm{t} \quad$ - axial stiffness of the girder;
$\mathrm{EI}=1.0 \cdot 10^{4} \mathrm{t} \cdot \mathrm{m}^{2} \quad$ - bending stiffness of the girder;
$\mathrm{N}=1.0 \cdot 10^{3} \mathrm{t} \quad-$ initial value of the concentrated longitudinal forces on the columns of the frame.

Finite element model: Design model - plane frame, columns - 2 elements of type 100 (two-node rigid bodies with the constraints in the directions X, Z, UY, support master nodes and slave nodes on the adjacent girder), girder - 10 elements of type 2 (the spacing of the finite element mesh along the longitudinal axes is 1.0 m). Boundary conditions are provided by imposing constraints on the support nodes of the columns in the directions of the degrees of freedom X and Z . The action with the initial value of the concentrated longitudinal forces N is specified in the beam-to-column joints. Number of nodes in the design model-13.

Results in SCAD

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Critical value of the concentrated longitudinal forces $N_{\mathrm{cr}}, \mathrm{t}$	1000	$0.999975 \cdot 1000=$ $=1000$	0.00

Notes: In the exact analytical solution the critical value of the concentrated longitudinal forces N_{cr}, corresponding to the moment of buckling of the frame can be determined according to the following formula:

$$
N_{c r}=\frac{\sigma \cdot E I}{L \cdot H} .
$$

Stability of a Three-Span Two-Storey Frame Subjected to Concentrated Longitudinal Forces Applied to the Columns in the Joints with Girders

Objective: Determination of the critical value of the concentrated longitudinal forces acting on the columns of a three-span two-storey frame in the joints with the girders corresponding to the moment of its buckling.

Initial data file: 6.1.spr

Problem formulation: The three-span two-storey frame is subjected to the action of concentrated longitudinal forces P applied to the columns in the joints with the girders. The beam-to-column and column-to-foundation joints are rigid. The axial stiffness values of the girders and columns are assumed to be significant in order to exclude their effect on the solution of the problem. Determine the critical value of the concentrated longitudinal forces P_{cr}, corresponding to the moment of buckling of the frame.

References: N. V. Kornoukhov, Strength and Stability of Framework Structures, Moscow, Stroyizdat Publ., 1949, p. 259.

Initial data:

$\mathrm{L}=8.0 \mathrm{~m}$

- length of the girders of the frame;
$\mathrm{H}=4.0 \mathrm{~m}$
- height of the columns of the frame;
$\mathrm{EA}=1.0 \cdot 10^{10} \mathrm{kN}$
- axial stiffness of the structural members of the frame;
- bending stiffness of the columns of the first storey;
- bending stiffness of the columns of the first storey per running meter;
- bending stiffness of the columns of the second storey;
- bending stiffness of the columns of the second storey per running meter;
- bending stiffness of the girders of the first storey;
- bending stiffness of the girders of the first storey per running meter;
- bending stiffness of the girders of the second storey;
- bending stiffness of the girders of the second storey per running meter;
- initial value of the concentrated longitudinal forces on the columns of the frame in the joints with the girders.

Finite element model: Design model - plane frame, 80 elements of type 2 . The spacing of the finite element mesh along the longitudinal axes of the structural members (along the X1 axes of the local coordinate systems) is 1.0 m . Boundary conditions are provided by imposing constraints on the support nodes of the frame in the directions of the degrees of freedom X, Z, UY. The action with the initial value of the concentrated longitudinal forces P is specified in the beam-to-column joints. Number of nodes in the design model -78 .

Results in SCAD

Buckling mode

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Critical value of the concentrated longitudinal forces $P_{\mathrm{cr}}, \mathrm{kN}$	156250	$1.5625 \cdot 100000=$ $=156250$	0.00

Notes: In the analytical solution the critical value of the concentrated longitudinal forces P_{cr}, corresponding to the moment of buckling of the frame can be determined according to the following formula:

$$
P_{c r}=2.5000^{2} \cdot \frac{i_{C l}}{H} .
$$

Stability of a Circular Two-Hinged Arch of a Constant Cross-Section Subjected to Hydrostatic Pressure

Objective: Determination of the critical value of the hydrostatic pressure applied to a circular two-hinged arch of a constant cross-section corresponding to the moment of its buckling.

Initial data files:

File name	Description
Arch_hinged_alfa_30.SPR	Design model with the central angle of the arc $2 \cdot \omega=2 \cdot 30^{\circ}$
Arch_hinged_alfa_90.SPR	Design model with the central angle of the arc $2 \cdot \omega=2 \cdot 90^{\circ}$

Problem formulation: The circular two-hinged arch of a constant cross-section is subjected to the action of the uniformly distributed radial load q. Determine the critical value of the uniformly distributed radial load q_{cr}, corresponding to the moment of buckling of the arch. It is assumed that when the arch buckles, the load elements follow the axis of the arch staying parallel to their former directions, and therefore the displacement of the pressure line takes place at the buckling of the arch. Compare the result of the calculation with the solution (S.P. Timoshenko), when the load action lines do not change at the distortion of the arch axis and the pressure line does not move at the buckling of the arch.

References: N. V. Kornoukhov, Strength and Stability of Framework Structures, Moscow, Stroyizdat Publ., 1949, p. 212.

Initial data:

$\mathrm{R}=60.0 \mathrm{~m}(120.0 \mathrm{~m}) \quad$ - radius of the longitudinal axis of the arch;
$2 \cdot \omega=2.90^{\circ}\left(2.30^{\circ}\right) \quad$ - central angle of the arc;
EA $=2.16 \cdot 10^{6} \mathrm{kN} \quad-$ axial stiffness of the arch;
$\mathrm{EI}=2.592 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2} \quad$ - bending stiffness of the arch;
$\mathrm{q}=1.0 \mathrm{kN} / \mathrm{m} \quad-$ initial value of the uniformly distributed radial load on the arch.
Finite element model: Design model - plane frame, 36 elements of type 2. The arch is divided into finite elements along its longitudinal axis (along the X1 axes of the local coordinate systems) by the step of the central angle of $5.0^{\circ}\left(1.667^{\circ}\right)$. Boundary conditions are provided by imposing constraints on the support nodes of the arch in the directions of the degrees of freedom X, Z. The action with the initial value of the uniformly distributed radial load q is specified in the directions opposite to the Z 1 axes of the local coordinate systems of the elements. Number of nodes in the design model - 37 .

Results in SCAD

Design model with the central angle of the arc 2.90°

Design model with the central angle of the arc $2 \cdot 30^{\circ}$

Buckling mode for the model with the central angle of the arc 2.90°

Buckling mode for the model with the central angle of the arc $2 \cdot 30^{\circ}$

Comparison of solutions:

Critical value of the uniformly distributed radial load on the arch $\mathbf{q}_{\mathrm{cr}}, \mathrm{kN} / \mathrm{m}$

Design model	Theory	SCAD	Deviation, \%
with the central angle of the arc 2.90	3.925	$3.933914 \cdot 1.0=$	0.23
	(3.600)	$=3.934$	(9.28)
with the central angle of the arc 2.30.05]	$[3.932]$	5.391	$5.393093 \cdot 1.0=$
	(5.250)	$=5.393$	(2.72)
	$[5.392]$	$[0.02]$	

Theoretical values calculated according to the conditions of this example (according to N. V. Kornoukhov) are given without brackets;
Theoretical values calculated according to the conditions of S. P. Timoshenko are given in round brackets;
Theoretical values calculated for a two-hinged frame made up of $2 \cdot \mathrm{~m}=36$ equal chords inscribed in an arc of a circle and subjected to the action of equal radial forces in all its nodes are given in square brackets.

Notes: In the analytical solution according to the conditions of N. V. Kornoukhov the critical value of the uniformly distributed radial load q_{cr}, corresponding to the moment of buckling of the arch can be determined according to the following formula:

$$
q_{c r}=\eta^{2} \cdot \frac{E I}{R^{3}},
$$

where η (critical load parameter) is determined by solving the transcendental equation:

$$
\frac{1}{\left(\eta^{2}-1\right)^{2}} \cdot\left[\eta^{3} \cdot\left(\omega+\frac{1}{2} \cdot \sin (2 \cdot \omega)\right)-\eta \cdot\left(\omega+\frac{3}{2} \cdot \sin (2 \cdot \omega)\right)+\frac{1-\cos (2 \cdot \omega)}{\operatorname{tg}(\eta \cdot \omega)}\right]=0 .
$$

In the analytical solution according to the conditions of S. P. Timoshenko the critical value of the uniformly distributed radial load q_{cr}, corresponding to the moment of buckling of the arch can be determined according to the following formula:

$$
q_{c r}=\frac{E I}{R^{3}} \cdot\left(\frac{\pi^{2}}{\omega^{2}}-1\right) .
$$

In the analytical solution for a two-hinged frame made up of equal chords inscribed in an arc of a circle, the critical value of the uniformly distributed radial load q_{cr}, corresponding to its moment of buckling can be determined according to the following formula:

$$
q_{c r}=2 \cdot v^{2} \cdot \frac{E I}{L^{3}} \cdot \sin \left(\frac{A}{2}\right),
$$

where v (critical load parameter) is determined by solving the transcendental equation:

$$
\left(1-\frac{\sin (\nu)}{v} \cdot \frac{1-\cos (A)}{\cos (\nu)-\cos (A)}\right) \cdot\left(m+\frac{\sin (2 \cdot m \cdot A)}{2 \cdot \sin (A)}\right)+\left(\frac{2 \cdot \sin \left(\frac{A}{2}\right) \cdot \sin \left(\frac{v}{2}\right)}{\cos (v)-\cos (A)} \cdot \frac{\sin (v)}{v} \cdot \frac{\sin (m \cdot A)}{\sin (m \cdot v)}\right) \cdot\left(\frac{\sin (m \cdot(A+v))}{2 \cdot \sin \left(\frac{A+v}{2}\right)}+\frac{\sin (m \cdot(A-v)))}{2 \cdot \sin \left(\frac{A-v}{2}\right)}\right)=0 .
$$

$2 \cdot \mathrm{~m} \quad$ - number of chords of the frame,
A - central angle of one chord of the frame,
L - length of one chord of the frame:
$L=R \cdot \sqrt{2 \cdot(1-\cos (A))}$.

Stability of In-Plane Bending of a Cantilever Strip of a Rectangular Cross-Section by a Shear Force Applied at the Free End

Objective: Determination of the critical value of the concentrated shear force applied at the free end of a cantilever strip of a rectangular cross-section corresponding to the moment of its buckling.

Initial data files:

File name	Description
$\mathbf{6 . 2} \mathbf{O} _\mathbf{P} _\mathbf{b} _\mathbf{0 . 0 1 . S P R}$	Thickness of the cantilever strip cross-section -0.01 m
$\mathbf{6 . 2} \mathbf{O} _\mathbf{P} _\mathbf{b} _\mathbf{0 . 1 . S P R}$	Thickness of the cantilever strip cross-section -0.10 m
6.2_O_P_b_1.0.SPR	Thickness of the cantilever strip cross-section -1.00 m

Problem formulation: The cantilever strip of a rectangular cross-section is subjected to the action of the concentrated shear force P, applied at its free end. Determine the critical value of the concentrated shear force P_{cr}, corresponding to the moment of buckling of the cantilever strip.

References: S. P. Timoshenko, Stability of Bars, Plates and Shells. - Moscow. - Nauka. - 1971. - p. 291.
A.S. Volmir. Stability of Deformable Systems. - Moscow. - Nauka. - 1967. - p.211;
A. V. Perelmuter, V. I. Slivker, Handbook of Mechanical Stability in Engineering. - Volume 1. Moscow. - SCAD SOFT. - 2010. - p. 465;
A. V. Perelmuter, V. I. Slivker, Handbook of Mechanical Stability in Engineering. - Volume 2. Moscow. - SCAD SOFT. - 2010. - p. 17.

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=1.0 \mathrm{~m}$
$\mathrm{b}=0.01 ; 0.10 ; 1.00 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}_{1}=1.0 ; 1.0 \cdot 10^{3} ; 1.0 \cdot 10^{5} \mathrm{kN}$
$\mathrm{P}=1.0 ; 1.0 \cdot 10^{3} ; 1.0 \cdot 10^{5} \mathrm{kN}$

- length of the cantilever strip;
- height of the cantilever strip cross-section;
- thickness of the cantilever strip cross-section;
- elastic modulus of the cantilever strip material;
- Poisson's ratio;
- initial value of the concentrated shear force applied at the free end in the plane of the strip;
- initial value of the concentrated shear force applied at the free end out of the plane of the strip.

Finite element model: Design model - general type system. Reissner-Mindlin shell element model, 2560 eight-node elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the strip is 0.0625 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the strip in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated shear force P is specified in the node of the longitudinal axis of the strip on the free end. Number of nodes in the design model - 8033.
The stability of in-plane bending of the cantilever strip subjected to the shear force applied at the free end in the plane of the strip is checked.

Results in SCAD

Design model. Reissner-Mindlin shell element model

Buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

The critical value of the concentrated shear force $\boldsymbol{P}_{1 \mathrm{cr}}(\mathbf{k N})$, applied at the free end in the plane of the strip

Design model		Theory	SCAD	Deviation, \%
Reissner-Mindlin shell element	$\mathrm{b}=0.01 \mathrm{~m}$	0.12901 (0.12901)	$0.134811 \cdot 1=0.13481$	4.50 (4.50)
	$\mathrm{b}=0.10 \mathrm{~m}$	125.28 (124.66)	$0.130559 \cdot 1000=130.56$	4.21 (4.73)
	$\mathrm{b}=1.00 \mathrm{~m}$	84048 (59431)	$0.821978 \cdot 100000=82198$	2.20 (38.31)

Theoretical values calculated taking into account the effect of the bending stiffness in the shear force plane are given in brackets

Notes: In the analytical solution the critical value of the concentrated shear force P_{cr}, corresponding to the moment of buckling of the cantilever strip can be determined according to the following formulas:
without taking into account the effect of the bending stiffness in the shear force plane

$$
P_{c r}=\frac{4.01}{l^{2}} \cdot \sqrt{B \cdot C}
$$

taking into account the effect of the bending stiffness in the shear force plane

$$
\begin{gathered}
P_{c r}=\frac{4.01}{l^{2}} \cdot \sqrt{\frac{B \cdot C \cdot B_{1}}{B+B_{l}}}=\frac{k}{l^{2}} \cdot \sqrt{B \cdot C}, \text { where: } \\
k=\frac{4.01}{\sqrt{1+\left(\frac{b}{h}\right)^{2}}} .
\end{gathered}
$$

$B=E \cdot \frac{h \cdot b^{3}}{12}-$ minimum bending stiffness (out of the moment plane);

$$
B_{l}=E \cdot \frac{b \cdot h^{3}}{12}-\text { maximum bending stiffness (in the moment plane); }
$$

$$
C=\frac{E}{2 \cdot(1+v)} \cdot k_{f} \cdot h \cdot b^{3}-\text { free torsional stiffness, where: }
$$

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\} .
$$

Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Concentrated Longitudinal Compressive Force Centrally Applied at the Free End (Central Compression)

Objective: Determination of the first two critical values of a concentrated longitudinal compressive force centrally applied at the free end of a cantilever beam of a square cross-section corresponding to the moments of its buckling.

Initial data files:

File name	Description
Stability_Bar_1_Bar.SPR	Bar model
Stability_Bar_1_Shell.SPR	Shell element model
Stability_Bar_1_Solid.SPR	Solid element model

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the concentrated longitudinal compressive force P , centrally applied at its free end. Determine the first two critical values of the concentrated longitudinal compressive force $\mathrm{P}_{\mathrm{cr} 1}$ and $\mathrm{P}_{\mathrm{cr} 2}$, corresponding to the moments of buckling of the cantilever beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.23, 193;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}=10^{5} \mathrm{kN}$

- length of the cantilever beam;
- side of the square cross-section of the cantilever beam;
- elastic modulus of the cantilever beam material;
- Poisson's ratio;
- initial value of the concentrated longitudinal compressive force centrally applied at the free end of the beam.

Finite element model: Design model - general type system. Three design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the node of the clamped end of the beam in the directions of the degrees of freedom $X, Y, Z, U X, U Y, U Z$. The action with the initial value of the concentrated longitudinal compressive force P is specified in the node of the free end of the beam. Number of nodes in the design model-11;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated longitudinal compressive force P is specified in the node of the longitudinal axis of the beam on the free end. Number of nodes in the design model - 8033.
Solid element model (S), 5120 twenty-node elements of type 37 , the spacing of the finite element mesh along the longitudinal axis, width and height of the beam is 0.125 m . Boundary conditions are provided by
imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated longitudinal compressive force P is specified as a load uniformly distributed over the external faces of the elements of the beam end $p=P /(h \cdot b)$. Number of nodes in the design model -24705 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

Design model. Solid element model

1-st buckling mode. Bar model

2-nd buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

2-nd buckling mode. Reissner-Mindlin shell element model

1- st buckling mode. Solid element model

2- nd buckling mode. Solid element model

Comparison of solutions:

Critical values of the concentrated longitudinal compressive force $P_{\mathrm{cr} 1}$ and $\boldsymbol{P}_{\mathrm{cr} 2}(\mathbf{k N})$, centrally applied at the free end of the beam

Design model	Buckling mode	Theory	SCAD	Deviation, \%
	1-st	61685	$0,616821 \cdot 100000=61682$	0,01
	2-nd	61685	$0,616821 \cdot 100000=61682$	0,01
Reissner-Mindlin shell element	1-st	61685	$0,613922 \cdot 100000=61392$	0,48
	2-nd	61685	$0,617533 \cdot 100000=61753$	0,11
	1-st	61685	$0,613281 \cdot 100000=61328$	0,58

Notes: In the analytical solution the critical values of the concentrated longitudinal compressive force $P_{\text {cri }}$ and $P_{\mathrm{cr} 2}$, corresponding to the moments of buckling of the cantilever beam can be determined according to the following formulas:

$$
\begin{aligned}
P_{c r 1}=\frac{\pi^{2} \cdot E \cdot I_{y}}{4 \cdot L^{2}} & P_{c r 2}=\frac{\pi^{2} \cdot E \cdot I_{z}}{4 \cdot L^{2}} \\
I_{y}=\frac{b \cdot h^{3}}{12} & I_{z}=\frac{h \cdot b^{3}}{12}
\end{aligned}
$$

Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Concentrated Transverse Bending Force Centrally Applied at the Free End

Objective: Determination of the critical value of the concentrated transverse bending force centrally applied at the free end of a cantilever beam of a square cross-section corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_2_Bar.SPR	Bar model
Stability_Bar_2_Shell.SPR	Shell element model
Stability_Bar_2_Solid.SPR	Solid element model

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the concentrated transverse bending force P, centrally applied at its free end. Determine the critical value of the concentrated transverse bending force P_{cr}, corresponding to the moment of buckling of the cantilever beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.214;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}=10^{5} \mathrm{kN}$

- length of the cantilever beam;
- side of the square cross-section of the cantilever beam;
- elastic modulus of the cantilever beam material;
- Poisson's ratio;
- initial value of the concentrated transverse bending force centrally applied at the free end of the beam.

Finite element model: Design model - general type system. Three design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the node of the clamped end of the beam in the directions of the degrees of freedom $X, Y, Z, U X, U Y, U Z$. The action with the initial value of the concentrated transverse bending force P is specified in the node of the free end of the beam. Number of nodes in the design model - 11;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$. The action with the initial value of the concentrated longitudinal compressive force P is specified in the node of the longitudinal axis of the beam on the free end. Number of nodes in the design model - 8033.
Solid element model (S), 5120 twenty-node elements of type 37 , the spacing of the finite element mesh along the longitudinal axis, width and height of the beam is 0.125 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated transverse bending force P is specified as a load uniformly distributed over the external faces of the elements of the beam end p $=\mathrm{P} /(\mathrm{h} \cdot \mathrm{b})$. Number of nodes in the design model -24705 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

Design model. Solid element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

1-st buckling mode. Solid element model

Comparison of solutions:

Critical value of the concentrated transverse bending force $\boldsymbol{P}_{\mathrm{cr}}(\mathrm{kN})$, centrally applied at the free end of the beam

Design model	Theory	SCAD	Deviation, \%
Bar	84111	$0,834694 \cdot 100000=83469$	0,76
Reissner-Mindlin shell element	84111	$0,821972 \cdot 100000=82197$	2,28
Solid element	84111	$0,843750 \cdot 100000=84375$	0,31

Notes: In the analytical solution the critical value of the concentrated transverse bending force P_{cr}, corresponding to the moment of buckling of the cantilever beam can be determined according to the following formula:

$$
P=\frac{4,01 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{2}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
\begin{gathered}
I_{z}=\frac{h \cdot b^{3}}{12}-\text { minimum bending inertia moment (out of the moment plane); } \\
I_{x}=k_{f} \cdot h \cdot b^{3}-\text { free torsional inertia moment, where: }
\end{gathered}
$$

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot \operatorname{th}\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Concentrated Transverse Bending Force Applied to the Upper Edge of the Free End

Objective: Determination of the critical value of the concentrated transverse bending force applied to the upper edge of the free end of a cantilever beam of a square cross-section corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_3_Bar.SPR	Bar model
Stability_Bar_3_Shell.SPR	Shell element model
Stability_Bar_3_Solid.SPR	Solid element model

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the concentrated transverse bending force P, applied to the upper edge of its free end. Determine the critical value of the concentrated transverse bending force P_{cr}, corresponding to the moment of buckling of the cantilever beam.

References: .S. Volmir, Stability of Deformable Systems, Moscow, Nauka, 1967, p.216;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{h} / 2=0.5 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}=10^{5} \mathrm{kN}$

- length of the cantilever beam;
- side of the square cross-section of the cantilever beam;
- height of the application point of the concentrated transverse bending force with respect to the longitudinal axis of the beam (X axis of the global coordinate system);
- elastic modulus of the cantilever beam material;
- Poisson's ratio;
- initial value of the concentrated transverse bending force applied to the upper edge of the free end of the beam.

Finite element model: Design model - general type system. Three design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the node of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. 1 vertical upward two-node element of type 100 (3D rigid body) with the length $\mathrm{h} / 2$ is adjacent to the node of the free end of the beam. The action with the initial value of the concentrated transverse bending force P is specified in the free node of the element of the rigid body (elevated application point). Number of nodes in the design model -12 .
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the

Verification Examples

concentrated transverse bending force P is specified in the node on the free end at the height $h / 2$ from the longitudinal axis of the beam. Number of nodes in the design model - 8033.
Solid element model (S), 5120 twenty-node elements of type 37 , the spacing of the finite element mesh along the longitudinal axis, width and height of the beam is 0.125 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated transverse bending force P is specified as a group of nodal forces on the upper edge of the free end of the beam $\mathrm{P}_{\mathrm{i}}=$ $\mathrm{P} \cdot 0.0625 / 1.0=6250 \mathrm{kN}(3125 \mathrm{kN}$ for corner nodes). Number of nodes in the design model -24705 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

Design model. Solid element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

1-st buckling mode. Solid element model

Comparison of solutions:

Critical value of the concentrated transverse bending force $\boldsymbol{P}_{\mathrm{cr}}(\mathbf{k N})$, applied to the upper edge of the free end of the beam

Design model	Theory	SCAD	Deviation, \%
Bar	78305	$0,778008 \cdot 100000=77801$	0,64
Reissner-Mindlin shell element	78305	$0,768958 \cdot 100000=76896$	1,80
Solid element	78305	$0,816406 \cdot 100000=81641$	4,26

Notes: In the analytical solution the critical value of the concentrated transverse bending force P_{cr}, corresponding to the moment of buckling of the cantilever beam can be determined according to the following formula:

$$
P=\frac{4,01 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{2}} \cdot k_{h} \quad G=\frac{E}{2 \cdot(1+v)} \quad k_{h}=f\left(\frac{h}{2 \cdot L} \cdot \sqrt{\frac{E \cdot I_{z}}{G \cdot I_{x}}}\right)
$$

$I_{z}=\frac{h \cdot b^{3}}{12}$ - minimum bending inertia moment (out of the moment plane);
$I_{x}=k_{f} \cdot h \cdot b^{3}$ - free torsional inertia moment, where:

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value (Pure Bending)

Objective: Determination of the critical value of the concentrated bending moments equal in value and applied at the ends of a beam of a square cross-section simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_4_Bar.SPR	Bar model
Stability_Bar_4_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in and out of the bending plane is subjected to the action of the concentrated bending moments M, equal in value and applied at its ends. Determine the critical value of the concentrated bending moments M_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.204, 213;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$\nu=0.2$
$\mathrm{M}=10^{6} \mathrm{kN} \cdot \mathrm{m}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported cantilever beam material;
- Poisson's ratio;
- initial value of the concentrated bending moments applied at the ends of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom $X, Y, Z, U X$. The action with the initial value of the concentrated bending moments M is specified in the nodes of the ends of the beam. Number of nodes in the design model -11 ;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and on all other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial value of the concentrated bending moments M is specified on the nodes of the ends of the beam lying on its longitudinal axis. Number of nodes in the design model - 8033.

Verification Examples

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1- st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the concentrated bending moments $\mathrm{M}_{\mathrm{cr}}(\mathrm{kN} \cdot \mathrm{m})$, applied at the ends of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	658464	$0,654602 \cdot 1000000=54602$	0,59
Reissner-Mindlin shell element	658464	$0,650024 \cdot 1000000=650024$	1,28

Notes: In the analytical solution the critical value of the concentrated bending moments M_{cr}, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
M=\frac{\pi \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$I_{z}=\frac{h \cdot b^{3}}{12}-$ minimum bending inertia moment (out of the moment plane);
$I_{x}=k_{f} \cdot h \cdot b^{3}$ - free torsional inertia moment, where:

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value (Pure Bending)

Objective: Determination of the critical value of the concentrated bending moments equal in value and applied at the ends of a beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_5_Bar.SPR	Bar model
Stability_Bar_5_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane is subjected to the action of the concentrated bending moments M , equal in value and applied at its ends. Determine the critical value of the concentrated bending moments M_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p.68;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{M}=10^{6} \mathrm{kN} \cdot \mathrm{m}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- initial value of the concentrated bending moments applied at the ends of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UZ}$. The action with the initial value of the concentrated bending moments M is specified in the nodes of the ends of the beam. Number of nodes in the design model - 11;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and on all other nodes of the ends of the beam in the directions of the degrees of freedom Y. The action with the initial value of the concentrated bending moments M is specified on the nodes of the ends of the beam lying on its longitudinal axis. Number of nodes in the design model - 8033.

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Critical value of the concentrated bending moments $M_{c r}(\mathbf{k N} \cdot \mathrm{~m})$, applied at the ends of the beam simply supported in the bending plane and clamped out of the bending plane

Deseign model	Theory	SCAD	Deviation, \%
Bar	1316928	$1,325369 \cdot 1000000=1325369$	0,64
Reissner-Mindlin shell element	1316928	$1,246357 \cdot 1000000=1246357$	5,36

Notes: In the analytical solution the critical value of the concentrated bending moments M_{cr}, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
M=\frac{2 \cdot \pi \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$I_{z}=\frac{h \cdot b^{3}}{12}$ - minimum bending inertia moment (out of the moment plane); $I_{x}=k_{f} \cdot h \cdot b^{3}$ - free torsional inertia moment, where:

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to Concentrated Longitudinal Bending Forces Applied to the Upper Edges of the Ends and Equal in Value (Longitudinal Bending)

Objective: Determination of the first two critical values of concentrated longitudinal bending forces equal in value and applied to the upper edges of the ends of a beam of a square cross-section simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_6_Bar.SPR	Bar model
Stability_Bar_6_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in and out of the bending plane is subjected to the action of the concentrated longitudinal bending forces P , equal in value and applied to the upper edges of its ends. Determine first two critical values of the concentrated longitudinal bending forces $\mathrm{P}_{\mathrm{cr} 1}$ and $\mathrm{P}_{\mathrm{cr} 2}$, corresponding to the moment of buckling of the simply supported beam.

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 291

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$\nu=0.2$
$\mathrm{P}=10^{6} \mathrm{kN}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- initial value of the concentrated longitudinal bending forces applied to the upper edges of the ends of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom Y, Z. The dimensional stability is provided by imposing constraints on the node in the middle of the beam span in the directions of the degrees of freedom X, UX. 2 vertical upward two-node elements of type 100 (3 D rigid body) with the length $\mathrm{h} / 2$ are adjacent to the nodes of the ends of the beam. The action with the initial value of the concentrated longitudinal bending forces P is specified in the free nodes of the elements of the rigid bodies (elevated application points). Number of nodes in the design model -13 .
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom Y, Z and on all other nodes of the ends of the beam in the direction of the degree of freedom Y. The dimensional stability is provided by imposing a constraint on the node in the middle of the beam span along its longitudinal axis in the direction of the degree of freedom X . The action with the initial value of the concentrated longitudinal bending forces P is

Verification Examples

specified in the nodes on the ends at the height $\mathrm{h} / 2$ from the longitudinal axis of the beam. Number of nodes in the design model - 8033 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

2- nd buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

2-nd buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical values of the concentrated longitudinal bending forces $P_{\mathrm{cr} 1}$ and $P_{\mathrm{cr} 2}(\mathbf{k N})$, applied to the upper edges of the ends of the beam simply supported in and out of the bending plane

Design model	Buckling mode	Theory	SCAD	Deviation, \%
	1-st	61685	$0,616821 \cdot 100000=61682$	0,01
	2-nd	61685	$0,616821 \cdot 100000=61682$	0,01
Reissner-Mindlin shell element	1-st	61685	$0,613922 \cdot 100000=61392$	0,48
	2-nd	61685	$0,617533 \cdot 100000=61753$	0,11

Notes: In the analytical solution the critical values of the concentrated longitudinal bending forces $P_{\mathrm{cr} 1}$ and $P_{\mathrm{cr} 2}$, corresponding to the moments of buckling of the simply supported beam can be determined according to the following formulas:

$$
P_{1}=\frac{2 \cdot G \cdot I_{x}}{h^{2}} \cdot\left(-1+\sqrt{1+\frac{\pi^{2} \cdot h^{2}}{L^{2}} \cdot \frac{E \cdot I_{z}}{G \cdot I_{x}}}\right) \quad P_{2}=\frac{\pi^{2} \cdot E \cdot I_{y}}{L^{2}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
I_{z}=\frac{h \cdot b^{3}}{12}-\text { minimum bending inertia moment (out of the moment plane); }
$$

$$
I_{y}=\frac{b \cdot h^{3}}{12} \text { - maximum bending inertia moment (in the moment plane); }
$$

$$
I_{x}=k_{f} \cdot h \cdot b^{3} \text { - free torsional inertia moment, where: }
$$

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot \operatorname{th}\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to Concentrated Longitudinal Bending Forces Applied to the Upper Edges of the Ends and Equal in Value (Longitudinal Bending)

Objective: Determination of the first two critical values of concentrated longitudinal bending forces equal in value and applied to the upper edges of the ends of a beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_7_Bar.SPR	Bar model
Stability_Bar_7_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane is subjected to the action of the concentrated longitudinal bending forces P, equal in value and applied to the upper edges of its ends. Determine first two critical values of the concentrated longitudinal bending forces $\mathrm{P}_{\mathrm{cr} 1}$ and $\mathrm{P}_{\mathrm{cr} 2}$, corresponding to the moment of buckling of the simply supported beam.

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 291

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}=10^{6} \mathrm{kN}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- initial value of the concentrated longitudinal bending forces applied to the upper edges of the ends of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom Y, Z, UZ. The dimensional stability is provided by imposing constraints on the node in the middle of the beam span in the directions of the degrees of freedom X, UX. 2 vertical upward two-node elements of type 100 (3D rigid body) with the length $\mathrm{h} / 2$ are adjacent to the nodes of the ends of the beam. A constraint in the UZ direction is imposed on the upper nodes of the elements of rigid bodies. The action with the initial value of the concentrated longitudinal bending forces P is specified in the upper nodes of the elements of the rigid bodies (elevated application points). Number of nodes in the design model-13;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{Y}, \mathrm{Z}, \mathrm{UZ}$ and on all other nodes of the ends of the beam in the directions of the degrees of freedom Y, UZ. The dimensional stability is provided by

Verification Examples

imposing a constraint on the node in the middle of the beam span along its longitudinal axis in the direction of the degree of freedom X . The action with the initial value of the concentrated longitudinal bending forces P is specified in the nodes on the ends at the height $\mathrm{h} / 2$ from the longitudinal axis of the beam. Number of nodes in the design model -8033 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

2-nd buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

2-nd buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical values of the concentrated longitudinal bending forces $P_{\mathrm{cr} 1}$ and $P_{\mathrm{cr} 2}(\mathbf{k N})$, applied to the upper edges of the ends of the beam simply supported in the bending plane and clamped out of the bending plane

Design model	Buckling mode	Theory	SCAD	Deviation, \%
	1-st	246741	$0,246740 \cdot 1000000=246740$	0,00
	2-nd	877429	$0,877630 \cdot 1000000=877630$	0,02
Reissner-Mindlin shell element	1-st	246741	$0,241230 \cdot 1000000=241230$	2,23
	2-nd	877429	$0,805670 \cdot 1000000=61753$	8,18

Notes: In the analytical solution the critical values of the concentrated longitudinal bending forces $P_{\mathrm{cr} 1}$ and $P_{\mathrm{cr} 2}$, corresponding to the moments of buckling of the simply supported beam can be determined according to the following formulas:

$$
P_{1}=\frac{\pi^{2} \cdot E \cdot I_{y}}{L^{2}} \quad P_{2}=\frac{2 \cdot G \cdot I_{x}}{h^{2}} \cdot\left(-1+\sqrt{1+\frac{4 \cdot \pi^{2} \cdot h^{2}}{L^{2}} \cdot \frac{E \cdot I_{z}}{G \cdot I_{x}}}\right) \quad G=\frac{E}{2 \cdot(1+v)}
$$

$I_{z}=\frac{h \cdot b^{3}}{12}-$ minimum bending inertia moment (out of the moment plane);
$I_{y}=\frac{b \cdot h^{3}}{12}$ - maximum bending inertia moment (in the moment plane);
$I_{x}=k_{f} \cdot h \cdot b^{3}$ - free torsional inertia moment, where:

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Load Uniformly Distributed along Its Longitudinal Axis

Objective: Determination of the critical value of the load uniformly distributed along the longitudinal axis of a cantilever beam of a square cross-section corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_8_Bar.SPR	Bar model
Stability_Bar_8_Shell.SPR	Shell element model
Stability_Bar_8_Solid.SPR	Solid element model

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the load q, uniformly distributed along its longitudinal axis. Determine the critical value of the uniformly distributed load q_{cr}, corresponding to the moment of buckling of the cantilever beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.217;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$

- side of the square cross-section of the cantilever beam;
$v=0.2$
- elastic modulus of the cantilever beam material;
$\mathrm{q}=10^{5} \mathrm{kN} / \mathrm{m}$
- Poisson's ratio;
- initial value of the load uniformly distributed along the longitudinal axis of the beam.

Finite element model: Design model - general type system. Three design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the node of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the uniformly distributed load q is specified on all elements of the beam. Number of nodes in the design model-11;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load q uniformly distributed along the line is specified on the upper sides of all beam elements located under the longitudinal axis of the beam. Number of nodes in the design model - 8033.
Solid element model (S), 5120 twenty-node elements of type 37, the spacing of the finite element mesh along the longitudinal axis, width and height of the beam is 0.125 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load uniformly distributed over the face $q_{A}=q / b$ is specified on the upper faces of all beam elements located under the longitudinal axis of the beam. Number of nodes in the design model - 24705 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

Design model. Solid element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

1-st buckling mode. Solid element model

Comparison of solutions:

Critical value of the load $q_{c r}$,
uniformly distributed along the longitudinal axis of the cantilever beam

Design model	Theory	SCAD	Deviation, \%
Bar	26933	$0,268111 \cdot 100000=26811$	0,45
Reissner-Mindlin shell element	26933	$0,260448 \cdot 100000=26045$	3,30
Solid element	26933	$0,253906 \cdot 100000=25391$	5,73

Notes: In the analytical solution the critical value of the uniformly distributed load q_{cr}, corresponding to the moment of buckling of the cantilever beam can be determined according to the following formula:

$$
q=\frac{12,85 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{3}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
\begin{gathered}
I_{z}=\frac{h \cdot b^{3}}{12}-\text { minimum bending inertia moment (out of the moment plane); } \\
I_{x}=k_{f} \cdot h \cdot b^{3} \text { - free torsional inertia moment, where: } \\
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
\end{gathered}
$$

Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Load Uniformly Distributed along the Longitudinal Axis of Its Upper Face

Objective: Determination of the critical value of the load uniformly distributed along the longitudinal axis of the upper face of a cantilever beam of a square cross-section corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_9_Bar.SPR	Bar model
Stability_Bar_9_Shell.SPR	Shell element model
Stability_Bar_9_Solid.SPR	Solid element model

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the load q , uniformly distributed along the longitudinal axis of its upper face. Determine the critical value of the uniformly distributed load q_{cr}, corresponding to the moment of buckling of the cantilever beam.

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 303

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{q}=10^{5} \mathrm{kN} / \mathrm{m}$

- length of the cantilever beam;
- side of the square cross-section of the cantilever beam;
- elastic modulus of the cantilever beam material;
- Poisson's ratio;
- initial value of the load uniformly distributed along the longitudinal axis of the upper face of the beam.

Finite element model: Design model - general type system. Three design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the node of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}, 11$ vertical upward two-node elements of type 100 (3D rigid body) with the length $\mathrm{h} / 2$ are adjacent to the nodes of the beam. The action with the initial value of the uniformly distributed load q is specified in the free nodes of the elements of the rigid body (elevated application point) as concentrated forces $\mathrm{P}=\mathrm{q} \cdot \mathrm{b} \cdot 1.0=10^{5} \mathrm{kN}\left(0.5 \cdot 10^{5} \mathrm{kN}\right.$ for the end nodes). Number of nodes in the design model - 22;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load q uniformly distributed along the line is specified on the upper sides of all beam elements located under the upper face of the beam. Number of nodes in the design model -8033.
Solid element model (S), 5120 twenty-node elements of type 37 , the spacing of the finite element mesh along the longitudinal axis, width and height of the beam is 0.125 m . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of

Verification Examples

freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load uniformly distributed over the face $q_{A}=q / b$ is specified on the upper faces of all beam elements located under the upper face of the beam. Number of nodes in the design model - 24705 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

Design model. Solid element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

1 -st buckling mode. Solid element model

Comparison of solutions:

Critical value of the load $q_{c r}$,
uniformly distributed along the longitudinal axis of the upper face of the cantilever beam

Design model	Theory	SCAD	Deviation, \%
Bar	23737	$0,236895 \cdot 100000=23690$	0,20
Reissner-Mindlin shell element	23737	$0,233316 \cdot 100000=23332$	1,71
Solid element	23737	$0,246094 \cdot 100000=24609$	3,67

Notes: In the analytical solution the critical value of the uniformly distributed load q_{cr}, corresponding to the moment of buckling of the cantilever beam can be determined according to the following formula:

$$
q=\frac{12,85 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{3}} \cdot k_{h} \quad k_{h}=f\left(\frac{h}{2 \cdot L} \cdot \sqrt{\frac{E \cdot I_{z}}{G \cdot I_{x}}}\right) \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
\begin{gathered}
I_{z}=\frac{h \cdot b^{3}}{12}-\text { minimum bending inertia moment (out of the moment plane); } \\
I_{x}=k_{f} \cdot h \cdot b^{3} \text { - free torsional inertia moment, where: } \\
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
\end{gathered}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending)

Objective: Determination of the critical value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of a beam of a square cross-section simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_10_Bar.SPR	Bar model
Stability_Bar_10_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in and out of the bending plane is subjected to the action of the concentrated transverse bending force P , applied in the middle of its span at the level of the longitudinal axis. Determine the critical value of the concentrated transverse bending force P , corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 218

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}=10^{6} \mathrm{kN}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- initial value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with the initial value of the concentrated transverse bending force P is specified in the node in the middle of the beam span. Number of nodes in the design model-11;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and on all other nodes of the ends of the beam in the direction of the degree of freedom Y . The action with the initial value of the concentrated transverse bending force P is specified in the node in the middle of the beam span at the level of the longitudinal axis of the beam. Number of nodes in the design model - 8033 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1- st Buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the concentrated transverse bending force $P_{c r}(\mathbf{k N})$, applied in the middle of the span at the level of the longitudinal axis of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	355055	$0,353193 \cdot 1000000=353193$	0,52
Reissner-Mindlin shell element	355055	$0,344706 \cdot 1000000=344706$	2,91

Notes: In the analytical solution the critical value of the concentrated transverse bending force $P_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
P=\frac{16,94 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{2}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
\begin{aligned}
& I_{z}=\frac{h \cdot b^{3}}{12}-\text { minimum bending inertia moment (out of the moment plane); } \\
& I_{y}=\frac{b \cdot h^{3}}{12} \text { - maximum bending inertia moment (in the moment plane); }
\end{aligned}
$$

$I_{x}=k_{f} \cdot h \cdot b^{3}$ - free torsional inertia moment, where:

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis of the Upper Face (Transverse Bending)

Objective: Determination of the critical value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of the upper face of a beam of a square cross-section simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_11_Bar.SPR	Bar model
Stability_Bar_11_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in and out of the bending plane is subjected to the action of the concentrated transverse bending force P, applied in the middle of its span at the level of the longitudinal axis of the upper face. Determine the critical value of the concentrated transverse bending force P, corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 219

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}=10^{6} \mathrm{kN}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- initial value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of the upper face of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. 1 vertical upward two-node element of type 100 (3D rigid body) with the length $\mathrm{h} / 2$ is adjacent to the node in the middle of the beam span. The action with the initial value of the concentrated transverse bending force P is specified in the free node of the element of the rigid body (elevated application point). Number of nodes in the design model 12;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and on all other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial value of the concentrated
transverse bending force P is specified in the node in the middle of the beam span at the height $\mathrm{h} / 2$ from the longitudinal axis of the beam. Number of nodes in the design model - 8033 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the concentrated transverse bending force $P_{c r}(\mathbf{k N})$, applied in the middle of the span at the level of the longitudinal axis of the upper face of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	317747	$0,313904 \cdot 1000000=313904$	1,21
Reissner-Mindlin shell element	317747	$0,304932 \cdot 1000000=304932$	4,03

Notes: In the analytical solution the critical value of the concentrated transverse bending force $P_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
P=\frac{16,94 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{2}} \cdot k_{h} \quad k_{h}=f\left(\frac{h}{2 \cdot L} \cdot \sqrt{\frac{E \cdot I_{z}}{G \cdot I_{x}}}\right) \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
I_{z}=\frac{h \cdot b^{3}}{12}-\text { minimum bending inertia moment (out of the moment plane); }
$$

$$
I_{y}=\frac{b \cdot h^{3}}{12} \text { - maximum bending inertia moment (in the moment plane); }
$$

$I_{x}=k_{f} \cdot h \cdot b^{3}$ - free torsional inertia moment, where:

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending)

Objective: Determination of the critical value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of a beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_12_Bar.SPR	Bar model
Stability_Bar_12_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane is subjected to the action of the concentrated transverse bending force P , applied in the middle of its span at the level of the longitudinal axis. Determine the critical value of the concentrated transverse bending force P, corresponding to the moment of buckling of the simply supported beam applied in the middle of its span at the level of the longitudinal axis.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 220

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{P}=10^{6} \mathrm{kN}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- initial value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX, UZ. The action with the initial value of the concentrated transverse bending force P is specified in the node in the middle of the beam span. Number of nodes in the design model -11 .
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UZ}$ and on all other nodes of the ends of the beam in the directions of the degrees of freedom Y, UZ. The action with the initial value of the

Verification Examples

concentrated transverse bending force P is specified in the node in the middle of the beam span at the level of the longitudinal axis of the beam. Number of nodes in the design model - 8033 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the concentrated transverse bending force $P_{c r}(\mathbf{k N})$, applied in the middle of the span at the level of the longitudinal axis of the beam simply supported in the bending plane and clamped out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	559620	$0,541779 \cdot 1000000=541779$	3,19
Reissner-Mindlin shell element	559620	$0,506897 \cdot 1000000=506897$	9,42

Notes: In the analytical solution the critical value of the concentrated transverse bending force $P_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
P=\frac{26,70 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{2}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
I_{z}=\frac{h \cdot b^{3}}{12}-\text { minimum bending inertia moment (out of the moment plane); }
$$

$$
I_{y}=\frac{b \cdot h^{3}}{12}-\text { maximum bending inertia moment (in the moment plane); }
$$

$I_{x}=k_{f} \cdot h \cdot b^{3}$ - free torsional inertia moment, where:

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in and out of the Bending Plane Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis

Objective: Determination of the critical value of the transverse load uniformly distributed along the longitudinal axis of a beam of a square cross-section simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_13_Bar.SPR	Bar model
Stability_Bar_13_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in and out of the bending plane is subjected to the action of the transverse load q, uniformly distributed along its longitudinal axis. Determine the critical value of the transverse uniformly distributed load q_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 220

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{q}=10^{5} \mathrm{kN} / \mathrm{m}$

- length of the simply supported beam;
- side of the square cross-section of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- initial value of the transverse load uniformly distributed along the longitudinal axis of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom $X, Y, Z, U X$. The action with the initial value of the transverse uniformly distributed load q is specified on all elements of the beam. Number of nodes in the design model -11 ;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars $\left(\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2\right)$, 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and on all other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial value of the transverse load q uniformly distributed along the line is specified on the lower sides of all beam elements located above its longitudinal axis. Number of nodes in the design model - 8033 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the transverse load $\boldsymbol{q}_{c r}(\mathbf{k N} / \mathbf{m})$, uniformly distributed along the longitudinal axis of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	59337	$0,590213 \cdot 100000=59021$	0,53
Reissner-Mindlin shell element	59337	$0,578880 \cdot 100000=57888$	2,44

Notes: In the analytical solution the critical value of the transverse uniformly distributed load $q_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
q=\frac{28,31 \cdot \sqrt{E \cdot I_{Z} \cdot G \cdot I_{x}}}{L^{3}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$I_{z}=\frac{h \cdot b^{3}}{12}$ - minimum bending inertia moment (out of the moment plane); $I_{y}=\frac{b \cdot h^{3}}{12}$ - maximum bending inertia moment (in the moment plane);

$$
I_{x}=k_{f} \cdot h \cdot b^{3}-\text { free torsional inertia moment, where: }
$$

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of a Beam of a Square Cross-Section Simply Supported in the Bending Plane and Clamped out of the Bending Plane Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis

Objective: Determination of the critical value of the transverse load uniformly distributed along the longitudinal axis of a beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Bar_14_Bar.SPR	Bar model
Stability_Bar_14_Shell.SPR	Shell element model

Problem formulation: The beam of a square cross-section simply supported in the bending plane and clamped out of the bending plane is subjected to the action of the transverse load q, uniformly distributed along its longitudinal axis. Determine the critical value of the transverse uniformly distributed load q_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 3, Moscow, Mechanical engineering, 1968, p. 72

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m}$

- length of the simply supported beam;
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
- side of the square cross-section of the simply supported beam;
$v=0.2$
- elastic modulus of the simply supported beam material;
$\mathrm{q}=10^{5} \mathrm{kN} / \mathrm{m}$
- Poisson's ratio;
- initial value of the transverse load uniformly distributed along the longitudinal axis of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 1.0 m . Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX, UZ. The action with the initial value of the transverse uniformly distributed load q is specified on all elements of the beam. Number of nodes in the design model - 11;
Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . The shell is supported by vertical high-rigidity bars ($\mathrm{h}=\mathrm{b}=1.0 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2$), 64 elements of type 5 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UZ}$ and on all other nodes of the ends of the beam in the directions of the degrees of freedom Y, UZ. The action with the initial value of the transverse load q uniformly distributed along the line is specified on the lower sides of all beam elements located above its longitudinal axis. Number of nodes in the design model - 8033 .

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1- st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the transverse load $\boldsymbol{q}_{c r}(\mathbf{k N} / \mathbf{m})$, uniformly distributed along the longitudinal axis of the beam simply supported in the bending plane and clamped out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	101863	$0,995488 \cdot 100000=99549$	2,27
Reissner-Mindlin shell element	101863	$0,944805 \cdot 100000=94481$	7,25

Notes: In the analytical solution the critical value of the transverse uniformly distributed load $q_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
q=\frac{48,60 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{3}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$$
\begin{gathered}
I_{z}=\frac{h \cdot b^{3}}{12} \text { - minimum bending inertia moment (out of the moment plane); } \\
I_{y}=\frac{b \cdot h^{3}}{12} \text { - maximum bending inertia moment (in the moment plane); } \\
I_{x}=k_{f} \cdot h \cdot b^{3}-\text { free torsional inertia moment, where: }
\end{gathered}
$$

$$
k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
$$

Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends and Equal in Value (Pure Bending)

Objective: Determination of the critical value of the concentrated bending moments equal in value and applied at the ends of an I-beam simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Flanged_Beam_1_Bar.SPR	Bar model
Flanged_Beam.tns	Thin-walled beam cross-section
Stability_Flanged_Beam_1_Shell.SPR	Shell element model

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the action of the concentrated bending moments M, equal in value and applied at its ends. Determine the critical value of the concentrated bending moments M_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$

- length of the simply supported beam;
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{b}=\mathrm{b}_{\mathrm{f}}=0.5 \mathrm{~m}$
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
$\mathrm{t}=\mathrm{t}_{\mathrm{f}}=0.04 \mathrm{~m}$
$\mathrm{h}_{\mathrm{w}}=1.0 \mathrm{~m}$
$\mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m}$
$\mathrm{M}=10^{3} \mathrm{kN} \cdot \mathrm{m}$
- width of the flanges of the cross-section of the simply supported beam;
- thickness of the flanges of the cross-section of the simply supported beam;
- height of the web of the cross-section of the simply supported beam;
- thickness of the web of the cross-section of the simply supported beam;
- initial value of the concentrated bending moments applied at the ends of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of the beam is 1.0 m . The reduced free torsional stiffness of the cross-section of the simply supported beam taking into account the warping effect is calculated according to the following formula: $G \cdot I_{x_{-} \text {red }}=G \cdot I_{x}+\frac{\pi^{2}}{L^{2}} \cdot E \cdot I_{\omega}$. Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with the initial value of the concentrated bending moments M is specified in the nodes of the ends of the beam. Number of nodes in the design model - 11;
Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Vertical stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the web and the flanges of the beam $\left(h_{w}=1.0 \mathrm{~m} ; \mathrm{b}_{\mathrm{w}}=0.5 \mathrm{~m} ; \mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2\right), 3968$ elements of type 150 . Boundary conditions are provided by imposing constraints on the nodes of the ends
of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and on all other nodes of the ends of the beam in the direction of the degree of freedom Y . The action with the initial value of the concentrated bending moments M is specified as a pair of forces $P=M / h_{w}=10^{3} \mathrm{kN}$ on the nodes of the ends of the beam lying on the longitudinal axes of its flanges. Number of nodes in the design model-19793.

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the concentrated bending moments $\mathrm{M}_{\mathrm{cr}}(\mathrm{kN} \cdot \mathrm{m})$, applied at the ends of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	1493	$1,510993 \cdot 1000=1511$	1,19
Reissner-Mindlin shell element	1493	$1,545837 \cdot 1000=1546$	3,52

Notes: In the analytical solution the critical value of the concentrated bending moments M_{cr}, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
M=\frac{\pi \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L} \cdot \chi \quad \chi=\sqrt{1+\frac{\pi^{2}}{L^{2}} \cdot \frac{E \cdot I_{\omega}}{G \cdot I_{x}}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$I_{z}=\frac{h_{w} \cdot t_{w}{ }^{3}}{12}+2 \cdot \frac{b_{f}{ }^{3} \cdot t_{f}}{12}-$ minimum bending inertia moment (out of the moment plane);

$$
I_{\omega}=\frac{h_{w}{ }^{2} \cdot b_{f}^{3} \cdot t_{f}}{24}-\text { sectorial constrained torsional inertia moment; }
$$

$I_{x}=2 \cdot k_{f} \cdot b_{f} \cdot t_{f}{ }^{3}+k_{w} \cdot h_{w} \cdot t_{w}{ }^{3}$ - free torsional inertia moment, where:

$$
\begin{aligned}
& k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{f}}{b_{f}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}, \\
& k_{w}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{w}}{h_{w}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
\end{aligned}
$$

Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending)

Objective: Determination of the critical value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of an I-beam simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Flanged_Beam_2_Bar.SPR	Bar model
Flanged_Beam.tns	Thin-walled beam cross-section
Stability_Flanged_Beam_2_Shell.SPR	Shell element model

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the action of the concentrated transverse bending force P , applied in the middle of its span at the level of the longitudinal axis. Determine the critical value of the concentrated transverse bending force P_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{b}=\mathrm{b}_{\mathrm{f}}=0.5 \mathrm{~m}$
$\mathrm{t}=\mathrm{t}_{\mathrm{f}}=0.04 \mathrm{~m}$
$\mathrm{h}_{\mathrm{w}}=1.0 \mathrm{~m}$
$\mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m}$
$\mathrm{P}=10^{3} \mathrm{kN}$

- length of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- width of the flanges of the cross-section of the simply supported beam;
- thickness of the flanges of the cross-section of the simply supported beam;
- height of the web of the cross-section of the simply supported beam;
- thickness of the web of the cross-section of the simply supported beam;
- initial value of the concentrated transverse bending force applied in the middle of the span at the level of the longitudinal axis of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of the beam is 1.0 m . The reduced free torsional stiffness of the cross-section of the simply supported beam taking into account the warping effect is calculated according to the following formula: $G \cdot I_{x_{-} \text {red }}=G \cdot I_{x}+\frac{\pi^{2}}{L^{2}} \cdot E \cdot I_{\omega}$. Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}$. The action with the initial value of the concentrated transverse bending force P is specified in the node in the middle of the beam span. Number of nodes in the design model - 11;

Verification Examples

Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150, the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Vertical stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the web and the flanges of the beam $\left(h_{w}=1.0 \mathrm{~m} ; \mathrm{b}_{\mathrm{w}}=0.5 \mathrm{~m} ; \mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2\right), 3968$ elements of type 150 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and on all other nodes of the ends of the beam in the direction of the degree of freedom Y . The action with the initial value of the concentrated transverse bending force P is specified in the node in the middle of the beam span at the level of the longitudinal axis of the beam. Number of nodes in the design model - 19793.

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the concentrated transverse bending force $P_{c r}(\mathbf{k N})$, applied in the middle of the span at the level of the longitudinal axis of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	804	$0,815304 \cdot 1000=815$	1,38
Reissner-Mindlin shell element	804	$0,817535 \cdot 1000=818$	1,65

Notes: In the analytical solution the critical value of the concentrated transverse bending force $P_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
P=\frac{16,92 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{2}} \cdot \chi \quad \chi=\sqrt{1+\frac{\pi^{2}}{L^{2}} \cdot \frac{E \cdot I_{\omega}}{G \cdot I_{x}}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$I_{z}=\frac{h_{w} \cdot t_{w}{ }^{3}}{12}+2 \cdot \frac{b_{f}{ }^{3} \cdot t_{f}}{12}-$ minimum bending inertia moment (out of the moment plane);
$I_{\omega}=\frac{h_{w}{ }^{2} \cdot b_{f}{ }^{3} \cdot t_{f}}{24}-$ sectorial constrained torsional inertia moment;
$I_{x}=2 \cdot k_{f} \cdot b_{f} \cdot t_{f}{ }^{3}+k_{w} \cdot h_{w} \cdot t_{w}{ }^{3}$ - free torsional inertia moment, where:

$$
\begin{aligned}
& k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{f}}{b_{f}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}, \\
& k_{w}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{w}}{h_{w}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
\end{aligned}
$$

Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis

Objective: Determination of the critical value of the transverse load uniformly distributed along the longitudinal axis of an I-beam simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Flanged_Beam_3_Bar.SPR	Bar model
Flanged_Beam.tns	Thin-walled beam cross-section
Stability_Flanged_Beam_3_Shell.SPR	Shell element model

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the action of the transverse load q, uniformly distributed along its longitudinal axis. Determine the critical value of the transverse uniformly distributed load q_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=0.2$
$\mathrm{b}=\mathrm{b}_{\mathrm{f}}=0.5 \mathrm{~m}$
$\mathrm{t}=\mathrm{t}_{\mathrm{f}}=0.04 \mathrm{~m}$
$\mathrm{h}_{\mathrm{w}}=1.0 \mathrm{~m}$
$\mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m}$
$\mathrm{q}=10^{2} \mathrm{kN} / \mathrm{m}$

- length of the simply supported beam;
- elastic modulus of the simply supported beam material;
- Poisson's ratio;
- width of the flanges of the cross-section of the simply supported beam;
- thickness of the flanges of the cross-section of the simply supported beam;
- height of the web of the cross-section of the simply supported beam;
- thickness of the web of the cross-section of the simply supported beam;
- initial value of the transverse load uniformly distributed along the
longitudinal axis of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of the beam is 1.0 m . The reduced free torsional stiffness of the cross-section of the simply supported beam taking into account the warping effect is calculated according to the following formula: $G \cdot I_{x_{-} \text {red }}=G \cdot I_{x}+\frac{\pi^{2}}{L^{2}} \cdot E \cdot I_{\omega}$. Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}$. The action with the initial value of the transverse uniformly distributed load q is specified on all elements of the beam. Number of nodes in the design model-11;
Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Vertical stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the web and the flanges of the beam $\left(h_{w}=1.0 \mathrm{~m} ; \mathrm{b}_{\mathrm{w}}=0.5 \mathrm{~m} ; \mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2\right), 3968$
elements of type 150 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and on all other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial value of the transverse load q uniformly distributed along the line is specified on the lower sides of all beam elements located above the longitudinal axis of the beam. Number of nodes in the design model - 19793.

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions.

> Critical value of the transverse load $q_{c r}(\mathrm{kN} / \mathrm{m})$, uniformly distributed along the longitudinal axis of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	135	$1,362356 \cdot 100=136$	1,21
Reissner-Mindlin shell element	135	$1,359283 \cdot 100=136$	0,98

Notes: In the analytical solution the critical value of the transverse uniformly distributed load $q_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
q=\frac{28,32 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{3}} \cdot \chi \quad \chi=\sqrt{1+\frac{\pi^{2}}{L^{2}} \cdot \frac{E \cdot I_{\omega}}{G \cdot I_{x}}} \quad G=\frac{E}{2 \cdot(1+v)}
$$

$I_{z}=\frac{h_{w} \cdot t_{w}{ }^{3}}{12}+2 \cdot \frac{b_{f}{ }^{3} \cdot t_{f}}{12}-$ minimum bending inertia moment (out of the moment plane);

$$
I_{\omega}=\frac{h_{w}{ }^{2} \cdot b_{f}{ }^{3} \cdot t_{f}}{24}-\text { sectorial constrained torsional inertia moment; }
$$

$I_{x}=2 \cdot k_{f} \cdot b_{f} \cdot t_{f}{ }^{3}+k_{w} \cdot h_{w} \cdot t_{w}{ }^{3}$ - free torsional inertia moment, where:

$$
\begin{aligned}
& k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{f}}{b_{f}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}, \\
& k_{w}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{w}}{h_{w}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
\end{aligned}
$$

Stability of an I-beam Simply Supported in and out of the Bending Plane Subjected to a Load Uniformly Distributed along the Longitudinal Axis of Its Upper Flange

Objective: Determination of the critical value of the load uniformly distributed along the longitudinal axis of the upper flange of an I-beam simply supported in and out of the bending plane corresponding to the moment of its buckling.

Initial data files:

File name	Description
Stability_Flanged_Beam_4_Bar.SPR	Bar model
Flanged_Beam.tns	Thin-walled beam cross-section
Stability_Flanged_Beam_4_Shell.SPR	Shell element model

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the action of the load q , uniformly distributed along the longitudinal axis of its upper flange. Determine the critical value of the uniformly distributed load q_{cr}, corresponding to the moment of buckling of the simply supported beam.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222;

Initial data:

$\mathrm{L}=10.0 \mathrm{~m}$
$\mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$

- length of the simply supported beam;
$v=0.2$
- elastic modulus of the simply supported beam material;
$\mathrm{b}=\mathrm{b}_{\mathrm{f}}=0.5 \mathrm{~m}$
- Poisson's ratio;
- width of the flanges of the cross-section of the simply supported beam;
- thickness of the flanges of the cross-section of the simply supported
- height of the web of the cross-section of the simply supported beam;
beam;
$h_{\mathrm{w}}=1.0 \mathrm{~m}$
$\mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m}$
$\mathrm{q}=10^{2} \mathrm{kN} / \mathrm{m}$
- thickness of the web of the cross-section of the simply supported beam;
- initial value of the transverse load uniformly distributed along the longitudinal axis of the upper flange of the beam.

Finite element model: Design model - general type system. Two design models are considered:
Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of the beam is 1.0 m . The reduced free torsional stiffness of the cross-section of the simply supported beam taking into account the warping effect is calculated according to the following formula: $G \cdot I_{x_{-} \text {red }}=G \cdot I_{x}+\frac{\pi^{2}}{L^{2}} \cdot E \cdot I_{\omega}$. Boundary conditions are provided by imposing constraints on the nodes of the simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. 11 vertical upward two-node elements of type 100 (3D rigid body) with the length $\mathrm{h} / 2$ are adjacent to the nodes of the beam. The action with the initial value of the uniformly distributed load q is specified in the free nodes of

Verification Examples

the elements of the rigid bodies (elevated application points) as concentrated forces $\mathrm{P}=\mathrm{q} \cdot 1.0=10^{2} \mathrm{kN}$ $\left(0.5 \cdot 10^{2} \mathrm{kN}\right.$ for end nodes). Number of nodes in the design model -22 ;
Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150 , the spacing of the finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m . Vertical stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the web and the flanges of the beam $\left(h_{w}=1.0 \mathrm{~m} ; \mathrm{b}_{\mathrm{w}}=0.5 \mathrm{~m} ; \mathrm{t}_{\mathrm{w}}=0.02 \mathrm{~m} ; \mathrm{E}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2} ; v=0.2\right), 3968$ elements of type 150 . Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its longitudinal axis in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and on all other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial value of the load q uniformly distributed along the line is specified on the upper sides of all elements of the beam web located under the upper flange of the beam. Number of nodes in the design model - 19793.

Results in SCAD

Design model. Bar model

Design model. Reissner-Mindlin shell element model

1-st buckling mode. Bar model

1-st buckling mode. Reissner-Mindlin shell element model

Comparison of solutions:

Critical value of the load $\mathbf{q}_{\mathrm{cr}}(\mathrm{kN} / \mathrm{m})$,
 uniformly distributed along the longitudinal axis of the upper flange of the beam simply supported in and out of the bending plane

Design model	Theory	SCAD	Deviation, \%
Bar	93	$0,943201 \cdot 100=94$	1,54
Reissner-Mindlin shell element	93	$0,949310 \cdot 100=95$	1,87

Notes: In the analytical solution the critical value of the transverse uniformly distributed load $q_{c r}$, corresponding to the moment of buckling of the simply supported beam can be determined according to the following formula:

$$
\begin{gathered}
q=\frac{28,32 \cdot \sqrt{E \cdot I_{z} \cdot G \cdot I_{x}}}{L^{3}} \cdot \chi \cdot k_{h} \quad \chi=\sqrt{1+\frac{\pi^{2}}{L^{2}} \cdot \frac{E \cdot I_{\omega}}{G \cdot I_{x}}} \quad G=\frac{E}{2 \cdot(1+v)} \\
k_{h}=\sqrt{1+\frac{20,32}{\pi^{2}} \cdot \frac{E \cdot I_{\omega}}{G \cdot I_{x} \cdot L^{2}+\pi^{2} \cdot E \cdot I_{\omega}}}-\frac{4,50}{\pi} \cdot \sqrt{\frac{E \cdot I_{\omega}}{G \cdot I_{x} \cdot L^{2}+\pi^{2} \cdot E \cdot I_{\omega}}}
\end{gathered}
$$

$I_{z}=\frac{h_{w} \cdot t_{w}{ }^{3}}{12}+2 \cdot \frac{b_{f}{ }^{3} \cdot t_{f}}{12}-$ minimum bending inertia moment (out of the moment plane);

$$
I_{\omega}=\frac{h_{w}^{2} \cdot b_{f}^{3} \cdot t_{f}}{24}-\text { sectorial constrained torsional inertia moment; }
$$

$I_{x}=2 \cdot k_{f} \cdot b_{f} \cdot t_{f}{ }^{3}+k_{w} \cdot h_{w} \cdot t_{w}{ }^{3}$ - free torsional inertia moment, where:

$$
\begin{aligned}
& k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{f}}{b_{f}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}, \\
& k_{w}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{t_{w}}{h_{w}} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}
\end{aligned}
$$

Stability of a Simply Supported Rectangular Plate Uniformly Compressed in One Direction

Objective: Determination of the critical value of the compressive forces uniformly distributed along two opposite sides of a simply supported rectangular plate corresponding to the moment of its buckling.

Initial data files:

File name	Description
6.6_a_4_n_4.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=0.5$ from four-node shell elements of type 44
6.6_a_4_n_8.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=0.5$ from eight- node shell elements of type 50
6.6_a_8_n_4.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0$ from four-node shell elements of type 44
6.6_a_8_n_8.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0$ from eight- node shell elements of type 50
6.6_a_12_n_4.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.5$ from four-node shell elements of type 44
6.6_a_12_n_8.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.5$ from eight- node shell elements of type 50

Problem formulation: The simply supported rectangular plate is subjected to the action of compressive forces σ, uniformly distributed along two opposite sides. Determine the critical value of the compressive forces σ_{cr}, corresponding to the moment of buckling of the rectangular plate.

References:

S. P. Timoshenko, Stability of Bars, Plates and Shells. - Moscow. Nauka. - 1971. - p. 621.
A.S. Volmir. Stability of Deformable Systems. - Moscow. - Nauka. - 1967. - p. 328.

Initial data:

$\mathrm{a}=4.0 ; 8.0 ; 12.0 \mathrm{~m}$
$\mathrm{b}=8.0 \mathrm{~m}$
$\mathrm{h}=0.08 \mathrm{~m}$
$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$\nu=1 / 3$
$\sigma=1.25 \cdot 10^{3} \mathrm{kN} / \mathrm{m}^{2}$

- side of the rectangular plate free from forces (along the X axis of the global coordinate system);
- side of the rectangular plate subjected to the compressive forces (along the Y axis of the global coordinate system);
- thickness of the rectangular plate;
- elastic modulus of the rectangular plate material;
- Poisson's ratio;
- initial value of the compressive forces.

Finite element model: Design model - general type system. Two design models with four-node shell elements of type 44 and eight-node shell elements of type 50 are considered for three cases with the ratios
of the sides of the plate $\mathrm{a} / \mathrm{b}=0.5 ; 1.0 ; 1.5$. The spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 1.0 m . Number of elements in the models $-32 ; 64 ; 96$. Boundary conditions are provided by imposing constraints on the nodes of the support contour of the plate in the direction of the degree of freedom Z . A load uniformly distributed along the line with the initial value $p=\sigma \cdot \mathrm{h}=100 \mathrm{kN} / \mathrm{m}$ is specified on one of the two opposite sides of the plate subjected to the compressive forces, and the constraints in the respective direction (along the X axis of the global coordinate system) are imposed on the nodes of the other one. The dimensional stability of the design model is provided by imposing constraints in the normal direction (along the Y axis of the global coordinate system) on the nodes of one of the two opposite sides of the plate free from forces, and by imposing constraints in the UZ direction of the global coordinate system on the node of one of the corners of the plate. Number of nodes in the models - 45 (121); 81 (225); 117 (329).

Results in SCAD

Design models with the ratio of the sides of the plate $a / b=0.5$

Design models with the ratio of the sides of the plate $a / b=1.5$

Buckling modes for the design models with the ratio of the sides of the plate $a / b=0.5$

Buckling modes for the design models with the ratio of the sides of the plate $a / b=1.0$

Buckling modes for the design models with the ratio of the sides of the plate $a / b=1.5$

Comparison of solutions:

Critical value of the compressive forces $\sigma_{\mathrm{cr}}, \mathrm{kN} / \mathrm{m}^{2}$

Plate sides ratio	Design model	Theory	SCAD	Deviation, \%
$\mathrm{a} / \mathrm{b}=0.5$	Member type 44 $\mathrm{n}=4$ nodes	5783	$\begin{gathered} 4.716991 \cdot 100 / 0.08= \\ =5896 \end{gathered}$	1.95
	$\begin{gathered} \text { Member type } 50 \\ \mathrm{n}=8 \text { nodes } \end{gathered}$		$\begin{gathered} 4.626558 \cdot 100 / 0.08= \\ =5783 \end{gathered}$	0.00
$\mathrm{a} / \mathrm{b}=1.0$	Member type 44 $\mathrm{n}=4$ nodes	3701	$\begin{gathered} 2.998497 \cdot 100 / 0.08= \\ =3748 \end{gathered}$	1.27
	Member type 50 $\mathrm{n}=8$ nodes		$\begin{gathered} 2.960899 \cdot 100 / 0.08= \\ =3701 \end{gathered}$	0.00
$\mathrm{a} / \mathrm{b}=1.5$	Member type 44 $\mathrm{n}=4$ nodes	4016	$\begin{gathered} 3.264680 \cdot 100 / 0.08= \\ =4081 \end{gathered}$	1.62
	Member type 50 $\mathrm{n}=8$ nodes		$\begin{gathered} 3.212803 \cdot 100 / 0.08= \\ =4016 \end{gathered}$	0.00

Notes: In the analytical solution the critical value of the compressive forces σ_{cr}, corresponding to the moment of buckling of the rectangular plate can be determined according to the following formula:

$$
\begin{gathered}
\sigma_{c r}=k \cdot \frac{\pi^{2} \cdot D}{b^{2} \cdot h} \text {, where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(l-v^{2}\right)}, \quad k=\left(\frac{m \cdot b}{a}+\frac{a}{m \cdot b}\right)^{2},
\end{gathered}
$$

$\mathrm{m}=1,2,3 \ldots-$ number of half waves of the buckling mode in the direction of the compression of the plate; its minimum value is determined from the following expression:

$$
\frac{a}{b} \leq \sqrt{m \cdot(m+1)} .
$$

Stability of a Simply Supported Square Plate Uniformly Compressed in One Direction

Objective: Determination of the critical value of the compressive forces uniformly distributed along two opposite sides of a simply supported square plate corresponding to the moment of its buckling.

Initial data files:

File name	Description
6.7_n_4.SPR	Design model with four-node shell elements of type 44
6.7_n_8.SPR	Design model with eight-node shell elements of type 50

Problem formulation: The square plate is subjected to the action of compressive forces σ, uniformly distributed along two opposite roller supported sides. Two other opposite sides of the plate free from forces are pinned. Determine the critical value of the compressive forces σ_{cr}, corresponding to the moment of buckling of the square plate.

References:

J.H. Argyris, P.C. Dunne, G.A. Malejannakis, E. Schelkle. A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems. Computer methods in applied mechanics and engineering, 11. - 1977.- p. 97-131.
S.P. Timoshenko, J.M. Gere. Theory of elastic stability. McGraw-Hill. - New York. - 1963. - p. 356.

Initial data:

$\mathrm{a}=8.0 \mathrm{~m}$

- side of the square plate;
$\mathrm{h}=0.08 \mathrm{~m}$
- thickness of the square plate;
$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
- elastic modulus of the square plate material;
$v=1 / 3$
- Poisson's ratio;
$\sigma=1.25 \cdot 10^{3} \mathrm{kN} / \mathrm{m}^{2}$
- initial value of the compressive forces.

Finite element model: Design model - general type system. Two design models with four-node shell elements of type 44 and eight-node shell elements of type 50 are considered. The spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 1.0 m . Number of elements in the models -64 . Boundary conditions are provided by imposing constraints on the nodes of the support contour of the plate in the direction of the degree of freedom Z , and by imposing constraints in the normal direction along the Y axis of the global coordinate system on the nodes of one of the two opposite sides of the plate free from forces. A load uniformly distributed along the line with the initial value $p=\sigma \cdot \mathrm{h}=100 \mathrm{kN} / \mathrm{m}$ is specified on one of the two opposite sides of the plate subjected to the compressive forces, and the constraints in the respective direction (along the X axis of the global coordinate system) are imposed on the nodes of the other one. The dimensional stability of the design model is provided by imposing a constraint in the UZ direction of the global coordinate system on the node of the support contour of the plate. Number of nodes in the models $-81 ; 225$.

Results in SCAD

Design model. Model with four-node shell elements

Design model. Model with eight-node shell elements

Buckling mode. Model with four-node shell elements

Buckling mode. Model with eight-node shell elements

Comparison of solutions:

Critical value of the compressive forces $\sigma_{\mathrm{cr}}, \mathbf{k N} / \mathbf{m}^{2}$

Design model	Theory	SCAD	Deviation, \%
$\begin{array}{c}\text { Member type } 44 \\ \mathrm{n}=4 \text { nodes }\end{array}$	2776	$\begin{array}{c}2.248923 \cdot 100 / 0.08= \\ =2811\end{array}$	1.26
		$\begin{array}{c}2.220676 \cdot 100 / 0.08 \\ \text { Member type } 50 \\ \mathrm{n}=8 \text { nodes }\end{array}$	

Notes: In the analytical solution the critical value of the compressive forces σ_{cr}, corresponding to the moment of buckling of the square plate can be determined according to the following formula:

$$
\sigma_{c r}=\frac{4 \cdot \pi^{2} \cdot D}{(1+v) \cdot a^{2} \cdot h}, \text { where: } \quad D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} .
$$

Stability of a Simply Supported Square Plate Uniformly Compressed in One Direction under Kinematic Action

Objective: Determination of the critical value of the approach of two opposite sides of a simply supported square plate corresponding to the moment of its buckling.

Initial data files:

File name	Description
6.8_n_4.SPR	Design model with four-node shell elements of type 44
$6.8 _$__8.SPR	Design model with eight-node shell elements of type 50

Problem formulation: The square plate is subjected to the action of the approach Δ of two opposite roller supported sides. Two other opposite sides of the plate free from actions are pinned. Determine the critical value of the approach Δ_{cr}, corresponding to the moment of buckling of the square plate.

References: J.H. Argyris, P.C. Dunne, G.A. Malejannakis, E. Schelkle, A simple triangular facet shell element with applications to linear and non-linear equilibrium and elastic stability problems, Computer methods in applied mechanics and engineering, 11 (1977), p. 97-131.
S.P. Timoshenko, J.M. Gere, Theory of elastic stability, McGraw-Hill, New York, 1963, p. 356.

Initial data:

$\mathrm{a}=8.0 \mathrm{~m}$
$\mathrm{h}=0.08 \mathrm{~m}$
$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=1 / 3$
$\Delta=1.0 \cdot 10^{-3} \mathrm{~m}$

- side of the square plate;
- thickness of the square plate;
- elastic modulus of the square plate material;
- Poisson's ratio;
- initial value of the approach.

Finite element model: Design model - general type system. Two design models with four-node shell elements of type 44 and eight-node shell elements of type 50 are considered. The spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 1.0 m . Number of elements in the models -64 . Boundary conditions are provided by imposing constraints on the nodes of the support contour of the plate in the direction of the degree of freedom Z, and by imposing constraints in the normal direction along the Y axis of the global coordinate system on the nodes of one of the two opposite sides of the plate free from actions. Constraints in the respective direction (along the X axis of the global coordinate system) are imposed on the nodes of two opposite sides of the plate subjected to the kinematic action. The action is specified by the displacement of the constraints of one of these sides with the initial value $\Delta=1.0 \cdot 10^{-3} \mathrm{~m}$. The dimensional stability of the design model is provided by imposing a constraint in the UZ direction of the global coordinate system on the node of the support contour of the plate. Number of nodes in the models $-81 ; 225$.

Design model. Model with eight-node shell elements

Buckling mode. Model with four-node shell elements

Buckling mode. Model with eight-node shell elements

Comparison of solutions:

Critical value of the compressive forces $\sigma_{\mathrm{cr}}, \mathrm{kN} / \mathrm{m}^{2}$

Design model	Theory	SCAD	Deviation, \%
Member type 44 $\mathrm{n}=4$ nodes	$1.974 \cdot 10^{-3}$	$1.999043 \cdot 1.0 \cdot 10^{-3}=$ $=1.999 \cdot 10^{-3}$	1.27
Member type 50 $\mathrm{n}=8$ nodes		$1.973935 \cdot 1.0 \cdot 10^{-3}=$ $=1.974 \cdot 10^{-3}$	0.00

Notes: In the analytical solution the critical value of the approach Δ_{cr} of two opposite sides of the simply supported square plate corresponding to the moment of its buckling can be determined according to the following formula:

$$
\Delta_{c r}=\frac{\pi^{2} \cdot h^{2}}{3 \cdot(1+v) \cdot a}
$$

Stability of a Rectangular Simply Supported Plate under Pure Shear

Objective: Determination of the critical value of the shear forces uniformly distributed along two opposite sides of a simply supported rectangular plate corresponding to the moment of its buckling.

Initial data files:

File name	Description
6.9_a_8_n_4.SPR	Design model with the ratios of the sides of the plate a/b $=1.05$ from four-node shell elements of type 44
6.9_a_8_n_8.SPR	Design model with the ratios of the sides of the plate a/b $=1.0$ from eight- node
shell elements of type 50	

Problem formulation: The simply supported rectangular plate is subjected to the action of shear forces τ, uniformly distributed along two opposite sides. Determine the critical value of the shear forces τ_{cr}, corresponding to the moment of buckling of the rectangular plate.

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 626.
A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 344.

Initial data:

$\mathrm{a}=8.0 ; 16.0 \mathrm{~m}$
$\mathrm{b}=8.0 \mathrm{~m}$
$\mathrm{h}=0.08 \mathrm{~m}$
$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$
$v=1 / 3$
$\sigma=1.25 \cdot 10^{3} \mathrm{kN} / \mathrm{m}^{2}$

- side of the rectangular plate along the X axis of the global coordinate system;
- side of the rectangular plate along the Y axis of the global coordinate system;
- thickness of the rectangular plate;
- elastic modulus of the rectangular plate material;
- Poisson's ratio;
- initial value of the shear forces.

Finite element model: Design model - general type system. Two design models with four-node shell elements of type 44 and eight-node shell elements of type 50 are considered for two cases with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0 ; 2.0$. The spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 1.0 m . Number of elements in the models -64 ; 128. Boundary conditions are provided by imposing constraints on the nodes of the support contour of the plate in the direction of the degree of freedom Z . A load uniformly distributed along the line with the initial value $p=-\tau \cdot \mathrm{h}=-100 \mathrm{kN} / \mathrm{m}$ is specified on one of the two opposite sides of the plate parallel to the X axis of the global coordinate system, and the constraints in the directions of the degrees of freedom X and Y are imposed on the nodes of the other one (lying on the X axis). A load uniformly distributed along the line with the initial value $p=-\tau \cdot \mathrm{h}=-100 \mathrm{kN} / \mathrm{m}$ is specified on one of the two opposite sides of the plate parallel to the Y axis of the global coordinate system, and a load uniformly distributed along the line with the initial value $\mathrm{p}=\tau \cdot \mathrm{h}=100 \mathrm{kN} / \mathrm{m}$ is specified on the other one (lying on the Y axis). The dimensional stability of
the design model is provided by imposing a constraint in the UZ direction of the global coordinate system on the node of one of the corners of the plate. Number of nodes in the models - $81(225) ; 153(433)$.

Results in SCAD

Design models with the ratio of the sides of the plate $a / b=1.0$

Design models with the ratio of the sides of the plate $a / b=2.0$

Buckling modes for the design models with the ratio of the sides of the plate $a / b=2.0$

Comparison of solutions:

$$
\text { Critical value of the shear forces } \tau_{\mathrm{cr}}, \mathrm{kN} / \mathbf{m}^{2}
$$

Plate sides ratio	Design model	Theory	SCAD	Deviation, \%
$\mathrm{a} / \mathrm{b}=1.0$	Member type 44 $\mathrm{n}=4$ nodes	8631	$7.129409 \cdot 100 / 0.08=$ $=8912$	3.26
	Member type 50 $\mathrm{n}=8$ nodes		$6.903095 \cdot 100 / 0.08=$ $=8629$	0.02
	Member type 44 $\mathrm{n}=4$ nodes	6060	$4.930113 \cdot 100 / 0.08=$ $=6163$	1.70
	Member type 50 $\mathrm{n}=8$ nodes		0.05	

Notes: In the analytical solution the critical value of the shear forces τ_{cr}, corresponding to the moment of buckling of the rectangular plate can be determined according to the following formula:

$$
\begin{gathered}
\sigma_{c r}=k \cdot \frac{\pi^{2} \cdot D}{b^{2} \cdot h}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, \quad k=\frac{\pi^{2}}{32 \cdot \alpha^{3} \cdot \lambda}, \quad \alpha=\frac{a}{b} .
\end{gathered}
$$

Parameter λ is determined on the basis of the condition of equality to zero of the determinant of the system of equations:

$$
\lambda \cdot\left(m^{2}+\alpha^{2} \cdot n^{2}\right) \cdot A_{m n}-\sum_{i} \sum_{j} \frac{m \cdot n \cdot i \cdot j}{\left(m^{2}-i^{2}\right) \cdot\left(n^{2}-j^{2}\right)} \cdot A_{i j}=0
$$

with the following combinations of indices:

$$
\begin{array}{cc}
m+i & \text { odd } \\
n+j & \text { odd } \\
m+n & \text { even }
\end{array}
$$

At $\mathrm{m}, \mathrm{n}, \mathrm{i}, \mathrm{j}=1,2,3,4,5,6,7,8$ (the determinant dimension is $32 \cdot 32$) we have:

$$
\begin{array}{ll}
\frac{a}{b}=1.0 & k=9.328 \\
\frac{a}{b}=2.0 & k=6.549
\end{array}
$$

Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners Uniformly Compressed in the Longitudinal Direction (Model 1)

Objective: Determination of the critical value of the compressive forces uniformly distributed along two opposite transverse sides of a rectangular simply supported plate reinforced by longitudinal stiffeners corresponding to the moment of its buckling.

Initial data files:

File name	Description
6.10_shell_beam_lambda_1.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0$
6.10_shell_beam_lambda_4.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=4.0$

Problem formulation: The rectangular simply supported plate reinforced by longitudinal stiffeners is subjected to the action of compressive forces σ, uniformly distributed along two opposite transverse sides. Determine the critical value of the compressive forces σ_{cr}, corresponding to the moment of buckling of the rectangular reinforced plate taking into account the following assumptions made when deriving the analytical solution:

- The stiffeners are symmetric with respect to the midplane of the reinforced plate;
- Torsional stiffness of the stiffeners is not taken into account;
- The stiffeners and the plate are subjected to the uniform compression.

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 507.
A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 377.

Initial data:

$\mathrm{a}=0.6 ; 2.4 \mathrm{~m}$

- side of the rectangular plate free from forces (along the X axis of the global coordinate system);
$\mathrm{b}=0.6 \mathrm{~m} \quad$ - side of the rectangular plate subjected to the compressive forces (along
the Y axis of the global coordinate system);
$\mathrm{h}=0.01 \mathrm{~m} \quad$ - thickness of the rectangular plate;
$\mathrm{F}=0.01 \cdot 0.03=3 \cdot 10^{-4} \mathrm{~m}^{2} \quad$ - cross-sectional area of the stiffeners;
$\mathrm{I}=0.01 \cdot 0.03^{3} / 12=2.25 \cdot 10^{-8} \mathrm{~m}^{4}$ - cross-sectional moment of inertia of the stiffeners;
$\mathrm{s}=3 \quad$ - number of stiffeners arranged uniformly along the width of the plate;
$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kN} / \mathrm{m}^{2} \quad$ - elastic modulus of the material of the plate and stiffeners;
$v=0.3 \quad$ - Poisson's ratio;
$\sigma=1.0 \cdot 10^{5} \mathrm{kN} / \mathrm{m}^{2} \quad-$ initial value of the compressive forces.
Finite element model: Design model - general type system. Two design models with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0 ; 4.0$ are considered. The plate is modeled by eight-node shell elements of type 50 . The spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 0.075 m . Number of plate elements in the models $-64 ; 256$. The stiffeners are modeled by spatial bar elements of type 5 . The spacing of the finite element mesh along the longitudinal axes of the stiffeners (along the X1 axes of the local coordinate systems) is 0.0375 m . Number of stiffener elements in the models $-48 ; 192$. Boundary conditions are provided by imposing constraints on the nodes
of the support contour of the plate in the direction of the degree of freedom Z . The load uniformly distributed along the line on the plate with the initial value $p=\sigma \cdot \mathrm{h}=1000 \mathrm{kN} / \mathrm{m}$ and nodal loads on the stiffeners with the initial value $\mathrm{P}=\sigma \cdot \mathrm{F}=30 \mathrm{kN}$ are specified on one of the two opposite transverse sides of the plate subjected to the compressive forces, and constraints in the respective direction (along the X axis of the global coordinate system) are imposed on the nodes of the other one. The dimensional stability of the design model is provided by imposing constraints in the normal direction (along the Y axis of the global coordinate system) on the nodes of one of the two opposite longitudinal sides of the plate free from forces, and by imposing a constraint in the UZ direction of the global coordinate system on the node of one of the corners of the plate. Number of nodes in the models $-225 ; 849$.

Results in SCAD

Design model with the ratio of the sides of the plate $a / b=1.0$

Design model with the ratio of the sides of the plate $a / b=4.0$

1 -st buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

2-nd buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

3-rd buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

1 -st buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

2-nd buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

3-rd buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

Comparison of solutions:

Critical value of the compressive forces $\sigma_{\mathrm{cr}}, \mathbf{k N} / \mathbf{m}^{2}$

Plate sides ratio	Buckling mode	Number of half waves in the transverse n and in the	Theory	SCAD	Deviation, \%
	1	$1 ; 1$	directions	235900 (235911)	$2.359001 \cdot 1000 / 0.01=$ $=235900$
	2	$1 ; 2$	533934 (535675)	$5.339341 \cdot 1000 / 0.01=$ $=533934$	0.00
	3	$2 ; 2$	942681 (943645)	$9.426809 \cdot 1000 / 0.01=$ $=942681$	0.01
$\mathrm{a} / \mathrm{b}=4.0$	1	$1 ; 3$	220165 (220164)	$2.201645 \cdot 1000 / 0.01=$ $=220165$	0.10

Plate sides ratio	Buckling mode	Number of half waves in the transverse \mathbf{n} and in the longitudinal m directions	Theory	SCAD	Deviation, \%
	2	$1 ; 4$	235900 (235911)	$2.359002 \cdot 1000 / 0.01=$ $=235900$	0.00
	3	$1 ; 2$	278652 (278654)	$2.786517 \cdot 1000 / 0.01=$ $=278652$	0.00

Theoretical values calculated in the fourth approximation are given without brackets;
Theoretical values calculated in the first approximation are given in brackets
Notes: In the analytical solution the critical value of the compressive forces $\sigma_{\mathrm{cr} 1}$ in the first approximation corresponding to the moment of buckling of the rectangular reinforced plate can be determined according to the following formula:

$$
\begin{gathered}
\sigma_{c r l}=\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot \frac{\left[1+\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]^{2}+2 \cdot \gamma \cdot \sum_{i=1}^{s} \sin ^{2}\left(\frac{\pi \cdot i}{s+1}\right)}{1+2 \cdot \delta \cdot \sum_{i=1}^{s} \sin ^{2}\left(\frac{\pi \cdot i}{s+1}\right)}, \\
\text { at } \mathrm{s}=3 \quad \sigma_{c r l}=\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot \frac{\left[1+\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]^{2}+4 \cdot \gamma}{1+4 \cdot \delta}, \quad \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, \quad \lambda=\frac{a}{b}, \quad \gamma=\frac{E \cdot I}{b \cdot D}, \quad \delta=\frac{F}{b \cdot h},
\end{gathered}
$$

$\mathrm{n}, \mathrm{m}=1,2,3 \ldots-$ number of half waves of the buckling mode in the transverse and longitudinal directions with respect to the compression of the plate.

In the analytical solution the critical value of the compressive forces σ_{cr} in the fourth approximation corresponding to the moment of buckling of the rectangular reinforced plate is determined on the basis of the condition of equality to zero of the determinant of the system of governing equations:

Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners Uniformly Compressed in the Longitudinal Direction (Model 2)

Objective: Determination of the critical value of the compressive forces uniformly distributed along two opposite transverse sides of a rectangular simply supported plate reinforced by longitudinal stiffeners corresponding to the moment of its buckling.

Initial data files:

File name	Description
6.10_shell_shell_lambda_1.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0$
6.10_shell_shell_lambda_4.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=4.0$

Problem formulation: The rectangular simply supported plate reinforced by longitudinal stiffeners is subjected to the action of compressive forces σ, uniformly distributed along two opposite transverse sides. Determine the critical value of the compressive forces σ_{cr}, corresponding to the moment of buckling of the rectangular reinforced plate taking into account the following assumptions made when deriving the analytical solution:

- The stiffeners are symmetric with respect to the midplane of the reinforced plate;
- Torsional stiffness of the stiffeners is not taken into account
- The stiffeners and the plate are subjected to the uniform compression

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka 1971, p. 507.
A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 377.

Initial data:

$\mathrm{a}=0.6 ; 2.4 \mathrm{~m}$

- side of the rectangular plate free from forces (along the X axis of the global coordinate system)
$\mathrm{b}=0.6 \mathrm{~m} \quad$ - side of the rectangular plate subjected to the compressive forces (along
$\mathrm{h}=0.01 \mathrm{~m}$ the Y axis of the global coordinate system);
- thickness of the rectangular plate;
$\mathrm{F}=0.01 \cdot 0.03=3 \cdot 10^{-4} \mathrm{~m}^{2} \quad$ - cross-sectional area of the stiffeners;
$\mathrm{I}=0.01 \cdot 0.03^{3} / 12=2.25 \cdot 10^{-8} \mathrm{~m}^{4}$ - cross-sectional moment of inertia of the stiffeners;
$\mathrm{s}=3$
- number of stiffeners arranged uniformly along the width of the plate;
$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kN} / \mathrm{m}^{2} \quad$ - elastic modulus of the material of the plate and stiffeners;
$v=0.3 \quad$ - Poisson's ratio;
$\sigma=1.0 \cdot 10^{5} \mathrm{kN} / \mathrm{m}^{2} \quad$ - initial value of the compressive forces.
Finite element model: Design model - general type system. Two design models with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0 ; 4.0$ are considered. The plate is modeled by eight-node shell elements of type 50 . The spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 0.075 m . Number of plate elements in the models -64 ; 256. The stiffeners are modeled by eight-node shell elements of type 50 . The spacing of the finite element mesh along the longitudinal axes of the stiffeners (along the X1 axes of the local coordinate systems) is 0.075 m , and along the height of the stiffeners (along the Y1 axes of the local coordinate systems) is 0.015 m . Number of

Verification Examples

stiffener elements in the models -48 ; 192. Boundary conditions are provided by imposing constraints on the nodes of the support contour of the plate in the direction of the degree of freedom Z. The load uniformly distributed along the line on the plate and on the stiffeners with the initial value $p=\sigma \cdot \mathrm{h}=1000 \mathrm{kN} / \mathrm{m}$ is specified on one of the two opposite transverse sides of the plate subjected to the compressive forces, and constraints in the respective direction on the plate (along the X axis of the global coordinate system) are imposed on the nodes of the other one, and the load uniformly distributed along the line on the stiffeners with the initial value $p=\sigma \cdot \mathrm{h}=1000 \mathrm{kN} / \mathrm{m}$ is specified on it. The dimensional stability of the design model is provided by imposing constraints in the normal direction (along the Y axis of the global coordinate system) on the nodes of one of the two opposite longitudinal sides of the plate free from forces, and by imposing a constraint in the UZ direction of the global coordinate system on the node of one of the corners of the plate. Number of nodes in the models - 381; 1437.

Results in SCAD

Design model with the ratio of the sides of the plate $a / b=1.0$

Design model with the ratio of the sides of the plate $a / b=4.0$

1-st buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

2-nd buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

3-rd buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

1 -st buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

2-nd buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

3-rd buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

Comparison of solutions:

Critical value of the compressive forces $\sigma_{\mathrm{cr}}, \mathbf{k N} / \mathbf{m}^{2}$

Plate sides ratio	Buckling mode	Number of half waves in the transverse n and in the longitudinal m directions	Theory	SCAD	Deviation, \%
$\mathrm{a} / \mathrm{b}=1.0$	1	1;1	$\begin{gathered} 235900 \\ (235911) \\ \hline \end{gathered}$	$\begin{gathered} 2.410318 \cdot 1000 / 0.01= \\ =241032 \end{gathered}$	2.18
	2	1;2	$\begin{gathered} 533934 \\ (535675) \\ \hline \end{gathered}$	$\begin{gathered} 5.369516 \cdot 1000 / 0.01= \\ =536952 \end{gathered}$	0.57
	3	2; 2	$\begin{gathered} 942681 \\ (943645) \\ \hline \end{gathered}$	$\begin{gathered} 9.604025 \cdot 1000 / 0.01= \\ =960403 \end{gathered}$	1.88
$\mathrm{a} / \mathrm{b}=4.0$	1	1;3	$\begin{gathered} 220165 \\ (220164) \\ \hline \end{gathered}$	$\begin{gathered} 2.257856 \cdot 1000 / 0.01= \\ =225786 \end{gathered}$	2.55
	2	1; 4	$\begin{gathered} 235900 \\ (235911) \\ \hline \end{gathered}$	$\begin{gathered} 2.414278 \cdot 1000 / 0.01= \\ =241428 \end{gathered}$	2.34
	3	1;2	$\begin{gathered} 278652 \\ (278654) \\ \hline \end{gathered}$	$\begin{gathered} 2.842984 \cdot 1000 / 0.01= \\ =284298 \end{gathered}$	2.03

Theoretical values calculated in the fourth approximation are given without brackets;
Theoretical values calculated in the first approximation are given in brackets
Notes: In the analytical solution the critical value of the compressive forces $\sigma_{\mathrm{cr} 1}$ in the first approximation corresponding to the moment of buckling of the rectangular reinforced plate can be determined according to the following formula:

$$
\begin{gathered}
\sigma_{c r l}=\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot \frac{\left[1+\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]^{2}+2 \cdot \gamma \cdot \sum_{i=1}^{s} \sin ^{2}\left(\frac{\pi \cdot i}{s+1}\right)}{1+2 \cdot \delta \cdot \sum_{i=1}^{s} \sin ^{2}\left(\frac{\pi \cdot i}{s+l}\right)}, \\
\text { at } \mathrm{s}=3 \quad \sigma_{c r l}=\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot \frac{\left[1+\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]^{2}+4 \cdot \gamma}{1+4 \cdot \delta}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, \quad \lambda=\frac{a}{b}, \quad \gamma=\frac{E \cdot I}{b \cdot D}, \quad \delta=\frac{F}{b \cdot h},
\end{gathered}
$$

$n, m=1,2,3 \ldots-$ number of half waves of the buckling mode in the transverse and longitudinal directions with respect to the compression of the plate.

In the analytical solution the critical value of the compressive forces $\sigma_{\mathrm{cr} 1}$ in the fourth approximation corresponding to the moment of buckling of the rectangular reinforced plate is determined on the basis of the condition of equality to zero of the determinant of the system of governing equations:

$$
\left.\left\lvert\, \begin{array}{llll}
\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot\left[\left[1+\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]^{2}+4 \cdot \gamma\right] & -\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta & \frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma-\sigma_{c r 4} \cdot 4 \cdot \delta & -\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta \\
-\sigma_{c r 4} \cdot(1+4 \cdot \delta) & \\
-\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta & \frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot\left[\left[1+49 \cdot\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]^{2}+4 \cdot \gamma\right] & -\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta & \frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma-\sigma_{c r 4} \cdot 4 \cdot \delta \\
& -\sigma_{c r 4} \cdot(1+4 \cdot \delta) & -\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta & \frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot\left[\left[1+81 \cdot\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]^{2}+4 \cdot \gamma\right] \\
\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma-\sigma_{c r 4} \cdot 4 \cdot \delta & -\sigma_{c r 4} \cdot(1+4 \cdot \delta) & -\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta \\
-\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta & \frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma-\sigma_{c r 4} \cdot 4 \cdot \delta & -\frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot 4 \cdot \gamma+\sigma_{c r 4} \cdot 4 \cdot \delta & \frac{\pi^{2} \cdot D \cdot m^{2}}{b^{2} \cdot h \cdot \lambda^{2}} \cdot\left[\left[1+225 \cdot\left(\frac{n \cdot \lambda}{m}\right)^{2}\right]+4 \cdot \gamma\right.
\end{array}\right.\right]=0
$$

Stability of a Rectangular Simply Supported Orthotropic Plate Uniformly Compressed in One Direction

Objective: Determination of the critical value of the compressive forces uniformly distributed along two opposite transverse sides of a rectangular simply supported orthotropic plate corresponding to the moment of its buckling.

Initial data files:

File name	Description
6.10_shell_orthotropic_lambda_1.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0$
6.10_shell_orthotropic_lambda_4.SPR	Design model with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=4.0$

Problem formulation: The rectangular simply supported orthotropic plate is subjected to the action of compressive forces σ, uniformly distributed along two opposite transverse sides. Determine the critical value of the compressive forces $\sigma_{\text {crort }}$, corresponding to the moment of buckling of the rectangular orthotropic plate.

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 374.

Initial data:

$\mathrm{a}=0.6 ; 2.4 \mathrm{~m}$
$\mathrm{b}=0.6 \mathrm{~m}$
$\mathrm{h}=0.01 \mathrm{~m}$
$\mathrm{E}_{\mathrm{x}}=5.600 \cdot 10^{8} \mathrm{kN} / \mathrm{m}^{2}$
$v_{\mathrm{yx}}=0.300$
$E_{y}=2.123 \cdot 10^{8} \mathrm{kN} / \mathrm{m}^{2}$
$v_{x y}=0.114$
$\mathrm{G}_{\mathrm{xy}}=0.769 \cdot 10^{8} \mathrm{kN} / \mathrm{m}^{2}$
$\sigma=1.0 \cdot 10^{5} \mathrm{kN} / \mathrm{m}^{2}$

- side of the rectangular plate free from forces (along the X axis of the global coordinate system);
- side of the rectangular plate subjected to the compressive forces (along the Y axis of the global coordinate system);
- thickness of the rectangular plate;
- elastic modulus of the plate material corresponding to longitudinal deformations along the X axis of the global coordinate system;
- Poisson's ratio corresponding to transverse deformations along the Y axis of the global coordinate system;
- elastic modulus of the plate material corresponding to longitudinal deformations along the Y axis of the global coordinate system;
- Poisson's ratio corresponding to transverse deformations along the X axis of the global coordinate system;
- shear modulus of the plate material;
- initial value of the compressive forces.

Finite element model: Design model - general type system. Two design models with the ratios of the sides of the plate $\mathrm{a} / \mathrm{b}=1.0 ; 4.0$ are considered. The plate is modeled by eight-node shell elements of type 50 . The spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 0.075 m . Number of plate elements in the models $-64 ; 256$. Boundary conditions are provided by imposing constraints on the nodes of the support contour of the plate in the direction of the degree of freedom Z. A load uniformly distributed along the line with the initial value $p=\sigma \cdot \mathrm{h}=1000 \mathrm{kN} / \mathrm{m}$ is specified on one of the two opposite sides of the plate subjected to the compressive forces, and the constraints in the respective direction (along the X axis of the global coordinate system) are imposed on the

Verification Examples

nodes of the other one. The dimensional stability of the design model is provided by imposing constraints in the normal direction (along the Y axis of the global coordinate system) on the nodes of one of the two opposite sides of the plate free from forces, and by imposing a constraint in the UZ direction of the global coordinate system on the node of one of the corners of the plate. The dimensional stability of the design model is provided by imposing constraints in the normal direction (along the Y axis of the global coordinate system) on the nodes of one of the two opposite longitudinal sides of the plate free from forces, and by imposing a constraint in the UZ direction of the global coordinate system on the node of one of the corners of the plate. Number of nodes in the models - 225; 849.

Results in SCAD

Design model with the ratio of the sides of the plate $a / b=1.0$

Design model with the ratio of the sides of the plate $a / b=4.0$

1 -st buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

2-nd buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

3-rd buckling mode for the design model with the ratio of the sides of the plate $a / b=1.0$

1-st buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

2-nd buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

3-rd buckling mode for the design model with the ratio of the sides of the plate $a / b=4.0$

Comparison of solutions:

Critical value of the compressive forces $\sigma_{\text {crort }}, \mathbf{k N} / \mathbf{m}^{2}$

Plate sides ratio	Buckling mode	Number of half waves in the transverse n and in the longitudinal m directions	Theory	SCAD	Deviation, \%
	1	$1 ; 1$	283093	$2.831349 \cdot 1000 / 0.01=$ $=283135$	0.01
	2	$1 ; 2$	642810	$6.428985 \cdot 1000 / 0.01=$ $=642899$	0.01
	3	$2 ; 2$	1132373	$11.326625 \cdot 1000 / 0.01=$ $=1132663$	0.03
$\mathrm{a} / \mathrm{b}=4.0$	1	$1 ; 3$	264196	$2.642394 \cdot 1000 / 0.01=$ $=264239$	0.02
	2	$1 ; 4$	283093	$2.831351 \cdot 1000 / 0.01=$ $=283135$	0.01
	3	$1 ; 2$	334385	$3.344432 \cdot 1000 / 0.01=$ $=334443$	0.02

Notes: In the analytical solution the critical value of the compressive forces σ_{cr}, corresponding to the moment of buckling of the rectangular orthotropic plate can be determined according to the following formula:

$$
\begin{gathered}
\sigma_{c r o r t}=\frac{\pi^{2} \cdot \sqrt{D_{1} \cdot D_{2}}}{b^{2} \cdot h} \cdot\left[\sqrt{\frac{D_{1}}{D_{2}}} \cdot\left(\frac{m \cdot b}{a}\right)^{2}+\frac{2 \cdot D_{3} \cdot n^{2}}{\sqrt{D_{1} \cdot D_{2}}}+\sqrt{\frac{D_{2}}{D_{1}}} \cdot\left(\frac{n^{2} \cdot a}{m \cdot b}\right)^{2}\right], \text { where: } \\
D_{1}=\frac{E_{x} \cdot h^{3}}{12 \cdot\left(1-v_{y x} \cdot v_{x y}\right)}, \quad D_{2}=\frac{E_{y} \cdot h^{3}}{12 \cdot\left(1-v_{y x} \cdot v_{x y}\right)}, \\
D_{3}=\frac{1}{2} \cdot\left(D_{1} \cdot v_{x y}+D_{2} \cdot v_{y x}+4 \cdot D_{t}\right), \quad D_{t}=\frac{G_{x y} \cdot h^{3}}{12},
\end{gathered}
$$

$n, m=1,2,3 \ldots-$ number of half waves of the buckling mode in the transverse and longitudinal directions with respect to the compression of the plate.

Stiffness properties of the orthotropic plate were taken on the basis of the conditions of equivalence to the stiffness properties of the reinforced plate from the Example 6.10 a:

$$
D_{1}=\frac{E \cdot I}{\frac{b}{s+1}}+\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, \quad D_{2}=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}, \quad D_{3}=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)},
$$

and were determined according to the following formulas:

$$
E_{x}=\frac{E}{1-v^{2}} \cdot\left[\frac{12 \cdot\left(1-v^{2}\right) \cdot I}{h^{3} \cdot \frac{b}{s+1}}+1\right] \cdot\left[1-\frac{v^{2}}{\frac{12 \cdot\left(1-v^{2}\right) \cdot I}{h^{3} \cdot \frac{b}{s+1}}+1}\right], \quad E_{y}=\frac{E}{1-v^{2}} \cdot\left[1-\frac{v^{2}}{\frac{12 \cdot\left(1-v^{2}\right) \cdot I}{h^{3} \cdot \frac{b}{s+1}}+1}\right],
$$

$$
v_{y x}=v, \quad v_{x y}=\frac{v}{\frac{12 \cdot\left(1-v^{2}\right) \cdot I}{h^{3} \cdot \frac{b}{s+1}}+1}, \quad G_{x y}=\frac{E}{2 \cdot(1+v)}
$$

The critical values of the compressive forces σ_{cr} for the reinforced plate have to be reduced by a factor k with respect to the critical values of the compressive forces $\sigma_{c r}$ for the orthotropic plate, because when determining the latter the component acting on the stiffeners of the reinforced plate is not taken into account:

$$
k=\frac{b \cdot h}{b \cdot h+F \cdot s}=0.869565
$$

where F is stiffener's area, s is the quantity of stiffeners.

Critical value of the compressive forces $\sigma_{\mathrm{cr}}, \mathrm{kN} / \mathrm{m}^{2}$

Plate sides ratio	Buckling mode	Number of half waves in the transverse n and in the longitudinal m directions	Theory	SCAD	Deviation, \%
	1	$1 ; 1$	235900	$283135 \cdot 0.869565=$ $=246204$	4.37
	2	$1 ; 2$	533934	$642899 \cdot 0.869565=$ $=559043$	4.70
	3	$2 ; 2$	942681	$1132663 \cdot 0.869565=$ $=984924$	4.48
$\mathrm{a} / \mathrm{b}=4.0$	1	$1 ; 3$	220165	$264239 \cdot 0.869565=$ $=229773$	4.36
	2	$1 ; 4$	235900	$283135 \cdot 0.869565=$ $=246204$	4.37
	3	$1 ; 2$	278652	$334443 \cdot 0.869565=$ $=290820$	4.37

Stability of a Cylindrical Thin-Walled Shell with Simply Supported Edges Subjected to Uniform External Pressure

Objective: Determination of the critical value of the external pressure uniformly distributed over the lateral surface of a cylindrical thin-walled shell with simply supported edges corresponding to the moment of its buckling.

Initial data file: 6.11_S.SPR

Problem formulation: The cylindrical thin-walled shell with simply supported edges is subjected to the action of the uniform external pressure q . Determine the critical value of the uniform external pressure q_{cr}, corresponding to the moment of buckling of the cylindrical thin-walled shell.

References: E.I. Grigolyuk, V.V. Kabanov, Stability of Shells, Moscow, Nauka, 1978, p. 137. A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 545.

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus of the shell material;
$v=0.3 \quad-$ Poisson's ratio;
$\mathrm{h}=0.005 \mathrm{~m} \quad-$ thickness of the shell;
$\mathrm{R}=0.5 \mathrm{~m} \quad$ - radius of the midsurface of the shell;
$\mathrm{L}=1.0 \mathrm{~m} \quad-$ length of the shell;
$\mathrm{q}=1.0 \cdot 10^{3} \mathrm{kPa} \quad-$ initial value of the external pressure.
Finite element model: Design model - general type system, 1200 four-node shell elements of type 50. The spacing of the finite element mesh in the meridian direction is 0.05 m (20 elements) and in the circumferential is 6.0° (60 elements). Boundary conditions of the simply supported edges are provided by imposing constraints in the directions of the linear displacements in their plane (degrees of freedom Y, Z). The dimensional stability of the design model is provided by imposing constraints of finite rigidity (60 elements of type 51) in the nodes of the cross-section on the symmetry plane of the cylindrical shell in the meridian direction ($\mathrm{k}_{\mathrm{x}}=1.0 \mathrm{kN} / \mathrm{m}$). The uniformly distributed load (along the Z 1 axis of the local coordinate system) with the initial value $\mathrm{q}=1.0 \cdot 10^{3} \mathrm{kPa}$ is specified on the lateral surface of the cylindrical shell. Number of nodes in the design model -1260 .

Results in SCAD

Comparison of solutions:

Critical value of the uniform external pressure $\mathbf{q}_{\mathrm{cr}}, \mathbf{k P a}$

Buckling mode	Number of half waves in the meridian direction \mathbf{m} and number of waves in the circumferential \mathbf{n} direction	Theory	SCAD	Deviation, \%
1	$1 ; 6$	981 (917)	$0.999898 \cdot 1000=$ $=1000$	1.94

Theoretical values calculated according to the shallow shell theory for the membrane initial state are given without brackets;
Theoretical values calculated according to the general shell theory for the membrane initial state are given in round brackets.

Notes: In the analytical solution the critical value of the uniform external pressure q_{cr}, corresponding to the moment of buckling of the cylindrical thin-walled shell is determined in accordance with the shallow shell theory by the following formula:

$$
q_{c r}=\frac{E \cdot h}{R \cdot n^{2}} \cdot \frac{\left(\frac{m \cdot \pi \cdot R}{L}\right)^{4}}{\left[\left(\frac{m \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right]^{2}}+\frac{D}{R^{3} \cdot n^{2}} \cdot\left[\left(\frac{m \cdot \pi \cdot R}{L}\right)^{2}+n^{2}\right]^{2}, \text { where: }
$$

$$
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}
$$

In the analytical solution the critical value of the uniform external pressure q_{cr}, corresponding to the moment of buckling of the cylindrical thin-walled shell is determined in accordance with the general shell theory on the basis of the condition of equality to zero of the determinant of the system of governing equations:

$$
\left.\left\lvert\, \begin{array}{cc}
\left(\frac{\pi \cdot R}{L}\right)^{2}+\frac{1-v}{2} \cdot n^{2}+\frac{(1-v)^{2} \cdot R}{E \cdot h} \cdot n^{2} \cdot q_{c r} & \frac{1+v}{2} \cdot\left(\frac{\pi \cdot R}{L}\right) \cdot n \\
\frac{1+v}{2} \cdot\left(\frac{\pi \cdot R}{L}\right) \cdot n & \left(1+\frac{h^{2}}{12 \cdot R^{2}}\right) \cdot\left(\frac{1-v}{2} \cdot\left(\frac{\pi \cdot R}{L}\right)^{2}+n^{2}\right)-\frac{(1-v)^{2} \cdot R}{E \cdot h} \cdot n^{2} \cdot q_{c r}
\end{array}\right.\right)\left(1+\frac{h^{2}}{12 \cdot R^{2}} \cdot\left(\left(\frac{\pi \cdot R}{L}\right)\right.\right.
$$

Nonlinear Statics

Three-Span Beam with One Clamped End and Three Rigid One-Sided Supports Subjected to Concentrated Forces above Them

Objective: Determination of the reactions of one-sided supports of a three-span beam or deflections of the beam in the direction of installation of the supports in the structurally nonlinear formulation.

Initial data file: Contact_1.SPR

Problem formulation: The three-span beam with one clamped end and three rigid one-sided supports working in compression is subjected to concentrated shear forces above them.
Determine the reactions of the one-sided supports R_{i} or the deflections of the beam Z_{i} in the direction of installation of the supports.

References: A.V. Perelmuter, V.I. Slivker, Design Models of Structures and a Possibility of Their Analysis, Moscow, SCAD SOFT, 2011, p. 146

Initial data:

$\mathrm{EF}=1.00 \cdot 10^{8} \mathrm{kN}$

- axial stiffness of the beam cross-section;
$\mathrm{EI}=44.50 \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the beam cross-section;
$\mathrm{L}=2.00 \mathrm{~m}$
$\mathrm{k}=1.00 \cdot 10^{6} \mathrm{kN} / \mathrm{m}$
- beam span length;
- axial stiffness of the one-sided supports;
$\mathrm{P}_{1}=0.7071 \mathrm{kN}$
$\mathrm{P}_{2}=4.3597 \mathrm{kN}$
$\mathrm{P}_{3}=2.1155 \mathrm{kN}$
- value of the concentrated force applied above the first (from the clamping) intermediate one-sided support and stretching it;
- value of the concentrated force applied above the second (from the clamping) intermediate one-sided support and stretching it;
- value of the concentrated force applied above the third (from the clamping) end one-sided support and compressing it.

Finite element model: Design model - plane frame. Elements of the beam - 24 bar elements of type 2. The spacing of the finite element mesh along the beam length (along the X1 axes of the local coordinate systems) is 0.25 m . Elements of the one-sided supports -3 two-node elements of unilateral constraints of type 352 . Boundary conditions are provided by imposing constraints on the support node of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Z}, \mathrm{UY}$ and on the support nodes of the onesided supports in the directions of the degrees of freedom X, Z. The actions are specified as transverse nodal loads P (in the direction of the Z axis of the global coordinate system). The nonlinear loading was generated for the incremental-iterative method with a loading factor -1 , number of steps -1 , number of iterations - 10 for the linear loading P. Number of nodes in the design model -28 .

Results in SCAD

Values of deflections of the beam Z_{i}, m

Values of reactions of the one-sided supports, $k N$

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
$\mathrm{R}_{1}, \mathrm{kN}$	3.7872	3.8506	1.67
$\mathrm{R}_{3}, \mathrm{kN}$	0.5302	0.5301	0.02
$\mathrm{Z}_{2}, \mathrm{~m}$	0.0772	0.0772	0.00

Notes: In the analytical solution the reactions of the one-sided supports R_{i} or the deflections of the beam Z_{i} in the direction of installation of the supports are determined by the quadratic programming method.

Rigid Body Restrained by Five Springs of the Same Rigidity Working Only in Tension Subjected to a Concentrated Force

Objective: Determination of the reactions of springs of the same rigidity working only in tension and restraining a rigid body from the action of a concentrated force applied to it in the structurally nonlinear formulation.

Initial data file: Contact_2.SPR

Problem formulation: The rigid body in the shape of a square with the sides parallel to the coordinate axes is restrained at the corners by five springs of the same rigidity working only in tension as follows:
two springs (1 and 5) are installed in the lower left corner of the square, the angles between their longitudinal axes and the lower side of the square are 150° and 30° respectively;
one spring is installed in the upper left corner of the square (2), the angle between its longitudinal axis and the upper side of the square is 30°;
springs (4 and 3) are installed in the lower right and in the upper right corners of the square, the angle between their longitudinal axes and the lower and upper sides of the square respectively is 90°.
The concentrated force P is applied perpendicular to the middle of the left side of the square of the rigid body.
Determine the reactions in the springs R_{i}.
References: A.V. Perelmuter, V.I. Slivker, Design Models of Structures and a Possibility of Their Analysis, Moscow, SCAD SOFT, 2011, p. 147

Initial data:

$\mathrm{L}=20 \mathrm{~m} \quad$ - side of the square of the rigid body;
$\alpha_{1}=150^{\circ} \quad-$ angle between the axis of the spring 1 and the lower side of the square;
$\alpha_{2}=30^{\circ} \quad-$ angle between the axis of the spring 2 and the upper side of the square;
$\alpha_{3}=90^{\circ} \quad-$ angle between the axis of the spring 3 and the upper side of the square;
$\alpha_{4}=90^{\circ} \quad-$ angle between the axis of the spring 4 and the lower side of the square;
$\alpha_{5}=30^{\circ} \quad-$ angle between the axis of the spring 5 and the lower side of the square;
$\mathrm{k}=1.00 \cdot 10^{6} \mathrm{kN} / \mathrm{m}$
$\mathrm{P}=10.0 \mathrm{kN}$

- axial stiffness of the springs;
- value of the concentrated force acting perpendicular to the middle of the left side of the square.

Finite element model: Design model - plane frame. Element of the rigid body - 13 D six-node rigid body element of type 100 (one master node lying at the intersection of the diagonals of the square, four slave nodes lying at the corners of the square, one slave node lying in the middle of the left side of the square). Elements of the springs - 5 two-node elements of unilateral constraints of type 352. Boundary conditions are provided by imposing constraints on the support nodes of the springs in the directions of the degrees of freedom X, Z. An element of the constraint of finite rigidity (type 51) of small value $0.001 \mathrm{kN} / \mathrm{m}$ in the direction of the X axis of the global coordinate system is introduced in the master node of the rigid body to provide the dimensional stability of the system during the nonlinear calculation. The results of the

Verification Examples

calculation are correct if there are no reactions in this constraint. The action is specified as a nodal load P (in the direction of the X axis of the global coordinate system). The nonlinear loading was generated for the incremental-iterative method with a loading factor -1 , number of steps -1 , number of iterations -10 for the linear loading P. Number of nodes in the design model - 17 .

Results in SCAD

Values of reactions in the support nodes of the springs along the X axis of the global coordinate system $R_{x}, k N$

Values of reactions in the support nodes of the springs along the Z axis of the global coordinate system $R_{z}, k N$

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
$\mathrm{R}_{1}, \mathrm{kN}$	12.440	$-10.7735 \cdot \cos 150^{\circ}+6.2201 \cdot \sin 150^{\circ}=12.440$	0.00
$\mathrm{R}_{2}, \mathrm{kN}$	0.893	$0.7735 \cdot \cos 30^{\circ}+0.4466 \cdot \sin 30^{\circ}=0.893$	0.00
$\mathrm{R}_{3}, \mathrm{kN}$	5.770	$5.7735 \cdot \sin 90^{\circ}=5.774$	0.07
$\mathrm{R}_{4}, \mathrm{kN}$	0.000	0.000	0.00
$\mathrm{R}_{5}, \mathrm{kN}$	0.000	0.000	0.00

Notes: In the analytical solution the reactions in the springs R_{i} are determined by the quadratic programming method.

Circular Tunnel Lining Subjected to the Given Active Vertical And Horizontal Earth Pressure and Passive Lateral Earth Pressure in the Contact Area

Objective: Determination of the internal forces in the structure of a circular tunnel lining and the elastic reactions of soil in the contact area from the action of the given vertical and horizontal earth pressure in the structurally nonlinear formulation.

Initial data file: Tunnel_lining.SPR

Problem formulation: The circular tunnel lining is subjected to the action of the given active vertical p and horizontal q arching earth pressure and passive lateral earth pressure in the contact area. Determine the internal forces (longitudinal forces N and bending moments M) in the structure of the circular tunnel lining and the elastic reactions of soil R in the contact area.

References: M.M. Archangelsky, D.I. Jincharadze, A.S. Kurisko, Calculation of Tunnel Lining, Moscow, TRANSZHELDORIZDAT, 1960, p. 217

Initial data:

$\mathrm{E}=3.4 \cdot 10^{6} \mathrm{t} / \mathrm{m}^{2}$
$\gamma_{\mathrm{b}}=2.6 \mathrm{t} / \mathrm{m}^{3}$
$\mathrm{d}_{\mathrm{int}}=7.1 \mathrm{~m}$
$h=0.4$
$\mathrm{b}=1.0$
$\alpha=\pi / 8 \mathrm{rad}$
$\mathrm{f}=0.8 \quad$ - Protodyakonov hardness coefficient;
$\varphi=2 \cdot \pi / 9 \mathrm{rad} \quad-$ angle of internal friction of soil;
$\gamma_{\mathrm{g}}=1.9 \mathrm{t} / \mathrm{m}^{3} \quad$ - specific weight of soil;
$\mathrm{d}_{\mathrm{ext}}=\mathrm{d}_{\text {int }}+2 \cdot \mathrm{~h}=7.9 \mathrm{~m}$
$\mathrm{r}=\left(\mathrm{d}_{\mathrm{ext}}+\mathrm{d}_{\mathrm{int}}\right) / 4=3.75 \mathrm{~m}$
$\mathrm{S}=2 \cdot \mathrm{r} \cdot \sin (0.5 \cdot \alpha)=1.463177 \mathrm{~m}$
$\mathrm{I}=\mathrm{b} \cdot \mathrm{h}^{3} / 12=0.005333 \mathrm{~m}^{4}$
$\mathrm{F}=\mathrm{b} \cdot \mathrm{h}=0.4 \mathrm{~m}^{2}$
$\mathrm{k}=5.0 \cdot 10^{3} \mathrm{t} / \mathrm{m}^{3} \quad$ - coefficient of lateral earth pressure in the area of contact with the tunnel lining;

- elastic modulus of the tunnel lining material;
- specific weight of the tunnel lining material;
- inner diameter of the tunnel lining ring;
- thickness of the rectangular cross-section of the tunnel lining;
- width of the rectangular cross-section of the tunnel lining;
- central angle of the side of the regular polygon of the frame replacing the circle of the design radius r of the tunnel lining;
- outer diameter of the tunnel lining ring;
- design radius of the tunnel lining;
- side of the regular polygon of the replacement frame;
- cross-sectional moment of inertia of the tunnel lining;
- cross-sectional area of the tunnel lining;
$\mathrm{D}=\mathrm{k} \cdot \mathrm{S} \cdot \mathrm{b}=7315.887 \mathrm{t} / \mathrm{m}$
- stiffness of the elastic supports modeling the lateral earth pressure and radially arranged at the vertices of the polygon of the replacement frame;
$\mathrm{L}_{\text {arch }}=\mathrm{d}_{\text {ext }} \cdot(1+\operatorname{tg}(\pi / 4-\varphi / 2))=11.584 \mathrm{~m} \quad-$ span of the earth pressure arch;
$\mathrm{H}_{\text {arch }}=\mathrm{L}_{\text {arch }} /(2 \cdot \mathrm{f})=7.240 \mathrm{~m} \quad$ - height of the earth pressure arch above the excavation; $\mathrm{p}=\mathrm{H}_{\text {arch }} \cdot \gamma_{\mathrm{g}}+\mathrm{h} \cdot \gamma_{\mathrm{b}}=14.796 \mathrm{t} / \mathrm{m}^{2} \quad$ - vertical uniformly distributed active earth pressure; $\mathrm{q}=\left(\mathrm{H}_{\text {arch }}+\mathrm{d}_{\text {ex }} / 2\right) \cdot \gamma_{\mathrm{g}} \cdot \operatorname{tg}^{2}(\pi / 4-\varphi / 2)=4.623 \mathrm{t} / \mathrm{m}^{2} \quad$ - horizontal uniformly distributed active earth pressure.

Vertical concentrated forces in the nodes of the polygon of the frame replacing the distributed load
$\mathrm{P}_{1}=(\mathrm{S} / 2) \cdot \mathrm{p} \cdot(\cos (-0.5 \cdot \alpha)+\cos (0.5 \cdot \alpha))=21.2329 \mathrm{t}$;
$\mathrm{P}_{2}=(\mathrm{S} / 2) \cdot \mathrm{p} \cdot(\cos (0.5 \cdot \alpha)+\cos (1.5 \cdot \alpha))=19.6166 \mathrm{t} ;$
$P_{3}=(S / 2) \cdot p \cdot(\cos (1.5 \cdot \alpha)+\cos (2.5 \cdot \alpha))=15.0139 \mathrm{t}$;
$\mathrm{P}_{4}=(\mathrm{S} / 2) \cdot \mathrm{p} \cdot(\cos (2.5 \cdot \alpha)+\cos (3.5 \cdot \alpha))=8.1255 \mathrm{t}$; $\mathrm{P}_{5}=(\mathrm{S} / 2) \cdot \mathrm{p} \cdot \cos (3.5 \cdot \alpha)=2.1117 \mathrm{t}$.

Horizontal concentrated forces in the nodes of the polygon of the frame replacing the distributed load
$\mathrm{Q}_{1}=(\mathrm{S} / 2) \cdot \mathrm{q} \cdot \sin (0.5 \cdot \alpha)=0.6598 \mathrm{t} ; \quad \mathrm{Q}_{2}=(\mathrm{S} / 2) \cdot \mathrm{q} \cdot(\sin (0.5 \cdot \alpha)+\sin (1.5 \cdot \alpha))=2.5388 \mathrm{t} ;$
$\mathrm{Q}_{3}=(\mathrm{S} / 2) \cdot \mathrm{q} \cdot(\sin (1.5 \cdot \alpha)+\sin (2.5 \cdot \alpha))=4.6911 \mathrm{t} ; \quad \mathrm{Q}_{4}=(\mathrm{S} / 2) \cdot \mathrm{q} \cdot \sin (2.5 \cdot \alpha)=2.8121 \mathrm{t}$.
Finite element model: Design model - general type system. Elements of the tunnel lining - 16 bar elements of type 5. The tunnel lining is divided into finite elements along the circle of radius $r=3.75 \mathrm{~m}$, lying in the XOZ plane of the global coordinate system by the step of the central angle of $\alpha=\pi / 8 \mathrm{rad}$. The origin of the global coordinate system is in the center of the circle. The X1 axes of the local coordinate systems of the elements are directed along the chords of the circle in the clockwise direction around the Y axis of the global coordinate system when viewed from the origin. The Z 1 axes of the local coordinate systems of the elements are directed from the center of the circle. Elements modeling the lateral earth pressure - 16 twonode elements of unilateral constraints working in compression of type 352. Finite elements are directed along the radii of the circle from the center and are adjacent to the nodes between the elements of the tunnel lining. Boundary conditions are provided by imposing constraints on the support nodes of the elements modeling the lateral earth pressure in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, and on the elements of the tunnel lining in the direction of the degree of freedom Y. The dimensional stability of the design model is provided by imposing constraints in the direction of the degree of freedom X on the nodes of the elements of the tunnel lining located along the vertical axis of symmetry. The action of the active vertical and horizontal earth pressure is specified as vertical P_{i} and horizontal Q_{i} concentrated forces in the nodes between the elements of the tunnel lining. The nonlinear loading was generated by the simple incremental method with a loading factor -0.01 and a number of steps -100 for the linear loading. Number of nodes in the design model-32.

Results in SCAD

Design model

Deformed model

Longitudinal force diagram N, m

Bending moment diagram M, t•m

Values of reactions in the support nodes along the X axis of the global coordinate system R_{x}, m

Values of reactions in the support nodes along the Z axis of the global coordinate system R_{z}, m

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
$\mathrm{N}_{12}, \mathrm{t}$	-29.4660	-29.4659	0.00
$\mathrm{~N}_{23}, \mathrm{t}$	-37.9098	-37.9098	0.00
$\mathrm{~N}_{34}, \mathrm{t}$	-49.1226	-49.1226	0.00
$\mathrm{~N}_{45}, \mathrm{t}$	-56.4742	-56.4742	0.00
$\mathrm{~N}_{56}, \mathrm{t}$	-56.5793	-56.5792	0.00
$\mathrm{~N}_{67}, \mathrm{t}$	-54.5971	-54.5971	0.00
$\mathrm{~N}_{78}, \mathrm{t}$	-53.6637	-53.6636	0.00
$\mathrm{~N}_{89}, \mathrm{t}$	-53.4191	-53.4191	0.00
$\mathrm{M}_{1}, \mathrm{t} \cdot \mathrm{m}$	18.6263	18.6263	0.00
$\mathrm{M}_{2}, \mathrm{t} \cdot \mathrm{m}$	11.3641	11.3641	0.00
$\mathrm{M}_{3}, \mathrm{t} \cdot \mathrm{m}$	-4.7755	-4.7755	0.00
$\mathrm{M}_{4}, \mathrm{t} \cdot \mathrm{m}$	-16.3715	-16.3715	0.00
$\mathrm{M}_{5}, \mathrm{t} \cdot \mathrm{m}$	-10.6215	-10.6214	0.00
$\mathrm{M}_{6}, \mathrm{t} \cdot \mathrm{m}$	-1.3066	-1.3065	0.01
$\mathrm{M}_{7}, \mathrm{t} \cdot \mathrm{m}$	3.9589	3.9589	0.00
$\mathrm{M}_{8}, \mathrm{t} \cdot \mathrm{m}$	5.5598	5.5598	0.00
$\mathrm{M}_{9}, \mathrm{t} \cdot \mathrm{m}$	5.7581		5.7580
$\mathrm{R}_{1}, \mathrm{t}$	0.0000	0.0000	0.00
$\mathrm{R}_{2}, \mathrm{t}$	0.0000	0.0000	0.00
$\mathrm{R}_{3}, \mathrm{t}$	0.0000		0.0000
$\mathrm{R}_{4}, \mathrm{t}$	-3.2661		
$\mathrm{R}_{5}, \mathrm{t}$	-19.6660		$-3.0175 \cdot \cos (\pi / 8)-1.2499 \cdot \sin (\pi / 8)=-3.2661$
$\mathrm{R}_{6}, \mathrm{t}$	-24.4038	$-22.5462 \cdot \cos (\pi / 8)-9.33669 \cdot \sin (\pi / 8)=-24.4038$	0.00
$\mathrm{R}_{7}, \mathrm{t}$	-23.5771	$-16.6715 \cdot \cos (\pi / 4)-16.6715 \cdot \sin (\pi / 4)=-23.5770$	0.00
$\mathrm{R}_{8}, \mathrm{t}$	-21.8310	$-8.3544 \cdot \cos (3 \cdot \pi / 8)-20.1692 \cdot \sin (3 \cdot \pi / 8)=-21.8310$	0.00
$\mathrm{R}_{9}, \mathrm{t}$	-21.1089		-21.1089

Notes: The method of calculating tunnel linings proposed by the Metroproject, which takes into account the dependence of the stress state of the structure on the elastic properties of the continuum, is used in the analytical solution. The calculation procedure is as follows:

- The area of contact of the structure with the soil is specified; the circular contour of the lining is replaced by a regular polygon; all the active loads reduced to the nodal ones and the necessary geometric properties are calculated.
- The assumed primary system of the force method has the form of a polygon with hinges in all nodes with elastic supports, and also in the central angle of the detachment area, and as a result the upper part of the polygon turns into a three-hinged arch; moments which have to be applied in the hinges to eliminate the possibility of the relative rotation of the sides of the polygon are taken as the unknowns; unit moments are applied in all hinges (the action of the pairs of unknowns acting in the symmetric nodes is considered for a symmetric system); forces in the elements of the hinged chain and reactions of the elastic supports in all unit states are determined by successively cutting out the nodes and projecting forces in the directions of the bars, and on the bisector of the angle.
- The upper part of the polygon in the detachment area is considered as a three-hinged arch, and its support vertical and horizontal pressures from the external load on the rest of the hinged polygon are determined; forces for all elements of the hinged chain and reactions of the elastic supports caused by the support forces and the active loads applied in other nodes are determined by successively cutting out the nodes.
- The unit and loading displacements are determined by the Maxwell-Mohr formulas using the approximate summation methods.
- A system of canonical equations is compiled and solved using the Gauss algorithm in order to determine the redundants.
- The longitudinal forces, bending moments and reactions of the elastic constraints are determined.
- The correctness of the specification of the contact area between the structure and the soil is checked based on the values of the reactions of the elastic supports.
The formulas for the calculation are given below.

Primary system of the force method

Determination of forces in the primary system from the external loads
Determination of forces in the three-hinged arch from the vertical loads

Design model for the determination of forces in the three-hinged arch from the vertical loads

$$
\begin{array}{ccc}
L_{1}=r \cdot \sin (3 \cdot \alpha) ; & L_{2}=r \cdot \sin (\alpha) ; & L_{3}=r \cdot \sin (2 \cdot \alpha) ; \\
F_{1}=r \cdot(1-\cos (3 \cdot \alpha)) ; & F_{2}=r \cdot(\cos (\alpha)-\cos (3 \cdot \alpha)) ; & F_{3}=r \cdot(\cos (2 \cdot \alpha)-\cos (3 \cdot \alpha)) ;
\end{array}
$$

$$
V=0.5 \cdot P_{1}+P_{2}+P_{3}
$$

$M_{3 p}=V \cdot\left(L_{1}-L_{3}\right)-H \cdot F_{3} ;$

$$
N_{12 p}=H \cdot \cos (0.5 \cdot \alpha)+\frac{P_{I}}{2} \cdot \sin (0.5 \cdot \alpha) ;
$$

$$
\begin{gathered}
H=\frac{V \cdot L_{1}-P_{2} \cdot L_{2}-P_{3} \cdot L_{3}}{F_{1}} \\
M_{2 p}=V \cdot\left(L_{1}-L_{3}\right)-H \cdot F_{2}-P_{3} \cdot\left(L_{3}-L_{2}\right) \\
N_{23 p}=H \cdot \cos (1.5 \cdot \alpha)+\left(\frac{P_{1}}{2}+P_{2}\right) \cdot \sin (1.5 \cdot \alpha)
\end{gathered}
$$

$$
N_{34 p}=H \cdot \cos (2.5 \cdot \alpha)+\left(\frac{P_{1}}{2}+P_{2}+P_{3}\right) \cdot \sin (2.5 \cdot \alpha)
$$

Determination of forces in the hinged chain from the vertical loads

Design model for the determination of forces in the hinged chain from the vertical loads
$N_{45 p}=\frac{\left(V+P_{4}\right) \cdot \sin (3 \cdot \alpha)+H \cdot \sin (\alpha)}{\cos (0.5 \cdot \alpha)} ;$

$$
N_{56 p}=N_{45 p}+\frac{P_{5}}{\cos (0.5 \cdot \alpha)}
$$

$N_{67 p}=N_{78 p}=N_{89_{p}}=N_{56 p}$;
$R_{4 p}=H \cdot \cos (\alpha)+N_{45 p} \cdot \sin (0.5 \cdot \alpha)-\left(V+P_{4}\right) \cdot \cos (3 \cdot \alpha) ;$
$R_{5 p}=\left(N_{45 p}+N_{56 p}\right) \cdot \sin (0.5 \cdot \alpha) ; \quad \quad R_{6 p}=\left(N_{56 p}+N_{67 p}\right) \cdot \sin (0.5 \cdot \alpha) ;$
$R_{7 p}=R_{8 p}=R_{9 p}=R_{6 p}$.
Determination of forces in the three-hinged arch from the horizontal loads
$H_{c r}=\frac{Q_{1} \cdot F_{1}+Q_{2} \cdot F_{2}+Q_{3} \cdot F_{3}}{F_{l}} ;$

$$
M_{2 q}=\left(H_{c r}-Q_{1}\right) \cdot\left(F_{1}-F_{2}\right) ;
$$

$$
N_{l 2 q}=\left(H_{c r}-Q_{l}\right) \cdot \cos (0.5 \cdot \alpha) ;
$$

$$
\begin{aligned}
& H_{s k}=\frac{Q_{2} \cdot\left(F_{1}-F_{2}\right)+Q_{3} \cdot\left(F_{1}-F_{3}\right)}{F_{1}} \\
& M_{3 q}=H_{s k} \cdot F_{3} ; \\
& N_{23 q}=\left(H_{c r}-Q_{1}-Q_{2}\right) \cdot \cos (1.5 \cdot \alpha)
\end{aligned}
$$

$$
N_{34 q}=-H_{s k} \cdot \cos (2.5 \cdot \alpha) .
$$

Determination of forces in the hinged chain from the horizontal loads

$$
\begin{array}{ll}
N_{45 q}=-\frac{\left(H_{s k}+Q_{4}\right) \cdot \cos (3 \cdot \alpha)}{\cos (0.5 \cdot \alpha)} ; & N_{56 q}=N_{67 q}=N_{78 q}=N_{89 q}=N_{45 q} ; \\
R_{4 q}=-\left(H_{s k}+Q_{4}\right) \cdot \sin (3 \cdot \alpha)+N_{45 q} \cdot \sin (0.5 \cdot \alpha) ; & R_{5 q}=\left(N_{45 q}+N_{56 q}\right) \cdot \sin (0.5 \cdot \alpha) ; \\
R_{6 q}=R_{7 q}=R_{8 q}=R_{9 q}=R_{5 q} . &
\end{array}
$$

Determination of forces in the primary system from the unit moments
Determination of forces in the three-hinged arch from the unit moment applied in the point 1

$$
\begin{array}{lrl}
M_{11}=1 ; & H_{l}=\frac{M_{11}}{F_{l}} ; & \\
M_{2 l}=H_{1} \cdot F_{2} ; & M_{3 l}=H_{1} \cdot F_{3} ; & \\
N_{121}=-H_{1} \cdot \cos (0.5 \cdot \alpha) ; & N_{231}=-H_{1} \cdot \cos (1.5 \cdot \alpha) ; & N_{341}=-H_{1} \cdot \cos (2.5 \cdot \alpha) .
\end{array}
$$

Determination of forces in the hinged chain from the unit moment applied in the point 1

$$
\begin{aligned}
& N_{451}=-\frac{H_{1} \cdot \sin (\alpha)}{\cos (0.5 \cdot \alpha)} ; \quad N_{561}=N_{671}=N_{781}=N_{891}=N_{451} ; \\
& R_{41}=N_{451} \cdot \sin (0.5 \cdot \alpha)-H_{1} \cdot \cos (\alpha) ; R_{51}=2 \cdot N_{451} \cdot \sin (0.5 \cdot \alpha) ; \quad R_{61}=R_{71}=R_{81}=R_{91}=R_{51} .
\end{aligned}
$$

Determination of forces in the three-hinged arch from the unit moment applied in the point 4

$$
\begin{array}{lc}
M_{44}=1 ; & H_{4}=\frac{M_{44}}{F_{1}} ; \\
M_{24}=M_{44}-H_{4} \cdot F_{2} ; & M_{34}=M_{44}-H_{4} \cdot F_{3} ; \\
N_{124}=H_{4} \cdot \cos (0.5 \cdot \alpha) ; & N_{234}=H_{4} \cdot \cos (1.5 \cdot \alpha) ;
\end{array} N_{344}=H_{4} \cdot \cos (2.5 \cdot \alpha) .
$$

Determination of forces in the hinged chain from the unit moment applied in the point 4

$$
\begin{array}{ll}
N_{454}=\frac{H_{4} \cdot \sin (\alpha)}{\cos (0.5 \cdot \alpha)}+\frac{M_{44} \cdot \sin (0.5 \cdot \alpha)}{S \cdot \cos (0.5 \cdot \alpha)} ; & N_{564}=N_{454}+\frac{M_{44} \cdot \sin (0.5 \cdot \alpha)}{S \cdot \cos (0.5 \cdot \alpha)} ; \\
N_{674}=N_{784}=N_{894}=N_{564} ;
\end{array}
$$

$$
\begin{array}{ll}
R_{41}=N_{451} \cdot \sin (0.5 \cdot \alpha)+H_{4} \cdot \cos (\alpha)+\frac{M_{44} \cdot \cos (\alpha)}{S} ; \\
R_{5 I}=-\frac{M_{44} \cdot \cos (0.5 \cdot \alpha)}{S}+\left(N_{454}+N_{564}\right) \cdot \sin (0.5 \cdot \alpha) ; \\
R_{64}=2 \cdot N_{564} \cdot \sin (0.5 \cdot \alpha) ; & R_{74}=R_{84}=R_{94}=R_{64} .
\end{array}
$$

Determination of forces in the hinged chain from the unit moment applied in the point 5

$$
\begin{aligned}
& M_{55}=1 ; \\
& N_{455}=-\frac{M_{55} \cdot \sin (0.5 \cdot \alpha)}{S \cdot \cos (0.5 \cdot \alpha)} ; \quad \quad N_{565}=N_{455} ; \\
& R_{45}=-\frac{M_{55}}{S \cdot \cos (0.5 \cdot \alpha)} ; \\
& \quad R_{55}=\frac{2 \cdot M_{55} \cdot \cos (0.5 \cdot \alpha)}{S}+2 \cdot N_{455} \cdot \sin (0.5 \cdot \alpha) ; R_{65}=-\frac{M_{55}}{S \cdot \cos (0.5 \cdot \alpha)} .
\end{aligned}
$$

Determination of forces in the hinged chain from the unit moment applied in the point 6

Determination of forces in the hinged chain from the unit moment applied in the point 7

$$
M_{77}=1 ;
$$

$$
N_{677}=-\frac{M_{77} \cdot \sin (0.5 \cdot \alpha)}{S \cdot \cos (0.5 \cdot \alpha)}
$$

$$
N_{787}=N_{677}
$$

$$
R_{67}=-\frac{M_{77}}{S \cdot \cos (0.5 \cdot \alpha)} ; \quad \quad R_{77}=\frac{2 \cdot M_{77} \cdot \cos (0.5 \cdot \alpha)}{S}+2 \cdot N_{677} \cdot \sin (0.5 \cdot \alpha) ;
$$

$$
R_{87}=-\frac{M_{77}}{S \cdot \cos (0.5 \cdot \alpha)}
$$

Determination of forces in the hinged chain from the unit moment applied in the point 8

$$
\begin{aligned}
& M_{88}=1 ; \\
& N_{788}=-\frac{M_{88} \cdot \sin (0.5 \cdot \alpha)}{S \cdot \cos (0.5 \cdot \alpha)} ; \quad \quad N_{898}=N_{788} ; \\
& R_{78}= \\
& \quad-\frac{M_{88}}{S \cdot \cos (0.5 \cdot \alpha)} ; \quad R_{88}=\frac{2 \cdot M_{88} \cdot \cos (0.5 \cdot \alpha)}{S}+2 \cdot N_{788} \cdot \sin (0.5 \cdot \alpha) ; \\
& \quad R_{98}=-\frac{2 \cdot M_{88}}{S \cdot \cos (0.5 \cdot \alpha)} .
\end{aligned}
$$

Determination of forces in the hinged chain from the unit moment applied in the point 9

$$
\begin{aligned}
& M_{66}=1 \text {; } \\
& N_{566}=-\frac{M_{66} \cdot \sin (0.5 \cdot \alpha)}{S \cdot \cos (0.5 \cdot \alpha)} \text {; } \\
& N_{676}=N_{566} \text {; } \\
& R_{56}=-\frac{M_{66}}{S \cdot \cos (0.5 \cdot \alpha)} \text {; } \\
& R_{66}=\frac{2 \cdot M_{66} \cdot \cos (0.5 \cdot \alpha)}{S}+2 \cdot N_{566} \cdot \sin (0.5 \cdot \alpha) ; \\
& R_{76}=-\frac{M_{66}}{S \cdot \cos (0.5 \cdot \alpha)} \text {. }
\end{aligned}
$$

$M_{99}=1$;
$N_{899}=-\frac{M_{99} \cdot \sin (0.5 \cdot \alpha)}{S \cdot \cos (0.5 \cdot \alpha)} ;$
$R_{89}=-\frac{M_{99}}{S \cdot \cos (0.5 \cdot \alpha)} ; \quad R_{99}=\frac{2 \cdot M_{99} \cdot \cos (0.5 \cdot \alpha)}{S}+2 \cdot N_{899} \cdot \sin (0.5 \cdot \alpha)$.

Determination of displacements

$\delta_{11 R}=2 \cdot \frac{1}{D} \cdot\left({R_{4 l}}{ }^{2}+R_{51}{ }^{2}+R_{61}{ }^{2}+{R_{71}}{ }^{2}+R_{81}{ }^{2}+R_{91}{ }^{2} \cdot 0.5\right) ;$
$\delta_{I I M}=2 \cdot \frac{S}{3 \cdot E \cdot I} \cdot\left(M_{11}{ }^{2}+M_{11} \cdot M_{2 l}+2 \cdot M_{2 l}{ }^{2}+M_{2 l} \cdot M_{3 l}+2 \cdot M_{3 l}{ }^{2}\right)$;
$\delta_{11 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{121}{ }^{2}+N_{231}{ }^{2}+N_{341}{ }^{2}+N_{451}{ }^{2}+N_{561}{ }^{2}+N_{671}{ }^{2}+N_{781}{ }^{2}+N_{891}{ }^{2}\right)$;
$\delta_{I I}=\delta_{I I R}+\delta_{I I M}+\delta_{I I N} ;$
$\delta_{14 R}=2 \cdot \frac{1}{D} \cdot\left(R_{41} \cdot R_{44}+R_{51} \cdot R_{54}+R_{61} \cdot R_{64}+R_{71} \cdot R_{74}+R_{81} \cdot R_{84}+R_{91} \cdot R_{94} \cdot 0.5\right) ;$
$\delta_{14 M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot\left(M_{11} \cdot M_{24}+4 \cdot M_{21} \cdot M_{24}+M_{21} \cdot M_{34}+M_{31} \cdot M_{24}+4 \cdot M_{31} \cdot M_{34}+M_{31} \cdot M_{44}\right) ;$
$\delta_{14 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{121} \cdot N_{124}+N_{231} \cdot N_{234}+N_{341} \cdot N_{344}+N_{451} \cdot N_{454}+\right.$
$\left.N_{561} \cdot N_{564}+N_{671} \cdot N_{674}+N_{781} \cdot N_{784}+N_{891} \cdot N_{894}\right) ;$
$\delta_{I 4}=\delta_{I 4 R}+\delta_{I 4 M}+\delta_{I 4 N}$;
$\delta_{15 R}=2 \cdot \frac{1}{D} \cdot\left(R_{41} \cdot R_{45}+R_{51} \cdot R_{55}+R_{61} \cdot R_{65}\right) ; \delta_{15 M}=0 ;$
$\delta_{15 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{451} \cdot N_{455}+N_{561} \cdot N_{565}\right) ; \delta_{15}=\delta_{15 R}+\delta_{15 M}+\delta_{15 N} ;$
$\delta_{16 R}=2 \cdot \frac{1}{D} \cdot\left(R_{51} \cdot R_{56}+R_{61} \cdot R_{66}+R_{71} \cdot R_{76}\right) ; \delta_{16 M}=0 ;$
$\delta_{16 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{561} \cdot N_{566}+N_{671} \cdot N_{676}\right) ; \delta_{16}=\delta_{16 R}+\delta_{16 M}+\delta_{16 N} ;$
$\delta_{17 R}=2 \cdot \frac{1}{D} \cdot\left(R_{61} \cdot R_{67}+R_{71} \cdot R_{77}+R_{81} \cdot R_{87}\right) ; \delta_{17 M}=0 ;$
$\delta_{17 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{671} \cdot N_{677}+N_{781} \cdot N_{787}\right) ; \delta_{17}=\delta_{17 R}+\delta_{17 M}+\delta_{17 N} ;$
$\delta_{18 R}=2 \cdot \frac{1}{D} \cdot\left(R_{71} \cdot R_{78}+R_{81} \cdot R_{88}+R_{91} \cdot R_{98} \cdot 0.5\right) ; \quad \delta_{18 M}=0 ;$
$\delta_{18 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{781} \cdot N_{788}+N_{891} \cdot N_{898}\right) ; \delta_{18}=\delta_{18 R}+\delta_{18 M}+\delta_{18 N} ;$
$\delta_{19 R}=2 \cdot \frac{1}{D} \cdot\left(R_{81} \cdot R_{89}+R_{91} \cdot R_{99} \cdot 0.5\right) ;$
$\delta_{19}=\delta_{19 R}+\delta_{19 M}+\delta_{19 N} ;$
$\delta_{44 R}=2 \cdot \frac{1}{D} \cdot\left(R_{44}{ }^{2}+R_{54}{ }^{2}+R_{64}{ }^{2}+R_{74}{ }^{2}+R_{84}{ }^{2}+R_{94}{ }^{2} \cdot 0.5\right) ;$
$\delta_{44 M}=2 \cdot \frac{S}{3 \cdot E \cdot I} \cdot\left(2 \cdot M_{24}{ }^{2}+2 \cdot M_{34}{ }^{2}+M_{24} \cdot M_{34}+2 \cdot M_{44}{ }^{2}+M_{34} \cdot M_{44}\right)$;
$\delta_{44 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{124}{ }^{2}+N_{234}{ }^{2}+N_{344}{ }^{2}+N_{454}{ }^{2}+N_{564}{ }^{2}+N_{674}{ }^{2}+N_{784}{ }^{2}+N_{894}{ }^{2}\right) ;$
$\delta_{44}=\delta_{44 R}+\delta_{44 M}+\delta_{44 N} ;$
$\delta_{45 R}=2 \cdot \frac{l}{D} \cdot\left(R_{44} \cdot R_{45}+R_{54} \cdot R_{55}+R_{64} \cdot R_{65}\right)$
$\delta_{45 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{454} \cdot N_{455}+N_{564} \cdot N_{565}\right) ;$
$\delta_{45}=\delta_{45 R}+\delta_{45 M}+\delta_{45 N} ;$
$\delta_{46 R}=2 \cdot \frac{1}{D} \cdot\left(R_{54} \cdot R_{56}+R_{64} \cdot R_{66}+R_{74} \cdot R_{76}\right) ; \quad \quad \delta_{46 M}=0 ;$
$\delta_{46 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{564} \cdot N_{566}+N_{674} \cdot N_{676}\right) ;$
$\delta_{46}=\delta_{46 R}+\delta_{46 M}+\delta_{46 N} ;$
$\delta_{47 R}=2 \cdot \frac{1}{D} \cdot\left(R_{64} \cdot R_{67}+R_{74} \cdot R_{77}+R_{84} \cdot R_{87}\right) ; \quad \delta_{47 M}=0 ;$
$\delta_{47 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{674} \cdot N_{677}+N_{784} \cdot N_{787}\right) ;$
$\delta_{47}=\delta_{47 R}+\delta_{47 M}+\delta_{47 N} ;$
$\delta_{48 R}=2 \cdot \frac{1}{D} \cdot\left(R_{74} \cdot R_{78}+R_{84} \cdot R_{88}+R_{94} \cdot R_{98} \cdot 0.5\right) ; \quad \delta_{48 M}=0 ;$
$\delta_{48 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{784} \cdot N_{788}+N_{894} \cdot N_{898}\right) ;$
$\delta_{48}=\delta_{48 R}+\delta_{48 M}+\delta_{48 N} ;$
$\delta_{49 R}=2 \cdot \frac{1}{D} \cdot\left(R_{84} \cdot R_{89}+R_{94} \cdot R_{99} \cdot 0.5\right) ; \quad \quad \delta_{49 M}=0 ; \quad \delta_{49 N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{894} \cdot N_{899} ;$
$\delta_{49}=\delta_{49 R}+\delta_{49 M}+\delta_{49 N} ;$
$\delta_{55 R}=2 \cdot \frac{1}{D} \cdot\left(R_{45}{ }^{2}+R_{55}{ }^{2}+R_{65}{ }^{2}\right) ; \quad \delta_{55 M}=2 \cdot \frac{S}{3 \cdot E \cdot I} \cdot 2 \cdot M_{55}{ }^{2} ; \delta_{55 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{455}{ }^{2}+N_{565}{ }^{2}\right) ;$
$\delta_{55}=\delta_{55 R}+\delta_{55 M}+\delta_{55 N} ;$
$\delta_{56 R}=2 \cdot \frac{1}{D} \cdot\left(R_{55} \cdot R_{56}+R_{65} \cdot R_{66}\right) ; \quad \delta_{56 M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot M_{55} \cdot M_{66} ; \delta_{56 N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{565} \cdot N_{566} ;$
$\delta_{56}=\delta_{56 R}+\delta_{56 M}+\delta_{56 N} ;$
$\delta_{57 R}=2 \cdot \frac{1}{D} \cdot R_{65} \cdot R_{67} ;$

$$
\delta_{57 M}=0 ; \quad \delta_{57 N}=0 ;
$$

$\delta_{57}=\delta_{57 R}+\delta_{57 M}+\delta_{57 N} ;$
$\delta_{58 R}=0 ; \quad \delta_{58 M}=0 ; \quad \delta_{58 N}=0 ;$
$\delta_{58}=\delta_{58 R}+\delta_{58 M}+\delta_{58 N} ;$
$\delta_{59 R}=0$;
$\delta_{59 M}=0 ;$
$\delta_{59 N}=0 ;$
$\delta_{59}=\delta_{59 R}+\delta_{59 M}+\delta_{59 N} ;$
$\delta_{66 R}=2 \cdot \frac{1}{D} \cdot\left(R_{56}{ }^{2}+R_{66}{ }^{2}+R_{76}{ }^{2}\right) ; \quad \delta_{66 M}=2 \cdot \frac{S}{3 \cdot E \cdot I} \cdot 2 \cdot M_{66}{ }^{2} ; \quad \delta_{66 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{566}{ }^{2}+N_{676}{ }^{2}\right) ;$
$\delta_{66}=\delta_{66 R}+\delta_{66 M}+\delta_{66 N} ;$
$\delta_{67 R}=2 \cdot \frac{1}{D} \cdot\left(R_{66} \cdot R_{67}+R_{76} \cdot R_{77}\right) ; \quad \delta_{67 M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot M_{66} \cdot M_{77} ; \delta_{67 N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{676} \cdot N_{677} ;$

$$
\begin{aligned}
& \delta_{67}=\delta_{67 R}+\delta_{67 M}+\delta_{67 N} ; \\
& \delta_{68 R}=2 \cdot \frac{1}{D} \cdot R_{76} \cdot R_{78} ; \quad \delta_{68 M}=0 ; \quad \delta_{68 N}=0 ; \\
& \delta_{68}=\delta_{68 R}+\delta_{68 M}+\delta_{68 N} ; \\
& \delta_{69 R}=0 \text {; } \\
& \delta_{69 M}=0 ; \\
& \delta_{69 N}=0 ; \\
& \delta_{69}=\delta_{69 R}+\delta_{69 M}+\delta_{69 N} ; \\
& \delta_{77 R}=2 \cdot \frac{1}{D} \cdot\left(R_{67}{ }^{2}+R_{77}{ }^{2}+R_{87}{ }^{2}\right) ; \quad \delta_{77 M}=2 \cdot \frac{S}{3 \cdot E \cdot I} \cdot 2 \cdot M_{77}{ }^{2} ; \quad \delta_{77 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{677}{ }^{2}+N_{787}{ }^{2}\right) ; \\
& \delta_{77}=\delta_{77 R}+\delta_{77 M}+\delta_{77 N} ; \\
& \delta_{78 R}=2 \cdot \frac{1}{D} \cdot\left(R_{77} \cdot R_{78}+R_{87} \cdot R_{88}\right) ; \quad \delta_{78 M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot M_{77} \cdot M_{88} ; \delta_{78 N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{787} \cdot N_{788} ; \\
& \delta_{78}=\delta_{78 R}+\delta_{78 M}+\delta_{78 N} ; \\
& \delta_{79 R}=2 \cdot \frac{1}{D} \cdot R_{87} \cdot R_{89} ; \\
& \delta_{79 M}=0 ; \quad \delta_{79 N}=0 ; \\
& \delta_{79}=\delta_{79 R}+\delta_{79 M}+\delta_{79 N} ; \\
& \delta_{88 R}=2 \cdot \frac{1}{D} \cdot\left(R_{78}{ }^{2}+R_{88}{ }^{2}+R_{98}{ }^{2} \cdot 0.5\right) ; \delta_{88 M}=2 \cdot \frac{S}{3 \cdot E \cdot I} \cdot 2 \cdot M_{88}{ }^{2} ; \quad \delta_{88 N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{788}{ }^{2}+N_{898}{ }^{2}\right) ; \\
& \delta_{88}=\delta_{88 R}+\delta_{88 M}+\delta_{88 N} ; \\
& \delta_{89 R}=2 \cdot \frac{1}{D} \cdot\left(R_{88} \cdot R_{89}+R_{98} \cdot R_{99} \cdot 0.5\right) ; \quad \delta_{89 M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot M_{88} \cdot M_{99} ; \\
& \delta_{89 N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{898} \cdot N_{899} ; \\
& \delta_{89}=\delta_{89 R}+\delta_{89 M}+\delta_{89 N} ; \\
& \delta_{99 R}=2 \cdot \frac{1}{D} \cdot\left(R_{89}{ }^{2}+R_{99}{ }^{2} \cdot 0.5\right) ; \quad \delta_{99 M}=2 \cdot \frac{S}{3 \cdot E \cdot I} \cdot M_{99}{ }^{2} ; \quad \delta_{99 N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{899}{ }^{2} ; \\
& \delta_{99}=\delta_{99 R}+\delta_{99 M}+\delta_{99 N} ; \\
& \delta_{l p R}=2 \cdot \frac{1}{D} \cdot\left(R_{41} \cdot R_{4 p}+R_{51} \cdot R_{5 p}+R_{61} \cdot R_{6 p}+R_{71} \cdot R_{7 p}+R_{81} \cdot R_{8 p}+R_{91} \cdot R_{9 p} \cdot 0.5\right) ; \\
& \delta_{1 p M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot\left(4 \cdot M_{2 p} \cdot M_{2 l}+M_{2 p} \cdot M_{1 l}+4 \cdot M_{3 p} \cdot M_{3 l}+M_{3 p} \cdot M_{2 l}+M_{2 p} \cdot M_{3 l}\right) \text {; } \\
& \delta_{1 p N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{12 p} \cdot N_{121}+N_{23 p} \cdot N_{231}+N_{34 p} \cdot N_{341}+N_{45 p} \cdot N_{451}+\right. \\
& \left.N_{56 p} \cdot N_{561}+N_{67 p} \cdot N_{671}+N_{78 p} \cdot N_{781}+N_{89 p} \cdot N_{891}\right) ; \\
& \delta_{l p}=\delta_{l p R}+\delta_{l p M}+\delta_{l p N} \text {; } \\
& \delta_{4 p R}=2 \cdot \frac{1}{D} \cdot\left(R_{44} \cdot R_{4 p}+R_{54} \cdot R_{5 p}+R_{64} \cdot R_{6 p}+R_{74} \cdot R_{7 p}+R_{84} \cdot R_{8 p}+R_{94} \cdot R_{9 p} \cdot 0.5\right) ; \\
& \delta_{4 p M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot\left(4 \cdot M_{2 p} \cdot M_{24}+4 \cdot M_{3 p} \cdot M_{34}+M_{3 p} \cdot M_{24}+M_{2 p} \cdot M_{34}+M_{3 p} \cdot M_{44}\right) \text {; } \\
& \delta_{4 p N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{12 p} \cdot N_{124}+N_{23 p} \cdot N_{234}+N_{34 p} \cdot N_{344}+N_{45 p} \cdot N_{454}+\right. \\
& \left.N_{56 p} \cdot N_{564}+N_{67 p} \cdot N_{674}+N_{78 p} \cdot N_{784}+N_{89 p} \cdot N_{894}\right) \text {; } \\
& \delta_{4 p}=\delta_{4 p R}+\delta_{4 p M}+\delta_{4 p N} ;
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{5 p R}=2 \cdot \frac{1}{D} \cdot\left(R_{45} \cdot R_{4 p}+R_{55} \cdot R_{5 p}+R_{65} \cdot R_{6 p}\right) ; \quad \delta_{5 p M}=0 ; \\
& \delta_{5 p N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{45 p} \cdot N_{455}+N_{56 p} \cdot N_{565}\right) ; \\
& \delta_{5_{p}}=\delta_{5_{p R}}+\delta_{5 p M}+\delta_{5 p N} ; \\
& \delta_{6 p R}=2 \cdot \frac{1}{D} \cdot\left(R_{56} \cdot R_{5 p}+R_{66} \cdot R_{6 p}+R_{76} \cdot R_{7 p}\right) ; \quad \delta_{6 p M}=0 ; \\
& \delta_{6 p N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{56 p} \cdot N_{566}+N_{67 p} \cdot N_{676}\right) ; \\
& \delta_{6 p}=\delta_{6 p R}+\delta_{6 p M}+\delta_{\sigma p N} \text {; } \\
& \delta_{7 p R}=2 \cdot \frac{1}{D} \cdot\left(R_{67} \cdot R_{6 p}+R_{77} \cdot R_{7 p}+R_{87} \cdot R_{8 p}\right) ; \quad \delta_{7 p M}=0 ; \\
& \delta_{7 p N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{67 p} \cdot N_{677}+N_{78 p} \cdot N_{787}\right) ; \\
& \delta_{7 p}=\delta_{7 p R}+\delta_{7 p M}+\delta_{7 p N} ; \\
& \delta_{8 p R}=2 \cdot \frac{1}{D} \cdot\left(R_{78} \cdot R_{7 p}+R_{88} \cdot R_{8 p}+R_{98} \cdot R_{9_{p}} \cdot 0.5\right) ; \quad \delta_{8 p M}=0 ; \\
& \delta_{8 p N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{78 p} \cdot N_{788}+N_{89 p} \cdot N_{898}\right) ; \\
& \delta_{\delta_{p}}=\delta_{\delta_{p R}}+\delta_{\delta_{p M}}+\delta_{\delta_{p N}} ; \\
& \delta_{9_{p R}}=2 \cdot \frac{1}{D} \cdot\left(R_{89} \cdot R_{8 p}+R_{99} \cdot R_{9 p} \cdot 0.5\right) ; \quad \delta_{9_{p M}}=0 ; \quad \delta_{9 p N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{89 p} \cdot N_{899} ; \\
& \delta_{9_{p}}=\delta_{9_{p R}}+\delta_{9_{p M}}+\delta_{9_{p N}} ; \\
& \delta_{1 q R}=2 \cdot \frac{1}{D} \cdot\left(R_{41} \cdot R_{4 q}+R_{51} \cdot R_{5 q}+R_{61} \cdot R_{6 q}+R_{71} \cdot R_{7 q}+R_{81} \cdot R_{8 q}+R_{91} \cdot R_{9 q} \cdot 0.5\right) ; \\
& \delta_{1 q M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot\left(4 \cdot M_{2 q} \cdot M_{2 l}+M_{2 q} \cdot M_{1 l}+4 \cdot M_{3 q} \cdot M_{3 l}+M_{3 q} \cdot M_{2 l}+M_{2 q} \cdot M_{3 l}\right) ; \\
& \delta_{1 q N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{12 q} \cdot N_{121}+N_{23 q} \cdot N_{231}+N_{34 q} \cdot N_{341}+N_{45 q} \cdot N_{451}+\right. \\
& \left.N_{56 q} \cdot N_{561}+N_{67 q} \cdot N_{671}+N_{78 q} \cdot N_{781}+N_{89 q} \cdot N_{891}\right) \text {; } \\
& \delta_{l q}=\delta_{I q R}+\delta_{I q M}+\delta_{I q N} \text {; } \\
& \delta_{4 q R}=2 \cdot \frac{1}{D} \cdot\left(R_{44} \cdot R_{4 q}+R_{54} \cdot R_{5 q}+R_{64} \cdot R_{6 q}+R_{74} \cdot R_{7 q}+R_{84} \cdot R_{8 q}+R_{94} \cdot R_{9 q} \cdot 0.5\right) ; \\
& \delta_{4 q M}=2 \cdot \frac{S}{6 \cdot E \cdot I} \cdot\left(4 \cdot M_{q p} \cdot M_{24}+4 \cdot M_{q p} \cdot M_{34}+M_{3 q} \cdot M_{24}+M_{2 q} \cdot M_{34}+M_{3 q} \cdot M_{44}\right) ; \\
& \delta_{4 q N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{12 q} \cdot N_{124}+N_{23 q} \cdot N_{234}+N_{34 q} \cdot N_{344}+N_{45 q} \cdot N_{454}+\right. \\
& \left.N_{56 q} \cdot N_{564}+N_{67 q} \cdot N_{674}+N_{789} \cdot N_{784}+N_{899} \cdot N_{894}\right) \text {; } \\
& \delta_{4 q}=\delta_{4 q R}+\delta_{4 q M}+\delta_{4 q N} ; \\
& \delta_{5 q R}=2 \cdot \frac{1}{D} \cdot\left(R_{45} \cdot R_{4 q}+R_{55} \cdot R_{5 q}+R_{65} \cdot R_{6 q}\right) ; \quad \delta_{5 q M}=0 ; \\
& \delta_{5 q N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{45 q} \cdot N_{455}+N_{56 q} \cdot N_{565}\right) ; \\
& \delta_{5 q}=\delta_{5 q R}+\delta_{5 q M}+\delta_{5 q N} ;
\end{aligned}
$$

$$
\begin{array}{rlrl}
\delta_{6 q R}= & 2 \cdot \frac{1}{D} \cdot\left(R_{56} \cdot R_{5 q}+R_{66} \cdot R_{6 q}+R_{76} \cdot R_{7 q}\right) ; & & \delta_{6 q M}=0 ; \\
& \delta_{6 q N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{56 q} \cdot N_{566}+N_{67 q} \cdot N_{676}\right) ; & \\
\delta_{6 q}= & \delta_{6 q R}+\delta_{6 q M}+\delta_{6 q N} ; & \\
\delta_{7 q R}= & 2 \cdot \frac{1}{D} \cdot\left(R_{67} \cdot R_{6 q}+R_{77} \cdot R_{7 q}+R_{87} \cdot R_{8 q}\right) ; & \delta_{7 q M}=0 ; \\
& \quad \delta_{7 q N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{67 q} \cdot N_{677}+N_{78 q} \cdot N_{787}\right) ; & \\
\delta_{7 q}= & \delta_{7 q R}+\delta_{7 q M}+\delta_{7 q N} ; \\
\delta_{8 q R}= & 2 \cdot \frac{1}{D} \cdot\left(R_{78} \cdot R_{7 q}+R_{88} \cdot R_{8 q}+R_{98} \cdot R_{9 q} \cdot 0.5\right) ; & \delta_{8 q M}=0 ; \\
& \quad \delta_{8 q N}=2 \cdot \frac{S}{E \cdot F} \cdot\left(N_{78 q} \cdot N_{788}+N_{89 q} \cdot N_{898}\right) ; & \\
\delta_{8 q}= & \delta_{8 q R}+\delta_{8 q M}+\delta_{8 q N} ; & & \\
\delta_{9 q R}= & 2 \cdot \frac{1}{D} \cdot\left(R_{89} \cdot R_{8 q}+R_{99} \cdot R_{9 q} \cdot 0.5\right) ; & \delta_{9 q M}=0 ; & \delta_{9 q N}=2 \cdot \frac{S}{E \cdot F} \cdot N_{89 q} \cdot N_{899} ; \\
\delta_{9 q}= & \delta_{9 q R}+\delta_{9 q M}+\delta_{9 q N} \cdot &
\end{array}
$$

Determination of redundants
$\Delta_{l}=\left[\begin{array}{lllllll}\delta_{11} & \delta_{14} & \delta_{15} & \delta_{16} & \delta_{17} & \delta_{18} & \delta_{19} \\ \delta_{14} & \delta_{44} & \delta_{45} & \delta_{46} & \delta_{47} & \delta_{48} & \delta_{49} \\ \delta_{15} & \delta_{45} & \delta_{55} & \delta_{56} & \delta_{57} & \delta_{58} & \delta_{59} \\ \delta_{16} & \delta_{46} & \delta_{56} & \delta_{66} & \delta_{67} & \delta_{68} & \delta_{69} \\ \delta_{17} & \delta_{47} & \delta_{57} & \delta_{67} & \delta_{77} & \delta_{78} & \delta_{79} \\ \delta_{18} & \delta_{48} & \delta_{58} & \delta_{68} & \delta_{78} & \delta_{88} & \delta_{89} \\ \delta_{19} & \delta_{49} & \delta_{59} & \delta_{69} & \delta_{79} & \delta_{89} & \delta_{99}\end{array}\right] \quad \Delta_{p q}=\left[\begin{array}{c}\delta_{1 p}+\delta_{1 q} \\ \delta_{4 p}+\delta_{4 q} \\ \delta_{5 p}+\delta_{5 q} \\ \delta_{6 p}+\delta_{6 q} \\ \delta_{7 p}+\delta_{7 q} \\ \delta_{8 p}+\delta_{8 q} \\ \delta_{9 p}+\delta_{9 q}\end{array}\right] \quad X=-\Delta_{l}^{-1} \cdot \Delta_{p q}=\left[\begin{array}{c}X_{I} \\ X_{4} \\ X_{5} \\ X_{6} \\ X_{7} \\ X_{8} \\ X_{9}\end{array}\right]$
Determination of internal forces

$$
\begin{array}{lrl}
M_{1}=M_{11} \cdot X_{1} ; & & N_{12}=N_{121} \cdot X_{1}+N_{124} \cdot X_{4}+N_{12 p}+N_{12 q} ; \\
M_{2}=M_{21} \cdot X_{1}+M_{24} \cdot X_{4}+M_{2 p}+M_{2 q} ; & N_{23}=N_{231} \cdot X_{1}+N_{234} \cdot X_{4}+N_{23 p}+N_{23 q} ; \\
M_{3}=M_{31} \cdot X_{1}+M_{34} \cdot X_{4}+M_{3 p}+M_{3 q} ; & N_{34}=N_{341} \cdot X_{1}+N_{344} \cdot X_{4}+N_{34 p}+N_{34 q} ; \\
M_{4}=M_{44} \cdot X_{4} ; & & N_{45}=N_{451} \cdot X_{1}+N_{454} \cdot X_{4}+N_{455} \cdot X_{5}+N_{45 p}+N_{45 q} ; \\
M_{5}=M_{55} \cdot X_{5} ; & N_{56}=N_{561} \cdot X_{1}+N_{564} \cdot X_{4}+N_{565} \cdot X_{5}+N_{566} \cdot X_{6}+N_{56 p}+N_{56 q} ; \\
M_{6}=M_{66} \cdot X_{6} ; & N_{67}=N_{671} \cdot X_{1}+N_{674} \cdot X_{4}+N_{676} \cdot X_{6}+N_{677} \cdot X_{7}+N_{67 p}+N_{67 q} ; \\
M_{7}=M_{77} \cdot X_{7} ; & N_{78}=N_{781} \cdot X_{1}+N_{784} \cdot X_{4}+N_{787} \cdot X_{7}+N_{788} \cdot X_{8}+N_{78 p}+N_{78 q} ; \\
M_{8}=M_{88} \cdot X_{8} ; & N_{89}=N_{891} \cdot X_{1}+N_{894} \cdot X_{4}+N_{898} \cdot X_{8}+N_{899} \cdot X_{9}+N_{89 p}+N_{89 q} ;
\end{array}
$$

$$
M_{9}=M_{99} \cdot X_{9} .
$$

Determination of elastic reactions

$R_{l}=R_{2}=R_{3}=0 ;$
$R_{4}=R_{41} \cdot X_{1}+R_{44} \cdot X_{4}+R_{45} \cdot X_{5}+R_{4 p}+R_{4 q} ;$
$R_{5}=R_{51} \cdot X_{1}+R_{54} \cdot X_{4}+R_{55} \cdot X_{5}+R_{56} \cdot X_{6}+R_{5 p}+R_{5 q} ;$
$R_{6}=R_{61} \cdot X_{1}+R_{64} \cdot X_{4}+R_{65} \cdot X_{5}+R_{66} \cdot X_{6}+R_{67} \cdot X_{7}+R_{6 p}+R_{6 q} ;$

$$
\begin{aligned}
& R_{7}=R_{71} \cdot X_{1}+R_{74} \cdot X_{4}+R_{76} \cdot X_{6}+R_{77} \cdot X_{7}+R_{78} \cdot X_{8}+R_{7 p}+R_{7 q} ; \\
& R_{8}=R_{81} \cdot X_{1}+R_{84} \cdot X_{4}+R_{87} \cdot X_{7}+R_{88} \cdot X_{8}+R_{89} \cdot X_{9}+R_{8 p}+R_{8 q} ; \\
& R_{9}=R_{91} \cdot X_{1}+R_{94} \cdot X_{4}+R_{98} \cdot X_{8}+R_{99} \cdot X_{9}+R_{9 p}+R_{9 q} .
\end{aligned}
$$

Contact with Detachment for a Layer and Subgrade with a Concentrated Shear Force Applied to the Layer

Objective: Determination of the size of a contact area of a layer with the subgrade, when a concentrated shear force is applied to the layer, in the structurally nonlinear formulation.

Initial data file: Contact_3_731.SPR

Problem formulation: The elastic layer of height b lies on the elastic subgrade with the possibility of slipping and is subjected to the action of the concentrated shear force P applied to the upper surface. Determine the size of the area of contact of the layer with the subgrade $2 \cdot c$.

References: K. Johnson, Mechanics of Contact Interaction, Moscow, Mir, 1989, p. 163

Initial data:

$\mathrm{E}_{1}=21.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2} \quad$ - elastic modulus of the layer material;
$v_{1}=0.3$
$\mathrm{E}_{3}=3.0 \cdot 10^{7} \mathrm{kN} / \mathrm{m}^{2}$

- Poisson's ratio of the layer material;
- elastic modulus of the subgrade material;
$v_{3}=0.2$
- Poisson's ratio of the subgrade material;
$\mathrm{b}=1.00 \mathrm{~m}$
- height of the layer;
$\mathrm{L}=10.00 \mathrm{~m}$
- length of the layer and subgrade in the model;
$\mathrm{H}=10.00 \mathrm{~m}$
- height of the subgrade in the model;
$\mathrm{P}=1000 \mathrm{kN}$
- value of the concentrated force applied to the upper surface of the layer.

Finite element model: Design model - plane frame. Elements of the layer - 1000 eight-node grade beam elements of type 30 . The spacing of the finite element mesh along the height and length of the layer is 0.1 m . Elements of the subgrade -10000 eight-node grade beam elements of type 30 . The spacing of the finite element mesh along the height and length of the subgrade is 0.1 m .201 two-node elements of unilateral constraints of type 352 of increased stiffness $\mathrm{k}=1.0 \cdot 10^{9} \mathrm{kN} / \mathrm{m}$ are introduced to model the contact with detachment between the lower surface of the layer and the upper surface of the subgrade. Each element vertically joins the nodes of the layer and the subgrade. Boundary conditions are provided by imposing constraints on the lower surface of the subgarde in the direction of the degree of freedom Z . The dimensional stability of the design model is provided by imposing constraints in the direction of the degree of freedom X along the vertical axis of symmetry of the layer and the subgrade (along the force P). The action is specified as a transverse nodal load P (in the direction of the Z axis of the global coordinate system). The nonlinear loading was generated for the incremental-iterative method with a loading factor -1 , number of steps -1 , number of iterations - 10 for the linear loading P. Number of nodes in the design model - 33622.

Results in SCAD

Comparison of solutions:
Area of contact with the subgrade $2 \cdot c, m$

Theory	SCAD	Deviation, $\%$
4.78	4.60	3.77

Notes: In the analytical solution the area of contact with the subgrade $2 \cdot c$ can be determined according to the following formula:

$$
2 \cdot c=2 \cdot b \cdot \sqrt[3]{1.845 \cdot \frac{1-v_{3}^{2}}{E_{3}} \cdot \frac{E_{1}}{1-v_{1}^{2}}} .
$$

Flexible Thread with Supports in One Level Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of the stress-strain state of a flexible thread with supports in one level subjected to a uniformly distributed transverse load q.

Initial data file: NL_CANAT_v11.3.SPR

Problem formulation: The flexible thread with supports in one level is subjected to the uniformly distributed transverse load q from the self-weight γ. Determine the sag f and the strain σ of the flexible thread.

References: S.P. Fesik, Reference Book on Strength of Materials, 2-nd, Kiev, Budivelnik, 1982, p. 33.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{tf} / \mathrm{m}^{2} \quad-$ elastic modulus of the thread;
$\mathrm{l}=40.0 \mathrm{~m} \quad$ - length of the span of the flexible thread;
$\mathrm{d}=0.04 \mathrm{~m} \quad$ - diameter of the cross-section of the flexible thread;
$\gamma=8.0 \mathrm{tf} / \mathrm{m}^{3} \quad$ - value of the specific weight of the flexible thread material.
Finite element model: Design model - plane frame, 40 elements of type 302. Boundary conditions are provided by imposing constraints in the support nodes of the flexible thread in the directions of the degrees of freedom X, Z. The action of the uniformly distributed transverse load is specified as $q=\gamma \cdot \mathrm{F}$, where $\mathrm{F}=$ $\pi \cdot d^{2} / 4$. Number of nodes in the design model -41 . The calculation is performed in the geometrically nonlinear formulation by the simple incremental method with the following parameters: loading factor 0.01 , number of steps -100 .

Results in SCAD

Design model

Deformed model

Values of vertical displacements Z (m)

Longitudinal force diagram $N(t f)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, $\%$
Sag f of the flexible thread, m	-0.4579	-0.4580	0.02
Strain σ of the flexible thread, $\mathrm{tf} / \mathrm{m}^{2}$	3494.3	$4.3761 /\left(3.1416 \cdot 0.04^{2} / 4\right)=3482.4$	0.34

Notes: In the analytical solution the $\operatorname{sag} f$ and the strain σ of the flexible thread are determined according to the following formulas:

$$
f=\frac{l}{2} \cdot \sqrt[3]{\frac{3 \cdot \gamma \cdot l}{8 \cdot E}} ; \quad \quad \sigma=\frac{\gamma \cdot l^{2}}{8 \cdot f} .
$$

Flexible Ring Subjected to Two Mutually Balanced Radially Compressive Forces

Objective: Determination of maximum displacements and bending moments in a flexible ring subjected to two mutually balanced radially compressive forces in the geometrically nonlinear formulation.

Initial data files:

File name	Description
Кольцо_Q_50.SPR	The flexible ring is subjected to the radially compressive forces Q = 50 kN

Problem formulation: The flexible ring of constant cross-section is subjected to two mutually balanced radially compressive forces Q . Determine: the transverse displacements w and the bending moments M in the compressive force application points.

References: E. P. Popov, Theory and Calculation of Flexible Elastic Bars, Moscow, Nauka, 1986, p. 154

Initial data:

$\mathrm{EF}=1.5 \cdot 10^{7} \mathrm{kN}$

- axial stiffness of the cross-section of the ring;
$\mathrm{EI}_{\mathrm{y}}=3.125 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the cross-section of the ring in its plane;
$E I_{\mathrm{z}}=1.250 \cdot 10^{6} \mathrm{kN} \cdot \mathrm{m}^{2}$
- bending stiffness of the cross-section of the ring out of its plane;
$\mathrm{GI}_{\mathrm{x}}=3.533 \cdot 10^{5} \mathrm{kN} \cdot \mathrm{m}^{2}$
- torsional stiffness of the cross-section of the ring;
$\mathrm{R}=50.0 \mathrm{~m}$
- radius of the ring;
$\mathrm{Q}=50 \mathrm{kN}$
- value of the compressive forces.

Finite element model: Design model - general type system. Elements of the plate - 180 bar elements taking into account the geometric nonlinearity of type 310 . The spacing of the finite element mesh along the longitudinal axis of the ring is 2.0°. The dimensional stability of the design model is provided by imposing constraints according to its symmetry conditions. The nonlinear loading was generated for the incrementaliterative method with a loading factor -1 , number of steps -1 , number of iterations -7 for the linear loading Q. Number of nodes in the design model - 180 .

Results in SCAD

Deformed model

Values of transverse displacements $w(m)$

Bending moment diagrams M (kN•m)

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
The transverse displacement of the ring section w, m in the points of the application of the compressive forces Q $=50 \mathrm{kN}$	± 1.6060	± 1.5532	3.29
The bending moment for the ring section M, $\mathrm{kN} \cdot \mathrm{m}$ in the points of the application of the compressive forces Q $=50 \mathrm{kN}$	809.37	809.81	0.05

Notes: In the analytical solution the transverse displacements w and the bending moments M in the compressive force application points can be determined according to the following formulas:

$$
\begin{gathered}
\text { At } 0 \leq Q \leq 0.6297 \cdot \frac{E I}{R^{2}}: \\
w=\left[\frac{2}{k} \cdot \sqrt{\frac{2 \cdot E I}{Q \cdot R^{2}}} \cdot E\left(\frac{\pi}{4}\right)-\left(\frac{2}{k^{2}}-1\right) \cdot \frac{\pi}{2}\right] \cdot R ; \quad M=\frac{2}{k} \cdot \sqrt{1-\frac{k^{2}}{2}} \cdot \sqrt{\frac{Q \cdot E I}{2}}-\frac{E I}{R},
\end{gathered}
$$

where k is determined by solving the equation: $k \cdot F\left(\frac{\pi}{4}\right)=\frac{\pi \cdot R}{2} \cdot \sqrt{\frac{Q}{2 \cdot E I}}$;

$$
F\left(\frac{\pi}{4}\right)=\int_{0}^{\frac{\pi}{4}} \frac{d \varphi}{\sqrt{1-k^{2} \cdot \sin ^{2}(\varphi)}}-\text { Legendre elliptic integral of the first kind, }
$$

$$
E\left(\frac{\pi}{4}\right)=\int_{0}^{\frac{\pi}{4}} \sqrt{1-k^{2} \cdot \sin ^{2}(\varphi)} \cdot d \varphi-\text { Legendre elliptic integral of the second kind. }
$$

$$
\text { At } 0.6297 \cdot \frac{E I}{R^{2}} \leq Q \leq 2.7865 \cdot \frac{E I}{R^{2}} \text { : }
$$

$$
\begin{aligned}
& w=\left[2 \cdot \sqrt{\frac{2 \cdot E I}{Q \cdot R^{2}}} \cdot E(\Psi)-\frac{\pi}{2}\right] \cdot R ; \quad \quad M=2 \cdot k \cdot \cos (\Psi) \cdot \sqrt{\frac{Q \cdot E I}{2}}-\frac{E I}{R}, \\
& \text { where } \mathrm{k} \text { and } \Psi \text { are determined by solving the system of equations: }\left\{\begin{array}{c}
k \cdot \sin (\Psi)=\frac{\sqrt{2}}{2} \\
F(\Psi)=\frac{\pi \cdot R}{2} \cdot \sqrt{\frac{Q}{2 \cdot E I}}
\end{array}\right. \text {; } \\
& F(\Psi)=\int_{0}^{\psi} \frac{d \psi}{\sqrt{1-k^{2} \cdot \sin ^{2}(\psi)}}-\text { Legendre elliptic integral of the first kind, } \\
& E(\Psi)=\int_{0}^{\psi} \sqrt{1-k^{2} \cdot \sin ^{2}(\psi)} \cdot d \psi-\text { Legendre elliptic integral of the second kind. }
\end{aligned}
$$

Flexible Long Rectangular Plate Simply Supported along the Longitudinal Edges Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of the stress-strain state of a flexible long rectangular plate simply supported along the longitudinal edges subjected to a uniformly distributed transverse load.

Initial data file: NEL.SPR

Problem formulation: The flexible long rectangular plate simply supported along the longitudinal edges is subjected to the transverse load q uniformly distributed over its area. Determine the transverse displacement Z of the deformed midsurface, as well as the maximum σ_{yd} and minimum σ_{yt} normal stresses over the cross-section in the half of the plate span.

References: S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, Moscow, Fizmatgis, 1963, p. 20.

Initial data:

$\mathrm{E}=2.1 \cdot 10^{6} \mathrm{kgf} / \mathrm{cm}^{2}$

- elastic modulus;
$v=0.3$
- Poisson's ratio;
$\mathrm{h}=1.3 \mathrm{~cm} \quad-$ thickness of the plate;
$1=130.0 \mathrm{~cm} \quad$ - short side of the plate
(along the Y axis of the global coordinate system);
$\mathrm{b}=260.0 \mathrm{~cm} \quad-$ size of the elementary strip of the long side of the plate
(along the X axis of the global coordinate system);
$\mathrm{q}=1.4 \mathrm{kgf} / \mathrm{cm}^{2} \quad$ - value of the uniformly distributed transverse load.
Finite element model: Design model - general type system, 1352 plate elements of type 341 . The spacing of the finite element mesh along the sides of the plate (along the X , Y axes of the global coordinate system) is 5.0 cm . Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ for the long edges parallel to the X axis of the global coordinate system based on the simply supported conditions, and in the directions of the degrees of freedom X, UY for the short edges parallel to the Y axis of the global coordinate system based on the conditions of cylindrical bending of the elementary strip of the long side of the plate. Number of nodes in the design model 1431. The calculation is performed in the geometrically nonlinear formulation by the incremental-iterative method with the following parameters: loading factor -0.1 , number of steps -10 , number of iterations -30 .

Abstract

 5 置 ${ }^{235} \mid$ 5

Abstract

 Taci |we

Design model

Deformed model

	cm	cm
\square	$-1,78119$	$-1,66986$
\square	$-1,66986$	$-1,55854$
\square	$-1,55854$	$-1,44721$
\square	$-1,44721$	$-1,33589$
\square	$-1,33589$	$-1,22457$
\square	$-1,22457$	$-1,11324$
\square	$-1,11324$	$-1,00192$
\square	$-1,00192$	$-0,89059$
\square	$-0,89059$	$-0,77927$
\square	$-0,77927$	$-0,66795$
\square	$-0,66795$	$-0,55662$
\square	$-0,55662$	$-0,4453$
\square	$-0,4453$	$-0,33397$
\square	$-0,33397$	$-0,22265$
\square	$-0,22265$	$-0,11132$
\square	$-0,11132$	0

Values of transverse displacements Z(cm)

Values of longitudinal stresses $N_{y}\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$

Values of bending moments $M_{y}(\mathrm{~kg} f \cdot \mathrm{~cm} / \mathrm{cm})$
s.

Bending moment diagram $M_{y}(\mathrm{~kg} f \cdot \mathrm{~cm} / \mathrm{cm})$

Values of normal stresses $s_{y d}\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$

Values of normal stresses $s_{y t}\left(\mathrm{kgf} / \mathrm{cm}^{2}\right)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Transverse displacement Z of the deformed midsurface in the half of the plate span, cm	-1.782	-1.781	0.06
maximum normal stresses over the cross-section in the half of the plate span $\mathrm{syd}_{\mathrm{yd}}$, kgf/cm	2503	2498.7	0,17
minimum normal stresses over the cross-section in the half of the plate span s_{yt}, $\mathrm{kgf} / \mathrm{cm}^{2}$	-287	-294.0	2.44

Notes: In the analytical solution the displacement Z of the deformed midsurface, as well as the maximum s_{yd} and minimum s_{yt} normal stresses over the cross-section in the half of the plate span can be calculated according to the following formulas:

$$
\begin{aligned}
& Z=\frac{5 \cdot q \cdot l^{4}}{384 \cdot D} \cdot \frac{\frac{1}{c h(u)}-1+\frac{u^{2}}{2}}{\frac{5 \cdot u^{4}}{24}} ; \quad s_{y d}=s_{y N}+s_{y M} ; \quad s_{y t}=s_{y N}-s_{y M}, \text { where: } \\
& s_{y N}=\frac{N_{y}}{h} ; \quad s_{y M}=\frac{6 \cdot M_{y}}{h^{2}} ; N_{y}=\frac{4 \cdot u^{2} \cdot D}{l^{2}} ; \\
& D=\frac{E \cdot h^{3}}{12 \cdot\left(l-v^{2}\right)} .
\end{aligned}
$$

The value u is determined from the following expression:

$$
\frac{E^{2} \cdot h^{8}}{\left(1-v^{2}\right)^{2} \cdot q^{2} \cdot l^{8}}=\frac{135}{16} \cdot \frac{t h(u)}{u^{9}}+\frac{27}{16} \cdot \frac{t h^{2}(u)}{u^{8}}-\frac{135}{16 \cdot u^{8}}+\frac{9}{8 \cdot u^{6}} .
$$

Flexible Square Plate Simply Supported along the Perimeter Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of maximum displacements and longitudinal stresses in a flexible square plate simply supported along the perimeter and subjected to a uniformly distributed transverse load in the geometrically nonlinear formulation.

Initial data file: 7.6.SPR

Problem formulation: The flexible square isotropic plate of constant thickness is simply supported along the perimeter and subjected to the uniformly distributed transverse load p. Determine: the transverse displacements w and longitudinal stresses N_{x} and N_{y} for the center of the plate.

References: S. Levy, Bending of rectangular plates with large deflections, Washington, National advisory committee for aeronautics, Technical note No 846, May 1942.
H. Hencky, Die berechnung dünner rechteckiger platten mit verschwindender biegungsteifigkeit, Dresden, Zeitschrift für angewandte mathematic und mechanic, April 1921.
I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 1, Moscow, Mechanical engineering, 1968, p. 606

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus of the plate material;
$v=0.3 \quad-$ Poisson's ratio;
$\mathrm{h}=0.01 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}=10.0 \mathrm{~m} \quad$ - side of the plate;
$\mathrm{p}=10 \mathrm{kPa} \quad-$ value of the uniformly distributed load.
Finite element model: Design model - general type system. Plate elements - 10000 four-node shell elements taking into account the geometric nonlinearity of type 344. The spacing of the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 0.10 m . Boundary conditions are provided by imposing constraints on the nodes of the support contour of the plate in the direction of the degree of freedom Z , and by imposing constraints on the nodes of the sides of the plate in the direction normal to them (for two opposite sides parallel to the X axis of the global coordinate system along the Y axis, for two opposite sides parallel to the Y axis of the global coordinate system - along the X axis). The dimensional stability of the design model is provided by imposing a constraint in the node of the center of the plate in the UZ direction of the global coordinate system. The nonlinear loading was generated for the incremental-iterative method with a loading factor - 1 , number of steps - 1 , number of iterations - 100 for the linear loading p . Number of nodes in the design model - 10201.

Results in SCAD

[^3]Values of transverse displacements $w(m)$

Values of longitudinal stresses $N_{x}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of longitudinal stresses $N_{y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Transverse displacement in the center of the plate w, m	0.1050 (0.1067)	0.1047	0.29 (1.87)
Longitudinal stress in the center of the plate $\mathrm{N}_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	74963 (75830)	74480	0.64 $(1,7)$
Longitudinal stress in the center of the plate $\mathrm{N}_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	74963 (75830)	74480	0.64 $(1,7)$

The values of the approximate Hencky solution for the Karman theory are given without brackets;
The values of the refined Levy solution for the Karman theory are given in brackets

Notes: In the analytical approximate Hencky solution the transverse displacements w and the longitudinal stresses N_{x} and N_{y} for the center of the plate can be determined according to the following formulas (Poisson's ratio $v=0.3$):

$$
w=0.285 \cdot a \cdot \sqrt[3]{\frac{p}{E} \cdot \frac{a}{h}}
$$

$$
N_{x}=N_{y}=3.4 \cdot E \cdot\left(\frac{w}{a}\right)^{2} .
$$

Simply Supported Flexible Circular Plate Subjected to a Uniformly Distributed Transverse Load

Objective: Determination of maximum displacements and longitudinal radial tangential stresses in a flexible circular plate simply supported along the contour and subjected to a uniformly distributed transverse load in the geometrically nonlinear formulation.

Initial data file: 7.7.SPR

Problem formulation: The flexible circular isotropic plate of constant thickness is simply supported along the contour and subjected to the uniformly distributed transverse load p. Determine: the transverse displacements w and longitudinal radial tangential stresses N_{r} and N_{t} for the center of the plate.

References: S. Way, Bending of circular plates with large deflections, New York, ASME, v. 56 N 8, 1934, p. 627-636.
H. Hencky, Uber den spannungsztand in kreisrunden platten mit verschwindender biegungssteifigkeit, Dresden, Zeitschrift für angewandte mathematic und physik, v.63, 1915, p. 311-317.
I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 1,

Moscow, Mechanical engineering, 1968, p. 614

Initial data:

$\mathrm{E}=2.0 \cdot 10^{8} \mathrm{kPa} \quad$ - elastic modulus of the plate material;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{h}=0.01 \mathrm{~m}$

- thickness of the plate;
$\mathrm{R}=5.0 \mathrm{~m}$
- outer radius of the plate;
$\mathrm{p}=10 \mathrm{kPa} \quad-$ value of the uniformly distributed load.
Finite element model: Design model - general type system. Elements of the plate - 8820 four-node shell elements taking into account the geometric nonlinearity of type 344 and 180 three-node shell elements taking into account the geometric nonlinearity of type 342. The spacing of the finite element mesh in the radial direction is 0.10 m and in the tangential direction is 2.0°. The direction of the output of internal forces is radial tangential. Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Y and Z along the external contour of the plate. The dimensional stability of the design model is provided by imposing a constraint in the node of the center of the plate in the UZ direction of the global coordinate system. The nonlinear loading was generated for the incremental-iterative method with a loading factor -1 , number of steps -1 , number of iterations -100 for the linear loading p. Number of nodes in the design model - 9001.

Results in SCAD

Design model

Deformed model

	M	M
\square	$-0,095656$	$-0,089678$
\square	$-0,089678$	$-0,083699$
\square	$-0,083699$	$-0,077721$
\square	$-0,077721$	$-0,071742$
\square	$-0,071742$	$-0,065764$
\square	$-0,065764$	$-0,059785$
\square	$-0,059785$	$-0,053807$
\square	$-0,053807$	$-0,047828$
\square	$-0,047828$	$-0,04185$
\square	$-0,04185$	$-0,035871$
\square	$-0,035871$	$-0,029893$
\square	$-0,029893$	$-0,023914$
\square	$-0,023914$	$-0,017936$
\square	$-0,017936$	$-0,011957$
\square	$-0,011957$	$-0,005979$
\square	$-0,005979$	0

Values of transverse displacements $w(m)$

Values of longitudinal radial stresses $N_{r}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of longitudinal tangential stresses $N_{t}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
Transverse displacement in the center of the plate w, m	0.0968	0.0957	1.14
Longitudinal radial stress in the center of the plate $\mathrm{N}_{\mathrm{r}}, \mathrm{kN} / \mathrm{m}^{2}$	72316	73540	1.69
Longitudinal tangential stress in the center of the plate $\mathrm{N}_{\mathrm{t}}, \mathrm{kN} / \mathrm{m}^{2}$	72316	73540	1.69

Notes: In the analytical approximate Hencky solution according to the Karman theory the transverse displacements w and the longitudinal radial tangential stresses N_{r} and N_{t} for the center of the plate can be determined according to the following formulas (Poisson's ratio $v=0.3$):

$$
w=0.662 \cdot R \cdot \sqrt[3]{\frac{p}{E} \cdot \frac{R}{h}} ; \quad \quad N_{r}=N_{t}=0.965 \cdot E \cdot\left(\frac{w}{R}\right)^{2}
$$

Double-Guyed Mast Subjected to Static Loads and Prestressing Forces

Objective: Determination of the stress state of a double-guyed mast subjected to static loads and prestressing forces in the physically nonlinear formulation.

Initial data file: Mast.spr

Problem formulation: The double-guyed mast with a trunk clamped in the support and cable stays symmetrically descending from its top at an angle α to the horizon is subjected to the following actions (in the plane of the mast structure):

- In the initial state the cable stays are subjected to the uniformly distributed shear load $\mathrm{q}_{\mathrm{lg} 0}=\mathrm{q}_{\mathrm{rg} 0}$ and are prestressed with the force H_{0};
- In the operating state the mast trunk is subjected to the uniformly distributed load q_{m} and to the moment M_{m} applied at its top, the windward and leeward cable stays are subjected to the uniformly distributed loads q_{lg} and q_{rg}, the temperature of the system does not change.
Determine the longitudinal forces $\mathrm{N}_{\mathrm{lg}}, \mathrm{N}_{\mathrm{rg}}$ and N_{m} in the windward and leeward cable stays and in the mast trunk, as well as the bending moments M_{m} in the cross-sections of the mast trunk.

References: A. V. Perelmuter, Principles of Analysis of Cable-Bar Systems, Stroyizdat, 1969, p. 61

Initial data:

$\mathrm{EF}_{\mathrm{g}}=0.58 \cdot 10^{5} \mathrm{t}$
$\mathrm{EI}_{\mathrm{m}}=0.92 \cdot 10^{7} \mathrm{t} \cdot \mathrm{m}^{2}$
$\mathrm{S}=93.0 \mathrm{~m}$
$\mathrm{L}=115.5 \mathrm{~m}$
$\alpha=45^{\circ}$
$\mathrm{q}_{\lg 0}=\mathrm{q}_{\mathrm{rg} 0}=22.75 \cdot 10^{-3} \cdot \cos (\alpha)=16.087 \mathrm{t} / \mathrm{m}$
$\mathrm{q}_{\lg }=37.40 \cdot 10^{-3}-\mathrm{q}_{\lg 0} / \cos (\alpha)=14.650 \mathrm{t} / \mathrm{m}$
$\mathrm{q}_{\mathrm{rg}}=\mathrm{q}_{\mathrm{rg} 0} / \cos (\alpha)-8.10 \cdot 10^{-3}=14.650 \mathrm{t} / \mathrm{m}$
$\mathrm{q}_{\mathrm{m}}=950.00 \cdot 10^{-3} \mathrm{t} / \mathrm{m}$
$\mathrm{M}_{\mathrm{m}}=401.00 \mathrm{t} \cdot \mathrm{m}$
$\mathrm{H}_{0}=19.40 \mathrm{t}$

- axial stiffness of the cable stays;
- bending stiffness of the mast trunk;
- height of the mast trunk;
- length of the chord of the cable stays;
- angle of the cable stays to the horizon;
- uniformly distributed shear load on the cable stays in the initial state;
- uniformly distributed shear load on the windward cable stay in the operating state;
- uniformly distributed shear load on the leeward cable stay in the operating state;
- uniformly distributed shear load on the mast trunk in the operating state;
- moment at the top of the mast trunk;
- prestressing forces of the cable stays.

Finite element model: Design model - general type system. Elements of the mast trunk - 93 bar elements of type 5. The spacing of the finite element mesh along the height of the mast trunk (along the X1 axes of the local coordinate systems) is 1.0 m . Stiffness properties of the elements of the mast trunk:
$\mathrm{EF}=1.00 \cdot 10^{8} \mathrm{t} ; \mathrm{EI}_{\mathrm{y}}=\mathrm{EI}_{\mathrm{z}}=\mathrm{GI}_{\mathrm{x}}=0.92 \cdot 10^{7} \mathrm{t} \cdot \mathrm{m}^{2}$.

Elements of the cable stays - 2 cable-stayed elements of type 308. Boundary conditions are provided by imposing constraints on the support nodes of the cable stays in the directions of the degrees of freedom X, Z and on the support node of the mast trunk in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Z}, \mathrm{UY}$.
Actions in the initial state are defined by the stiffness properties of the cable-stayed elements:
$\gamma=7.84483 \mathrm{t} / \mathrm{m}^{3} \quad$ - specific weight of the cable stays;
$\mathrm{E}=2.00 \cdot 10^{7} \mathrm{t} / \mathrm{m}^{2} \quad$ - elastic modulus of the material of the cable stays;
$v=0.3 \quad$ - Poisson's ratio;
$\mathrm{H}_{0}=19.40 \mathrm{t} \quad$ - prestressing forces of the cable stays;
$\mathrm{D}=6.0675 \mathrm{~cm} \quad-$ outer diameter of the ring cross-section of the cable stays;
$\mathrm{d}=0.0001 \mathrm{~cm} \quad-$ inner diameter of the ring cross-section of the cable stays.
A separate loading with a vertical concentrated load of the minimum value $\mathrm{P}_{0}=1.00 \cdot 10^{-4} \mathrm{t}$ applied at the top of the mast trunk is created to control the values of the internal forces in the initial state.
The actions in the operating state are specified as the following loads:
uniformly distributed shear load in the local coordinate system along the Z 1 axis applied to the cable-stayed elements;
uniformly distributed shear load in the global coordinate system along the X axis applied to the elements of the mast trunk;
concentrated moment about the Y axis of the global coordinate system applied to the top node of the mast trunk.
The nonlinear loading was generated for the simple incremental method with a loading factor -0.1 and a number of steps -10 for the actions of the initial state, with a loading factor -0.01 and a number of steps 100 for the actions of the operating state.
Number of nodes in the design model - 96 .

Results in SCAD

Design model in the initial state

Design model in the operating state

Deformed model in the initial state

Deformed model in the operating state
$N o n l i n e a r i t y$

Longitudinal force diagrams in the initial state (m)

Bending moment diagrams in the initial state ($t \cdot m$)

Longitudinal force diagrams in the operating state (t)

Comparison of solutions:

Parameter	Theory	SCAD	Deviation, \%
$\mathrm{N}_{\mathrm{lg}}, \mathrm{t}$	52.769	52.774	0.01
$\mathrm{~N}_{\mathrm{rg}}, \mathrm{t}$	1.171	1.170	0.09
$\mathrm{~N}_{\mathrm{m}}, \mathrm{t}$	-38.142	-38.147	0.01
$\mathrm{M}_{\mathrm{m}}(0), \mathrm{t} \cdot \mathrm{m}$	1227.376	1224.539	0.23
$\mathrm{M}_{\mathrm{m}}(\mathrm{S}), \mathrm{t} \cdot \mathrm{m}$	401.000	401.000	0.00
$\mathrm{~S}_{\mathrm{extr}}, \mathrm{m}$	55.853	56.000	-
$\mathrm{M}_{\mathrm{m}}\left(\mathrm{S}_{\mathrm{extr}}, \mathrm{t} \cdot \mathrm{m}\right.$	-254.437	-251.868	1.01

Notes: In the analytical solution the internal forces in the twice statically indeterminate mast structure are determined by the force method, and the thrust reactions X_{1} and X_{2} of the support nodes of the cable stays are taken as the unknowns.

$$
\begin{gathered}
N_{l g}=H_{0}+N_{l g l} \cdot X_{1}+N_{l g q} \\
N_{r g}=H_{0}+N_{r g 2} \cdot X_{2}+N_{r g q} \\
N_{m}=-2 \cdot H_{0} \cdot \sin (\alpha)+N_{m l} \cdot X_{1}+N_{m 2} \cdot X_{2}+N_{m q} \\
M_{m}(0)=M_{m 1}(0) \cdot X_{l}+M_{m 2}(0) \cdot X_{2}+M_{m q}(0) \\
M_{m}(S)=M_{m l}(S) \cdot X_{1}+M_{m 2}(S) \cdot X_{2}+M_{m q}(S) \\
S_{e x t r}=S+\frac{q_{l g}+q_{r g}}{q_{m}} \cdot L \cdot \sin (\alpha)+\frac{X_{1}-X_{2}}{q_{m}} \\
M_{m}\left(S_{e x t r}\right)=\frac{q_{m}}{2} \cdot S_{\text {extr }}{ }^{2}-\left[q_{m} \cdot S+\left(q_{l g}+q_{r g}\right) \cdot L \cdot \sin (\alpha)+X_{1}-X_{2}\right] \cdot S_{e x t r}+ \\
+\frac{q_{m}}{2} \cdot S^{2}+\left(q_{l g}+q_{r g}\right) \cdot S \cdot L \cdot \sin (\alpha)+M_{m}+\left(X_{l}-X_{2}\right) \cdot S
\end{gathered}
$$

The values of the unknowns X_{1} and X_{2} are determined by solving the system of linear equations:

$$
\begin{aligned}
& \left(\frac{N_{l g l}{ }^{2} \cdot L}{E F_{g}}+\frac{M_{m l}{ }^{2}(0) \cdot S}{3 \cdot E I_{m}}\right) \cdot X_{1}+\frac{M_{m l}(0) \cdot M_{m 2}(0) \cdot S}{3 \cdot E I_{m}} \cdot X_{2}+\frac{N_{l g l} \cdot N_{l g q} \cdot L}{E F_{g}}+ \\
& +\frac{S}{6 \cdot E I_{m}} \cdot\left(M_{m l}(0) \cdot M_{m q}(0)+4 \cdot M_{m l}\left(\frac{S}{2}\right) \cdot M_{m q}\left(\frac{S}{2}\right)+M_{m l}(S) \cdot M_{m q}(S)\right)- \\
& -\frac{1}{2} \cdot N_{l g l} \cdot\left(\frac{\left(q_{l g}+q_{l g o}\right)^{2} \cdot L^{3}}{12 \cdot\left(H_{0}+N_{l g q}+N_{l g} \cdot X_{l}\right)^{2}}-\frac{q_{l g}{ }^{2} \cdot L^{3}}{12 \cdot H_{0}{ }^{2}}\right)=0 \\
& \frac{M_{m 1}(0) \cdot M_{m 2}(0) \cdot S}{3 \cdot E I_{m}} \cdot X_{1}+\left(\frac{N_{r g 2}{ }^{2} \cdot L}{E F_{g}}+\frac{M_{m 2}{ }^{2}(0) \cdot S}{3 \cdot E I_{m}}\right) \cdot X_{2}+\frac{N_{r g 1} \cdot N_{r g q} \cdot L}{E F_{g}}+ \\
& +\frac{S}{6 \cdot E I_{m}} \cdot\left(M_{m 2}(0) \cdot M_{m q}(0)+4 \cdot M_{m 2}\left(\frac{S}{2}\right) \cdot M_{m q}\left(\frac{S}{2}\right)+M_{m 2}(S) \cdot M_{m q}(S)\right)- \\
& -\frac{1}{2} \cdot N_{r g 2} \cdot\left(\frac{\left(-q_{r g}+q_{r g}\right)^{2} \cdot L^{3}}{12 \cdot\left(H_{0}+N_{r g q}+N_{r g 2} \cdot X_{2}\right)^{2}}-\frac{q_{r g 0}{ }^{2} \cdot L^{3}}{12 \cdot H_{0}{ }^{2}}\right)=0 \\
& N_{\lg 1}=-\frac{1}{\cos (\alpha)} ; \quad \quad N_{m l}=\operatorname{tg}(\alpha) ; \\
& M_{m l}(0)=1 \cdot S ; \quad M_{m l}\left(\frac{S}{2}\right)=\frac{S}{2} ; \quad M_{m l}(S)=0 \cdot S \text {; } \\
& N_{r g 2}=-\frac{1}{\cos (\alpha)} ; \quad \quad N_{m 2}=\operatorname{tg}(\alpha) \text {; } \\
& M_{m 2}(0)=-1 \cdot S ; \quad M_{m 2}\left(\frac{S}{2}\right)=-\frac{S}{2} ; \quad M_{m 2}(S)=-0 \cdot S \text {; } \\
& N_{l g q}=-\frac{q_{l g} \cdot L}{2} \cdot \operatorname{tg}(\alpha) ; \quad \quad N_{r g q}=\frac{q_{r g} \cdot L}{2} \cdot \operatorname{tg}(\alpha) ; \\
& N_{m q}=-\frac{\left(q_{l g}-q_{r g}\right) \cdot L}{2} \cdot \frac{\cos (2 \cdot \alpha)}{\cos (\alpha)} ; \\
& M_{m q}(0)=M_{m}+\frac{q_{m} \cdot S^{2}}{2}+\left(q_{l g}+q_{r g}\right) \cdot S \cdot L \cdot \sin (\alpha) ; \\
& M_{m q}\left(\frac{S}{2}\right)=M_{m}+\frac{q_{m} \cdot S^{2}}{8}+\frac{\left(q_{l g}+q_{r g}\right) \cdot S \cdot L}{2} \cdot \sin (\alpha) ; \\
& M_{m q}(S)=M_{m} .
\end{aligned}
$$

Square Membrane with a Compliant Contour

Objective: Comparison of the results of the geometrically nonlinear analysis with the experimental studies.

Initial data file: Плита-мембрана 4.SPR

Problem formulation:

The behavior of a square membrane with a support contour compliant in its plane subjected to the load uniformly distributed over the surface. It is necessary to compare the calculated data with the experimental one, when the deflection in the center and the overall picture are known.

References: G.L. Anikeev, A.Ya. Pritsker, I.N. Lebedich, Experience in Designing, Manufacturing and Testing Roofing Panels of Aluminum Alloys // Building Structures from Aluminum Alloys (Design, Research, Production) - M.: Stroyizdat, 1963

Initial data:

A membrane structure $3 \times 3 \mathrm{~m}$ made of AMG- 6 M alloy was tested. The thickness of the membrane sheet is 1 mm , the contour is made of a bent channel $80 \times 300 \times 3 \mathrm{~mm}$. The measurement of the prototype was performed before the tests, the initial sag of the membrane center was $1,5 \mathrm{~mm}$. The test load is $100 \mathrm{kgf} / \mathrm{m}^{2}$. The displacements in the center were measured by the Maximov deflectometer. A very characteristic deflection pattern was noted, in which the level lines deviate far from the oval shape and are closer to a rectangular form in the vicinity of the contour.

Finite element model: The design model is assembled from shell finite elements (FE 341), the model contains 832 elements. Constraints in the Z direction were provided at the corners of the structure, and constraints along X and along Y were provided at the centers of the sides of the support contour parallel to the X and Y axes respectively.
The initial imperfection of the membrane is taken into account in the design model.

Design model

The nonlinear problem was solved by the incremental method with the steps shown in the following screenshot:

Results in SCAD

The qualitative picture of the deformation completely repeated that observed in the experiment

Isofields of displacements

Comparison of solutions:

Parameter	Experiment	SCAD	Deviation, \%
Maximum displacement in the vertical direction (mm)	59,1	55,65	5,84

Pathological Tests

Rectangular Plate under the Constant Stresses on the Midsurface

Objective: Check of the obtained values of the constant stresses on the midsurface of a rectangular plate at an irregular coarse finite element mesh.

Initial data files:

File name	Description
Patch_test_Constant_stress_Shell_42.SPR	Design model with the elements of type 42
Patch_test_Constant_stress_Shell_44.SPR	Design model with the elements of type 44
Patch_test_Constant_stress_Shell_45.SPR	Design model with the elements of type 45
Patch_test_Constant_stress_Shell_50.SPR	Design model with the elements of type 50

Problem formulation: The rectangular isotropic plate of constant thickness is subjected to the displacements of the outer edges providing the conditions of constant stresses on the midsurface. Check that the conditions of constant normal $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$ and tangential τ_{xy} stresses on the midsurface are provided.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
J. Robinson, S. Blackham, An evaluation of lower order membranes as contained in MSC/NASTRAN, ASAS and PARFEC FEM system, Dorset, Robinson and associates, 1979.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{6} \mathrm{kPa} \quad$ - elastic modulus of the plate material;
$v=0.25 \quad$ - Poisson's ratio;
$\mathrm{t}=0.001 \mathrm{~m} \quad-$ thickness of the plate;
$\mathrm{a}=0.12 \mathrm{~m} \quad-$ short side of the plate;
$\mathrm{b}=0.24 \mathrm{~m} \quad-$ long side of the plate;
Boundary conditions:
$u=10^{-3} \cdot(x+y / 2) \quad$ - displacement of the outer edges along the long side of the plate;
$\mathrm{v}=10^{-3} \cdot(\mathrm{x} / 2+\mathrm{y}) \quad$ - displacement of the outer edges along the short side of the plate;
Location of internal nodes of the finite element mesh:

Numbers of nodes in the Figure 1	\mathbf{x}	\mathbf{y}
1	0.04	0.02
2	0.18	0.03
3	0.16	0.08
4	0.08	0.08

Finite element model: Design model - general type system. Four design models are considered:
Model 1-10 three-node shell elements of type 42. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ and their displacement in accordance with the specified values u and v. Number of nodes in the model-8.

Verification Examples

Model 2-5 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}$, UZ and their displacement in accordance with the specified values u and v. Number of nodes in the model 8.

Model 3-10 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and their displacement in accordance with the specified values u and v. Number of nodes in the model 25.

Model 4-5 eight-node shell elements of type 50. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ and their displacement in accordance with the specified values u and v. Number of nodes in the model -20 .

Results in SCAD

Model 1. Design model

Model 1. Deformed model

Model 1. Values of normal stresses $\sigma_{x}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 1. Values of normal stresses $\sigma_{y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 1. Values of tangential stresses $\tau_{x y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 2. Design model

Model 2. Deformed model

Model 2. Values of normal stresses $\sigma_{x}\left(k N / m^{2}\right)$

Model 2. Values of normal stresses $\sigma_{y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 2. Values of tangential stresses $\tau_{x y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 3. Deformed model

Model 3. Values of normal stresses $\sigma_{x}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 3. Values of normal stresses $\sigma_{y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 3. Values of tangential stresses $\tau_{x y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 4. Design model

Model 4. Deformed model

Model 4. Values of normal stresses $\sigma_{x}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 4. Values of normal stresses $\sigma_{y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Model 4. Values of tangential stresses $\tau_{x y}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Comparison of solutions:

Model	Parameter	Theory	SCAD	Deviation, \%
1	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	1333	1333	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	1333	1333	0.00
	$\begin{gathered} \hline \text { Tangential stresses } \\ \tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2} \\ \hline \end{gathered}$	400	400	0.00
2	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	1333	1333	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	1333	1333	0.00
	$\begin{gathered} \text { Tangential stresses } \\ \tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2} \\ \hline \end{gathered}$	400	400	0.00
3	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	1333	1333	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	1333	1333	0.00
	$\begin{gathered} \text { Tangential stresses } \\ \tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2} \\ \hline \end{gathered}$	400	400	0.00
4	$\begin{gathered} \hline \text { Normal stresses } \\ \sigma_{x}, \mathrm{kN} / \mathrm{m}^{2} \\ \hline \end{gathered}$	1333	1333	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	1333	1333	0.00
	$\begin{gathered} \text { Tangential stresses } \\ \tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2} \\ \hline \end{gathered}$	400	400	0.00

Notes: In the analytical solution the normal σ_{x}, σ_{y} and tangential τ_{xy} stresses on the midsurface of the plate are determined according to the following formulas:

$$
\sigma_{x}=10^{-3} \cdot \frac{E}{1-v} ; \quad \quad \sigma_{y}=10^{-3} \cdot \frac{E}{1-v} ; \quad \quad \tau_{x y}=10^{-3} \cdot \frac{E}{2 \cdot(1+v)} .
$$

Rectangular Plate with Constant Curvature

Objective: Check of the obtained values of the stresses on the external surface for a rectangular plate at an irregular coarse finite element mesh.

Initial data files:

File name	Description
Patch_test_Constant_curvature_Shell_42.SPR	Design model with the elements of type 42
Patch_test_Constant_curvature_Shell_44.SPR	Design model with the elements of type 44
Patch_test_Constant_curvature_Shell_45.SPR	Design model with the elements of type 45
Patch_test_Constant_curvature_Shell_50.SPR	Design model with the elements of type 50

Problem formulation: The rectangular isotropic plate of constant thickness is subjected to the displacements and rotations of the outer edges providing the constant curvature (stresses on the external surface). Check that the constant curvature $\kappa_{x}, \kappa_{y}, \kappa_{x y}$ (stresses on the external surface $\sigma_{x}, \sigma_{y}, \tau_{x y}$) is provided.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
J. Robinson, S. Blackham, An evaluation of plate bending elements: MSC/NASTRAN, ASAS, PARFEC, ANSYS and SAP4, Dorset, Robinson and associates, 1981.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{6} \mathrm{kPa} \quad$ - elastic modulus of the plate material;
$v=0.25 \quad$ - Poisson's ratio;
$\mathrm{t}=0.001 \mathrm{~m} \quad$ - thickness of the plate;
$\mathrm{a}=0.12 \mathrm{~m} \quad-$ short side of the plate;
$\mathrm{b}=0.24 \mathrm{~m} \quad-$ long side of the plate;

Boundary conditions:

$\mathrm{w}=10^{-3} \cdot\left(\mathrm{x}^{2}+\mathrm{x} \cdot \mathrm{y}+\mathrm{y}^{2}\right) / 2 \quad$ - displacement of the outer edges along the normal to the surface of the
plate;
$\theta_{\mathrm{x}}=10^{-3} \cdot(\mathrm{x} / 2+\mathrm{y}) \quad$ - rotation of the outer edges about the short sides of the plate;
$\theta_{y}=10^{-3} \cdot(-x-y / 2) \quad-$ rotation of the outer edges about the long sides of the plate.
Location of internal nodes of the finite element mesh:

Numbers of nodes in the Figure 1	\mathbf{x}	\mathbf{y}
1	0.04	0.02
2	0.18	0.03
3	0.16	0.08
4	0.08	0.08

Finite element model: Design model - general type system. Four design models are considered:
Model 1-10 three-node shell elements of type 42. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$,

UX, UY, UZ and their displacement (rotation) in accordance with the specified values $\mathrm{w}, \theta_{\mathrm{x}}$ and θ_{y}. Number of nodes in the model -8 .
Model 2-5 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}$, UZ and their displacement (rotation) in accordance with the specified values $\mathrm{w}, \theta_{\mathrm{x}}$ and $\theta_{\mathrm{y} . .}$ Number of nodes in the model -8 .
Model 3-10 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}$, UZ and their displacement (rotation) in accordance with the specified values $\mathrm{w}, \theta_{\mathrm{x}}$ and θ_{y}. Number of nodes in the model -25 .
Model 4-5 eight-node shell elements of type 50. Boundary conditions are provided by imposing constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ and their displacement (rotation) in accordance with the specified values w, θ_{x} and θ_{y}. Number of nodes in the model -20 .

Results in SCAD

Model 1. Design model

Model 1. Deformed model

Model 1. Values of the bending moment $M_{x}(k N \cdot m / m)$

Model 1. Values of the bending moment $M_{y}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Model 1. Values of the torque $M_{x y}(k N \cdot m / m)$

Model 2. Design model

Model 2. Deformed model

Model 2. Values of the bending moment $M_{x}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Model 2. Values of the bending moment $M_{y}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Model 2. Values of the torque $M_{x y}(k N \cdot m / m)$

Model 3. Design model

Model 3. Values of the bending moment $M_{x}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Model 3. Values of the bending moment $M_{y}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Model 3. Values of the torque $M_{x y}(k N \cdot m / m)$

Model 4. Design model

Model 4. Deformed model

Model 4. Values of the bending moment $M_{x}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Model 4. Values of the bending moment $M_{y}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$

Model 4. Values of the torque $M_{x y}(k N \cdot m / m)$

Comparison of solutions:

Model	Parameter	Theory	SCAD	Deviation, \%
1	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	Tangential stresses $\tau_{\mathrm{xv}}, \mathrm{kN} / \mathrm{m}^{2}$	0.200	$\begin{gathered} 6 \cdot 0.333 \cdot 10^{-7} / 0.001^{2}= \\ =0.200 \end{gathered}$	0.00
2	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	Tangential stresses $\tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2}$	0.200	$\begin{gathered} 6 \cdot 0.333 \cdot 10^{-7} / 0.001^{2}= \\ =0.200 \end{gathered}$	0.00
3	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	Tangential stresses $\tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2}$	0.200	$\begin{gathered} 6 \cdot 0.333 \cdot 10^{-7} / 0.001^{2}= \\ =0.200 \end{gathered}$	0.00
4	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	$\begin{gathered} \text { Normal stresses } \\ \sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2} \end{gathered}$	0.667	$\begin{gathered} 6 \cdot 1.111 \cdot 10^{-7} / 0.001^{2}= \\ =0.667 \end{gathered}$	0.00
	Tangential stresses $\tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2}$	0.200	$\begin{gathered} 6 \cdot 0.333 \cdot 10^{-7} / 0.001^{2}= \\ =0.200 \end{gathered}$	0.00

Notes: In the analytical solution the normal $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}$ and tangential τ_{xy} stresses on the external surface of the plate are determined according to the following formulas:

$$
\begin{gathered}
\sigma_{x}=10^{-3} \cdot \frac{E \cdot t}{2 \cdot(1-v)}=\frac{6 \cdot M_{x}}{t^{2}} ; \\
\tau_{x y}=10^{-3} \cdot \frac{E \cdot t}{4 \cdot(1+v)}=\frac{\sigma_{y}=10^{-3} \cdot \frac{E \cdot t}{2 \cdot(1-v)}=\frac{6 \cdot M_{x y}}{t^{2}}}{t^{2}}
\end{gathered}
$$

Cube under the Constant Stresses throughout the Volume

Objective: Check of the obtained values of the constant stresses throughout the volume of the cube at an irregular coarse finite element mesh.

Initial data files:

File name	Description
Patch_test_Constant_stress_Solid_32.SPR	Design model with the elements of type 32
Patch_test_Constant_stress_Solid_34.SPR	Design model with the elements of type 34
Patch_test_Constant_stress_Solid_36.SPR	Design model with the elements of type 36
Patch_test_Constant_stress_Solid_37.SPR	Design model with the elements of type 37

Problem formulation: The unit isotropic cube is subjected to the displacements of the external surfaces providing the conditions of the constant stresses throughout the volume. Check that the conditions of constant normal $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$ and tangential $\tau_{\mathrm{xy}}, \tau_{\mathrm{x} z}, \tau_{\mathrm{yz}}$ stresses throughout the volume are provided.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{6} \mathrm{kPa}$

- elastic modulus of the plate material;
$v=0.25$
- Poisson's ratio;
$\mathrm{a}=1.00 \mathrm{~m}$
- side of the cube;

Boundary conditions:

$\mathrm{u}=10^{-3} \cdot(2 \cdot \mathrm{x}+\mathrm{y}+\mathrm{z}) / 2$
coordinate system;
$\mathrm{v}=10^{-3} \cdot(\mathrm{x}+2 \cdot \mathrm{y}+\mathrm{z}) / 2$
coordinate system;
$\mathrm{w}=10^{-3} \cdot(\mathrm{x}+\mathrm{y}+2 \cdot \mathrm{z}) / 2$

- displacement of the external surfaces along the X axis of the global
- displacement of the external surfaces along the Y axis of the global
coordinate system;
- displacement of the external surfaces along the Z axis of the global

Location of internal nodes of the finite element mesh:

Numbers of nodes in the Figure 1	\mathbf{x}	\mathbf{y}	\mathbf{z}
1	0.35	0.35	0.35
2	0.75	0.25	0.25
3	0.85	0.85	0.15
4	0.25	0.75	0.25
5	0.35	0.35	0.65
6	0.75	0.25	0.75

Numbers of nodes in the Figure 1	\mathbf{x}	\mathbf{y}	\mathbf{z}
7	0.85	0.85	0.85
8	0.25	0.75	0.75

Finite element model: Design model - general type system. Four design models are considered:
Model 1-42 four-node pyramid elements of type 32. Boundary conditions are provided by imposing constraints on the nodes of the external surfaces of the cube in the directions of the degrees of freedom X, Y, Z and their displacement in accordance with the specified values $\mathrm{u}, \mathrm{v}, \mathrm{w}$. Number of nodes in the model -16.
Model 2-14 six-node isoparametric solid elements of type 34. Boundary conditions are provided by imposing constraints on the nodes of the external surfaces of the cube in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and their displacement in accordance with the specified values $\mathrm{u}, \mathrm{v}, \mathrm{w}$. Number of nodes in the model -16 .
Model 3-7 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by imposing constraints on the nodes of the external surfaces of the cube in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and their displacement in accordance with the specified values $\mathrm{u}, \mathrm{v}, \mathrm{w}$. Number of nodes in the model -16 .
Model 4-7 twenty-node isoparametric solid elements of type 37. Boundary conditions are provided by imposing constraints on the nodes of the external surfaces of the cube in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and their displacement in accordance with the specified values u, v, w. Number of nodes in the model -48 .

Results in SCAD

Model 1. Design and deformed models

Model 2. Design and deformed models

Model 3. Design and deformed models

Model 4. Design and deformed models

Values of normal stresses for all models $\sigma_{x}, \sigma_{y} \sigma_{z}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Values of tangential stresses for all models $\tau_{x z}, \tau_{x y}, \tau_{y z}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$

Comparison of solutions:

Model	Parameter	Theory	SCAD	Deviation, \%
$1-4$	Normal stresses $\sigma_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	2000	2000	0.00
	Normal stresses $\sigma_{\mathrm{y}}, \mathrm{kN} / \mathrm{m}^{2}$	2000	2000	0.00
	Normal stresses $\sigma_{\mathrm{z}}, \mathrm{kN} / \mathrm{m}^{2}$	2000	2000	0.00
	Tangential stresses $\tau_{\mathrm{xy}}, \mathrm{kN} / \mathrm{m}^{2}$	400	400	0.00
	Tangential stresses $\tau_{\mathrm{x}}, \mathrm{kN} / \mathrm{m}^{2}$	400	400	0.00
	Tangential stresses $\tau_{\mathrm{yz}}, \mathrm{kN} / \mathrm{m}^{2}$	400	400	0.00

Notes: In the analytical solution the normal $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{\mathrm{z}}$ and tangential $\tau_{\mathrm{xy}}, \tau_{\mathrm{xz}}, \tau_{\mathrm{yz}}$ stresses throughout the volume of the cube are determined according to the following formulas:

$$
\sigma_{x}=10^{-3} \cdot \frac{E}{1-2 \cdot v} ; \quad \quad \sigma_{y}=10^{-3} \cdot \frac{E}{1-2 \cdot v} ; \quad \sigma_{z}=10^{-3} \cdot \frac{E}{1-2 \cdot v}
$$

$$
\tau_{x y}=10^{-3} \cdot \frac{E}{2 \cdot(1+v)} ; \quad \tau_{x z}=10^{-3} \cdot \frac{E}{2 \cdot(1+v)} ; \quad \quad \tau_{y z}=10^{-3} \cdot \frac{E}{2 \cdot(1+v)} .
$$

Rectilinear Cantilever Beam with Concentrated Longitudinal and Shear Forces and a Torque at Its Free End

Objective: Check of the obtained values of the longitudinal and transverse displacements and the torsional angle of the free end of a rectilinear cantilever beam subjected to concentrated longitudinal and shear forces and a torque under different distortions of the finite element mesh.

Initial data files:

File name	Description
Straight_cantilever_beam_Regular_shape_Shell_42.SPR	Design model with the elements of type 42 at a regular mesh
Straight_cantilever_beam_Regular_shape_Shell_142.SPR	Design model with the elements of type 142 at a regular mesh
Straight_cantilever_beam_Regular_shape_Shell_44.SPR	Design model with the elements of type 44 at a regular mesh
Straight_cantilever_beam_Regular_shape_Shell_144.SPR	Design model with the elements of type 144 at a regular mesh
Straight_cantilever_beam_Regular_shape_Shell_45.SPR	Design model with the elements of type 45 at a regular mesh
Straight_cantilever_beam_Regular_shape_Shell_145.SPR	Design model with the elements of type 145 at a regular mesh
Straight_cantilever_beam_Regular_shape_Shell_50.SPR	Design model with the elements of type 50 at a regular mesh
Straight_cantilever_beam_Regular_shape_Shell_150.SPR	Design model with the elements of type 150 at a regular mesh
Straight_cantilever_beam_Regular_shape_ Solid _36.SPR	Design model with the elements of type 36 at a regular mesh
Straight_cantilever_beam_Regular_shape_Solid _37.SPR	Design model with the elements of type 37 at a regular mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_42.SPR	Design model with the elements of type 42 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_142.SPR	Design model with the elements of type 142 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_44.SPR	Design model with the elements of type 44 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_144.SPR	Design model with the elements of type 144 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_45.SPR	Design model with the elements of type 45 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_145.SPR	Design model with the elements of type 145 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_50.SPR	Design model with the elements of type 50 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Shell_150.SPR	Design model with the elements of type 150 at a trapezoidal mesh

File name	Description
Straight_cantilever_beam_Trapezoidal_shape_Solid_36.SPR	Design model with the elements of type 36 at a trapezoidal mesh
Straight_cantilever_beam_Trapezoidal_shape_Solid_37.SPR	Design model with the elements of type 37 at a trapezoidal mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_42.SPR	Design model with the elements of type 42 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_142.SPR	Design model with the elements of type 142 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_44.SPR	Design model with the elements of type 44 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_144.SPR	Design model with the elements of type 144 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_45.SPR	Design model with the elements of type 45 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_145.SPR	Design model with the elements of type 145 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_50.SPR	Design model with the elements of type 50 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Shell_150.SPR	Design model with the elements of type 150 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Solid_36.SPR	Design model with the elements of type 36 at a parallelogram mesh
Straight_cantilever_beam_Parallelogram_shape_Solid_37.SPR	Design model with the elements of type 37 at a parallelogram mesh

Problem formulation: The rectilinear isotropic cantilever beam of a rectangular cross-section is subjected to the concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} applied at its free end. Check the obtained values of the longitudinal X and transverse displacements Y, Z and the torsional angle UX of the free end of the rectilinear cantilever beam from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{kPa}$
$\mathrm{v}=0.30$
$\mathrm{b}=0.1 \mathrm{~m}$
$\mathrm{h}=0.2 \mathrm{~m}$
$\mathrm{L}=6.0 \mathrm{~m}$
$\mathrm{P}_{\mathrm{x}}=1.0 \mathrm{kN}$
$\mathrm{P}_{\mathrm{y}}=1.0 \mathrm{kN}$
$\mathrm{P}_{\mathrm{z}}=1.0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{x}}=1.0 \mathrm{kN} \cdot \mathrm{m}$

- elastic modulus of the beam material;
- Poisson's ratio;
- width of the beam;
- height of the beam;
- length of the beam;
- value of the longitudinal force;
- value of the shear force acting along the height of the beam;
- value of the shear force acting along the width of the beam;
- value of the torque.

Finite element model: Design models - general type systems. Ten design models with regular, trapezoidal and parallelogram finite element meshes are considered:
Model 1-12 three-node shell elements of type 42. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of two nodal forces ($\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5 \cdot 0 \cdot 0.2 / 2 \mathrm{kN} \cdot \mathrm{m}$). Number of nodes in the model - 14 .
Model 2-12 three-node shell elements allowing for shear of type 142. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of two nodal forces ($\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5 \cdot 0 \cdot 0.2 / 2$ $\mathrm{kN} \cdot \mathrm{m}$). Number of nodes in the model - 14 .

Model 3-6 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5.0 \cdot 0.2 / 2 \mathrm{kN} \cdot \mathrm{m}\right)$. Number of nodes in the model-14.
Model 4-6 four-node shell elements allowing for shear of type 144 . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5.0 \cdot 0.2 / 2\right.$ $\mathrm{kN} \cdot \mathrm{m})$. Number of nodes in the model - 14 .
Model 5-12 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5 \cdot 0 \cdot 0.2 / 2 \mathrm{kN} \cdot \mathrm{m}\right)$. Number of nodes in the model - 39.
Model 6-12 six-node shell elements allowing for shear of type 145 . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5.0 \cdot 0.2 / 2\right.$ $\mathrm{kN} \cdot \mathrm{m})$. Number of nodes in the model - 39 .
Model 7-6 eight-node shell elements of type 50. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of two nodal forces ($\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5 \cdot 0 \cdot 0.2 / 2 \mathrm{kN} \cdot \mathrm{m}$). Number of nodes in the model - 33 .
Model 8-6 eight-node shell elements allowing for shear of type 150 . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces and the torque M_{x} are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{x}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=2 \cdot 5.0 \cdot 0.2 / 2\right.$ $\mathrm{kN} \cdot \mathrm{m})$. Number of nodes in the model - 33 .
Model 9-6 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces and the torque M_{x} are given in the form of four nodal forces $\left(\mathrm{P}_{\mathrm{x}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=4 \cdot 2.5 \cdot 0.2 / 2\right.$ $\mathrm{kN} \cdot \mathrm{m})$. Number of nodes in the model - 28 .
Model 10-6 twenty-node isoparametric solid elements of type 37 . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal P_{x} and shear P_{y}, P_{z} forces and the torque M_{x} are given in the form of four nodal forces $\left(\mathrm{P}_{\mathrm{x}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{y}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{M}_{\mathrm{x}}=4 \cdot 2.5 \cdot 0.2 / 2\right.$ $\mathrm{kN} \cdot \mathrm{m})$. Number of nodes in the model - 80 .

Results in SCAD

Models 1 and 2.
Design model with a regular finite element mesh

Models 1 and 2.
Deformed model with a regular finite element mesh

Model 1.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 2.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 3 and 4.
Design model with a regular finite element mesh

Models 3 and 4.
Deformed model with a regular finite element mesh

Model 3.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 4.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 5 and 6.
Design model with a regular finite element mesh

Verification Examples

Models 5 and 6.
Deformed model with a regular finite element mesh

Model 5.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 6.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 7 and 8.
Deformed model with a regular finite element mesh

Model 7.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam (m, m, m, rad)

Model 8.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 9.
Design model with a regular finite element mesh

Model 9.
Deformed model with a regular finite element mesh

Model 9.
Values of the longitudinal displacement X from the action P_{x} transverse displacements Y, Z from the actions P_{y}, P_{z} and transverse displacements Y, Z from the action M_{x} of the free end of the rectilinear cantilever beam (m, m, m, m, m)

Verification Examples

Model 10.
Values of the longitudinal displacement X from the action P_{x}, transverse displacements Y, Z from the actions P_{y}, P_{z} and transverse displacements Y, Z from the action M_{x} of the free end of the rectilinear cantilever beam (m, m, m, m, m)

Models 1 and 2.
Design model with a trapezoidal finite element mesh

Models 1 and 2.
Deformed model with a trapezoidal finite element mesh

Model 1.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 2.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 3 and 4.
Design model with a trapezoidal finite element mesh

Verification Examples

Models 3 and 4.
Deformed model with a trapezoidal finite element mesh

Model 3.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 4.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 5 and 6.
Design model with a trapezoidal finite element mesh

Models 5 and 6.
Deformed model with a trapezoidal finite element mesh

Model 5.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Verification Examples

Model 6.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 7 and 8.
Design model with a trapezoidal finite element mesh

Models 7 and 8.
Deformed model with a trapezoidal finite element mesh

Model 7

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam (m, m, m, rad)

Model 8.

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam (m, m, m, rad)

Model 9.
Design model with a trapezoidal finite element mesh

Verification Examples

Model 9.
Deformed model with a trapezoidal finite element mesh

Model 10.
Deformed model with a trapezoidal finite element mesh

Model 10.
Values of the longitudinal displacement X from the action P_{x}, transverse displacements Y, Z from the actions P_{y}, P_{z} and transverse displacements Y, Z from the action M_{x} of the free end of the rectilinear cantilever beam (m, m, m, m, m)

Models 1 and 2.
Design model with a parallelogram finite element mesh

Models 1 and 2.
Deformed model with a parallelogram finite element mesh

Model 1.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 2.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 3 and 4.
Design model with a parallelogram finite element mesh

Models 3 and 4.
Deformed model with a parallelogram finite element mesh

Model 3.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam (m, m, m, rad)

Model 4.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Models 5 and 6.
Design model with a parallelogram finite element mesh

Models 5 and 6.
Deformed model with a parallelogram finite element mesh
,

Model 5.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam ($m, m, m, r a d$)

Model 6.

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam (m, m, m, rad)

Models 7 and 8.
Design model with a parallelogram finite element mesh

Verification Examples

Models 7 and 8.
Deformed model with a parallelogram finite element mesh

Model 7.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam (m, m, m, rad)

Model 8.
Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle $U X$ of the free end of the rectilinear cantilever beam (m, m, m, rad)

Model 9.
Design model with a parallelogram finite element mesh

Model 9
Deformed model with a parallelogram finite element mesh

Model 10.
Design model with a parallelogram finite element mesh

Model 10.
Deformed model with a parallelogram finite element mesh

Model 10.
Values of the longitudinal displacement X from the action P_{x}, transverse displacements Y, Z from the actions P_{y}, P_{z} and transverse displacements Y, Z from the action M_{x} of the free end of the rectilinear cantilever beam (m, m, m, m, m)

Comparison of solutions:

Design model with a regular finite element mesh

Model	Parameter	Theory	SCAD	Deviation, \%
$\begin{gathered} 1 \\ \text { (Member type 42) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002972	0.93
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0034	96.85
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4212	2.50
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.018560	20.68
$\begin{gathered} 2 \\ \text { (Member type 142) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002972	0.93
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0034	96.85
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4198	2.82
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032096	5.90
$\begin{gathered} 3 \\ \text { (Member type 44) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002986	0.47
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0101	90.65
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4250	1.62
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.019692	15.85
$\begin{gathered} 4 \\ \text { (Member type 144) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002987	0.43
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0104	90.37
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4235	1.97
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032759	3.96
$\begin{gathered} 5 \\ \text { (Member type 45) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003032	1.07
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1070	0.92
	Transverse displacement Z of the free end	0.4320	0.4276	1.02

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
	of the cantilever beam, m			
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.022631	3.29
(Member type 145)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003032	1.07
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1070	0.92
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4259	1.41
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032719	4.08
$\begin{gathered} 7 \\ \text { (Member type 50) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003026	0.87
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1070	0.92
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4276	1.02
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.022813	2.51
(Member type 150)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003026	0.87
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1070	0.92
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4264	1.30
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032959	3.37
$\begin{gathered} 9 \\ \text { (Member type 36) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002957	1.43
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0100	90.74
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.0109	97.48
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.028974	15.05
$\begin{gathered} 10 \\ \text { (Member type 37) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003024	0.80
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1072	0.74
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4287	0.76

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.028974	15.05

Design model with a trapezoidal finite element mesh

Model	Parameter	Theory	SCAD	Deviation, \%
(Member type 42)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002970	1.00
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0016	98.52
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4207	2.62
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.018771	19.78
$\begin{gathered} 2 \\ \text { (Member type 142) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002970	1.00
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0016	98.52
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4117	4.70
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.031948	6.34
3(Member type 44)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002980	0.67
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0029	97.31
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4254	1.53
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.020509	12.35
(Member type 144)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002980	0.67
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0030	97.22
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4166	3.56
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032724	4.06
(Member type 45)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003029	0.97
	Transverse displacement Y	0.1080	0.1059	1.94

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
	of the free end of the cantilever beam, m			
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4272	1.11
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.022536	3.69
(Member type 145)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003029	0.97
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1059	1.94
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4214	2.45
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032659	4.25
$\begin{gathered} 7 \\ \text { (Member type 50) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003026	0.87
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1057	2.13
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4278	0.97
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.022746	2.79
(Member type 150)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003026	0.87
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1057	2.13
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4226	2.18
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032906	3.53
$\begin{gathered} 9 \\ \text { (Member type 36) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002950	1.67
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0028	97.41
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.0045	98.96
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.016146	52.66
$\begin{gathered} 10 \\ \text { (Member type 37) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003095	3.17
	Transverse displacement Y of the free end	0.1080	0.0837	22.50

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
	of the cantilever beam, m			24.81
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.3248	18.56
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.027779	

Design model with a parallelogram finite element mesh

Model	Parameter	Theory	SCAD	Deviation, \%
(Member type 42)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002975	0.83
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0024	97.78
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4216	2.41
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.019384	17.16
$\begin{gathered} 2 \\ \text { (Member type 142) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002975	0.83
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0024	97.78
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4177	3.31
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032089	5.92
(Member type 44)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002981	0.63
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0037	96.57
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4254	1.53
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.020563	12.12
(Member type 144)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002980	0.67
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0042	96.11
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4208	2.59
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032743	4.00

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
(Member type 45)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003034	1.13
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1062	1.67
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4278	0.97
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.022704	2.97
$\begin{gathered} 6 \\ \text { (Member type 145) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003034	1.13
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1062	1.67
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4221	2.29
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032700	4.13
$\begin{gathered} 7 \\ \text { (Member type 50) } \end{gathered}$	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003026	0.87
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1058	2.04
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4278	0.97
	Torsional angle UX of the free end of the cantilever beam, rad	0.023400*	0.022749	2.78
(Member type 150)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00003026	0.87
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.1058	2.04
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.4224	2.22
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.032938	3.43
9(Member type 36)	Longitudinal displacement X of the free end of the cantilever beam, m	0.00003000	0.00002950	1.67
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.0034	96.85
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.0061	98.59
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109	0.011007	67.73
10	Longitudinal displacement X	0.00003000	0.00003026	0.87

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
(Member type 37)	of the free end of the cantilever beam, m		0.1055	2.31
	Transverse displacement Y of the free end of the cantilever beam, m	0.1080	0.4220	2.31
	Transverse displacement Z of the free end of the cantilever beam, m	0.4320	0.028963	15.09
	Torsional angle UX of the free end of the cantilever beam, rad	0.034109		

* The values of the torsional angles UX for thin plates (not allowing for shear) are determined at the free torsional inertia moment calculated with the value of the coefficient k_{f}, equal to $1 / 3(h / b=\infty)$.

Notes: In the analytical solution the values of the longitudinal X and transverse displacements Y, Z and the torsional angle UX of the free end of the rectilinear cantilever beam from the respective actions are determined according to the following formulas:

$$
X=\frac{P_{x} \cdot L}{E \cdot b \cdot h} ; \quad Y=\frac{4 \cdot P_{y} \cdot L^{3}}{E \cdot b \cdot h^{3}} ; \quad Z=\frac{4 \cdot P_{z} \cdot L^{3}}{E \cdot b^{3} \cdot h} ; \quad U X=\frac{2 \cdot(1+v) \cdot M_{x} \cdot L}{E \cdot k_{f} \cdot b^{3} \cdot h}
$$

where: $k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot t h\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}$.

Curvilinear Cantilever Beam with Concentrated Shear Forces at Its Free End

Objective: Check of the obtained values of the transverse displacements of the free end of a curvilinear cantilever beam subjected to concentrated shear forces.

Initial data files:

File name	Description
Curved_cantilever_beam_Shell_42.SPR	Design model with the elements of type 42
Curved_cantilever_beam_Shell_142.SPR	Design model with the elements of type 142
Curved_cantilever_beam_Shell_44.SPR	Design model with the elements of type 44
Curved_cantilever_beam_Shell_144.SPR	Design model with the elements of type 144
Curved_cantilever_beam_Shell_45.SPR	Design model with the elements of type 45
Curved_cantilever_beam_Shell_145.SPR	Design model with the elements of type 145
Curved_cantilever_beam_Shell_50.SPR	Design model with the elements of type 50
Curved_cantilever_beam_Shell_150.SPR	Design model with the elements of type 150
Curved_cantilever_beam_Solid_36.SPR	Design model with the elements of type 36
Curved_cantilever_beam_Solid_37.SPR	Design model with the elements of type 37

Problem formulation: The curvilinear isotropic cantilever beam of a rectangular cross-section is subjected to the concentrated shear forces $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ (bending in and out of the plane of the longitudinal axis of the beam) applied at its free end. Check the obtained values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

Initial data:

$\mathrm{E}=1.0 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus of the beam material;
$v=0.25 \quad$ - Poisson's ratio;
$\mathrm{b}=0.1 \mathrm{~m} \quad-$ width of the beam;
$\mathrm{h}=0.2 \mathrm{~m} \quad$ - height of the beam;
$\mathrm{R}=4.22 \mathrm{~m} \quad$ - radius of the arc of the longitudinal axis of the beam;
$\alpha=\pi / 2 \mathrm{rad} \quad$ - central angle of the arc of the longitudinal axis of the beam;
$\mathrm{P}_{\mathrm{y}}=1.0 \mathrm{kN} \quad-$ value of the shear force acting along the height of the beam
(in the plane of the longitudinal axis);
$\mathrm{P}_{\mathrm{z}}=1.0 \mathrm{kN} \quad-$ value of the shear force acting along the width of the beam (out of the plane of the longitudinal axis).

Finite element model: Design model - general type system. Ten design models with a trapezoidal finite element mesh are considered:
Model 1-12 three-node shell elements of type 42. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}\right.$, $\left.P_{z}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model - 14 .
Model 2-12 three-node shell elements allowing for shear of type 142. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -14 .
Model 3-6 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of two nodal forces $\left(P_{y}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5\right.$ kN).. Number of nodes in the model - 14.
Model 4-6 four-node shell elements allowing for shear of type 144. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -14 .
Model 5-12 six-node shell elements of type 45 . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5\right.$ kN). Number of nodes in the model - 39 .
Model 6-12 six-node shell elements allowing for shear of type 145. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -39 .
Model 7 - 6 eight-node shell elements of type 50. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}\right.$, $\mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}$). Number of nodes in the model -33 .
Model 8-6 eight-node shell elements allowing for shear of type 150. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -33 .
Model 9-6 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear $P_{y}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of four nodal forces $\left(\mathrm{P}_{\mathrm{y}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=4 \cdot 0.25 \mathrm{kN}\right)$. Number of nodes in the model -28 .
Model 10-6 twenty-node isoparametric solid elements of type 37. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of four nodal forces $\left(\mathrm{P}_{\mathrm{y}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=4 \cdot 0.25 \mathrm{kN}\right)$. Number of nodes in the model -80 .

Results in SCAD

Models 1 and 2. Design model

Model 1. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)
$-0,00221342$
$-0,00221367$

Model 2. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)

Model 3. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)

Model 4. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 0,5

Models 5 and 6. Design model

Models 5 and 6. Deformed model

Model 5. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)

Model 6. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 0,5

Models 7 and 8. Design model

Models 7 and 8. Deformed model

Model 7. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)

Model 8. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)

Model 9. Deformed model

Model 9. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)

Model 10. Design model

Model 10. Deformed model

Model 10. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m)

Comparison of solutions:

Model	Parameter	Theory	SCAD	Deviation, \%
$\begin{gathered} 1 \\ \text { (Member type 42) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.002213	97.50
	Transverse displacement Z of the free end of the cantilever beam, m	0.454527*	0.308152	32.20
$\begin{gathered} 2 \\ \text { (Member type 142) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.02213	97.50
	Transverse displacement Z of the free end of the cantilever beam, m	0.500466	0.474844	5.12
$\begin{gathered} 3 \\ \text { (Member type 44) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.006411	92.76
	Transverse displacement Z of the free end of the cantilever beam, m	0.454527*	0.334655	26.37
(Member type 144)	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.006563	92.59
	Transverse displacement Z	0.500466	0.487387	2.61

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
	of the free end of the cantilever beam, m			
(Member type 45)	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.088299	0.27
	Transverse displacement Z of the free end of the cantilever beam, m	0.454527*	0.442069	2.74
(Member type 145)	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.088299	0.27
	Transverse displacement Z of the free end of the cantilever beam, m	0.500466	0.487623	2.57
(Member type 50)	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.088111	0.48
	Transverse displacement Z of the free end of the cantilever beam, m	0.454527*	0.448137	1.41
(Member type 150)	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.088111	0.48
	Transverse displacement Z of the free end of the cantilever beam, m	0.500466	0.490701	1.95
(Member type 36)	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.006397	92.77
	Transverse displacement Z of the free end of the cantilever beam, m	0.500466	0.114607	77.10
10(Member type 37)	Transverse displacement Y of the free end of the cantilever beam, m	0.088536	0.087111	1.61
	Transverse displacement Z of the free end of the cantilever beam, m	0.500466	0.470384	6.01

* The values of the transverse displacements Z for thin plates (not allowing for shear) are determined at the free torsional inertia moment calculated with the value of the coefficient k_{f}, equal to $1 / 3(\mathrm{~h} / \mathrm{b}=\infty)$.

Notes: In the analytical solution the values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam from the respective actions are determined according to the following formulas:

$$
Y=\frac{3 \cdot \pi \cdot P_{y} \cdot R^{3}}{E \cdot b \cdot h^{3}} ; \quad Z=\frac{P_{z} \cdot R^{3}}{2 \cdot E \cdot b^{3} \cdot h \cdot k_{f}} \cdot\left[6 \cdot \pi \cdot k_{f}+(3 \cdot \pi-8) \cdot(1+v)\right]
$$

where: $k_{f}=\frac{1}{3} \cdot\left\{1-\frac{192}{\pi^{5}} \cdot \frac{b}{h} \cdot \sum_{n=1}^{\infty}\left[\sin ^{2}\left(\frac{n \cdot \pi}{2}\right) \cdot \frac{1}{n^{5}} \cdot \operatorname{th}\left(\frac{n \cdot \pi \cdot h}{2 \cdot b}\right)\right]\right\}$.

Twisted Cantilever Beam with Concentrated Shear Forces at Its Free End

Objective: Check of the obtained values of the transverse displacements of the free end of a twisted cantilever beam subjected to concentrated shear forces.

Initial data files:

File name	Description
Twisted_cantilever_beam_Shell_42.SPR	Design model with the elements of type 42
Twisted_cantilever_beam_Shell_142.SPR	Design model with the elements of type 142
Twisted_cantilever_beam_Shell_44.SPR	Design model with the elements of type 44
Twisted_cantilever_beam_Shell_144.SPR	Design model with the elements of type 144
Twisted_cantilever_beam_Shell_45.SPR	Design model with the elements of type 45
Twisted_cantilever_beam_Shell_145.SPR	Design model with the elements of type 145
Twisted_cantilever_beam_Shell_50.SPR	Design model with the elements of type 50
Twisted_cantilever_beam_Shell_150.SPR	Design model with the elements of type 150
Twisted_cantilever_beam_Solid_36.SPR	Design model with the elements of type 36
Twisted_cantilever_beam_Solid_37.SPR	Design model with the elements of type 37

Problem formulation: The isotropic cantilever beam of a rectangular cross-section twisted along the longitudinal axis is subjected to the concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces (bending in and out of the plane of the beam height at the free end). Check the obtained values of the transverse displacements Y, Z of the free end of the twisted cantilever beam from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

Initial data:

$\mathrm{E}=2.9 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus of the beam material;
$v=0.22 \quad$ - Poisson's ratio;
$\mathrm{b}=0.32 \mathrm{~m} \quad$ - width of the beam;
$\mathrm{h}=1.10 \mathrm{~m} \quad$ - height of the beam;
$\mathrm{L}=12.0 \mathrm{~m} \quad$ - length of the longitudinal axis of the beam;
$\alpha=\pi / 2 \mathrm{rad} \quad-$ twist angle of the longitudinal axis of the beam;
$\mathrm{P}_{\mathrm{y}}=1.0 \mathrm{kN} \quad-$ value of the shear force acting along the height of the beam at the free end;
$\mathrm{P}_{\mathrm{z}}=1.0 \mathrm{kN} \quad-$ value of the shear force acting along the width of the beam at the free end.
Finite element model: Design model - general type system. Ten design models with a regular finite element mesh 12×2 are considered:
Model 1-48 three-node shell elements of type 42. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}\right.$, $\left.P_{z}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model - 39 .
Model 2-48 three-node shell elements allowing for shear of type 142. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -39 .
Model 3-24 four-node shell elements of type 44 . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}\right.$, $P_{Z}=2 \cdot 0.5 \mathrm{kN}$). Number of nodes in the model - 39 .
Model 4-24 four-node shell elements allowing for shear of type 144 . Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of
freedom X, Y, Z, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -39 .
Model 5-48 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}$, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of two nodal forces $\left(P_{y}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5\right.$ kN). Number of nodes in the model -125 .
Model 6-48 six-node shell elements allowing for shear of type 145. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -125 .
Model 7-24 eight-node shell elements of type 50. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}\right.$, $\left.P_{z}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -101 .
Model 8-24 eight-node shell elements allowing for shear of type 150. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of two nodal forces $\left(\mathrm{P}_{\mathrm{y}}=2 \cdot 0.5 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=2 \cdot 0.5 \mathrm{kN}\right)$. Number of nodes in the model -101.
Model 9-24 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear P_{y}, P_{z} forces are given in the form of four nodal forces $\left(\mathrm{P}_{\mathrm{y}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=4 \cdot 0.25 \mathrm{kN}\right)$. Number of nodes in the model -78 .
Model 10-24 twenty-node isoparametric solid elements of type 37. Boundary conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated shear $\mathrm{P}_{\mathrm{y}}, \mathrm{P}_{\mathrm{z}}$ forces are given in the form of four nodal forces $\left(\mathrm{P}_{\mathrm{y}}=4 \cdot 0.25 \mathrm{kN}, \mathrm{P}_{\mathrm{z}}=4 \cdot 0.25 \mathrm{kN}\right)$. Number of nodes in the model -241.

Results in SCAD

Models 1 and 2. Design model

Models 1 and 2. Deformed model

Model 1. Values of the transverse displacements Y, Z of the free end of the twisted cantilever beam (m, m)

Model 2. Values of the transverse displacements Y, Z
of the free end of the twisted cantilever beam (m, m)

Models 3 and 4. Design model

Models 3 and 4. Deformed model

Model 3. Values of the transverse displacements Y, Z
of the free end of the twisted cantilever beam (m, m)

Model 4. Values of the transverse displacements Y, Z
of the free end of the twisted cantilever beam (m, m)

Models 5 and 6. Design model

Models 5 and 6. Deformed model

Model 5. Values of the transverse displacements Y, Z
of the free end of the twisted cantilever beam (m, m)

Model 6. Values of the transverse displacements Y, Z
of the free end of the twisted cantilever beam (m, m)

Models 7 and 8. Design model

Models 7 and 8. Deformed model

Model 7. Values of the transverse displacements Y, Z of the free end of the twisted cantilever beam (m, m)

Model 8. Values of the transverse displacements Y, Z of the free end of the twisted cantilever beam (m, m)

Model 9. Design model

Model 9. Deformed model

Model 9. Values of the transverse displacements Y, Z
of the free end of the twisted cantilever beam (m, m)

Model 10. Design model

Model 10. Deformed model

Model 10. Values of the transverse displacements Y, Z of the free end of the twisted cantilever beam (m, m)

Comparison of solutions:

Model	Parameter	Theory	SCAD	Deviation, \%
$\begin{gathered} 1 \\ \text { (Member type 42) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.005314	2.06
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.001463	16.21
$\begin{gathered} 2 \\ \text { (Member type 142) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.006220	14.63
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.001710	2.06
$\begin{gathered} 3 \\ \text { (Member type 44) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.001899	65.00
	Transverse displacement \mathbf{Z} of the free end of the cantilever beam, m	0.001746	0.000906	48.11
(Member type 144)	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.002158	60.23
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.000961	44.96

Verification Examples

Model	Parameter	Theory	SCAD	Deviation, \%
$\begin{gathered} 5 \\ \text { (Member type 45) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.005388	0.70
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.001750	0.23
$\begin{gathered} 6 \\ \text { (Member type 145) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.006588	21.42
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.002178	24.74
$\begin{gathered} 7 \\ \text { (Member type 50) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.003948	27.24
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.001481	15.18
(Member type 150)	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.004094	24.55
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.001505	13.80
$\begin{gathered} 9 \\ \text { (Member type 36) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.001119	79.38
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.000583	66.61
$\begin{gathered} 10 \\ \text { (Member type 37) } \end{gathered}$	Transverse displacement Y of the free end of the cantilever beam, m	0.005426	0.005403	0.42
	Transverse displacement Z of the free end of the cantilever beam, m	0.001746	0.001757	0.63

Notes: In the analytical solution the values of the transverse displacements Y, Z of the free end of the twisted cantilever beam from the respective actions are determined according to the following formulas:

$$
\begin{aligned}
Y & =\frac{12 \cdot P_{y} \cdot L^{3}}{E \cdot b^{3} \cdot h^{3}} \cdot\left[\left(\frac{1}{6}-\frac{1}{\pi^{2}}\right) \cdot h^{2}+\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) \cdot b^{2}\right] \\
Z & =\frac{12 \cdot P_{z} \cdot L^{3}}{E \cdot b^{3} \cdot h^{3}} \cdot\left[\left(\frac{1}{6}+\frac{1}{\pi^{2}}\right) \cdot h^{2}+\left(\frac{1}{6}-\frac{1}{\pi^{2}}\right) \cdot b^{2}\right]
\end{aligned}
$$

Simply Supported Flat Square Plate Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center

Objective: Check of the obtained values of the transverse displacements in the center of a simply supported flat square plate subjected to a transverse load uniformly distributed over the entire area and a concentrated shear force applied in the center.

Initial data files:

File name	Description
Bending_of_square_flat_plate_Simply_supported_Shell_42_Mesh_2x2.SPR Bending_of_square_flat_plate_Simply_supported_Shell_42_Mesh_4x4.SPR Bending_of_square_flat_plate_Simply_supported_Shell_42_Mesh_8x8.SPR	Design model with the elements of type 42 for meshes $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \times 8$
$\begin{aligned} & \text { Bending_of_square_flat_plate_Simply_supported_Shell_44_Mesh_2x2.SPR } \\ & \text { Bending_of_square_flat_plate_Simply_supported_Shell_44_Mesh_4x4.SPR } \\ & \text { Bending_of_square_flat_plate_Simply_supported_Shell_44_Mesh_8x8.SPR } \end{aligned}$	Design model with the elements of type 44 for meshes $2 \times 2,4 \times 4,8 \times 8$
Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_2x2.SPR Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_4x4.SPR Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_8x8.SPR	Design model with the elements of type 45 for meshes $2 \times 2,4 \times 4,8 \times 8$
Bending_of_square_flat_plate_Simply_supported_Shell_50_Mesh_2x2.SPR Bending_of_square_flat_plate_Simply_supported_Shell_50_Mesh_4x4.SPR Bending_of_square_flat_plate_Simply_supported_Shell_50_Mesh_8x8.SPR	Design model with the elements of type 50 for meshes $2 \times 2,4 \times 4,8 \times 8$
Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_2x2.SPR Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_4x4.SPR Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_8x8.SPR Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_16x16.SPR Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_32x32.SPR Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_64x64.SPR Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_128x128.SPR	Design model with the elements of type 36 for meshes $\begin{gathered} 2 \times 2,4 \times 4,8 \times 8,16 \times 16,32 \times 32 \\ 64 \times 64,128 \times 128 \end{gathered}$
Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_2x2.SPR Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_4x4.SPR Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_8x8.SPR Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_16x16.SPR Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_32x32.SPR Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_64x64.SPR Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_128x128.SPR	Design model with the elements of type 37 for meshes $\begin{gathered} 2 \times 2,4 \times 4,8 \times 8,16 \times 16,32 \times 32 \\ 64 \times 64,128 \times 128 \end{gathered}$

Problem formulation: The simply supported flat square plate is subjected to the transverse load q uniformly distributed over the entire area and the concentrated shear force P applied in the center. Check the obtained values of the transverse displacements in the center of the simply supported flat square plate w_{q} and w_{P} from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 143, 202, 206.

Initial data:

$\mathrm{E}=1.7472 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus of the plate material;
$v=0.30$

- Poisson's ratio;
$\mathrm{a}=2.00 \mathrm{~m}$
- width of the plate;
$\mathrm{b}=2.00 \mathrm{~m} \quad$ - length of the plate;
$\mathrm{h}=10^{-4}\left(10^{-2}\right) \mathrm{m} \quad$ - thickness of the plate;
$\mathrm{q}=1.0 \cdot 10^{-4} \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{P}=4.0 \cdot 10^{-4} \mathrm{kN}$
- value of the transverse load uniformly distributed over the entire area of the plate;
- value of the concentrated shear force in the center of the plate.

Finite element model: Design model - general type system. Six design models of a quarter of the plate according to the symmetry conditions are considered:
Model $1-8,32,128$ three-node shell elements of type 42 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model $-9,25,81$.
Model $2-4,16,64$ four-node shell elements of type 44 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model -9, 25, 81.
Model $3-8,32,128$ six-node shell elements of type 45 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $4-4,16,64$ eight-node shell elements of type 50 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $5-4,16,64,256,1024,4096,16384$ eight-node isoparametric solid elements of type 36 with a regular mesh $2 \mathrm{x} 2 \mathrm{x} 1,4 \times 4 \mathrm{x} 1,8 \mathrm{x} 8 \mathrm{x} 1,16 \times 16 \mathrm{x} 1,32 \times 32 \mathrm{x} 1,64 \times 64 \mathrm{x} 1,128 \times 128 \mathrm{x} 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the lower surface of the plate in the direction of the degree of freedom Z and constraints according to the symmetry conditions. Number of nodes in the model - 18, 50, 162, 578, 2178, 8450, 33282.
Model $6-4,16,64,256,1024,4096,16384$ twenty-node isoparametric solid elements of type 37 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 \times 8 \times 1,16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1,128 \times 128 \times 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the lower surface of the plate in the direction of the degree of freedom Z and constraints according to the symmetry conditions. Number of nodes in the model - 51, 155, 531, 1955, 7491, 29315, 115971.

Results in SCAD

Model 1. Design model

Model 1. Deformed model

Model 1. Values of the transverse displacements in the center of the simply supported square plate w_{q} and $w_{P}(m, m)$

Model 2. Design model

Model 2. Values of the transverse displacements in the center of the simply supported square plate w_{q} and $w_{P}(m, m)$

Model 3. Design model

Model 3. Deformed model

Model 3. Values of the transverse displacements in the center of the simply supported square plate w_{q} and $w_{P}(m, m)$

Model 4. Design model

Model 4. Deformed model

Model 4. Values of the transverse displacements in the center of the simply supported square plate w_{q} and $w_{P}(m, m)$

Model 5. Deformed model

Model 5. Values of the transverse displacements in the center of the simply supported square plate w_{q} and $w_{P}(m, m)$

Pathological Tests

Model 6. Design model

Model 6. Deformed model

Model 6. Values of the transverse displacements in the center of the simply supported square plate w_{q} and $w_{P}(m, m)$

Comparison of solutions:

Transverse displacements in the center of the simply supported flat square plate $\mathbf{w}_{\mathbf{q}}$ from the transverse load q uniformly distributed over the entire area

Model	Finite element mesh	Theory	SCAD	Deviation, \%
1 (Member type 42)	2×2	4.062	3.808	6.25
	4×4		3.998	1.58
	8x8		4.046	0.39
(Member type 44)	2x2	4.062	3.885	4.36
	4×4		4.012	1.23
	8x8		4.049	0.32
$\begin{gathered} 3 \\ \text { (Member type 45) } \end{gathered}$	2x2	4.062	4.062	0.00
	4×4		4.062	0.00
	8 x 8		4.062	0.00
(Member type 50)	2×2	4.062	4.062	0.00
	4×4		4.062	0.00
	8x8		4.062	0.00
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2×2	$4.062 \cdot 10^{-6}$	$0.009 \cdot 10^{-6}$	99.78
	4×4		$0.037 \cdot 10^{-6}$	99.09
	8x8		$0.144 \cdot 10^{-6}$	96.45
	16×16		$0.509 \cdot 10^{-6}$	87.47
	32×32		$1.308 \cdot 10^{-6}$	67.80
	64x64		$2.471 \cdot 10^{-6}$	39.17
	128x128		$3.061 \cdot 10^{-6}$	24.64
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	$4.062 \cdot 10^{-6}$	$3.003 \cdot 10^{-6}$	26.07
	4×4		$4.025 \cdot 10^{-6}$	0.91
	8x8		$4.060 \cdot 10^{-6}$	0.05
	16x16		$4.068 \cdot 10^{-6}$	0.15
	32×32		$4.073 \cdot 10^{-6}$	0.27
	64×64		$4.077 \cdot 10^{-6}$	0.37
	128x128		$4.078 \cdot 10^{-6}$	0.39

Transverse displacements in the center of the simply supported flat square plate w_{P} from the concentrated shear force P applied in the center

Model	Finite element mesh	Theory	SCAD	Deviation, \%
$\begin{gathered} 1 \\ \text { (Member type 42) } \end{gathered}$	2x2	11.600	10.236	11.76
	4×4		11.205	3.41
	8x8		11.490	0.95
(Member type 44)	2x2	11.600	10.907	5.97
	4×4		11.383	1.87
	8x8		11.537	0.54
(Member type 45)	2x2	11.600	11.574	0.22
	4×4		11.594	0.05
	8x8		11.599	0.01

Verification Examples

Model	Finite element mesh	Theory	SCAD	Deviation, \%
(Member type 50)	2x2	11.600	11.540	0.52
	4×4		11.586	0.12
	8x8		11.597	0.02
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2x2	$11.600 \cdot 10^{-6}$	$0.028 \cdot 10^{-6}$	99.76
	4×4		$0.104 \cdot 10^{-6}$	99.10
	8x8		$0.394 \cdot 10^{-6}$	96.60
	16×16		$1.393 \cdot 10^{-6}$	87.98
	32×32		$3.595 \cdot 10^{-6}$	69.01
	64×64		$6.935 \cdot 10^{-6}$	40.21
	128x128		$8.691 \cdot 10^{-6}$	25.08
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	$11.600 \cdot 10^{-6}$	$7.487 \cdot 10^{-6}$	35.46
	4x4		$11.009 \cdot 10^{-6}$	5.09
	8x8		$11.467 \cdot 10^{-6}$	1.15
	16×16		$11.586 \cdot 10^{-6}$	0.12
	32×32		$11.623 \cdot 10^{-6}$	0.20
	64×64		$11.637 \cdot 10^{-6}$	0.32
	128x128		$11.644 \cdot 10^{-6}$	0.38

Notes: In the analytical solution the values of the transverse displacements in the center of the simply supported flat square plate w_{q} and w_{P} from the respective actions are determined according to the following formulas:

$$
\begin{gathered}
w_{q}=\frac{4 \cdot q \cdot a^{4}}{\pi^{5} \cdot D} \cdot \sum_{m=1}^{\infty}\left\{\frac{1}{m^{5}} \cdot\left[1-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot t h\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)+2}{2 \cdot \operatorname{ch}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\} \\
w_{P}=\frac{P \cdot a^{2}}{2 \cdot \pi^{3} \cdot D} \cdot \sum_{m=1}^{\infty}\left\{\frac{1}{m^{3}} \cdot\left[\operatorname{th}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a}}{c^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right\}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} .
\end{gathered}
$$

Flat Square Plate Clamped along the Outer Edges and Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center

Objective: Check of the obtained values of the transverse displacements in the center of a flat square plate clamped along the outer edges and subjected to a transverse load uniformly distributed over the entire area and a concentrated shear force applied in the center.

Initial data files:

File name	Description
Bending_of_square_flat_plate_Clamped_supported_Shell_42_Mesh_2x2.SPR	Design model with the Bending_of_square_flat_plate_Clamped_supported_Shell_42_Mesh_4x4.SPR Bending_of_square_flat_plate_Clamped_supported_Shell_42_Mesh_8x8.SPR
ending_of_square_flat_plate_Clamped_supported_Shell_44_Mesh_2x2.SPR	meshes 2x2, 4x4 42 for
Bending_of_square_flat_plate_Clamped_supported_Shell_44_Mesh_4x4.SPR	Design model with the
Bending_of_square_flat_plate_Clamped_supported_Shell_44_Mesh_8x8.SPR	elements of type 44 for
Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_2x2.SPR	meshes 2x2, 4x4, 8x8

Problem formulation: The flat square plate clamped along the outer edges is subjected to the transverse load q uniformly distributed over the entire area and the concentrated shear force P applied in the center. Check the obtained values of the transverse displacements in the center of the flat square plate clamped along the outer edges w_{q} and w_{P} from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 143, 202, 206.

Initial data:
$\mathrm{E}=1.7472 \cdot 10^{7} \mathrm{kPa} \quad-$ elastic modulus of the plate material;
$v=0.30$
$\mathrm{a}=2.00 \mathrm{~m}$
$\mathrm{b}=2.00 \mathrm{~m}$
$\mathrm{h}=10^{-4}\left(10^{-2}\right) \mathrm{m}$
$\mathrm{q}=1.0 \cdot 10^{-4} \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{P}=4.0 \cdot 10^{-4} \mathrm{kN}$

- Poisson's ratio;
- width of the plate;
- length of the plate;
- thickness of the plate;
- value of the transverse load uniformly distributed over the entire area of the plate; - value of the concentrated shear force in the center of the plate.

Finite element model: Design model - general type system. Six design models of a quarter of the plate according to the symmetry conditions are considered:
Model $1-8,32,128$ three-node shell elements of type 42 with a regular mesh $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ and constraints according to the symmetry conditions. Number of nodes in the model -9, 25, 81 .
Model $2-4,16,64$ four-node shell elements of type 44 with a regular mesh $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ and constraints according to the symmetry conditions. Number of nodes in the model $-9,25,81$.
Model $3-8,32$, 128 six-node shell elements of type 45 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $4-4,16$, 64 eight-node shell elements of type 50 with a regular mesh $2 \times 2,4 \times 4,8 x 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $5-4,16,64,256,1024,4096,16384$ eight-node isoparametric solid elements of type 36 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 x 8 x 1,16 x 16 x 1,32 \times 32 \times 1,64 \times 64 x 1,128 \times 128 \times 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the lower surface of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, on the nodes of the clamped sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction of the degree of freedom X, on the nodes of the clamped sides of the upper surface of the plate parallel to the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints according to the symmetry conditions. Number of nodes in the model $-18,50,162,578,2178,8450$, 33282.

Model $6-4,16,64,256,1024,4096,16384$ twenty-node isoparametric solid elements of type 37 with a regular mesh $2 \mathrm{x} 2 \mathrm{x} 1,4 \mathrm{x} 4 \mathrm{x} 1,8 \mathrm{x} 8 \mathrm{x} 1,16 \mathrm{x} 16 \mathrm{x} 1,32 \mathrm{x} 32 \mathrm{x} 1,64 \mathrm{x} 64 \mathrm{x} 1,128 \mathrm{x} 128 \mathrm{x} 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the lower surface of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, on the nodes of the clamped sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction of the degree of freedom X, on the nodes of the clamped sides of the upper surface of the plate parallel to the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints according to the symmetry conditions. Number of nodes in the model - 51, 155, 531, 1955, 7491, 29315, 115971.

Results in SCAD

Model 1.Design model

Model 1. Values of the transverse displacements in the center of the square plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 2. Design model

Model 2. Deformed model

Model 2. Values of the transverse displacements in the center of the square plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 3. Values of the transverse displacements in the center of the square plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 4. Deformed model

Model 4. Values of the transverse displacements in the center of the square plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 5. Deformed model

Model 5. Values of the transverse displacements in the center of the square plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 6. Design model

Model 6. Deformed model

Model 6. Values of the transverse displacements in the center of the square plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Comparison of solutions:

Transverse displacements in the center of the flat square plate clamped along the outer edges \mathbf{w}_{q} from the transverse load q uniformly distributed over the entire area

Model	Finite element mesh	Theory	SCAD	Deviation, \%
1 (Member type 42)	2x2	1.265	1.107	12.49
	4×4		1.221	3.48
	8x8		1.256	0.71
2(Member type 44)	2x2	1.265	1.166	7.83
	4×4		1.232	2.61
	8x8		1.257	0.63
$\begin{gathered} 3 \\ \text { (Member type 45) } \end{gathered}$	2×2	1.265	1.262	0.24
	4×4		1.265	0.00
	8x8		1.265	0.00
(Member type 50)	2x2	1.265	1.263	0.16
	4×4		1.265	0.00
	8x8		1.265	0.00
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2x2	$1.265 \cdot 10^{-6}$	$0.002 \cdot 10^{-6}$	99.84
	4x4		$0.008 \cdot 10^{-6}$	99.37
	8x8		$0.030 \cdot 10^{-6}$	97.63
	16×16		$0.109 \cdot 10^{-6}$	91.38
	32×32		$0.295 \cdot 10^{-6}$	76.68
	64×64		$0.674 \cdot 10^{-6}$	46.72
	128x128		$0.912 \cdot 10^{-6}$	27.91
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	$1.265 \cdot 10^{-6}$	$0.125 \cdot 10^{-6}$	90.12
	4×4		$1.114 \cdot 10^{-6}$	11.94
	8x8		$1.246 \cdot 10^{-6}$	1.50

Model	Finite element mesh	Theory	SCAD	Deviation, \%
	16×16		$1.262 \cdot 10^{-6}$	0.24
	32×32		$1.265 \cdot 10^{-6}$	0.00
	64×64		$1.266 \cdot 10^{-6}$	0.08
	128×128		$1.266 \cdot 10^{-6}$	0.08

Transverse displacements in the center of the flat square plate clamped along the outer edges \mathbf{w}_{P} from the concentrated shear force P applied in the center

Model	Finite element mesh	Theory	SCAD	Deviation, \%
1 (Member type 42)	2×2	5.612	4.508	19.67
	4×4		5.267	6.15
	8x8		5.516	1.71
$\begin{gathered} 2 \\ \text { (Member type 44) } \end{gathered}$	2×2	5.612	5.040	10.19
	4×4		5.409	3.62
	8x8		5.553	1.05
3(Member type 45)	2x2	5.612	5.579	0.59
	4×4		5.605	0.12
	8x8		5.610	0.04
(Member type 50)	2x2	5.612	5.554	1.03
	4×4		5.596	0.29
	8x8		5.608	0.07
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2x2	$5.612 \cdot 10^{-6}$	$0.010 \cdot 10^{-6}$	99.82
	4×4		$0.036 \cdot 10^{-6}$	99.36
	8x8		$0.136 \cdot 10^{-6}$	97.58
	16×16		$0.496 \cdot 10^{-6}$	91.16
	32×32		$1.334 \cdot 10^{-6}$	76.23
	64x64		$3.017 \cdot 10^{-6}$	46.24
	128×128		$4.060 \cdot 10^{-6}$	27.66
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	$5.612 \cdot 10^{-6}$	$0.497 \cdot 10^{-6}$	91.14
	4×4		$4.719 \cdot 10^{-6}$	15.91
	8x8		$5.445 \cdot 10^{-6}$	2.98
	16x16		$5.580 \cdot 10^{-6}$	0.57
	32×32		$5.612 \cdot 10^{-6}$	0.00
	64×64		$5.618 \cdot 10^{-6}$	0.11
	128×128		$5.622 \cdot 10^{-6}$	0.18

Notes: In the analytical solution the values of the transverse displacements in the center of the flat square plate clamped along the outer edges w_{q} and w_{P} from the respective actions are determined according to the following formulas:

$$
\begin{aligned}
w_{q}= & \frac{4 \cdot q \cdot a^{4}}{\pi^{5} \cdot D} \cdot \sum_{m=1}^{M}\left\{\frac{1}{m^{5}} \cdot\left[1-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot \operatorname{th}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)+2}{2 \cdot \operatorname{ch}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& \frac{a^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{E_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& \frac{b^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{F_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot a}{2 \cdot b} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}
\end{aligned}
$$

The values of the coefficients E_{m} and F_{m} are determined by solving the system of $2 \cdot \mathrm{M}$ equations:

$$
\begin{aligned}
& \frac{4 \cdot q \cdot a^{2}}{\pi^{3}} \cdot \frac{1}{i^{4}} \cdot\left(\frac{\frac{i \cdot \pi \cdot b}{2 \cdot a}}{c h^{2}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)}-t h\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)\right)-\frac{E_{i}}{i} \cdot\left(\frac{\frac{i \cdot \pi \cdot b}{2 \cdot a}}{c h^{2}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)}+t h\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)\right)-\frac{8 \cdot i \cdot a}{\pi \cdot b} \cdot \sum_{m=l}^{M}\left[F_{m} \cdot \frac{1}{m^{3}} \cdot \frac{1}{\left(\frac{a^{2}}{b^{2}}+\frac{i^{2}}{m^{2}}\right)^{2}} \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right] \\
& \frac{4 \cdot q \cdot b^{2}}{\pi^{3}} \cdot \frac{1}{i^{4}} \cdot\left(\frac{\frac{i \cdot \pi \cdot a}{2 \cdot b}}{c h^{2}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)}-t h\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)\right)-\frac{F_{i}}{i} \cdot\left(\frac{\frac{i \cdot \pi \cdot a}{2 \cdot b}}{c h^{2}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)}+t h\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)\right)-\frac{8 \cdot i \cdot b}{\pi \cdot a} \cdot \sum_{m=l}^{M}\left[E_{m} \cdot \frac{1}{m^{3}} \cdot \frac{1}{\left(\frac{b^{2}}{a^{2}}+\frac{i^{2}}{m^{2}}\right)^{2}} \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right] \\
& w_{P}=\frac{P \cdot a^{2}}{2 \cdot \pi^{3} \cdot D} \cdot \sum_{m=1}^{M}\left\{\frac{1}{m^{3}} \cdot\left[t h\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a}}{c h^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& \frac{a^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{E_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& \frac{b^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{F_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot a}{2 \cdot b} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}
\end{aligned}
$$

The values of the coefficients E_{m} and F_{m} are determined by solving the system of 2. M equations:

$$
\begin{gathered}
\left.-\frac{P}{\pi} \cdot \frac{1}{i^{2}} \cdot \frac{\frac{i \cdot \pi \cdot b}{2 \cdot a} \cdot \operatorname{sh}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)}{c h^{2}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)} \cdot \sin \left(\frac{i \cdot \pi}{2}\right)-\frac{E_{i}}{i} \cdot\left(\frac{\frac{i \cdot \pi \cdot b}{2 \cdot a}}{c h^{2}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)}+t h\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)\right)-\frac{8 \cdot i \cdot a}{\pi \cdot b} \cdot \sum_{m=l}^{M}\left[F_{m} \cdot \frac{1}{m^{3}} \cdot \frac{1}{\left(\frac{a^{2}}{b^{2}}+\frac{i^{2}}{m^{2}}\right)^{2}} \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right]\right) \\
-\frac{P}{\pi} \cdot \frac{1}{i^{2}} \cdot \frac{\frac{i \cdot \pi \cdot a}{2 \cdot b} \cdot \operatorname{sh}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)}{c h^{2}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)} \cdot \sin \left(\frac{i \cdot \pi}{2}\right)-\frac{F_{i}}{i} \cdot\left(\frac{\frac{i \cdot \pi \cdot a}{2 \cdot b}}{\operatorname{ch}^{2}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)}+t h\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)\right)-\frac{8 \cdot i \cdot b}{\pi \cdot a} \cdot \sum_{m=l}^{M}\left[E_{m} \cdot \frac{1}{m^{3}} \cdot \frac{1}{\left(\frac{b^{2}}{a^{2}}+\frac{i^{2}}{m^{2}}\right)^{2}} \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right] ; \\
\left.D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)}\right)
\end{gathered}
$$

The accuracy of the solution has decreased for the coarse meshes $(64 \times 64,128 \times 128)$ due to the accumulation of computational errors.

Simply Supported Flat Rectangular Plate Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center

Objective: Check of the obtained values of the transverse displacements in the center of a simply supported flat rectangular plate subjected to a transverse load uniformly distributed over the entire area and a concentrated shear force applied in the center.

Initial data files:

$\left.\begin{array}{|l|c|}\hline & \text { File name }\end{array} \begin{array}{c}\text { Description } \\ \hline \text { Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_2x2.SPR }\end{array} \begin{array}{c}\text { Design model with the } \\ \text { elements of type 42 for } \\ \text { Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_4x4.SPR } \\ \text { Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_8x8.SPR }\end{array} \quad \begin{array}{c}\text { meshes 2x2, 4x4, 8x8 }\end{array}\right]$

Problem formulation: The simply supported flat rectangular plate is subjected to the transverse load q uniformly distributed over the entire area and the concentrated shear force P applied in the center. Check the obtained values of the transverse displacements in the center of the simply supported flat rectangular plate w_{q} and w_{P} from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 143, 202, 206.

Initial data:

$\mathrm{E}=1.7472 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus of the plate material;
$v=0.30$
$\mathrm{a}=2.00 \mathrm{~m}$
$\mathrm{b}=10.00 \mathrm{~m}$
$\mathrm{h}=10^{-4}\left(10^{-2}\right) \mathrm{m}$
$\mathrm{q}=1.0 \cdot 10^{-4} \mathrm{kN} / \mathrm{m}^{2}$
$\mathrm{P}=4.0 \cdot 10^{-4} \mathrm{kN}$

- Poisson's ratio;
- width of the plate;
- length of the plate;
- thickness of the plate;
- value of the transverse load uniformly distributed over the entire area of the plate;
- value of the concentrated shear force in the center of the plate.

Finite element model: Design model - general type system. Six design models of a quarter of the plate according to the symmetry conditions are considered:
Model $1-8,32,128$ three-node shell elements of type 42 with a regular mesh $2 \mathrm{x} 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model - $9,25,81$.
Model $2-4,16$, 64 four-node shell elements of type 44 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model - $9,25,81$.
Model $3-8,32$, 128 six-node shell elements of type 45 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $4-4,16,64$ eight-node shell elements of type 50 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $5-4,16,64,256,1024,4096,16384$ eight-node isoparametric solid elements of type 36 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 \times 8 \times 1,16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1,128 \times 128 \times 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the lower surface of the plate in the direction of the degree of freedom Z and constraints according to the symmetry conditions. Number of nodes in the model-18, 50, 162, 578, 2178, 8450, 33282.
Model $6-4,16,64,256,1024,4096,16384$ twenty-node isoparametric solid elements of type 37 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 \times 8 \times 1,16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1,128 \times 128 \times 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the lower surface of the plate in the direction of the degree of freedom Z and constraints according to the symmetry conditions. Number of nodes in the model-51, 155, 531, 1955, 7491, 29315, 115971.

Results in SCAD

Model 1. Design model

Model 1. Deformed model

Model 1. Values of the transverse displacements in the center of the simply supported rectangular plate w_{q} and w_{P} (m, m)

Model 2.
Values of the transverse displacements in the center of the simply supported rectangular plate w_{q} and $w_{P}(m, m)$

Model 3. Design model

Model 3. Deformed model

Model 3
Values of the transverse displacements in the center of the simply supported rectangular plate w_{q} and $w_{P}(m, m)$

Model 4. Values of the transverse displacements in the center of the simply supported rectangular plate w_{q} and w_{P} (m, m)

Verification Examples

Model 5. Design model

Model 5. Deformed model

Verification Examples

Model 5. Values of the transverse displacements in the center of the simply supported rectangular plate w_{q} and w_{P} (m, m)

Model 6. Design model

Verification Examples

Model 6. Deformed model

$-0,000016976$

Model 6. Values of the transverse displacements in the center of the simply supported rectangular plate w_{q} and w_{P} (m, m)

Comparison of solutions:

Transverse displacements in the center of the simply supported flat rectangular plate w_{q} from the transverse load q uniformly distributed over the entire area

Model	Finite element mesh	Theory	SCAD	Deviation, \%
(Member type 42)	2x2	12.971	11.804	9.00
	4×4		12.847	0.96
	8x8		12.958	0.10
2(Member type 44)	2x2	12.971	12.528	3.42
	4×4		13.093	0.94
	8x8		13.030	0.45
(Member type 45)	2x2	12.971	13.029	0.45
	4×4		12.973	0.02
	8x8		12.971	0.00
(Member type 50)	2x2	12.971	13.020	0.38
	4×4		12.971	0.00
	8x8		12.971	0.00
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2×2	$12.971 \cdot 10^{-6}$	$0.017 \cdot 10^{-6}$	99.87
	4×4		$0.067 \cdot 10^{-6}$	99.48
	8x8		$0.264 \cdot 10^{-6}$	97.96
	16x16		$0.983 \cdot 10^{-6}$	92.42
	32×32		$3.099 \cdot 10^{-6}$	76.11
	64×64		$6.656 \cdot 10^{-6}$	48.69
	128x128		$9.234 \cdot 10^{-6}$	28.81
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	$12.971 \cdot 10^{-6}$	$9.000 \cdot 10^{-6}$	30.61
	4×4		$13.308 \cdot 10^{-6}$	2.60
	8x8		$12.931 \cdot 10^{-6}$	0.31
	16x16		$12.963 \cdot 10^{-6}$	0.06
	32×32		$12.971 \cdot 10^{-6}$	0.00
	64×64		$12.972 \cdot 10^{-6}$	0.01
	128x128		$12.973 \cdot 10^{-6}$	0.02
	$\boldsymbol{P} \boldsymbol{a} \boldsymbol{t} \boldsymbol{h} \boldsymbol{o l}$ o	$a l$	\boldsymbol{S}	

Transverse displacements in the center of the simply supported flat rectangular plate \mathbf{w}_{P} from the concentrated shear force P applied in the center

Model	Finite element mesh	Theory	SCAD	Deviation, \%
(Member type 42)	2×2	16.960	7.771	54.18
	4×4		11.983	29.34
	8x8		14.833	12.54
$\begin{gathered} 2 \\ \text { (Member type 44) } \end{gathered}$	2x2	16.960	12.674	25.27
	4×4		14.768	12.92
	8x8		15.657	7.68
$\begin{gathered} 3 \\ \text { (Member type 45) } \end{gathered}$	2x2	16.960	15.383	9.30
	4 x 4		16.539	2.48
	8x8		16.849	0.65
(Member type 50)	2x2	16.960	15.862	6.47
	4×4		16.553	2.40
	8x8		16.845	0.68
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2×2	$16.960 \cdot 10^{-6}$	$0.014 \cdot 10^{-6}$	99.92
	4×4		$0.051 \cdot 10^{-6}$	99.70
	8x8		$0.197 \cdot 10^{-6}$	98.84
	16×16		$0.737 \cdot 10^{-6}$	95.65
	32×32		$2.426 \cdot 10^{-6}$	85.70
	64×64		$5.859 \cdot 10^{-6}$	65.45
	128×128		$9.654 \cdot 10^{-6}$	43.08
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2×2	$16.960 \cdot 10^{-6}$	$4.494 \cdot 10^{-6}$	73.50
	4 x 4		$10.523 \cdot 10^{-6}$	37.95
	8x8		$15.480 \cdot 10^{-6}$	8.73
	16×16		$16.572 \cdot 10^{-6}$	2.29
	32×32		$16.866 \cdot 10^{-6}$	0.55
	64×64		$16.952 \cdot 10^{-6}$	0.05
	128x128		$16.976 \cdot 10^{-6}$	0.09

Notes: In the analytical solution the values of the transverse displacements in the center of the simply supported flat rectangular plate w_{q} and w_{P} from the respective actions are determined according to the following formulas:

$$
\begin{gathered}
w_{q}=\frac{4 \cdot q \cdot a^{4}}{\pi^{5} \cdot D} \cdot \sum_{m=1}^{\infty}\left\{\frac{1}{m^{5}} \cdot\left[1-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot t h\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)+2}{2 \cdot \operatorname{ch}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\} ; \\
w_{P}=\frac{P \cdot a^{2}}{2 \cdot \pi^{3} \cdot D} \cdot \sum_{m=1}^{\infty}\left\{\frac{1}{m^{3}} \cdot\left[\operatorname{th}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a}}{\operatorname{ch}^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right\}, \text { where: } \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} .
\end{gathered}
$$

Flat Rectangular Plate Clamped along the Outer Edges and Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center

Objective: Check of the obtained values of the transverse displacements in the center of a flat rectangular plate clamped along the outer edges and subjected to a transverse load uniformly distributed over the entire area and a concentrated shear force applied in the center.

Initial data files:

File name	Description
Bending_of_rectangular_flat_plate_Clamped_supported_Shell_42_Mesh_2x2.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_42_Mesh_4x4.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_42_Mesh_8x8.SPR	Design model with the elements of type 42 for meshes $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$
Bending_of_rectangular_flat_plate_Clamped_supported_Shell_44_Mesh_2x2.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_44_Mesh_4x4.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_44_Mesh_8x8.SPR	Design model with the elements of type 44 for meshes $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$
Bending_of_rectangular_flat_plate_Clamped_supported_Shell_45_Mesh_2x2.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_45_Mesh_4x4.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_45_Mesh_8x8.SPR	Design model with the elements of type 45 for meshes $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$
Bending_of_rectangular_flat_plate_Clamped_supported_Shell_50_Mesh_2x2.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_50_Mesh_4x4.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Shell_50_Mesh_8x8.SPR	Design model with the elements of type 50 for meshes $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$
Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_2x2.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_4x4.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_8x8.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_16x16.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_32x32.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_64x64.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_128x128.SPR	Design model with the elements of type 36 for meshes $2 \times 2,4 \times 4,8 \times 8$, $16 \times 16,32 \times 32,64 \times 64$, 128×128
Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_2x2.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_4x4.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_8x8.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_16x16.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_32x32.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_64x64.SPR Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_128x128.SPR	Design model with the elements of type 37 for meshes $2 \times 2,4 \times 4,8 \times 8$, $16 \times 16,32 \times 32,64 \times 64$, 128×128

Problem formulation: The flat rectangular plate clamped along the outer edges is subjected to the transverse load q uniformly distributed over the entire area and the concentrated shear force P applied in the center. Check the obtained values of the transverse displacements in the center of the flat rectangular plate clamped along the outer edges w_{q} and w_{P} from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 143, 202, 206.

Initial data:

$\mathrm{E}=1.7472 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus of the plate material;
$v=0.30$
$\mathrm{a}=2.00 \mathrm{~m}$

- Poisson's ratio;
$\mathrm{b}=10.00 \mathrm{~m}$
- width of the plate;
$\mathrm{h}=10^{-4}\left(10^{-2}\right) \mathrm{m}$
- length of the plate;
$\mathrm{q}=1.0 \cdot 10^{-4} \mathrm{kN} / \mathrm{m}^{2}$
- thickness of the plate;
$\mathrm{P}=4.0 \cdot 10^{-4} \mathrm{kN}$
- value of the transverse load uniformly distributed over the entire area of the plate;
- value of the concentrated shear force in the center of the plate.

Finite element model: Design model - general type system. Six design models of a quarter of the plate according to the symmetry conditions are considered:
Model $1-8,32,128$ three-node shell elements of type 42 with a regular mesh $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ and constraints according to the symmetry conditions. Number of nodes in the model -9, 25, 81.
Model $2-4,16,64$ four-node shell elements of type 44 with a regular mesh $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ and constraints according to the symmetry conditions. Number of nodes in the model $-9,25,81$.
Model $3-8,32,128$ six-node shell elements of type 45 with a regular mesh $2 \times 2,4 \times 4,8 x 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $4-4,16,64$ eight-node shell elements of type 50 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. The thickness of the plate $-10^{-4} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped edges of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{UX}, \mathrm{UY}, \mathrm{UZ}$ and constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289.
Model $5-4,16,64,256,1024,4096,16384$ в eight-node isoparametric solid elements of type 36 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 \times 8 x 1,16 x 16 x 1,32 \times 32 \times 1,64 \times 64 x 1,128 \times 128 \times 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the lower surface of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, on the nodes of the clamped sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction of the degree of freedom X , on the nodes of the clamped sides of the upper surface of the plate parallel to the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints according to the symmetry conditions. Number of nodes in the model $-18,50,162,578,2178,8450$, 33282.

Model $6-4,16,64,256,1024,4096,16384$ twenty-node isoparametric solid elements of type 37 with a regular mesh $2 \mathrm{x} 2 \mathrm{x} 1,4 \mathrm{x} 4 \mathrm{x} 1,8 \mathrm{x} 8 \mathrm{x} 1,16 \mathrm{x} 16 \mathrm{x} 1,32 \mathrm{x} 32 \mathrm{x} 1,64 \mathrm{x} 64 \mathrm{x} 1,128 \mathrm{x} 128 \mathrm{x} 1$. The thickness of the plate -$10^{-2} \mathrm{~m}$. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the lower surface of the plate in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$, on the nodes of the clamped sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction of the degree of freedom X , on the nodes of the clamped sides of the upper surface of the plate parallel to the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints according to the symmetry conditions. Number of nodes in the model - 51, 155, 531, 1955, 7491, 29315, 115971.

Results in SCAD

Model 1. Design model

Model 1. Deformed model

Model 1. Values of the transverse displacements in the center of the rectangular plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 2. Design model

Model 2. Values of the transverse displacements in the center of the rectangular plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Verification Examples

Model 3. Design model

Model 3. Values of the transverse displacements in the center of the rectangular plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 4. Values of the transverse displacements in the center of the rectangular plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Verification Examples

Model 5. Design model

Model 5. Deformed model

Verification Examples

Model 5. Values of the transverse displacements in the center of the rectangular plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Model 6. Design model

Model 6. Deformed model

Verification Examples

Model 6. Values of the transverse displacements in the center of the rectangular plate clamped along the outer edges w_{q} and $w_{P}(m, m)$

Comparison of solutions:

Transverse displacements in the center of the flat rectangular plate clamped along the outer edges $\mathbf{w}_{\mathbf{q}}$ from the transverse load q uniformly distributed over the entire area

Model	Finite element mesh	Theory	SCAD	Deviation, \%
1 (Member type 42)	2x2	2.605	2.299	11.75
	4×4		2.670	2.50
	8x8		2.640	1.34
2(Member type 44)	2x2	2.605	2.607	0.08
	4×4		2.612	0.27
	8x8		2.606	0.04
$\begin{gathered} 3 \\ \text { (Member type 45) } \end{gathered}$	2×2	2.605	2.615	0.38
	4×4		2.605	0.00
	8x8		2.604	0.04
(Member type 50)	2x2	2.605	2.593	0.46
	4×4		2.604	0.04
	8x8		2.604	0.04
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2x2	$2.605 \cdot 10^{-6}$	$0.003 \cdot 10^{-6}$	99.88
	4×4		$0.013 \cdot 10^{-6}$	99.50
	8x8		$0.050 \cdot 10^{-6}$	98.08
	16x16		$0.186 \cdot 10^{-6}$	92.86
	32×32		$0.589 \cdot 10^{-6}$	77.39
	64x64		$1.281 \cdot 10^{-6}$	50.83
	128x128		$1.816 \cdot 10^{-6}$	30.29
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	$2.605 \cdot 10^{-6}$	$0.419 \cdot 10^{-6}$	83.92
	4×4		$2.679 \cdot 10^{-6}$	2.84
	8x8		$2.560 \cdot 10^{-6}$	1.73
	16x16		$2.596 \cdot 10^{-6}$	0.35
	32×32		$2.604 \cdot 10^{-6}$	0.04
	64×64		$2.605 \cdot 10^{-6}$	0.00
	128x128		$2.605 \cdot 10^{-6}$	0.00

Transverse displacements in the center of the flat rectangular plate clamped along the outer edges w_{P} from the concentrated shear force P applied in the center

Model	Finite element mesh	Theory	SCAD	Deviation, \%
1(Member type 42)	2×2	7.260	2.239	69.16
	4×4		4.194	42.23
	8x8		5.751	20.79
$\begin{gathered} 2 \\ \text { (Member type 44) } \end{gathered}$	2x2	7.260	4.430	38.98
	4×4		5.829	19.71
	8x8		6.386	12.04
3(Member type 45)	2x2	7.260	5.989	17.51
	4×4		6.864	5.45
	8x8		7.113	2.02
(Member type 50)	2x2	7.260	6.122	15.67
	4×4		6.797	6.38
	8 x 8		7.126	1.85
5(Member type 36)	2×2	$7.260 \cdot 10^{-6}$	$0.005 \cdot 10^{-6}$	99.93
	4×4		$0.020 \cdot 10^{-6}$	99.72
	8x8		$0.076 \cdot 10^{-6}$	98.95
	16x16		$0.283 \cdot 10^{-6}$	96.10
	32x32		$0.940 \cdot 10^{-6}$	87.05
	64x64		$2.319 \cdot 10^{-6}$	68.06
	128x128		$3.928 \cdot 10^{-6}$	45.90
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	$7.260 \cdot 10^{-6}$	$0.337 \cdot 10^{-6}$	95.36
	4×4		$2.788 \cdot 10^{-6}$	61.60
	8x8		$5.735 \cdot 10^{-6}$	21.01
	16x16		$6.876 \cdot 10^{-6}$	5.29
	32x32		$7.147 \cdot 10^{-6}$	1.56
	64x64		$7.224 \cdot 10^{-6}$	0.50

Model	Finite element mesh	Theory	SCAD	Deviation, \%
	128×128		$7.245 \cdot 10^{-6}$	0.21

Notes: In the analytical solution the values of the transverse displacements in the center of the flat rectangular plate clamped along the outer edges w_{q} and w_{P} from the respective actions are determined according to the following formulas:

$$
\begin{aligned}
w_{q} & =\frac{4 \cdot q \cdot a^{4}}{\pi^{5} \cdot D} \cdot \sum_{m=1}^{M}\left\{\frac{1}{m^{5}} \cdot\left[1-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot t h\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)+2}{2 \cdot c h\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& +\frac{a^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{E_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& +\frac{b^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{F_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot a}{2 \cdot b} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+
\end{aligned}
$$

The values of the coefficients E_{m} and F_{m} are determined by solving the system of $2 \cdot \mathrm{M}$ equations:

$$
\begin{aligned}
& w_{P}=\frac{P \cdot a^{2}}{2 \cdot \pi^{3} \cdot D} \cdot \sum_{m=1}^{M}\left\{\frac{1}{m^{3}} \cdot\left[t h\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)-\frac{\frac{m \cdot \pi \cdot b}{2 \cdot a}}{c h^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}\right] \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& +\frac{a^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{E_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot b}{2 \cdot a} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot b}{2 \cdot a}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+ \\
& +\frac{b^{2}}{2 \cdot \pi^{2} \cdot D} \cdot \sum_{m=1}^{M}\left\{F_{m} \cdot \frac{1}{m^{2}} \cdot \frac{\frac{m \cdot \pi \cdot a}{2 \cdot b} \cdot \operatorname{sh}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)}{c h^{2}\left(\frac{m \cdot \pi \cdot a}{2 \cdot b}\right)} \cdot \sin \left(\frac{m \cdot \pi}{2}\right)\right\}+
\end{aligned}
$$

The values of the coefficients E_{m} and F_{m} are determined by solving the system of $2 \cdot \mathrm{M}$ equations:

$$
\begin{gathered}
-\frac{P}{\pi} \cdot \frac{1}{i^{2}} \cdot \frac{\frac{i \cdot \pi \cdot b}{2 \cdot a} \cdot \operatorname{sh}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)}{c^{2}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)} \cdot \sin \left(\frac{i \cdot \pi}{2}\right)-\frac{E_{i}}{i} \cdot\left(\frac{\frac{i \cdot \pi \cdot b}{2 \cdot a}}{c h^{2}\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)}+t h\left(\frac{i \cdot \pi \cdot b}{2 \cdot a}\right)\right)-\frac{8 \cdot i \cdot a}{\pi \cdot b} \cdot \sum_{m=l}^{M}\left[F_{m} \cdot \frac{1}{m^{3}} \cdot \frac{1}{\left(\frac{a^{2}}{b^{2}}+\frac{i^{2}}{m^{2}}\right)^{2}} \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right] \\
-\frac{P}{\pi} \cdot \frac{1}{i^{2}} \cdot \frac{\frac{i \cdot \pi \cdot a}{2 \cdot b} \cdot \operatorname{sh}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)}{c h^{2}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)} \cdot \sin \left(\frac{i \cdot \pi}{2}\right)-\frac{F_{i}}{i} \cdot\left(\frac{\frac{i \cdot \pi \cdot a}{2 \cdot b}}{c h^{2}\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)}+t h\left(\frac{i \cdot \pi \cdot a}{2 \cdot b}\right)\right)-\frac{8 \cdot i \cdot b}{\pi \cdot a} \cdot \sum_{m=l}^{M}\left[E_{m} \cdot \frac{1}{m^{3}} \cdot \frac{1}{\left(\frac{b^{2}}{a^{2}}+\frac{i^{2}}{m^{2}}\right)^{2}} \cdot \sin ^{2}\left(\frac{m \cdot \pi}{2}\right)\right] ; \\
D=\frac{E \cdot h^{3}}{12 \cdot\left(1-v^{2}\right)} .
\end{gathered}
$$

Open Cylindrical Shell Rectangular in Plan and Simply Supported along the Curvilinear Edges Subjected to a Transverse Load Uniformly Distributed over the Entire Area

Objective: Check of the obtained values of the transverse displacements in the middle of the free rectilinear edges of an open cylindrical shell rectangular in plan and simply supported along the curvilinear edges subjected to a transverse load uniformly distributed over the entire area.

Initial data files:

File name	Description
Scordelis-Lo roof Shell 42 Mesh 2×2.SPR Scordelis-Lo_roof _Shell_42_Mesh_4x4.SPR Scordelis-Lo_roof _Shell_42_Mesh_8x8.SPR	Design model with the elements of type 42 for meshes $2 \times 2,4 \times 4,8 \times 8$
Scordelis-Lo roof Shell 44 Mesh 2×2.SPR Scordelis-Lo_roof _Shell_44_Mesh_4x4.SPR Scordelis-Lo_roof _Shell_44_Mesh_8x8.SPR	Design model with the elements of type 44 for meshes $2 \times 2,4 \times 4,8 \times 8$
Scordelis-Lo_roof _Shell_45_Mesh_2x2.SPR Scordelis-Lo_roof _Shell_45_Mesh_4x4.SPR Scordelis-Lo_roof _Shell_45_Mesh_8x8.SPR	Design model with the elements of type 45 for meshes $2 \times 2,4 \times 4,8 \times 8$
Scordelis-Lo_roof _Shell_50_Mesh_2x2.SPR Scordelis-Lo_roof_Shell_50_Mesh_4x4.SPR Scordelis-Lo_roof _Shell_50_Mesh_8x8.SPR	Design model with the elements of type 50 for meshes $2 \times 2,4 \times 4,8 \times 8$
	Design model with the elements of type 36 for meshes $2 \times 2,4 \times 4,8 \times 8,16 x 16,32 \times 32,64 \times 64$, 128×128
Scordelis-Lo_roof_Solid _37.SPR _Mesh_2x2.SPR Scordelis-Lo_roof_ _ Solid_37.SPR _Mesh_4x4.SPR Scordelis-Lo_roof _ Solid _37.SPR _Mesh_8x8.SPR Scordelis-Lo_roof _ Solid _37.SPR _Mesh_16x16.SPR Scordelis-Lo_roof _ Solid_37.SPR _Mesh_32x32.SPR Scordelis-Lo_roof _ Solid _37.SPR _Mesh_64x64.SPR Scordelis-Lo_roof_Solid_37.SPR _Mesh_128x128.SPR	Design model with the elements of type 37 for meshes $2 \times 2,4 \times 4,8 \times 8,16 \times 16,32 \times 32,64 \times 64$, 128×128

Problem formulation: The open cylindrical shell rectangular in plan and simply supported along the curvilinear edges by ideal end diaphragms rigid in their plane and compliant out of their plane is subjected to the transverse load q uniformly distributed over the entire area. Check the obtained values of the transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell w_{q}.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
A. C. Scordelis, K. S. Lo, Computer analysis of cylindrical shells, Journal of the American concrete institute, Title No 61-33, May 1964, p. 539-561.
Design of cylindrical concrete shell roofs, New York, Manual No 31 American society of civil engineers, 1952.

Initial data:

$\mathrm{E}=4.32 \cdot 10^{8} \mathrm{kPa}$

- elastic modulus of the material of the cylindrical shell;
$v=0.00$
- Poisson's ratio;
$\mathrm{L}=50.00 \mathrm{~m} \quad-$ length of the generatrix of the cylindrical shell;
$\mathrm{R}=25.00 \mathrm{~m} \quad$ - radius of the midsurface of the cylindrical shell;
$2 \cdot \theta=2 \cdot 40^{\circ} \quad$ - central angle of the arc of the director of the cylindrical shell;
$\mathrm{h}=0.25 \mathrm{~m} \quad$ - thickness of the cylindrical shell;
$\mathrm{q}=90.0 \mathrm{kN} / \mathrm{m}^{2} \quad-$ value of the transverse load uniformly distributed over the entire area of the cylindrical shell.

Finite element model: Design model - general type system. Six design models of a quarter of the cylindrical shell according to the symmetry conditions are considered:
Model $1-8,32,128$ three-node shell elements of type 42 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. Boundary conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of nodes in the model $-9,25,81$.
Model $2-4,16$, 64 four-node shell elements of type 44 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. Boundary conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of nodes in the model -9, 25, 81.
Model $3-8,32$, 128 six-node shell elements of type 45 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. Boundary conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of nodes in the model - $25,81,289$.
Model $4-4,16$, 64 eight-node shell elements of type 50 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$. Boundary conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of nodes in the model - 25, 81, 289.
Model $5-4,16,64,256,1024,4096,16384$ eight-node isoparametric solid elements of type 36 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 \times 8 \times 1,16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1,128 \times 128 \times 1$. Boundary conditions are provided by imposing constraints on the nodes of the support curvilinear sides of the cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of nodes in the model - 18, 50, 162, 578, 2178, 8450, 33282.
Model $6-4,16,64,256,1024,4096,16384$ twenty-node isoparametric solid elements of type 37 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 \times 8 \times 1,16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1,128 \times 128 \times 1$. Boundary conditions are provided by imposing constraints on the nodes of the support curvilinear sides of the cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of nodes in the model-51, 155, 531, 1955, 7491, 29315, 115971.

Results in SCAD

Model 1. Design model

Model 1. Deformed model

\square	$-0,2294$	$-0,211$
\square	$-0,211$	$-0,1926$
\square	$-0,1926$	$-0,1742$
\square	$-0,1742$	$-0,1558$
\square	$-0,1558$	$-0,1374$
\square	$-0,1374$	$-0,1189$
\square	$-0,1189$	$-0,1005$
\square	$-0,1005$	$-0,0821$
\square	$-0,0821$	$-0,0637$
\square	$-0,0637$	$-0,0453$
\square	$-0,0453$	$-0,0269$
\square	$-0,0269$	$-0,0085$
\square	$-0,0085$	0,0099
\square	0,0099	0,0284

\square	$-0,2069$	$-0,1894$
\square	$-0,1894$	$-0,1719$
\square	$-0,1719$	$-0,1545$
\square	$-0,1545$	$-0,137$
\square	$-0,137$	$-0,1195$
\square	$-0,1195$	$-0,1021$
\square	$-0,1021$	$-0,0846$
\square	$-0,0846$	$-0,0671$
\square	$-0,0671$	$-0,0497$
\square	$-0,0497$	$-0,0322$
\square	$-0,0322$	$-0,0147$
\square	$-0,0147$	0,0027
\square	0,0027	0,0202
\square	0,0202	0,0377

\square	$-0,2622$	$-0,2407$
\square	$-0,2407$	$-0,2192$
\square	$-0,2192$	$-0,1977$
\square	$-0,1977$	$-0,1762$
\square	$-0,1762$	$-0,1547$
\square	$-0,1547$	$-0,1333$
\square	$-0,1333$	$-0,1118$
\square	$-0,1118$	$-0,0903$
\square	$-0,0903$	$-0,0688$
\square	$-0,0688$	$-0,0473$
\square	$-0,0473$	$-0,0258$
\square	$-0,0258$	$-0,0043$
\square	$-0,0043$	0,0171
\square	0,0171	0,0386

Model 1. Values of the transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell $w_{q}(m)$

Model 2. Design model

Model 2. Deformed model

	-0,3104	$\cdot 0,2853$
	-0,2853	-0,2601
	-0,2601	-0,2349
	-0.2349	-0,2097
	-0,2097	-0,1846
	-0,1846	-0,1594
	-0,1594	-0,1342
	-0,1342	-0,1091
	-0,1091	-0,0839
	-0,0839	-0,0587
\square	-0,0587	-0,0335
\square	-0,0335	-0,0084
	-0,0084	0.0168
\square	0.0168	0.042

$\square \square$	$-0,2821$	$-0,2579$
\square	$-0,2579$	$-0,2337$
\square	$-0,2337$	$-0,2095$
\square	$-0,2095$	$-0,1853$
\square	$-0,1853$	$-0,1611$
\square	$-0,1611$	$-0,1369$
\square	$-0,1369$	$-0,1127$
\square	$-0,1127$	$-0,0885$
\square	$-0,0885$	$-0,0643$
\square	$-0,0643$	$-0,0401$
\square	$-0,0401$	$-0,0159$
\square	$-0,0159$	0,0083
\square	0,0083	0,0325
\square	0,0325	0,0567

$\square \square$	$-0,2941$	$-0,27$
\square	$-0,27$	$-0,2458$
\square	$-0,2458$	$-0,2217$
\square	$-0,2217$	$-0,1975$
\square	$-0,1975$	$-0,1734$
\square	$-0,1734$	$-0,1492$
\square	$-0,1492$	$-0,1251$
\square	$-0,1251$	$-0,1009$
\square	$-0,1009$	$-0,0768$
\square	$-0,0768$	$-0,0527$
\square	$-0,0527$	$-0,0285$
\square	$-0,0285$	$-0,0044$
\square	$-0,0044$	0,0198
\square	0,0198	0,0439

Model 2. Values of the transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell $w_{q}(m)$

Model 3. Design model

Model 3. Deformed model

	-0,3673	-0,3375
	$-0,3375$	-0,3078
	-0,3078	-0,278
	-0,278	-0,2482
\square	-0,2482	-0,2184
	$-0,2184$	-0,1886
\square	$-0,1886$	-0,1589
	-0,1589	-0,1291
	$-0,1291$	-0,0993
	-0,0993	-0,0695
\square	-0,0695	-0,0397
\square	-0,0397	-0,0099
\square	-0,0099	0.0198
\square	0.0198	0.0496

\square	$-0,3107$	$-0,285$
\square	$-0,285$	$-0,2592$
\square	$-0,2592$	$-0,2335$
\square	$-0,2335$	$-0,2078$
\square	$-0,2078$	$-0,1821$
\square	$-0,1821$	$-0,1563$
\square	$-0,1563$	$-0,1306$
\square	$-0,1306$	$-0,1049$
\square	$-0,1049$	$-0,0791$
\square	$-0,0791$	$-0,0534$
\square	$-0,0534$	$-0,0277$
\square	$-0,0277$	$-0,002$
\square	$-0,002$	0.0238
\square	0.0238	0,0495

	$-0,3057$	-0,2806
	-0,2806	-0,2555
	$-0,2555$	-0,2304
	-0,2304	-0,2053
\square	-0,2053	-0,1803
\square	-0,1803	-0,1552
\square	$\cdot 0,1552$	-0,1301
\square	$-0,1301$	-0,105
	-0,105	-0.0799
\square	-0,0799	-0,0548
\square	-0,0548	-0,0297
	-0,0297	-0,0046
\square	-0,0046	0,0204
\square	0,0204	0.0455

Model 3. Values of the transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell $w_{q}(m)$

Model 4. Design mode

Model 4. Deformed model

Model 4. Values of the transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell $w_{q}(m)$

Model 5. Design model

Model 5. Deformed model

	-0,0077	-0,0072
	-0,0072	-0,0066
	-0,0066	-0,0061
	-0,0061	-0,0055
	-0,0055	-0,005
	-0,005	-0,0044
\square	-0,0044	-0,0039
	-0,0039	-0,0033
	-0,0033	-0,0028
	-0,0028	-0,0022
	-0,0022	-0,0017
	-0,0017	-0,0011
	-0,0011	-0,0006
	-0,0006	0.000

$\square \square$	$-0,0378$	$\cdot 0,0351$
\square	$-0,0351$	$\cdot 0,0324$
\square	$-0,0324$	$-0,0297$
\square	$-0,0297$	$-0,027$
\square	$-0,027$	$-0,0243$
\square	$-0,0243$	$-0,0216$
\square	$-0,0216$	$-0,0189$
\square	$-0,0189$	$-0,0162$
\square	$-0,0162$	$-0,0135$
\square	$-0,0135$	$-0,0108$
\square	$-0,0108$	$-0,0081$
\square	$-0,0081$	$-0,0054$
\square	$-0,0054$	$-0,0027$
\square	$-0,0027$	0.000000

\square	$-0,0806$	$-0,0749$
\square	$-0,0749$	$-0,0691$
\square	$-0,0691$	$-0,0633$
\square	$-0,0633$	$-0,0576$
\square	$-0,0576$	$-0,0518$
\square	$-0,0518$	$-0,0461$
\square	$-0,0461$	$-0,0403$
\square	$-0,0403$	$-0,0346$
\square	$-0,0346$	$-0,0288$
\square	$-0,0288$	$-0,023$
\square	$-0,023$	$-0,0173$
\square	$-0,0173$	$-0,0115$
\square	$-0,0115$	$-0,0058$
\square	$-0,0058$	0.000000

	-0,1673	-0,1546
	$-0,1546$	-0,142
	-0,142	-0,1294
	-0,1294	-0,1168
	-0,1168	-0,1042
	-0,1042	-0,0916
	-0,0916	-0,0789
	-0,0789	-0,0663
	-0,0663	-0,0537
	-0,0537	-0,0411
	-0,0411	-0,0285
	-0,0285	-0,0159
\square	-0,0159	-0,0032
	$\cdot 0,0032$	0,0094

	-0,2532	$\cdot 0,2329$
	-0,2329	-0,2125
	-0,2125	-0,1922
	-0,1922	-0,1719
\square	$-0,1719$	-0,1515
	-0,1515	-0,1312
\square	-0,1312	-0,1108
	-0,1108	-0,0905
\square	-0,0905	-0,0702
\square	-0,0702	-0,0498
\square	-0,0498	-0,0295
\square	-0,0295	-0,0091
\square	-0,0091	0.0112
\square	0.0112	0.0315

\square	$-0,2936$	$-0,2696$
\square	$-0,2696$	$-0,2457$
\square	$-0,2457$	$-0,2217$
\square	$-0,2217$	$-0,1977$
\square	$-0,1977$	$-0,1737$
\square	$-0,1737$	$-0,1498$
\square	$-0,1498$	$-0,1258$
\square	$-0,1258$	$-0,1018$
\square	$-0,1018$	$-0,0778$
\square	$-0,0778$	$-0,0538$
\square	$-0,0538$	$-0,0299$
\square	$-0,0299$	$-0,0059$
\square	$-0,0059$	0,0181
\square	0,0181	0,0421

Model 5. Values of the transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell $w_{q}(m)$

Model 6. Design model

Model 6. Deformed model

\square	$-0,3102$	$-0,2847$
\square	$-0,2847$	$-0,2593$
\square	$-0,2593$	$-0,2338$
\square	$-0,2338$	$-0,2083$
\square	$-0,2083$	$-0,1828$
\square	$-0,1828$	$-0,1574$
\square	$-0,1574$	$-0,1319$
\square	$-0,1319$	$-0,1064$
\square	$-0,1064$	$-0,081$
\square	$-0,081$	$-0,0555$
\square	$-0,0555$	$-0,03$
\square	$-0,03$	$-0,0045$
\square	$-0,0045$	0,0209
\square	0,0209	0,0464

\square	$-0,3104$	$-0,285$
\square	$-0,285$	$-0,2595$
\square	$-0,2595$	$-0,234$
\square	$-0,234$	$-0,2085$
\square	$-0,2085$	$-0,183$
\square	$-0,183$	$-0,1575$
\square	$-0,1575$	$-0,132$
\square	$-0,132$	$-0,1065$
\square	$-0,1065$	$-0,081$
\square	$-0,081$	$-0,0555$
\square	$-0,0555$	$-0,03$
\square	$-0,03$	$-0,0045$
\square	$-0,0045$	0,021
\square	0,021	0,0465

\square	$-0,3103$	$-0,2848$
\square	$-0,2848$	$-0,2593$
\square	$-0,2593$	$-0,2338$
\square	$-0,2338$	$-0,2083$
\square	$-0,2083$	$-0,1829$
\square	$-0,1829$	$-0,1574$
\square	$-0,1574$	$-0,1319$
\square	$-0,1319$	$-0,1064$
\square	$-0,1064$	$-0,081$
\square	$-0,081$	$-0,0555$
\square	$-0,0555$	$-0,03$
\square	$-0,03$	$-0,0045$
\square	$-0,0045$	0,021
\square	0,021	0,0464

Model 6. Values of the transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell $w_{q}(m)$

Comparison of solutions:

Transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell w_{q} from the transverse load q uniformly distributed over the entire area

Model	Finite element mesh	Theory	SCAD	Deviation, \%
1 (Member type 42)	2×2	0.3086	0.2294	25.66
	4x4		0.2069	32.95
	8x8		0.2622	15.04
2(Member type 44)	2x2	0.3086	0.3104	0.58
	4x4		0.2821	8.59
	8x8		0.2941	4.70
$\begin{gathered} 3 \\ \text { (Member type 45) } \end{gathered}$	2x2	0.3086	0.3673	19.02
	4×4		0.3107	0.68
	8x8		0.3057	0.94
(Member type 50)	2x2	0.3086	0.3693	19.67
	4×4		0.3114	0.91
	8x8		0.3059	0.87
$\begin{gathered} 5 \\ \text { (Member type 36) } \end{gathered}$	2x2	0.3086	0.0077	97.50
	4×4		0.0191	93.81
	8x8		0.0378	87.75
	16×16		0.0806	73.88
	32×32		0.1673	45.79
	64×64		0.2532	17.95
	128x128		0.2936	4.86
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	2x2	0.3086	0.4783	54.99
	4×4		0.3142	1.81
	8x8		0.3105	0.62
	16×16		0.3102	0.52
	32×32		0.3104	0.58
	64×64		0.3103	0.55
	128x128		0.3104	0.58

Free Hemispherical Shell with a Circular Pole Hole Subjected to Two Orthogonal Pairs of Mutually Balanced Radial Tensile and Compressive Forces Applied at the Equator

Objective: Check of the obtained values of the transverse displacements of a free hemispherical shell with a circular pole hole in the direction of action of two orthogonal pairs of mutually balanced radial tensile and compressive forces applied at the equator.

Initial data files:

File name	Description
Quadrant_of_a_spherical_shell _Shell_42_Mesh_2x2.SPR Quadrant_of_a_spherical_shell _Shell_42_Mesh_4x4.SPR Quadrant_of_a_spherical_shell_Shell_42_Mesh_8x8.SPR Quadrant_of_a_spherical_shell_Shell_42_Mesh_16x16.SPR Quadrant_of_a_spherical_shell_Shell_42_Mesh_32x32.SPR	Design model with the elements of type 42 for meshes $2 \times 2,4 x 4$, $8 \times 8,16 \times 16,32 \times 32$
Quadrant_of_a_spherical_shell_Shell_44_Mesh_2x2.SPR Quadrant_of_a_spherical_shell _Shell_44_Mesh_4x4.SPR Quadrant_of_a_spherical_shell_Shell_44_Mesh_8x8.SPR Quadrant_of_a_spherical_shell _Shell_44_Mesh_16x16.SPR Quadrant_of_a_spherical_shell_Shell_44_Mesh_32x32.SPR	Design model with the elements of type 44 for meshes $2 \times 2,4 \times 4$, $8 \times 8,16 \times 16,32 \times 32$
Quadrant_of_a_spherical_shell _Shell_45_Mesh_2x2.SPR Quadrant_of_a_spherical_shell_Shell_45_Mesh_4x4.SPR Quadrant_of_a_spherical_shell_Shell_45_Mesh_8x8.SPR Quadrant_of_a_spherical_shell _Shell_45_Mesh_16x16.SPR Quadrant_of_a_spherical_shell_Shell_45_Mesh_32x32.SPR	Design model with the elements of type 45 for meshes $2 \times 2,4 \times 4$, $8 \mathrm{x} 8,16 \times 16,32 \times 32$
Quadrant_of_a_spherical_shell_Shell_50_Mesh_2x2.SPR Quadrant_of_a_spherical_shell_Shell_50_Mesh_4x4.SPR Quadrant_of_a_spherical_shell_Shell_50_Mesh_8x8.SPR Quadrant_of_a_spherical_shell _Shell_50_Mesh_16x16.SPR Quadrant_of_a_spherical_shell_Shell_50_Mesh_32x32.SPR	Design model with the elements of type 50 for meshes $2 \times 2,4 \times 4$, $8 \times 8,16 \times 16,32 \times 32$
Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_2x2.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_4x4.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_8x8.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_16x16.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_32x32.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_64x64.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_128x128.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_256x256.SPR Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_512x512.SPR	Design model with the elements of type 36 for meshes $2 \times 2,4 \times 4$, $\begin{gathered} 8 \times 8,16 \times 16,32 \times 32,64 \times 64, \\ 128 \times 128,256 \times 256,512 \times 512 \end{gathered}$

File name	Description
Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_2x2.SPR	
Quadrant_of_a_spherical_shell _ Solid_37.SPR _Mesh_4x4.SPR	Design model with the elements
Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_8x8.SPR	of type 37 for meshes 2x2, 4x4,
Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_16x16.SPR	$8 \times 8,16 \times 16,32 \times 32,64 \times 64$,
Quadrant_of_a_spherical_shell _ Solid_37.SPR _Mesh_32x32.SPR	128×128
Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_64x64.SPR	
Quadrant_of_a_spherical_shell_Solid_37.SPR _Mesh_128x128.SPR	

Problem formulation: The free hemispherical shell with a circular pole hole is subjected to two orthogonal pairs of mutually balanced radial tensile and compressive forces F applied at the equator. Check the obtained values of the transverse displacements of the free hemispherical shell w_{FX} and w_{FY} in the direction of the action of forces applied at the equator.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.
L. S. D. Morley, A. J. Morris, Conflict between finite elements and shell theory, London, Royal aircraft establishment report, 1978.

Initial data:

$\mathrm{E}=6.825 \cdot 10^{7} \mathrm{kPa} \quad$ - elastic modulus of the material of the hemispherical shell;
$v=0.30 \quad$ - Poisson's ratio;
$\mathrm{R}=10.00 \mathrm{~m} \quad$ - radius of the midsurface of the hemispherical shell;
$2 \cdot \theta=2 \cdot 18^{\circ} \quad$ - central angle of the surface of the circular hole of the hemispherical shell;
$\mathrm{h}=0.04 \mathrm{~m} \quad-$ thickness of the hemispherical shell;
$\mathrm{F}_{\mathrm{X}}=+2.0 \mathrm{kN} \quad-$ values of the concentrated radial tensile forces applied at the equator of the hemispherical shell;
$\mathrm{F}_{\mathrm{Y}}=-2.0 \mathrm{kN} \quad-$ values of the concentrated radial compressive forces applied at the equator of the hemispherical shell.

Finite element model: Design model - general type system. Six design models of a quarter of the hemispherical shell according to the symmetry conditions are considered:
Model $1-8,32,128,512,2048$ three-node shell elements of type 42 with a regular mesh $2 x 2,4 x 4,8 x 8$, $16 \times 16,32 \times 32$. Boundary conditions and the dimensional stability are provided by imposing constraints according to the symmetry conditions. Number of nodes in the model -9, 25, 81, 289, 1089.
Model $2-4,16,64,256,1024$ four-node shell elements of type 44 with a regular mesh $2 \mathrm{x} 2,4 \mathrm{x} 4,8 \mathrm{x} 8$, $16 \times 16,32 \times 32$. Boundary conditions and the dimensional stability are provided by imposing constraints according to the symmetry conditions. Number of nodes in the model-9, 25, 81, 289,1089.
Model $3-8,32,128,512,2048$ six-node shell elements of type 45 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$, $16 \times 16,32 \times 32$. Boundary conditions and the dimensional stability are provided by imposing constraints according to the symmetry conditions. Number of nodes in the model-25, 81, 289, 1089, 4225.
Model $4-4,16,64,256,1024$ eight- node shell elements of type 50 with a regular mesh $2 \times 2,4 \times 4,8 \times 8$, $16 \times 16,32 \times 32$. Boundary conditions and the dimensional stability are provided by imposing constraints according to the symmetry conditions. Number of nodes in the model $-21,65,225,833,3201$.
Model $5-4,16,64,256,1024,4096,16384,65536,262144$ eight-node isoparametric solid elements of type 36 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 x 8 x 1,16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1,128 \times 128 \times 1,256 \times 256 \times 1$, $512 \times 512 \times 1$. Boundary conditions and the dimensional stability are provided by imposing constraints according to the symmetry conditions. Number of nodes in the model $-18,50,162,578,2178,8450$, 33282, 132149, 526338.
Model 6-4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a regular mesh $2 \times 2 \times 1,4 \times 4 \times 1,8 \times 8 \times 1,16 \times 16 \times 1,32 \times 32 \times 1,64 \times 64 \times 1,128 \times 128 \times 1$. Boundary conditions and the dimensional stability are provided by imposing constraints according to the symmetry conditions. Number of nodes in the model $-51,155,531,1955,7491,29315,115971$.

Model 1. Design model

Model 1. Deformed model

0.000000	0,0059
0,0059	0.0118
0.0118	0.0177
0.0177	0.0237
0.0237	0.0296
0.0296	0.0355
0,0355	0.0414
0,0414	0,0473
0,0473	0,0532
0,0532	0,0591
0.0591	0.0651
0.0651	0.071
0.071	0,0769
0.0769	0,0828

	$\cdot 0,0862$	-0,08
	-0,08	-0,0739
	-0,0739	-0,0677
	-0,0677	-0,0616
\square	-0,0616	-0,0554
	-0,0554	-0,0493
\square	-0,0493	-0,0431
	-0,0431	-0,0369
	-0,0369	-0,0308
\square	-0,0308	-0,0246
	-0,0246	-0,0185
\square	-0,0185	-0,0123
\square	-0,0123	-0,0062
\square	-0,0062	0.000000

	0.0000000	0,0064
\square	0,0064	0,0129
\square	0,0129	0,0193
\square	0,0193	0,0258
\square	0,0258	0,0322
\square	0,0322	0,0387
\square	0,0387	0,0451
\square	0,0451	0,0515
\square	0,0515	0,058
\square	0,058	0,0644
\square	0,0644	0,0709
\square	0,0709	0,0773
\square	0,0773	0,0837
\square	0,0837	0,0902

\square	-0.0919	-0.0854
\square	-0.0854	-0.0788
\square	-0.0788	-0.0722
\square	-0.0722	-0.0657
\square	-0.0657	-0.0591
\square	-0.0591	-0.0525
\square	-0.0525	-0.046
\square	-0.046	-0.0394
\square	-0.0394	-0.0328
\square	-0.0328	-0.0263
\square	-0.0263	-0.0197
\square	-0.0197	-0.0131
\square	-0.0131	-0.0066
\square	-0.0066	0.000000

	0.000000	0,0065
	0,0065	0.0131
	0.0131	0.0196
	0.0196	0,0262
	0,0262	0,0327
\square	0.0327	0,0393
\square	0,0393	0,0458
\square	0.0458	0.0524
\square	0.0524	0.0589
\square	0.0589	0.0655
\square	0,0655	0.072
\square	0.072	0.0786
\square	0.0786	0.0851
\square	0,0851	0.0917

$\square \square$	$-0,0922$	$-0,0856$
\square	$-0,0856$	$-0,079$
\square	$-0,079$	$-0,0724$
\square	$-0,0724$	$-0,0659$
\square	$-0,0659$	$-0,0593$
\square	$-0,0593$	$-0,0527$
\square	$-0,0527$	$-0,0461$
\square	$-0,0461$	$-0,0395$
\square	$-0,0395$	$-0,0329$
\square	$-0,0329$	$-0,0263$
\square	$-0,0263$	$-0,0198$
\square	$-0,0198$	$-0,0132$
\square	$-0,0132$	$-0,0066$
\square	$-0,0066$	0.000000

	0.000000	0,0066
	0,0066	0,0131
	0.0131	0,0197
	0.0197	0.0263
	0,0263	0,0329
	0,0329	0,0394
	0,0394	0,046
	0.046	0,0526
\square	0,0526	0,0592
	0,0592	0,0657
\square	0,0657	0.0723
\square	0.0723	0,0789
\square	0.0789	0,0855
\square	0,0855	0,092

\square	$-0,0922$	$-0,0856$
\square	$-0,0856$	$-0,079$
\square	$-0,079$	$-0,0724$
\square	$-0,0724$	$-0,0658$
\square	$-0,0658$	$-0,0592$
\square	$-0,0592$	$-0,0527$
\square	$-0,0527$	$-0,0461$
\square	$-0,0461$	$-0,0395$
\square	$-0,0395$	$-0,0329$
\square	$-0,0329$	-0.0263
\square	$-0,0263$	$-0,0197$
\square	$-0,0197$	-0.0132
\square	$-0,0132$	$-0,0066$
\square	$-0,0066$	0.000000

	0	0,0066
	0,0066	0,0132
	0,0132	0.0199
	0,0199	0,0265
	0,0265	0.0331
	0.0331	0,0397
	0,0397	0,0464
	0.0464	0,053
\square	0.053	0,0596
	0,0596	0,0662
\square	0,0662	0,0728
	0.0728	0.0795
	0.0795	0.0861
\square	0.0861	0.0927

\square	$-0,0928$	$-0,0861$
\square	$-0,0861$	$-0,0795$
\square	$-0,0795$	$-0,0729$
\square	$-0,0729$	$-0,0663$
\square	$-0,0663$	$-0,0596$
\square	$-0,0596$	$-0,053$
\square	$-0,053$	$-0,0464$
\square	$-0,0464$	$-0,0398$
\square	$-0,0398$	$-0,0331$
\square	$-0,0331$	$-0,0265$
\square	$-0,0265$	$-0,0199$
\square	$-0,0199$	$-0,0133$
\square	$-0,0133$	$-0,0066$
\square	$-0,0066$	0

Model 1. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces along the X and Y axes of the global coordinate system respectively $w_{F X}$ and $w_{F Y}(m, m)$

Model 2. Design model

Model 2. Deformed model

$\square \square$	$-0,0924$	$-0,0858$
\square	$-0,0858$	$-0,0792$
\square	$-0,0792$	$-0,0726$
\square	$-0,0726$	$-0,066$
\square	$-0,066$	$-0,0594$
\square	$-0,0594$	$-0,0528$
\square	$-0,0528$	$-0,0462$
\square	$-0,0462$	$-0,0396$
\square	$-0,0396$	$-0,033$
\square	$-0,033$	$-0,0264$
\square	$-0,0264$	$-0,0198$
\square	$-0,0198$	$-0,0132$
\square	$-0,0132$	$-0,0066$
\square	$-0,0066$	0.000000

	0.000000	0,0067
	0,0067	0,0134
	0,0134	0,0201
	0,0201	0,0268
	0.0268	0,0335
	0,0335	0,0402
\square	0,0402	0,0469
	0,0469	0,0536
	0,0536	0,0603
	0,0603	0,067
\square	0.067	0,0737
\square	0.0737	0,0804
\square	0,0804	0,0871
\square	0,0871	0,0938

\square	$-0,0938$	$-0,0871$
\square	$-0,0871$	$-0,0804$
\square	$-0,0804$	$-0,0737$
\square	$-0,0737$	$-0,067$
\square	$-0,067$	$-0,0603$
\square	$-0,0603$	$-0,0536$
\square	$-0,0536$	$-0,0469$
\square	$-0,0469$	$-0,0402$
\square	$-0,0402$	$-0,0335$
\square	$-0,0335$	$-0,0268$
\square	$-0,0268$	$-0,0201$
\square	$-0,0201$	$-0,0134$
\square	$-0,0134$	$-0,0067$
\square	$-0,0067$	0.000000

\square	0.000000	0.0066
\square	0.0066	0.0133
\square	0.0133	0.0199
\square	0.0199	0.0266
\square	0.0266	0.0332
\square	0.0332	0.0399
\square	0.0399	0.0465
\square	0.0465	0.0531
\square	0.0531	0.0598
\square	0.0598	0.0664
\square	0.0664	0.0731
\square	0.0731	0.0797
\square	0.0797	0.0864
\square	0.0864	0.093

\square	$-0,093$	$-0,0864$
\square	$-0,0864$	$-0,0797$
\square	$-0,0797$	$-0,0731$
\square	$-0,0731$	$-0,0664$
\square	$-0,0664$	$-0,0598$
\square	$-0,0598$	$-0,0531$
\square	$-0,0531$	$-0,0465$
\square	$-0,0465$	$-0,0399$
\square	$-0,0399$	$-0,0332$
\square	$-0,0332$	$-0,0266$
\square	$-0,0266$	$-0,0199$
\square	$-0,0199$	$-0,0133$
\square	$-0,0133$	$-0,0066$
\square	$-0,0066$	0.000000

	-0,0928	-0,0862
	-0,0862	-0,0795
	-0,0795	-0,0729
	-0,0729	-0,0663
	-0,0663	-0,0597
	-0,0597	-0,053
\square	-0,053	-0,0464
	-0,0464	-0,0398
	-0,0398	-0,0331
	$-0,0331$	-0,0265
	-0,0265	-0,0199
	-0,0199	-0,0133
\square	-0,0133	-0,0066
\square	-0,0066	0.000000

$\square 0$	0,0067
$\square 0,0067$	0,0133
$\square 0,0133$	0,02
$\square 0,02$	0,0266
$\square 0,0266$	0,0333
$\square 0,0333$	0,0399
$\square 0,0399$	0,0466
$\square 0,0466$	0,0533
$\square 0,0533$	0,0599
$\square 0,0599$	0,0666
$\square 0,0666$	0,0732
$\square 0.0732$	0,0799
$\square 0,0799$	0,0865
$\square 0,0865$	0,0932

\square	$-0,0932$	$-0,0865$
\square	$-0,0865$	$-0,0799$
\square	$-0,0799$	$-0,0732$
\square	$-0,0732$	$-0,0666$
\square	$-0,0666$	$-0,0599$
\square	$-0,0599$	$-0,0533$
\square	$-0,0533$	$-0,0466$
\square	$-0,0466$	$-0,0399$
\square	$-0,0399$	$-0,0333$
\square	$-0,0333$	$-0,0266$
\square	$-0,0266$	$-0,02$
\square	$-0,02$	$-0,0133$
\square	$-0,0133$	$-0,0067$
\square	$-0,0067$	0

Model 2. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces along the X and Y axes of the global coordinate system respectively $w_{F X}$ and $w_{F Y}(m, m)$

Model 3. Design model

Model 3. Deformed model

\square	$-0,051$	$-0,0472$
\square	$-0,0472$	$-0,0434$
\square	$-0,0434$	$-0,0396$
\square	$-0,0396$	$-0,0359$
\square	$-0,0359$	$-0,0321$
\square	$-0,0321$	$-0,0283$
\square	$-0,0283$	$-0,0245$
\square	$-0,0245$	$-0,0207$
\square	$-0,0207$	$-0,0169$
\square	$-0,0169$	$-0,0132$
\square	$-0,0132$	$-0,0094$
\square	$-0,0094$	$-0,0056$
\square	$-0,0056$	$-0,0018$
\square	$-0,0018$	0,002

\square	-0.0011	0.0017
\square	0.0017	0.0046
\square	0.0046	0.0074
\square	0.0074	0.0103
\square	0.0103	0.0131
\square	0.0131	0.016
\square	0.016	0.0189
\square	0.0189	0.0217
\square	0.0217	0.0246
\square	0.0246	0.0274
\square	0.0274	0.0303
\square	0.0303	0.0331
\square	0.0331	0.036
\square	0.036	0.0389

\square	$-0,0395$	$-0,0366$
\square	$-0,0366$	$-0,0337$
\square	$-0,0337$	$-0,0308$
\square	$-0,0308$	$-0,0279$
\square	$-0,0279$	$-0,025$
\square	$-0,025$	$-0,0221$
\square	$-0,0221$	$-0,0192$
\square	$-0,0192$	$-0,0162$
\square	$-0,0162$	$-0,0133$
\square	$-0,0133$	$-0,0104$
\square	$-0,0104$	$-0,0075$
\square	$-0,0075$	$-0,0046$
\square	$-0,0046$	$-0,0017$
\square	$-0,0017$	0,0012

	-0,0002	0,0033
	0,0033	0,0067
	0,0067	0,0102
	0.0102	0.0137
	0.0137	0.0172
\square	0.0172	0.0206
	0.0206	0,0241
\square	0.0241	0,0276
	0.0276	0,031
\square	0.031	0,0345
\square	0.0345	0,038
\square	0,038	0.0415
\square	0.0415	0,0449
\square	0,0449	0,0484

\square	$-0,0489$	$-0,0454$
\square	$-0,0454$	$-0,0419$
\square	$-0,0419$	$-0,0384$
\square	$-0,0384$	$-0,0349$
\square	$-0,0349$	$-0,0314$
\square	$-0,0314$	$-0,0279$
\square	$-0,0279$	$-0,0243$
\square	$-0,0243$	$-0,0208$
\square	$-0,0208$	$-0,0173$
\square	$-0,0173$	$-0,0138$
\square	$-0,0138$	$-0,0103$
\square	$-0,0103$	$-0,0068$
\square	$-0,0068$	$-0,0033$
\square	$-0,0033$	0,0002

\square	0	0.006
\square	0.006	0.0119
\square	0.0119	0.0179
\square	0.0179	0.0238
\square	0.0238	0.0298
\square	0.0298	0.0357
\square	0.0357	0.0417
\square	0.0417	0.0477
\square	0.0477	0.0536
\square	0.0536	0.0596
\square	0.0596	0.0655
\square	0.0655	0.0715
\square	0.0715	0.0774
\square	0.0774	0.0834

\square	$-0,0835$	$-0,0775$
\square	$-0,0775$	$-0,0716$
\square	$-0,0716$	$-0,0656$
\square	$-0,0656$	$-0,0596$
\square	$-0,0596$	$-0,0537$
\square	$-0,0537$	$-0,0477$
\square	$-0,0477$	$-0,0417$
\square	$-0,0417$	$-0,0358$
\square	$-0,0358$	$-0,0298$
\square	$-0,0298$	$-0,0239$
\square	$-0,0239$	$-0,0179$
\square	$-0,0179$	$-0,0119$
\square	$-0,0119$	$-0,006$
\square	$-0,006$	0

\square	$-0,0927$	$-0,0861$
\square	$-0,0861$	$-0,0795$
\square	$-0,0795$	$-0,0728$
\square	$-0,0728$	$-0,0662$
\square	$-0,0662$	$-0,0596$
\square	$-0,0596$	$-0,053$
\square	$-0,053$	$-0,0464$
\square	$-0,0464$	$-0,0397$
\square	$-0,0397$	$-0,0331$
\square	$-0,0331$	$-0,0265$
\square	$-0,0265$	$-0,0199$
\square	$-0,0199$	$-0,0132$
\square	$-0,0132$	$-0,0066$
\square	$-0,0066$	0

Model 3. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces along the X and Y axes of the global coordinate system respectively $w_{F X}$ and $w_{F Y}(m, m)$

Model 4. Design model

Model 4. Deformed model

\square	-0.0021	0.0018
\square	0.0018	0,0057
\square	0.0057	0.0096
\square	0.0096	0.0135
\square	0.0135	0.0174
\square	0.0174	0.0213
\square	0.0213	0.0253
\square	0.0253	0.0292
\square	0.0292	0.0331
\square	0.0331	0.037
\square	0.037	0.0409
\square	0.0409	0.0448
\square	0.0448	0.0487
\square	0.0487	0.0526

\square	$-0,0526$	$-0,0487$
\square	$-0,0487$	$-0,0448$
\square	$-0,0448$	$-0,0409$
\square	$-0,0409$	$-0,037$
\square	$-0,037$	$-0,0331$
\square	$-0,0331$	$-0,0292$
\square	$-0,0292$	$-0,0253$
\square	$-0,0253$	$-0,0213$
\square	$-0,0213$	$-0,0174$
\square	$-0,0174$	$-0,0135$
\square	$-0,0135$	$-0,0096$
\square	$-0,0096$	$-0,0057$
\square	$-0,0057$	$-0,0018$
\square	$-0,0018$	0,0021

	-0,0009	0,0025
	0,0025	0,0058
	0,0058	0,0091
	0,0091	0.0125
\square	0.0125	0,0158
\square	0.0158	0.0192
\square	0,0192	0,0225
\square	0,0225	0,0258
\square	0.0258	0,0292
\square	0,0292	0,0325
\square	0.0325	0,0359
\square	0.0359	0,0392
\square	0,0392	0,0425
\square	0.0425	0.0459

	-0,0459	-0,0425
	-0,0425	-0,0392
	-0,0392	-0,0359
	-0,0359	-0,0325
	-0,0325	-0,0292
	-0,0292	-0,0258
	-0,0258	-0,0225
	-0,0225	-0,0192
	-0,0192	-0,0158
	-0,0158	-0,0125
\square	-0,0125	-0,0091
\square	-0,0091	-0,0058
\square	-0,0058	-0,0025
\square	$-0,0025$	0.0009

\square	$-0,0651$	$-0,0604$
\square	$-0,0604$	$-0,0558$
\square	$-0,0558$	$-0,0511$
\square	$-0,0511$	$-0,0465$
\square	$-0,0465$	$-0,0418$
\square	$-0,0418$	$-0,0372$
\square	$-0,0372$	$-0,0325$
\square	$-0,0325$	$-0,0279$
\square	$-0,0279$	$-0,0232$
\square	$-0,0232$	$-0,0186$
\square	$-0,0186$	$-0,0139$
\square	$-0,0139$	$-0,0093$
\square	$-0,0093$	$-0,0046$
\square	$-0,0046$	0

	0	0,0064
	0,0064	0.0128
	0.0128	0.0193
	0.0193	0.0257
	0.0257	0,0321
\square	0,0321	0,0385
\square	0.0385	0.0449
-	0.0449	0,0514
\square	0.0514	0.0578
\square	0.0578	0.0642
\square	0.0642	0,0706
\square	0.0706	0.077
\square	0.077	0,0834
\square	0,0834	0,0899

\square	$-0,0899$	$-0,0834$
\square	$-0,0834$	$-0,077$
\square	$-0,077$	$-0,0706$
\square	$-0,0706$	$-0,0642$
\square	$-0,0642$	$-0,0578$
\square	$-0,0578$	$-0,0514$
\square	$-0,0514$	$-0,0449$
\square	$-0,0449$	$-0,0385$
\square	$-0,0385$	$-0,0321$
\square	$-0,0321$	$-0,0257$
\square	$-0,0257$	$-0,0193$
\square	$-0,0193$	$-0,0128$
\square	$-0,0128$	$-0,0064$
\square	$-0,0064$	0

	0	0.0067
	0.0067	0.0133
	0.0133	0.02
	0.02	0.0266
	0.0266	0,0333
\square	0,0333	0.04
	0.04	0.0466
\square	0.0466	0.0533
\square	0,0533	0.0599
	0.0599	0.0666
\square	0,0666	0.0733
\square	0.0733	0.0799
\square	0.0799	0.0866
\square	0,0866	0.0932

$\square \square$	$-0,0932$	$-0,0866$
\square	$-0,0866$	$-0,0799$
\square	$-0,0799$	$-0,0733$
\square	$-0,0733$	$-0,0666$
\square	$-0,0666$	$-0,0599$
\square	$-0,0599$	$-0,0533$
\square	$-0,0533$	$-0,0466$
\square	$-0,0466$	$-0,04$
\square	$-0,04$	$-0,0333$
\square	$-0,0333$	$-0,0266$
\square	$-0,0266$	$-0,02$
\square	$-0,02$	$-0,0133$
\square	$-0,0133$	$-0,0067$
\square	$-0,0067$	0

Model 4. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces along the X and Y axes of the global coordinate system respectively $w_{F X}$ and $w_{F Y}(m, m)$

Model 5. Design model

Model 5. Deformed model

	0	0
	0	0
	0	0
	0	0
	0	0
\square	0	0
	0	0,0001
\square	0,0001	0,0001
\square	0,0001	0,0002
\square	0,0002	0,0003

	-0,0003	-0,0002
	-0,0002	-0,0002
	-0,0002	-0,0002
	-0,0002	-0,0002
	-0,0002	-0,0002
	-0,0002	-0,0001
\square	-0,0001	-0,0001
\square	-0,0001	0
\square	0	0
\square	0	0
	0	0
\square	0	0
\square	0	0
\square	0	0

	0	0
	0	0
\square	0	0,0002
	0,0002	0,0002
\square	0,0002	0,0003
	0,0003	0,0004
	0,0004	0,0005
	0,0005	0,0005
\square	0,0005	0,0006
\square	0,0006	0,0007
\square	0,0007	0,0007
\square	0.0007	0,0008
\square	0,0008	0,0009
\square	0.0009	0.001

\square	$-0,001$	$-0,0009$
\square	$-0,0009$	$-0,0008$
\square	$-0,0008$	$-0,0007$
\square	$-0,0007$	$-0,0007$
\square	$-0,0007$	$-0,0006$
\square	$-0,0006$	$-0,0005$
\square	$-0,0005$	$-0,0005$
\square	$-0,0005$	$-0,0004$
\square	$-0,0004$	$-0,0003$
\square	$-0,0003$	$-0,0002$
\square	$-0,0002$	$-0,0002$
\square	$-0,0002$	0
\square	0	0
\square	0	0

\square	0.0002	0
\square	0	0.0004
\square	0.0004	0.0006
\square	0.0006	0.0009
\square	0.0009	0.0012
\square	0.0012	0.0015
\square	0.0015	0.0017
\square	0.0017	0.002
\square	0.002	0.0023
\square	0.0023	0.0025
\square	0.0025	0.0028
\square	0.0028	0.0031
\square	0.0031	0.0034
\square	0.0034	0.0036

\square	0,0004	0,0006
\square	0.0006	0.0015
\square	0.0015	0.0024
\square	0.0024	0.0033
\square	0.0033	0.0043
\square	0.0043	0.0052
\square	0.0052	0.0061
\square	0.0061	0.007
\square	0.007	0.008
\square	0.008	0.0089
\square	0.0089	0.0098
\square	0.0098	0.0107
\square	0.0107	0.0116
\square	0.0116	0.0126

	-0,0126	-0,0116
	-0,0116	-0.0107
	-0,0107	-0,0098
	-0,0098	-0,0089
	-0,0089	-0,008
\square	-0,008	-0,007
	-0,007	-0,0061
	-0,0061	-0.0052
	-0,0052	-0,0043
	-0,0043	-0,0033
	-0,0033	-0,0024
	-0,0024	-0,0015
	-0,0015	-0,0006
	-0,0006	0.0004

\square	$-0,0003$	0,0022
\square	0,0022	0,0048
\square	0,0048	0,0073
\square	0,0073	0,0098
\square	0,0098	0,0123
\square	0,0123	0,0148
\square	0.0148	0,0173
\square	0,0173	0,0199
\square	0,0199	0,0224
\square	0,0224	0,0249
\square	0,0249	0,0274
\square	0,0274	0,0299
\square	0,0299	0,0325
\square	0,0325	0,035

	$\cdot 0,035$	-0,0325
	-0,0325	-0,0299
	-0,0299	-0,0274
	-0,0274	-0.0249
	-0,0249	-0,0224
	-0,0224	-0,0199
	-0,0199	-0.0173
	-0,0173	-0,0148
	-0,0148	-0,0123
	-0,0123	-0,0098
	-0,0098	-0,0073
	-0,0073	-0,0048
	-0,0048	-0,0022
	-0,0022	0,0003

\square	0	0.0047
\square	0.0047	0.0093
\square	0.0093	0.014
\square	0.014	0.0187
\square	0.0187	0.0234
\square	0.0234	0.028
\square	0.028	0.0327
\square	0.0327	0.0374
\square	0.0374	0.0421
\square	0.0421	0.0467
\square	0.0467	0.0514
\square	0.0514	0.0561
\square	0.0561	0.0608
\square	0.0608	0.0654

\square	-0.0654	-0.0608
\square	-0.0608	-0.0561
\square	-0.0561	-0.0514
\square	-0.0514	$-0,0467$
\square	-0.0467	-0.0421
\square	-0.0421	$-0,0374$
\square	-0.0374	-0.0327
\square	-0.0327	-0.028
\square	-0.028	-0.0234
\square	-0.0234	-0.0187
\square	-0.0187	-0.014
\square	-0.014	$-0,0093$
\square	-0.0093	-0.0047
\square	-0.0047	0

Model 5. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces along the X and Y axes of the global coordinate system respectively $w_{F X}$ and $w_{F Y}(m, m)$

Model 6. Design model

\square	$-0,0014$	$-0,0013$
\square	$-0,0013$	$-0,0011$
\square	$-0,0011$	$-0,001$
\square	$-0,001$	$-0,0009$
\square	$-0,0009$	$-0,0007$
\square	$-0,0007$	$-0,0006$
\square	$-0,0006$	$-0,0005$
\square	$-0,0005$	$-0,0003$
\square	$-0,0003$	$-0,0002$
\square	$-0,0002$	0
\square	0	0
\square	0	0,0002
\square	0,0002	0,0004
\square	0,0004	0,0005

\square	$-0,0006$	0,0002
\square	0,0002	0,0009
\square	0,0009	0,0017
\square	0,0017	0,0024
\square	0,0024	0,0032
\square	0,0032	0,0039
\square	0,0039	0,0047
\square	0,0047	0,0054
\square	0,0054	0,0062
\square	0,0062	0,0069
\square	0,0069	0,0077
\square	0,0077	0,0084
\square	0,0084	0,0092
\square	0,0092	0,01

	-0,01	-0,0092
	-0,0092	-0,0084
	-0,0084	-0,0077
	-0,0077	-0,0069
	-0,0069	-0,0062
	-0,0062	-0,0054
	-0,0054	-0,0047
	$-0,0047$	-0,0039
	$-0,0039$	-0,0032
\square	$-0,0032$	-0,0024
\square	-0,0024	-0,0017
	-0,0017	-0,0009
	-0,0009	-0,0002
\square	$-0,0002$	0.0006

\square	0	0.0042
\square	0.0042	0.0084
\square	0.0084	0.0126
\square	0.0126	0.0168
\square	0.0168	0.021
\square	0.021	0.0253
\square	0.0253	0.0295
\square	0.0295	0.0337
\square	0.0337	0.0379
\square	0.0379	0.0421
\square	0.0421	0.0463
\square	0.0463	0.0505
\square	0.0505	0.0547
\square	0.0547	0.0589

\square	$-0,059$	$-0,0547$
\square	$-0,0547$	$-0,0505$
\square	$-0,0505$	$-0,0463$
\square	$-0,0463$	$-0,0421$
\square	$-0,0421$	$-0,0379$
\square	$-0,0379$	$-0,0337$
\square	$-0,0337$	$-0,0295$
\square	$-0,0295$	$-0,0253$
\square	$-0,0253$	$-0,021$
\square	-0.021	-0.0168
\square	$-0,0168$	-0.0126
\square	$-0,0126$	$-0,0084$
\square	$-0,0084$	$-0,0042$
\square	$-0,0042$	0

\square	0	0.0064
\square	0.0064	0.0128
\square	0.0128	0.0193
\square	0.0193	0.0257
\square	0.0257	0.0321
\square	0.0321	0.0386
\square	0.0386	0.045
\square	0.045	0.0514
\square	0.0514	0.0578
\square	0.0578	0.0643
\square	0.0643	0.0707
\square	0.0707	0.0771
\square	0.0771	0.0836
\square	0.0836	0.09

\square	$-0,09$	$-0,0836$
\square	$-0,0836$	$-0,0771$
\square	$-0,0771$	$-0,0707$
\square	$-0,0707$	$-0,0643$
\square	$-0,0643$	$-0,0578$
\square	$-0,0578$	$-0,0514$
\square	$-0,0514$	$-0,044$
\square	$-0,045$	$-0,0386$
\square	$-0,0386$	$-0,0321$
\square	$-0,0321$	$-0,0257$
\square	$-0,0257$	$-0,0193$
\square	$-0,0193$	$-0,0128$
\square	$-0,0128$	$-0,0064$
\square	$-0,0064$	0

\square	0	0,0066
\square	0,0066	0,0133
\square	0,0133	0,02
\square	0,02	0,0266
\square	0,0266	0,0333
\square	0,0333	0,04
\square	0,04	0,0466
\square	0,0466	0,0533
\square	0,0533	0,0599
\square	0,0599	0,0666
\square	0,0666	0,0733
\square	0,0733	0,0799
\square	0,0799	0,0866
\square	0,0866	0,0933

	-0,0933	-0,0866
	-0,0866	-0,0799
	-0,0799	-0,0733
	-0,0733	-0,0666
	-0,0666	-0,0599
\square	-0,0599	-0,0533
	-0,0533	-0,0466
	-0,0466	-0,04
	-0,04	-0,0333
	-0,0333	-0,0266
	-0,0266	-0,02
	-0,02	-0,0133
	-0,0133	-0,0066
\square	-0,0066	0

\square	0	0.0067
\square	0.0067	0.0133
\square	0.0133	0.02
\square	0.02	0.0267
\square	0.0267	0.03334
\square	0.0334	0.0401
\square	0.0401	0.0468
\square	0.0468	0.0535
\square	0.0535	0.0601
\square	0.0601	0.0668
\square	0.0668	0.0735
\square	0.0735	0.0802
\square	0.0802	0.0869
\square	0.0869	0.0936

\square	$-0,0936$	$-0,0869$
\square	$-0,0869$	$-0,0802$
\square	$-0,0802$	$-0,0735$
\square	$-0,0735$	$-0,0668$
\square	$-0,0668$	$-0,0601$
\square	$-0,0601$	$-0,0535$
\square	$-0,0535$	$-0,0468$
\square	$-0,0468$	$-0,0401$
\square	$-0,0401$	$-0,0334$
\square	$-0,0334$	$-0,0267$
\square	$-0,0267$	$-0,02$
\square	$-0,02$	$-0,0133$
\square	$-0,0133$	$-0,0067$
\square	$-0,0067$	0

\square	0	0.0067
\square	0.0067	0.0134
\square	0.0134	0.0201
\square	0.0201	0.0267
\square	0.0267	0.03334
\square	0.0334	0.0401
\square	0.0401	0.0468
\square	0.0468	0,0535
\square	0.0535	0,0602
\square	0.0602	0.0669
\square	0.0669	0.0736
\square	0.0736	0.0803
\square	0.0803	0.087
\square	0.087	0,0937

Model 6. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces along the X and Y axes of the global coordinate system respectively $w_{F X}$ and $w_{F Y}(m, m)$

Comparison of solutions:

Displacements in the direction of the pairs of radial tensile forces and the pairs of radial compressive forces F_{X} and F_{Y} along the X and Y axes of the global coordinate system respectively $w_{F X}$ and $w_{F Y}(m, m)$

Model	Finite element mesh	Theory	SCAD	Deviation, \%
(Member type 42)	2×2	$\frac{+0.0940}{-0.0940}$	$\frac{+0.0828}{-0.0862}$	$\frac{11.91}{8.30}$
	4×4		+0.0902	$\underline{4.04}$
			-0.0919	2.23
	8×8		+0.0917	$\underline{2.45}$
			-0.0922	1.91
	16x16		+0.0920	$\underline{2.13}$
	16×16		-0.0922	1.91
	32×32		+0.0927	$\underline{1.38}$
			-0.0928	1.28
$\begin{gathered} 2 \\ \text { (Member type 44) } \end{gathered}$	2 x 2	$\frac{+0.0940}{-0.0940}$	+0.0924	1.70
	2×2		-0.0924	1.70
	4×4		+0.0938	0.21
			-0.0938	0.21
	8 x 8		+0.0930	1.06
			-0.0930	1.06
	16x16		+0.0928	1.28
			-0.0928	1.28
	32×32		+0.0932	$\underline{0.85}$
	32×32		-0.0932	0.85
$\begin{gathered} 3 \\ \text { (Member type 45) } \end{gathered}$	2 x 2	$\frac{+0.0940}{-0.0940}$	$\underline{+0.0506}$	46.17
	2×2		-0.0510	45.74
	4×4		+0.0389	58.62
			-0.0395	57.98
	8x8		+0.0484	48.51
	8×8		-0.0489	47.98
	16x16		+0.0834	$\underline{11.28}$
			-0.0835	11.17
	32×32		+0.0927	1.38
	32×32		-0.0927	1.38
$\begin{gathered} 4 \\ \text { (Member type 50) } \end{gathered}$	2×2	$\frac{+0.0940}{-0.0940}$	+0.0526	44.04
			-0.0526	44.04
	4×4		+0.0459	51.17

Nearly Incompressible Thick-Walled Cylinder under Plane Deformation Subjected to Uniformly Distributed Internal Pressure

Objective: Check of the obtained values of radial displacements of the internal surface of a nearly incompressible thick-walled cylinder under plane deformation subjected to uniformly distributed internal pressure.

Initial data files:

File name	Description
Nearly_incompressible_thick_cylinder_Shell_42_ Poisson_ratio_049_.SPR Nearly_incompressible_thick_cylinder_Shell_42_ Poisson_ratio_0499_.SPR Nearly_incompressible_thick_cylinder_Shell_42_ Poisson_ratio_04999_.SPR	Design model with the elements of type 42 for a material with Poisson's ratio $0.49,0.499,0.4999$
Nearly_incompressible_thick_cylinder_Shell_44_ Poisson_ratio_049_.SPR Nearly_incompressible_thick_cylinder_Shell_44_ Poisson_ratio_0499_.SPR Nearly_incompressible_thick_cylinder_Shell_44_ Poisson_ratio_04999_.SPR	Design model with the elements of type 44 for a material with Poisson's ratio $0.49,0.499,0.4999$
Nearly_incompressible_thick_cylinder_Shell_45_ Poisson_ratio_049_.SPR Nearly_incompressible_thick_cylinder_Shell_45_ Poisson_ratio_0499_.SPR Nearly_incompressible_thick_cylinder_Shell_45_ Poisson_ratio_04999_.SPR	Design model with the elements of type 45 for a material with Poisson's ratio $0.49,0.499,0.4999$
Nearly_incompressible_thick_cylinder_Shell_50_ Poisson_ratio_049_.SPR Nearly_incompressible_thick_cylinder_Shell_50_ Poisson_ratio_0499_.SPR Nearly_incompressible_thick_cylinder_Shell_50_ Poisson_ratio_04999_.SPR	Design model with the elements of type 50 for a material with Poisson's ratio $0.49,0.499,0.4999$
Nearly_incompressible_thick_cylinder_ Solid _36_ Poisson_ratio_049_.SPR Nearly_incompressible_thick_cylinder_ Solid _36_ Poisson_ratio_0499_.SPR Nearly_incompressible_thick_cylinder_ Solid _36_ Poisson_ratio_04999_.SPR	Design model with the elements of type 36 for a material with Poisson's ratio $0.49,0.499,0.4999$
Nearly_incompressible_thick_cylinder_ Solid _37_ Poisson_ratio_049_.SPR Nearly_incompressible_thick_cylinder_ Solid _37_ Poisson_ratio_0499_.SPR Nearly_incompressible_thick_cylinder_ Solid _37_ Poisson_ratio_04999_.SPR	Design model with the elements of type 37 for a material with Poisson's ratio $0.49,0.499,0.4999$

Problem formulation: The nearly incompressible thick-walled cylinder is under plane deformation and is subjected to the uniformly distributed internal pressure p. Check the obtained values of the radial displacements of the internal surface u.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

Initial data:

$\mathrm{E}=1000 \mathrm{kPa}$

- elastic modulus of the material of the thick-walled cylinder;
$v=0.49 ; 0.499 ; 0.4999$
- Poisson's ratio;
$\mathrm{R}_{\mathrm{i}}=3.00 \mathrm{~m}$
- radius of the internal surface of the thick-walled cylinder;
$\mathrm{R}_{\mathrm{e}}=9.00 \mathrm{~m}$
- radius of the external surface of the thick-walled cylinder;
$\mathrm{p}=1.0 \mathrm{kPa}$
- values of the uniformly distributed internal pressure.

Finite element model: Design model - general type system. Six design models of a sector of the thickwalled cylinder with the thickness of 1.00 m and a central angle $\theta=10^{\circ}$ according to the symmetry conditions are considered:
Model 1 - 10 three-node shell elements of type 42 of unequal sizes with the spacing of the mesh in the radial direction $3.00 \mathrm{~m}, 3.50 \mathrm{~m}, 4.20 \mathrm{~m}, 5.20 \mathrm{~m}, 6.75 \mathrm{~m}, 9.00 \mathrm{~m}$. Boundary conditions are provided by introducing 12 space truss bar elements of type 4 of high axial stiffness ($\mathrm{EF}=10^{6} \mathrm{kN}$) in the tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom X, Y, Z are imposed on the support nodes of the bar elements. The dimensional stability is provided by imposing constraints on the lateral surfaces of the sector in the directions of the degrees of freedom Z, UZ. The load uniformly distributed along the line $\mathrm{p}=1.0 \mathrm{kN} / \mathrm{m}$ is applied to the element on the internal surface of the cylinder. Number of nodes in the model - 24 .
Model 2 - 5 four-node shell elements of type 44 of unequal sizes with the spacing of the mesh in the radial direction $3.00 \mathrm{~m}, 3.50 \mathrm{~m}, 4.20 \mathrm{~m}, 5.20 \mathrm{~m}, 6.75 \mathrm{~m}, 9.00 \mathrm{~m}$. Boundary conditions are provided by introducing 12 space truss bar elements of type 4 of high axial stiffness ($\mathrm{EF}=10^{6} \mathrm{kN}$) in the tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are imposed on the support nodes of the bar elements. The dimensional stability is provided by imposing constraints on the lateral surfaces of the sector in the directions of the degrees of freedom Z , UZ. The load uniformly distributed along the line $\mathrm{p}=1.0 \mathrm{kN} / \mathrm{m}$ is applied to the element on the internal surface of the cylinder. Number of nodes in the model - 24.
Model 3-10 six-node shell elements of type 45 of unequal sizes with the spacing of the mesh in the radial direction $3.00 \mathrm{~m}, 3.50 \mathrm{~m}, 4.20 \mathrm{~m}, 5.20 \mathrm{~m}, 6.75 \mathrm{~m}, 9.00 \mathrm{~m}$. Boundary conditions are provided by introducing 22 space truss bar elements of type 4 of high axial stiffness ($\mathrm{EF}=10^{6} \mathrm{kN}$) in the tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom X, Y, Z are imposed on the support nodes of the bar elements. The dimensional stability is provided by imposing constraints on the lateral surfaces of the sector in the directions of the degrees of freedom Z, UZ. The load uniformly distributed along the line $\mathrm{p}=1.0 \mathrm{kN} / \mathrm{m}$ is applied to the element on the internal surface of the cylinder. Number of nodes in the model - 55 .
Model 4-5 eight-node shell elements of type 50 of unequal sizes with the spacing of the mesh in the radial direction $3.00 \mathrm{~m}, 3.50 \mathrm{~m}, 4.20 \mathrm{~m}, 5.20 \mathrm{~m}, 6.75 \mathrm{~m}, 9.00 \mathrm{~m}$. Boundary conditions are provided by introducing 22 space truss bar elements of type 4 of high axial stiffness ($\mathrm{EF}=10^{6} \mathrm{kN}$) in the tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom X, Y, Z are imposed on the support nodes of the bar elements. The dimensional stability is provided by imposing constraints on the lateral surfaces of the sector in the directions of the degrees of freedom Z, UZ. The load uniformly distributed along the line $p=1.0 \mathrm{kN} / \mathrm{m}$ is applied to the element on the internal surface of the cylinder. Number of nodes in the model - 50 .
Model 5 - 5 eight-node isoparametric solid elements of type 36 of unequal sizes with the spacing of the mesh in the radial direction $3.00 \mathrm{~m}, 3.50 \mathrm{~m}, 4.20 \mathrm{~m}, 5.20 \mathrm{~m}, 6.75 \mathrm{~m}, 9.00 \mathrm{~m}$. Boundary conditions are provided by introducing 24 space truss bar elements of type 4 of high axial stiffness ($\mathrm{EF}=10^{6} \mathrm{kN}$) in the tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are imposed on the support nodes of the bar elements. The dimensional stability is provided by imposing constraints on the lateral surfaces of the sector in the direction of the degree of freedom Z . The load uniformly distributed over the face $\mathrm{p}=1.0 \mathrm{kN} / \mathrm{m}^{2}$ is applied to the element on the internal surface of the cylinder. Number of nodes in the model - 50 .

Model 6-5 twenty-node isoparametric solid elements of type 37 of unequal sizes with the spacing of the mesh in the radial direction $3.00 \mathrm{~m}, 3.50 \mathrm{~m}, 4.20 \mathrm{~m}, 5.20 \mathrm{~m}, 6.75 \mathrm{~m}, 9.00 \mathrm{~m}$. Boundary conditions are provided by introducing 56 space truss bar elements of type 4 of high axial stiffness ($\mathrm{EF}=10^{6} \mathrm{kN}$) in the tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are imposed on the support nodes of the bar elements. The dimensional stability is provided by imposing constraints on the lateral surfaces of the sector in the direction of the degree of freedom Z . The load uniformly distributed over the face $\mathrm{p}=1.0 \mathrm{kN} / \mathrm{m}^{2}$ is applied to the element on the internal surface of the cylinder. Number of nodes in the model - 124 .

Results in SCAD

Model 1. Design model

Model 1. Deformed model

0,005121

Model 1. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999

Model 2. Design model

Model 2. Deformed model

Model 2. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999

Model 3. Deformed model

,0522

Model 3. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999

Model 4. Design model

Model 4. Deformed model

Model 4. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999

Model 5. Design model

Model 5. Deformed model

Model 5. Values of the displacements in the directions of the X and Y axes of the global coordinate system (m, m) for the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999

Model 6.Design model

Model 6. Deformed model

Model 6. Values of the displacements in the directions of the X and Y axes of the global coordinate system (m, m) for the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999

Comparison of solutions:

Radial displacements of the internal surface of the thick-walled cylinder $\mathbf{u}(\mathrm{m})$ for the materials with Poisson's ratios $0.49 ; 0.499 ; 0.4999$

Model	Poisson's ratio	Theory	SCAD	Deviation, \%
$\begin{gathered} 1 \\ \text { (Member type 42) } \end{gathered}$	0.49	0.005040	0.005093	1.05
	0.499	0.005060	0.005118	1.15
	0.4999	0.005062	0.005121	1.17
2(Member type 44)	0.49	0.005040	0.005138	1.94
	0.499	0.005060	0.005163	2.04
	0.4999	0.005062	0.005166	2.05
$\begin{gathered} 3 \\ \text { (Member type 45) } \end{gathered}$	0.49	0.005040	0.005195	3.08
	0.499	0.005060	0.005222	3.20
	0.4999	0.005062	0.005225	3.22
(Member type 50)	0.49	0.005040	0.005193	3.04
	0.499	0.005060	0.005222	3.20
	0.4999	0.005062	0.005223	3.18
(Member type 36)	0.49	0.005040	$\begin{gathered} \sqrt{ }\left(0.004244^{2}+\right. \\ \left.+0.000371^{2}\right)= \\ =0.004260 \end{gathered}$	15.48
	0.499	0.005060	$\begin{gathered} \sqrt{ }\left(0.001811^{2}+\right. \\ \left.+0.000158^{2}\right)= \\ =0.001818 \end{gathered}$	64.07
	0.4999	0.005062	$\begin{gathered} \sqrt{ }\left(0.000270^{2}+\right. \\ \left.+0.000024^{2}\right)= \\ =0.000271 \end{gathered}$	94.65
$\begin{gathered} 6 \\ \text { (Member type 37) } \end{gathered}$	0.49	0.005040	$\begin{gathered} \sqrt{ }\left(0.005048^{2}+\right. \\ \left.+0.000441^{2}\right)= \\ =0.005067 \\ \hline \end{gathered}$	0.54
	0.499	0.005060	$\begin{gathered} \sqrt{ }\left(0.004981^{2}+\right. \\ \left.+0.000435^{2}\right)= \\ =0.005000 \\ \hline \end{gathered}$	1.19
	0.4999	0.005062	$\begin{gathered} \sqrt{ }\left(0.004470^{2}+\right. \\ \left.+0.000391^{2}\right)= \\ =0.004487 \\ \hline \end{gathered}$	11.36

Notes: In the analytical solution the radial displacements of the internal surface of the nearly incompressible thick-walled cylinder under the plane deformation u from the uniformly distributed internal pressure are determined according to the following formulas:

$$
u=\frac{(1+v) \cdot p \cdot R_{i}^{2}}{E \cdot\left(R_{e}^{2}-R_{i}^{2}\right)} \cdot\left[\frac{R_{e}{ }^{2}}{R_{i}}+(1-2 \cdot v) \cdot R_{i}\right] .
$$

Energy Analysis

Frame Subjected to Various Vertical Forces

Objective: Verification of the determination of elements with forced or constricted deformation at buckling.

Initial data file: Energy94A.SPR

Problem formulation: The plane frame is subjected to different vertical nodal forces. Find elements with positive and negative energy for the first buckling mode.

References: Perelmuter A.V., Slivker V.I., Design Models of Structures and Possibilities of Their Analysis. - M, DMK-Press, 2007, § 9.4.

Initial data:

$E=2.1 \cdot 10^{7} \mathrm{t} / \mathrm{m}^{2}$

- elastic modulus,
$P=1 \mathrm{t}$
- value of the concentrated force.

Bar cross-sections - I-beams No. 40 (bending in the plane of the frame occurs with respect to the axis with the minimum moment $I=667 \mathrm{~cm}^{4}, A=72,6 \mathrm{~cm}^{2}, i_{y}=3,03 \mathrm{~cm}, W_{y}=86,1 \mathrm{~cm}^{3}$).

Finite element model: Design model - general type system, 6 bar elements of type 2, 7 nodes.

Design model (with the numbers of elements and loads)

Results in SCAD:

Распределение энергии
<0 = 0
Values of the energy

Comparison of solutions:

Parameter	Theory	SCAD
Numbers of finite elements with the positive energy	$1 \div 5$	$1 \div 5$
Numbers of finite elements with the negative energy	6	6

Objective: Verification of the determination of elements with forced or constricted deformation at buckling.

Initial data file: Energy94B.SPR

Problem formulation: The plane frame is subjected to vertical nodal forces. Find elements with positive and negative energy for the first buckling mode.

References: Perelmuter A.V., Slivker V.I., Design Models of Structures and Possibilities of Their Analysis. — M, DMK-Press, 2007, § 9.4.

Initial data:

$E=2.1 \cdot 10^{7} \mathrm{t} / \mathrm{m}^{2} \quad$ - elastic modulus,
$P=1 \mathrm{t} \quad-$ value of the concentrated force.
Bar cross-sections - I-beams No. 40 (bending in the plane of the frame occurs with respect to the axis with the minimum moment $I=667 \mathrm{~cm}^{4}, A=72,6 \mathrm{~cm}^{2}, i_{y}=3,03 \mathrm{~cm}, W_{y}=86,1 \mathrm{~cm}^{3}$).

Finite element model: Design model - general type system, 6 bar elements of type 2, 7 nodes.

Design model (with the numbers of elements and loads)

Results in SCAD:

Values of the energy

Comparison of solutions:

Parameter	Theory	SCAD
Numbers of finite elements with the positive energy	$1 \div 3$	$1 \div 3$
Numbers of finite elements with the negative energy	$4 \div 6$	$4 \div 6$

Objective: Verification of the determination of elements with forced or constricted deformation at buckling.

Initial data file: Energy.SPR

Problem formulation: The plane frame is subjected to different vertical nodal forces. Find the "weakest" elements in terms of the loss of stability of the system as a whole for the first buckling mode.

References: Perelmuter A.V., Slivker V.I., Design Models of Structures and Possibilities of Their Analysis. - M, DMK-Press, 2007, § 9.4.

Initial data:

$P_{1}=4 \mathrm{t}, \mathrm{P}_{2}=6 \mathrm{t}$

- values of the concentrated forces.

Bar sections have the following ratios of the stiffnesses per running meter 2:4:6.
Finite element model: Design model - general type system, 9 bar elements of type 2, 10 nodes.

Design model (with the numbers of the rigidity type and loads)

Results in SCAD:

Values of the energy

Comparison of solutions:

Parameter	Theory	SCAD
Elements with the negative energy	edge columns	edge columns

Erection

Static Analysis of Stress-Strain State of a Building Taking into Account Genetic Nonlinearity

Objective: Comparison of the results of the calculations of the stress-strain state of a multi-storey building taking into account genetic nonlinearity performed by SCAD and ANSYS.

Initial data file: Test-01.MPR

Problem formulation: Design model - 11-storey building fragment rectangular in plan - spatial model consisting of columns, walls, piers, floor slabs on the rigid subgrade (all linear and angular nodal degrees of freedom are constrained). The model is subjected to the uniformly distributed load ($1,5 \mathrm{t} / \mathrm{m}^{2}$) applied to all floor slabs.

References: O.V. Kabantsev, Verification of calculation technology "Mounting" from software complex SCAD, International Journal for Computational Civil and Structural Engineering , 2011, 7 (3), 103-109.

Initial data:

Physical properties - material of elements of the design model: concrete of the compressive strength class B25; elastic modulus $\mathrm{E}=310^{6} \mathrm{t} / \mathrm{m}^{2}$; Poisson's ratio $v=0,2$.
Geometric properties:
Storey height - 3 m ,
Column spacing -7 m along X and 6 m along Y ,
Column section $-50 \times 50 \mathrm{~cm}$.
Floor slab thickness - 20 cm
Wall and pier thickness -40 cm , pier width -100 cm .
Boundary conditions: columns, piers and walls are clamped in the plane $\mathrm{z}=0 \mathrm{~m}$
Loads:

1) Vertical pressure on the floor slabs $q_{1}=1,5 \mathrm{t} / \mathrm{m}^{2}$ is applied to the newly erected fragments-storeys;
2) Vertical pressure on the floor slabs $q_{2}=1 \mathrm{t} / \mathrm{m}^{2}$ is applied after the erection of the entire building.

Finite element model:

ANSYS
Slabs, walls and piers are modeled by shell finite elements of the SHELL63 type, columns are modeled by beam finite elements of the BEAM44 type.
Stage 1. Resetting the stiffness of all FE to zero (the "element death" function), except for the 1 -st floor, and constraining all nodes not belonging to the elements of the 1 -st floor in the directions of all degrees of freedom with the application of the load q_{1} to the slab of the 1 -st floor and the subsequent SSS analysis;
Stage 2. Restoring the previous stiffness of the FE (the "element birth" function) of the 2-nd floor and removing the constraints of the nodes belonging to the elements of the 2-nd floor in the directions of all degrees of freedom with the application of the load q_{1} to the slab of the 2-nd floor and the subsequent SSS analysis;

Stage 11. Restoring the previous stiffness of the FE (the "element birth" function) of the 11-th floor and removing the constraints of the nodes belonging to the elements of the 11-th floor in the directions of all degrees of freedom with the application of the load q_{1} to the slab of the 11-th floor (roof) and the subsequent SSS analysis;
Stage 12. Application of the load q_{2} to all floor slabs of the building with the subsequent SSS analysis.
Nodes not belonging to the "born" elements are constrained in order to fix the structural elements of the building at the design elevations to take into account the actual building erection process.

SCAD

Slabs, walls and piers are modeled by shell finite elements of type 44 , columns are modeled by bar elements of general type 5 .
The dimension of the complete model is 5608 nodes and 5456 finite elements.
Modeling of the building erection process consists of the following stages:

Stage 1. Selection of the set of elements at the level of the 1 -st floor which are considered at the stage No. 1 with the application of the load q_{1} to the slab of the 1 -st floor and the subsequent SSS analysis;
Stage 2. Selection of the set of elements at the level of the 1-2-nd floors which are considered at the stage No. 2 with the application of the load q_{1} to the slabs included in the 2-nd stage and the subsequent SSS analysis;

Stage 11. Selection of the set of elements at the level of the 1-11-th floors which are considered at the stage No. 11 with the application of the load q_{1} to the slabs included in the 11-th stage and the subsequent SSS analysis;
Stage 12. Application of the load q_{2} to all floor slabs of the building with the subsequent SSS analysis.

General view of the ANSYS design model.

General view of the SCAD design model.

ANSYS and SCAD design models for different calculation stages

Stage

ANSYS
SCAD
No.
1

2

11

12

Loads q_{2} have been added

Loads q_{2} have been added

Comparison of solutions:

Parameter		Accounting for the 12 erection stages	
	ANSYS	SCAD	
Maximum vertical displacement, mm	$-24,8$	$-24,19$	2,46
Longitudinal force in a column (1 st $^{\text {f }}$ floor), t	$-870,6$	$-865,1$ (FE 386)	0,63
Longitudinal force in a column ($10^{\text {th }}$ floor), t	$-3,2$	$-2,99$ (FE 4679)	6,56

Determination of Stress-Strain State Taking into Account Genetic Nonlinearity ("Erection" Mode)

Objective: Comparison of the results of the calculations of the stress-strain state of a bar structure taking into account genetic nonlinearity performed by SCAD and the analytical solution.

Initial data file: Truss.MPR

Problem formulation:

References: A.V.Perelmuter, Control of the Behavior of Load-Bearing Structures (2-nd edition revised and supplemented) , Moscow: ASV, 2011, § 5.2.

Initial data:

The final model of the analyzed structure is given in the figure (linear dimensions in meters), and some additional information is given in the table. Element 11 shown with a dotted line in this figure was added temporarily and was not included in the final configuration.

Bar numbers	Stiffness EA,
1	10
2	10
3	10
4	10
5	10
6	2
7	2
8	4
9	5
10	5
11	25
12	10
13	10

The sequence of operations for achieving the prestressing is shown in the figure below.

Finite element model:
The structure is modeled by bar elements of general type 1 .
The dimension of the complete model is 8 nodes and 13 finite elements.
Modeling of the building erection process consists of the following stages:

Stage	Description of operations
1	Forced shortening of the bar 6 (dislocation $\mathrm{d}_{6}=0,001 \mathrm{~m}$) and suspension of the ballast weight $\mathrm{G}_{6}=10 \mathrm{t}$ in the node 6.
2	Attachment of the bar 12 to the system
3	Removal of the bar 11 performed by the program in two stages: replacement of the effect of the bar by forces S_{11}, which it transfers to the rest of the system (see. 3a), and application of the "compensating" load to the system $-\mathrm{S}_{11}$ (see. 3b). Installation of the ballast weight $\mathrm{G}_{1}=10 \mathrm{t}$ in the node 1.
4	Attachment of the bar 13 to the system
Working	Removal of the ballast weights G_{1} and G_{6} and loading the system by the live load $\mathrm{Q}_{1}=\mathrm{Q}_{3}=\mathrm{Q}_{5}=2$.

Comparison of solutions:

Parameter	Results		Deviations, \%
	Theory	SCAD	
Stage 1: Vertical displacement of the node 6, cm	$-17,078$	$-17,042$	0,21
Force in the element 2, t	$-2,510$	$-2,500$	0,40
Stage 2: Vertical displacement of the node 6, cm	$-17,078$	$-17,042$	0,21
\quad Force in the element 2, t	$-2,510$	$-2,500$	0,40
Stage 3: Vertical displacement of the node 6, cm	$-28,220$	$-28,185$	0,12
Force in the element 2, t	4,990	5,000	$-0,20$
Stage 4: Vertical displacement of the node 6, cm	$-28,220$	$-28,185$	0,12
Force in the element 2, t	4,990	5,000	$-0,20$
Working stage Vertical displacement of the node 6, cm	1,257	1,293	0,21
Force in the element 2, t	5,559	5,61	0,91

Note: There are arithmetic errors in the source. The comparison of solutions was made on the basis of the corrected calculations reported by the author.

Replacement of a Column of a Two-Span Single-Storey Frame Subjected to a Constant Load

Objective: Determination of the internal forces in the elements of a two-span single-storey frame before and after the replacement of a column subjected to a constant load.

Initial data file: Rearrange_Frame.MPR

Problem formulation: The two-span girder of the frame simply supported at the ends with a middle support in the form of a hinged column is subjected to the constant uniformly distributed load. During the reconstruction the column is replaced by a column of the same rigidity in the following order: the replacing column is installed and then the original one is dismantled. Determine the maximum bending moments in the girder of the frame $\mathrm{M}_{\mathrm{I}}, \mathrm{M}_{\mathrm{II}}$ and the longitudinal forces in the columns $\mathrm{N}_{\mathrm{I}}, \mathrm{N}_{\mathrm{II}}$ before and after the replacement.

Initial data:

$\mathrm{EF}=2.0 \cdot 10^{7} \mathrm{t}$
$\mathrm{EI}=1.2 \cdot 10^{8} \mathrm{t} \cdot \mathrm{m}^{2}$

- axial stiffness of the girder and column cross-section;
$\mathrm{L}=6.0 \mathrm{~m}$
- bending stiffness of the girder and column cross-section;
- girder span length and column height;
$\mathrm{q}=4.0 \mathrm{t} / \mathrm{m} \quad-$ uniformly distributed constant vertical load applied to the girder spans.
Finite element model: Design model - plane frame, elements of the girder - 24 bar elements of type 2, elements of the columns - 24 bar elements of type 2 . The spacing of the finite element mesh along the longitudinal axes of the structural members is 0.5 m . The node of the left end of the girder is constrained in the directions of the degrees of freedom X, Z. The node of the right end of the girder is constrained in the direction of the degree of freedom Z . The nodes of the lower ends of the columns are constrained in the directions of the degrees of freedom X, Z. The elements of the upper ends of the columns have a hinge in the direction of the degree of freedom UY. Number of nodes in the design model - 37. Elements of the girder $1-24$ and of the original column $25-36$ are included in the first erection stage. Elements of the girder $1-24$ and of the replacing column $37-48$ are included in the second erection stage. The accumulated loading q is acting in both stages.

Results in SCAD

Design models in the first and second erection stages

Deformed models in the first and second erection stages

Longitudinal force diagrams $\mathbf{N}_{\mathrm{I}}, \mathbf{N}_{\mathrm{II}}$ in the first and second erection stages (t)

Bending moment diagrams $M_{I}, M_{I I}$ in the first and second erection stages ($t \cdot m$)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Maximum bending moment in the girder of the frame in the first erection stage $\mathrm{M}_{\mathrm{I}}, \mathrm{t} \cdot \mathrm{m}$	34.03	34.03	0.00
Longitudinal force in the column of the frame in the first erection stage $\mathrm{N}_{\mathrm{I}}, \mathrm{t}$	-15.0	-15.0	0.00
Maximum bending moment in the girder of the frame in the second erection stage $\mathrm{M}_{\mathrm{II}}, \mathrm{t} \cdot \mathrm{m}$	51.26	51.25	0.02
Longitudinal force in the column of the frame in the second erection stage $\mathrm{N}_{\mathrm{II}}, \mathrm{t}$	-7.5	-7.5	0.00

Notes: In the analytical solution the maximum bending moments in the girder of the frame $\mathrm{M}_{\mathrm{I}}, \mathrm{M}_{\mathrm{II}}$ and the longitudinal forces in the columns $\mathrm{N}_{\mathrm{I}}, \mathrm{N}_{\mathrm{II}}$ before and after the replacement are determined according to the following formulas:

$$
\begin{gathered}
M_{I}=\frac{1}{2} \cdot q \cdot L^{2}-\frac{1}{2} \cdot q \cdot L \cdot \frac{\frac{5}{24} \cdot \frac{L^{4}}{E I}}{\frac{L^{3}}{6 \cdot E I}+\frac{L}{E A}}+\frac{1}{8} \cdot q \cdot\left(\frac{\frac{5}{24} \cdot \frac{L^{4}}{E I}}{\frac{L^{3}}{6 \cdot E I}+\frac{L}{E A}}\right)^{2} \\
N_{I}=-q \cdot \frac{\frac{5}{24} \cdot \frac{L^{4}}{E I}}{\frac{L^{3}}{6 \cdot E I}+\frac{L}{E A}} \\
M_{I I}=\frac{441}{512} \cdot q \cdot L^{2}-\frac{21}{16} \cdot q \cdot L \cdot \frac{\frac{15}{96} \cdot \frac{L^{4}}{E I}}{\frac{L^{2}}{6 \cdot E I}+\frac{L}{E A}}+\frac{1}{2} \cdot q \cdot\left(\frac{\frac{15}{96} \cdot \frac{L^{4}}{E I}}{\frac{L^{2}}{6 \cdot E I}+\frac{L}{E A}}\right)^{2} \\
N_{I I}=-q \cdot \frac{\frac{5}{48} \cdot \frac{L^{4}}{E I}}{\frac{L^{2}}{6 \cdot E I}+\frac{L}{E A}}
\end{gathered}
$$

Sequential Erection of a Steel Reinforced Concrete Single-Span Beam

Objective: Determination of the deflections of the steel reinforced concrete single-span beam for the erection stages.

Problem formulation: The erection of the steel reinforced concrete single-span beam is performed in the following order:

- A steel I-beam is installed on the supports, the formwork for the reinforced concrete slab is arranged on the props from the bottom chord of the beam, the reinforcement cage is installed on the formwork, and the monolithic concrete is laid in the first erection stage. The steel beam is subjected to the load from the self-weight q_{11} and from the weight of the fresh concrete q_{12} at this stage.
- The formwork is dismantled, and the reinforced concrete slab starts to bend across the steel beam in the second erection stage.
- The serviceability loads from the weight of the roof structure q_{2} and the transport load P_{2} are applied to the steel reinforced concrete beam in the third erection stage.
Determine the maximum deflections of the steel reinforced concrete beam in the first w_{1} and third w_{2} erection stages.

Initial data file: Wiring_Girder.MPR

Initial data:

$\mathrm{E}_{\text {st }}=2.1 \cdot 10^{6} \mathrm{kgf} / \mathrm{cm}^{2}$

- elastic modulus of the material of the steel beam;
$\mathrm{E}_{\mathrm{b}}=3.06 \cdot 10^{5} \mathrm{kgf} / \mathrm{cm}^{2}$
- elastic modulus of the material of the reinforced concrete slab;
$v_{\mathrm{st}}=0.3$
- Poisson's ratio of steel;
$v_{b}=0.2$
- Poisson's ratio of reinforced concrete;
$\mathrm{L}=1365.0 \mathrm{~cm}$
- steel reinforced concrete beam span length;
$\mathrm{b}_{\mathrm{s} 1}=40.0 \mathrm{~cm}$
- width of the bottom chord of the steel beam;
$\mathrm{t}_{\mathrm{s} 1}=2.4 \mathrm{~cm}$
$\mathrm{b}_{\mathrm{s} 2}=30.0 \mathrm{~cm}$
$\mathrm{t}_{\mathrm{s} 2}=1.6 \mathrm{~cm}$
$\mathrm{h}_{\mathrm{w}}=80.0 \mathrm{~cm}$
$\mathrm{t}_{\mathrm{w}}=1.2 \mathrm{~cm}$
$\mathrm{b}_{\mathrm{sl}}=280.0 \mathrm{~cm}$
$\mathrm{t}_{\mathrm{sl}}=22.0 \mathrm{~cm}$
$\mathrm{q}_{11}=0.2072 \mathrm{t} / \mathrm{m}$
$\mathrm{q}_{12}=0.6050 \mathrm{t} / \mathrm{m}^{2}$
$\mathrm{q}_{2}=0.3770 \mathrm{t} / \mathrm{m}^{2}$
$\mathrm{P}_{2}=39.60 \mathrm{t} / \mathrm{m}$
- thickness of the bottom chord of the steel beam;
- width of the top chord of the steel beam;
- thickness of the top chord of the steel beam;
- height of the web of the steel beam;
- thickness of the web of the steel beam;
- width of the reinforced concrete slab;
- thickness of the reinforced concrete slab;
- vertical load from the self-weight of the steel beam uniformly distributed along a line;
- vertical load from the self-weight of the reinforced concrete slab uniformly distributed over an area;
- vertical load from the self-weight of the roof structure uniformly distributed over an area and applied to the reinforced concrete slab; - vertical transport load uniformly distributed along a line.

Finite element model: Design model - general type system, elements of the steel beam - 68 bar elements of type 5, elements of the reinforced concrete slab - 952 shell elements of type 44 , elements of the joint between the steel beam and the reinforced concrete slab - 69 elements of type 100 , elements of the formwork props - 1035 elements of type 100. The spacing of the finite element mesh of the steel beam along the longitudinal axis is 0.2 m . The spacing of the finite element mesh of the reinforced concrete slab in the longitudinal and transverse directions is 0.2 m . The node of the left end of the beam is constrained in the directions of the degrees of freedom $X, Y, Z, U X$. The node of the right end of the beam is constrained in the directions of the degrees of freedom Y, Z, UX. Number of nodes in the design model - 1173. Elements of the steel beam, elements of the reinforced concrete slab with the reduced elastic modulus $\mathrm{E}_{\mathrm{b}} \cdot 10^{-3}$, elements of the joint and elements of the props are included in the first erection stage. Elements of the steel beam, elements of the reinforced concrete slab with the normal elastic modulus E_{b} and elements of the joint are included in the second and third erection stages. The loads q_{11} and q_{12} of the accumulated loading q_{1} are acting in all stages. The loads q_{2} and P_{2} of the independent loading q_{2} are acting in the third erection stage.

Results in SCAD:

Design models in the first, second and third erection stages

Deformed models in the first and third erection stages

Deflections in the first w_{1} and third w_{2} erection stages (mm)

Comparison of solutions:

Parameter	Theory	SCAD	Deviations, \%
Maximum deflection of the steel reinforced concrete beam in the first erection stage $\mathrm{w}_{1}, \mathrm{~mm}$	-14.75	$-14,56$	1.29
Maximum deflection of the steel reinforced concrete beam in the third erection stage $\mathrm{w}_{2}, \mathrm{~mm}$	-44.51	$-44,90$	0.88

Notes: In the analytical solution the maximum deflections of the steel reinforced concrete beam in the first w_{1} and third w_{2} erection stages are determined according to the following formulas:

$$
\begin{gathered}
w_{1}=\frac{5}{384} \cdot \frac{\left(q_{11}+q_{12} \cdot b_{s l}\right) \cdot L^{4}}{E_{s t} \cdot I_{s}} ; \\
w_{1}=\frac{5}{384} \cdot \frac{\left(q_{11}+q_{12} \cdot b_{s l}\right) \cdot L^{4}}{E_{s t} \cdot I_{s}}+\frac{5}{384} \cdot \frac{q_{2} \cdot b_{s l} \cdot L^{4}}{E_{s t} \cdot I_{s t b}}+\frac{1}{48} \cdot \frac{P_{2} \cdot b_{s l} \cdot L^{3}}{E_{s t} \cdot I_{s t b}} ; \\
I_{s t b}=I_{s}+A_{s} \cdot z_{s s t b}^{2}+\frac{I_{b}}{n_{b}}+\frac{A_{b}}{n_{b}} \cdot z_{b s t b}^{2} ; \quad z_{b s s b}=z_{b s}-z_{s s t b} ; \quad z_{s s t b}=\frac{S_{s t b}}{A_{s t b}} ; \\
S_{s t b}=\frac{A_{b}}{n_{b}} \cdot z_{b s} ; \quad A_{s t b}=A_{s}+\frac{A_{b}}{n_{b}} ; \quad z_{b s}=z_{s 2 s}+z_{b} ; \quad I_{b}=\frac{b_{s l} \cdot t_{s l}}{12} ; \\
z_{b}=\frac{S_{b}}{A_{b}} ; \quad S_{b}=\frac{b_{s l} \cdot t_{s l}^{2}}{2} ; \quad A_{b}=b_{s l} \cdot t_{s l} ; \quad n_{b}=\frac{E_{s t}}{E_{b}} ; \\
I_{s}=I_{s 1 s}+I_{w s}+I_{s 2 s} ; \quad I_{s 2 s}=I_{s 2}+A_{s 2} \cdot\left(t_{s 1}+h_{w}+\frac{t_{s 2}}{2}-z_{s l s}\right)^{2} ; \\
I_{w s}=I_{w}+A_{w} \cdot\left(t_{s 1}+\frac{h_{w}}{2}-z_{s 1 s}\right)^{2} ; \quad I_{s 1 s}=I_{s 1}+A_{s 1} \cdot\left(z_{s 1 s}-\frac{t_{s 1}}{2}\right)^{2} ; \\
I_{w}=\frac{t_{w} \cdot h_{w}^{3}}{12} ; \quad I_{s 2}=\frac{b_{s 2} \cdot t_{s 2}^{3}}{12} ; \quad I_{s 11}=\frac{b_{s 1} \cdot t_{s 1}^{3}}{12} ; \\
z_{s 2 s}=H_{s}-z_{s l s} ; \quad z_{s 1 s}=\frac{S_{s}}{A_{s}} ; \quad S_{s}=A_{s 1} \cdot \frac{t_{s 1}}{2}+A_{w} \cdot\left(t_{s 1}+\frac{h_{w}}{2}\right)+A_{s 2} \cdot\left(t_{s 1}+h_{w}+\frac{t_{s 2}}{2}\right) ; \\
A_{s}=A_{s 1}+A_{w}+A_{s 2} ; \quad H=H_{s}+t_{s l} ; \quad H_{s}=t_{s 1}+h_{w}+t_{s 2} ; \\
A_{w}=t_{w} \cdot h_{w} ; \quad A_{s 2}=b_{s 2} \cdot t_{s 2} ; \quad A_{s 1}=b_{s 1} \cdot t_{s 1} ;
\end{gathered}
$$

Response Spectra

Response Spectrum of Absolute Response Accelerations of a Linear Oscillator Installed in the Middle of the Span of a Simply Supported Beam with a Distributed Mass Subjected to a Kinematic Excitation of Supports (Seismic Action)

Objective: Determination of the response spectrum of response accelerations of a linear oscillator installed in the middle of the span of a simply supported beam with a distributed mass subjected to a kinematic excitation of supports.
$\begin{array}{ll}\text { Initial data files: } & \text { DIN_B_RS.SPR }- \text { design model } \\ & \text { DIN_B_RS.SPC }- \text { accelerogram }\end{array}$
Problem formulation: The simply supported beam of constant cross-section with the uniformly distributed mass μ is subjected to the kinematic excitation of the supports according to the specified accelerogram:

$$
\ddot{z}(t)=\ddot{z}_{s 0} \cdot\left(1-\frac{t}{t_{d}}\right)
$$

Determine the response spectrum of the absolute response accelerations of the linear oscillator installed in the middle of the span.

References: John M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Companies, New York, 1964, p.256-263;
Kiselev V.A., Structural Mechanics. Special Course. Dynamics and Stability of Structures. Moscow, Stroyizdat, 1980, p. 65-67.

Initial data:

Finite element model: Design model - grade beam / plate, 32 bar elements of type 3. Boundary conditions of the simply supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom Z . The dimensional stability of the design model is provided by imposing a constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom UX. The distributed mass is specified by transforming the static load from the selfweight of the beam $\mu \cdot g$.
The kinematic excitation of supports is described by the graph of the acceleration variation with time (accelerogram) and is given in the form of the action along the Z axis of the global coordinate system (direction cosines to the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes: $0.00,0.00,1.00$) with the scale factor to the values of the accelerogram equal to 1.00 . The height of the beam structure in the model is directed along the Z axis of the global coordinate system. The dissipation factor (energy absorption factor) is taken with the minimum value $\xi=0.000001$ for the oscillator and for the structure. The intervals between the time points of the graph of the acceleration variation with time are equal to $\Delta \mathrm{t}=0.01 \mathrm{~s}$. When plotting the graph the

Verification Examples

acceleration is taken with the values $\ddot{z}(t)=\ddot{z}_{s 0} \cdot\left(1-n \cdot \Delta t / t_{d}\right)$ at the time points $n \cdot \Delta t$. The conversion factor for the added static loading is equal to $\mathrm{k}=1.000$ (mass generation). Number of nodes in the design model - 33.

Results in SCAD

Design model and the given accelerogram

Comparison of solutions:

The comparison was performed with the solution of the problem obtained in Abaqus (the solution was provided by A.I. Popov - Atomproekt).

Frequency	Acceleration	
	\mathbf{g}	
	Abaqus	SCAD
0	0,0000	0,0000
0,05	0,0000	0,0007
0,1	0,0000	0,0029
0,15	0,0000	0,0064
0,2	0,0000	0,0114
0,25	0,0038	0,0178
0,3	0,0027	0,0256
0,35	0,0216	0,0347
0,4	0,0200	0,0452
0,45	0,0490	0,0569
0,5	0,0503	0,0700
0,55	0,0832	0,0842
0,6	0,0881	0,0997
0,65	0,1218	0,1163
0,7	0,1312	0,1340
0,75	0,1642	0,1528
0,8	0,1799	0,1726
0,85	0,2096	0,1934
0,9	0,2310	0,2152
0,95	0,2565	0,2378
1	0,2824	0,2613
1,05	0,3045	0,2855
1,1	0,3338	0,3105
1,15	0,3625	0,3362
1,2	0,3876	0,3626

Frequency	Acceleration	
	\mathbf{g}	
	Abaqus	SCAD
1,25	0,4182	0,3895
1,3	0,4481	0,4171
1,35	0,4758	0,4453
1,4	0,5043	0,4739
1,45	0,5395	0,5030
1,5	0,5690	0,5325
1,55	0,5964	0,5625
1,6	0,6324	0,5928
1,65	0,6656	0,6235
1,7	0,6953	0,6545
1,75	0,7270	0,6857
1,8	0,7628	0,7171
1,85	0,7932	0,7487
1,9	0,8267	0,7804
1,95	0,8572	0,8121
2	0,8939	0,8441
2,05	0,9265	0,8760
2,1	0,9559	0,9079
2,15	0,9913	0,9398
2,2	1,0234	0,9717
2,25	1,0561	1,0035
2,3	1,0887	1,0353
2,35	1,1193	1,0669
2,4	1,1498	1,0984
2,45	1,1855	1,1298

Frequency	Acceleration	
	\mathbf{g}	
	Abaqus	SCAD
2,5	1,2171	1,1611
2,55	1,2467	1,1923
2,6	1,2762	1,2234
2,65	1,3048	1,2544
2,7	1,3405	1,2853
2,75	1,3721	1,3160
2,8	1,4027	1,3465
2,85	1,4312	1,3769
2,9	1,4597	1,4071
2,95	1,4862	1,4370
3	1,5158	1,4667
3,05	1,5454	1,4963
3,1	1,5749	1,5255
3,15	1,6045	1,5546
3,2	1,6320	1,5832
3,25	1,6595	1,6115
3,3	1,6860	1,6395
3,35	1,7115	1,6671
3,4	1,7370	1,6943
3,45	1,7604	1,7211
3,5	1,7829	1,7476
3,55	1,8084	1,7736
3,6	1,8318	1,7994
3,65	1,8583	1,8247
3,7	1,8838	1,8499

Verification Examples

Frequency $\mathbf{H z}$	Acceleration		Frequency	Acceleration		Frequency	Acceleration	
	g		Hz	g		Hz	g	
	Abaqus	SCAD		Abaqus	SCAD		Abaqus	SCAD
3,75	1,9093	1,8744	6,85	5,5596	5,6593	12,45	2,5352	2,7038
3,8	1,9337	1,8989	6,95	5,5260	5,6326	12,65	2,5138	2,6768
3,85	1,9541	1,9226	7,05	5,4760	5,6019	12,85	2,4954	2,6496
3,9	1,9776	1,9629	7,15	5,4475	5,5663	13,05	2,4791	2,6235
3,95	2,0000	2,0807	7,25	5,4027	5,5263	13,25	2,4608	2,6008
4	2,0224	2,1999	7,35	5,3435	5,4817	13,45	2,4393	2,5794
4,05	2,0438	2,3202	7,45	5,3058	5,4330	13,65	2,4190	2,5580
4,1	2,1244	2,4415	7,55	5,2548	5,3803	13,85	2,4200	2,5829
4,15	2,1713	2,5635	7,65	5,1906	5,3244	14,05	2,4669	2,6253
4,2	2,2895	2,6862	7,75	5,1366	5,2659	14,25	2,5025	2,6754
4,25	2,4088	2,8092	7,85	5,0856	5,2063	14,45	2,5321	2,7204
4,3	2,5291	2,9324	7,95	5,0214	5,1456	14,65	2,5545	2,7508
4,35	2,6493	3,0555	8,05	4,9541	5,0832	14,85	2,5668	2,7680
4,4	2,7696	3,1784	8,15	4,8970	5,0199	15,05	2,5770	2,7730
4,45	2,8899	3,3009	8,25	4,8298	4,9568	15,25	2,5780	2,7656
4,5	2,7768	3,4226	8,35	4,7533	4,8934	15,45	2,5708	2,7468
4,55	2,8960	3,5434	8,45	4,6942	4,8276	15,65	2,5627	2,7165
4,6	3,0143	3,6631	8,55	4,6259	4,7590	15,85	2,5433	2,6732
4,65	3,1325	3,7815	8,65	4,5484	4,6880	16,05	2,5270	2,6209
4,7	3,2497	3,8982	8,75	4,4791	4,6150	16,25	2,4995	2,5750
4,75	3,3660	4,0132	8,85	4,4108	4,5400	16,45	2,4730	2,5384
4,8	3,4811	4,1262	8,95	4,3354	4,4637	16,65	2,4383	2,5071
4,85	3,5953	4,2370	9,05	4,2538	4,3856	16,85	2,4037	2,4806
4,9	3,8267	4,3453	9,15	4,1876	4,3056	17,05	2,3629	2,4496
4,95	3,9368	4,4509	9,25	4,1121	4,2230	17,25	2,3221	2,4087
5	4,0449	4,5537	9,35	4,0306	4,1386	17,45	2,2742	2,3604
5,05	4,1519	4,6535	9,45	3,9602	4,0539	17,65	2,2294	2,3022
5,15	4,3568	4,8429	9,55	3,8858	3,9697	17,85	2,1774	2,2363
5,25	4,5515	5,0178	9,65	3,8063	3,8864	18,05	2,1284	2,1646
5,35	4,7339	5,1765	9,75	3,7278	3,8045	18,25	2,0724	2,0879
5,45	5,1580	5,3179	9,85	3,6565	3,7235	18,45	2,0204	2,0594
5,55	5,2915	5,4406	9,95	3,5800	3,6425	18,65	1,9602	2,1352
5,65	5,4057	5,5436	10,05	3,5005	3,5625	18,85	1,9215	2,1977
5,75	5,5025	5,6259	10,25	3,3517	3,4065	19,05	1,9541	2,2423
5,85	5,5800	5,6867	10,45	3,1978	3,2517	19,25	2,0071	2,2704
5,95	5,6371	5,7255	10,65	3,0510	3,0950	19,45	2,0530	2,2876
6,05	5,6799	5,7418	10,85	2,9021	2,9342	19,65	2,0968	2,2987
6,15	5,6922	5,7467	11,05	2,7554	2,8493	19,85	2,1356	2,3222
6,25	5,6840	5,7459	11,25	2,6320	2,8338	20,05	2,1672	2,3682
6,35	5,6667	5,7410	11,45	2,6188	2,8165	20,55	2,2365	2,5018
6,45	5,6616	5,7305	11,65	2,6045	2,7987	21,05	2,2783	2,5673
6,55	5,6381	5,7172	11,85	2,5851	2,7780	21,55	2,3028	2,5700
6,65	5,6106	5,7002	12,05	2,5668	2,7555	22,05	2,3007	2,5106
6,75	5,5933	5,6823	12,25	2,5525	2,7311	22,55	2,2854	2,3830

Frequency	Acceleration	
	\mathbf{g}	
	Abaqus	SCAD
23,05	2,2528	2,3421
23,55	2,2039	2,3615
24,05	2,1427	2,3313
24,55	2,0734	2,2381
25,05	1,9949	2,2560
25,55	1,9888	2,2237
26,05	2,0601	2,3334
26,55	2,1142	2,4863
27,05	2,1580	2,5792
27,55	2,1865	2,6055
28,05	2,1988	2,5678
28,55	2,1978	2,4566
29,05	2,1876	2,2866
29,55	2,1702	2,3166
30,05	2,1386	2,4101
30,55	2,0989	2,4521
31,05	2,0520	2,4243
31,55	1,9980	2,3600
32,05	2,0071	2,3904
32,55	2,0520	2,5854
33,05	2,0907	2,7152

Response Spectra

	Abaqus	SCAD	Deviation
Frequency at which the maximum acceleration occurs (Hz)	6.15	6.15	0%
Maximum acceleration (g)	5,6921	5.7467	0.95%
Spectra correlation coefficient	0.995		

Amplitude-Frequency Characteristics

Amplitude-Frequency Characteristic of a System with One Degree of Freedom

Objective: Plotting the amplitude-frequency characteristic of a single-mass elastic system under harmonic excitation.

Initial data files: TestAYX.SPR

Problem formulation: The behavior of a single-mass elastic system subjected to an excitation by a harmonic timevarying force with different excitation frequencies.

References: Panovko Ya.G. Introduction to the Theory of Mechanical Oscillations - M.: Nauka, 1991, § II.6.

Initial data:

$\mathrm{M}=10 \mathrm{kN}$

- weight of the mass;
$\mathrm{C}=100 \mathrm{kN}$
- stiffness;
$\mathrm{P}=10 \mathrm{kN} \quad-$ amplitude value of the force;
$\xi=0.025 \quad$ - damping parameter (in fractions of the critical value).
Finite element model: One node where a point mass is specified is supported by a single-node elastic constraint (finite element of type 51).

Results in SCAD

Amplitude-frequency characteristics

Comparison of solutions:

$\begin{aligned} & \text { Frequen } \\ & \text { cy } \end{aligned}$	Displacement of the node	
	SCAD	Theory
Hz	m	
0 ,	0,1000	0,1000
0,01	0,1000	0,1000
0,02	0,1000	0,1000
0,03	0,1000	0,1000
0,04	0,1001	0,1001
0,05	0,1001	0,1001
0,06	0,1001	0,1001
0,07	0,1002	0,1002
0,08	0,1003	0,1003
0,09	0,1003	0,1003
0,1	0,1004	0,1004
0,11	0,1005	0,1005
0,12	0,1006	0,1006
0,13	0,1007	0,1007
0,14	0,1008	0,1008
0,15	0,1009	0,1009
0,16	0,1010	0,1010
0,17	0,1012	0,1012
0,18	0,1013	0,1013
0,19	0,1015	0,1015
0,2	0,1016	0,1016
0,21	0,1018	0,1018
0,22	0,1020	0,1020
0,23	0,1022	0,1022
0,24	0,1024	0,1024
0,25	0,1026	0,1026
0,26	0,1028	0,1028
0,27	0,1030	0,1030
0,28	0,1033	0,1032
0,29	0,1035	0,1035
0,3	0,1038	0,1037
0,31	0,1040	0,1040
0,32	0,1043	0,1043
0,33	0,1046	0,1046
0,34	0,1049	0,1048
0,35	0,1052	0,1052
0,36	0,1055	0,1055
0,37	0,1058	0,1058
0,38	0,1062	0,1061
0,39	0,1065	0,1065
0,4	0,1069	0,1068
0,41	0,1072	0,1072
0,42	0,1076	0,1076
0,43	0,1080	0,1080
0,44	0,1084	0,1084
0,45	0,1089	0,1088
0,46	0,1093	0,1092
0,47	0,1097	0,1097
0,48	0,1102	0,1102
0,49	0,1107	0,1106
0,5	0,1112	0,1111
0,51	0,1117	0,1116

$\begin{aligned} & \text { Frequen } \\ & \text { cy } \end{aligned}$	Displacement of the node	
	SCAD	Theory
Hz	m	
0,52	0,1122	0,1121
0,53	0,1127	0,1127
0,54	0,1133	0,1132
0,55	0,1138	0,1138
0,56	0,1144	0,1143
0,57	0,1150	0,1149
0,58	0,1156	0,1155
0,59	0,1163	0,1162
0,6	0,1169	0,1168
0,61	0,1176	0,1175
0,62	0,1183	0,1182
0,63	0,1190	0,1189
0,64	0,1197	0,1196
0,65	0,1204	0,1203
0,66	0,1212	0,1211
0,67	0,1220	0,1219
0,68	0,1228	0,1227
0,69	0,1237	0,1235
0,7	0,1245	0,1244
0,71	0,1254	0,1253
0,72	0,1263	0,1262
0,73	0,1272	0,1271
0,74	0,1282	0,1280
0,75	0,1292	0,1290
0,76	0,1302	0,1300
0,77	0,1313	0,1311
0,78	0,1324	0,1322
0,79	0,1335	0,1333
0,8	0,1346	0,1344
0,81	0,1358	0,1356
0,82	0,1370	0,1368
0,83	0,1383	0,1380
0,84	0,1396	0,1393
0,85	0,1409	0,1406
0,86	0,1423	0,1420
0,87	0,1437	0,1434
0,88	0,1452	0,1449
0,89	0,1467	0,1464
0,9	0,1482	0,1479
0,91	0,1498	0,1495
0,92	0,1515	0,1512
0,93	0,1532	0,1529
0,94	0,1550	0,1546
0,95	0,1569	0,1564
0,96	0,1588	0,1583
0,97	0,1607	0,1603
0,98	0,1628	0,1623
0,99	0,1649	0,1644
1,	0,1671	0,1666
1,01	0,1694	0,1689
1,02	0,1718	0,1712
1,03	0,1742	0,1736

Frequen cy	Displacement of the node	
	SCAD	Theory
Hz	m	
1,04	0,1768	0,1762
1,05	0,1794	0,1788
1,06	0,1822	0,1815
1,07	0,1851	0,1844
1,08	0,1881	0,1873
1,09	0,1912	0,1904
1,1	0,1945	0,1936
1,11	0,1979	0,1970
1,12	0,2014	0,2005
1,13	0,2051	0,2042
1,14	0,2090	0,2080
1,15	0,2131	0,2120
1,16	0,2174	0,2162
1,17	0,2219	0,2207
1,18	0,2266	0,2253
1,19	0,2316	0,2302
1,2	0,2368	0,2354
1,21	0,2424	0,2408
1,22	0,2482	0,2465
1,23	0,2544	0,2526
1,24	0,2609	0,2590
1,25	0,2679	0,2658
1,26	0,2752	0,2731
1,27	0,2831	0,2808
1,28	0,2915	0,2890
1,29	0,3004	0,2977
1,3	0,3100	0,3071
1,31	0,3203	0,3172
1,32	0,3314	0,3280
1,33	0,3434	0,3396
1,34	0,3563	0,3522
1,35	0,3704	0,3659
1,36	0,3857	0,3807
1,37	0,4024	0,3970
1,38	0,4207	0,4147
1,39	0,4409	0,4342
1,4	0,4633	0,4558
1,41	0,4881	0,4797
1,42	0,5159	0,5064
1,43	0,5471	0,5364
1,44	0,5824	0,5702
1,45	0,6226	0,6086
1,46	0,6688	0,6525
1,47	0,7222	0,7032
1,48	0,7845	0,7621
1,49	0,8578	0,8312
1,5	0,9449	0,9130
1,51	1,0490	1,0106
1,52	1,1740	1,1276
1,53	1,3230	1,2675
1,54	1,4965	1,4323
1,55	1,6863	1,6178

Verification Examples

Frequen cy	Displacement of the node		Frequen cy	Displacement of the node	
	SCAD	Theory		SCAD	Theory
Hz	m		Hz	m	
1,56	1,8651	1,8048	2,1	0,1286	0,1300
1,57	1,9824	1,9508	2,11	0,1259	0,1272
1,58	1,9869	2,0000	2,12	0,1232	0,1245
1,59	1,8746	1,9270	2,13	0,1207	0,1219
1,6	1,6930	1,7643	2,14	0,1182	0,1194
1,61	1,4959	1,5684	2,15	0,1159	0,1170
1,62	1,3140	1,3792	2,16	0,1136	0,1147
1,63	1,1575	1,2132	2,17	0,1114	0,1125
1,64	1,0264	1,0732	2,18	0,1093	0,1103
1,65	0,9174	0,9565	2,19	0,1072	0,1082
1,66	0,8265	0,8594	2,2	0,1052	0,1062
1,67	0,7501	0,7780	2,21	0,1033	0,1043
1,68	0,6854	0,7092	2,22	0,1014	0,1024
1,69	0,6301	0,6506	2,23	0,0996	0,1005
1,7	0,5824	0,6003	2,24	0,0979	0,0988
1,71	0,5409	0,5566	2,25	0,0962	0,0971
1,72	0,5045	0,5184	2,26	0,0945	0,0954
1,73	0,4724	0,4848	2,27	0,0929	0,0938
1,74	0,4439	0,4550	2,28	0,0914	0,0922
1,75	0,4184	0,4284	2,29	0,0899	0,0907
1,76	0,3956	0,4046	2,3	0,0884	0,0892
1,77	0,3749	0,3831	2,31	0,0870	0,0877
1,78	0,3561	0,3636	2,32	0,0856	0,0863
1,79	0,3390	0,3459	2,33	0,0842	0,0850
1,8	0,3234	0,3297	2,34	0,0829	0,0836
1,81	0,3091	0,3149	2,35	0,0817	0,0823
1,82	0,2959	0,3013	2,36	0,0804	0,0811
1,83	0,2837	0,2887	2,37	0,0792	0,0799
1,84	0,2724	0,2771	2,38	0,0780	0,0787
1,85	0,2619	0,2663	2,39	0,0769	0,0775
1,86	0,2521	0,2562	2,4	0,0757	0,0764
1,87	0,2430	0,2468	2,41	0,0747	0,0753
1,88	0,2344	0,2381	2,42	0,0736	0,0742
1,89	0,2264	0,2299	2,43	0,0725	0,0731
1,9	0,2189	0,2222	2,44	0,0715	0,0721
1,91	0,2119	0,2149	2,45	0,0705	0,0711
1,92	0,2052	0,2081	2,46	0,0696	0,0701
1,93	0,1989	0,2017	2,47	0,0686	0,0692
1,94	0,1930	0,1956	2,48	0,0677	0,0682
1,95	0,1873	0,1898	2,49	0,0668	0,0673
1,96	0,1820	0,1844	2,5	0,0659	0,0664
1,97	0,1769	0,1792	2,51	0,0650	0,0655
1,98	0,1721	0,1743	2,52	0,0642	0,0647
1,99	0,1675	0,1696	2,53	0,0634	0,0639
2,	0,1631	0,1651	2,54	0,0626	0,0630
2,01	0,1590	0,1609	2,55	0,0618	0,0622
2,02	0,1550	0,1568	2,56	0,0610	0,0615
2,03	0,1512	0,1529	2,57	0,0602	0,0607
2,04	0,1475	0,1492	2,58	0,0595	0,0599
2,05	0,1440	0,1457	2,59	0,0588	0,0592
2,06	0,1407	0,1423	2,6	0,0581	0,0585
2,07	0,1375	0,1390	2,61	0,0574	0,0578
2,08	0,1344	0,1359	2,62	0,0567	0,0571
2,09	0,1314	0,1329	2,63	0,0560	0,0564

Frequen cy	Displacement of the node	
	SCAD	
Theory		
2,64	0,0553	0,0557
2,65	0,0547	0,0551
2,66	0,0541	0,0545
2,67	0,0535	0,0538
2,68	0,0528	0,0532
2,69	0,0522	0,0526
2,7	0,0517	0,0520
2,71	0,0511	0,0514
2,72	0,0505	0,0509
2,73	0,0500	0,0503
2,74	0,0494	0,0498
2,75	0,0489	0,0492
2,76	0,0484	0,0487
2,77	0,0479	0,0482
2,78	0,0473	0,0477
2,79	0,0469	0,0472
2,8	0,0464	0,0467
2,81	0,0459	0,0462
2,82	0,0454	0,0457
2,83	0,0449	0,0452
2,84	0,0445	0,0448
2,85	0,0440	0,0443
2,86	0,0436	0,0439
2,87	0,0432	0,0435
2,88	0,0427	0,0430
2,89	0,0423	0,0426
2,9	0,0419	0,0422
2,91	0,0415	0,0418
2,92	0,0411	0,0414
2,93	0,0407	0,0410
2,94	0,0403	0,0406
2,95	0,0399	0,0402
2,96	0,0396	0,0398
2,97	0,0392	0,0394
2,98	0,0388	0,0391
2,99	0,0385	0,0387
3,	0,0381	0,0384

	Theory	SCAD	Deviation
Frequency at which the maximum displacement occurs (Hz)	1.58	1.58	0%
Maximum displacement (m)	2,0000	1,9869	0.65%

Notes: In the analytical solution the vertical displacement is described by the following transfer function:

$$
\frac{1}{\sqrt{\left(1-\frac{\theta^{2}}{\omega^{2}}\right)^{2}+(2 \xi \theta / \omega)^{2}}},
$$

where ω - natural frequency of the undamped system.

Steel Structural Members

Strength and Stiffness Analysis of a Welded I-beam

a-cross-section variation along the beam length; b-beam section and stress diagrams.
Objective: Check of the Resistance of Sections mode in the "Steel" postprocessor of SCAD
Task: Check the design section of a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing of $1,125 \mathrm{~m}$.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p 195.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.1 SectionResistance_Example_4.1.spr;
report - 4.1 SectionResistance _Example_4.1.doc

Initial data:

$M_{l}=3469,28 \mathrm{kNm}=353,6473 \mathrm{Tm}$
$Q_{1}=925 \mathrm{kN}=94,29 \mathrm{~T}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}, R_{\mathrm{s}}=0,58 * 23=13,3 \mathrm{kN} / \mathrm{cm}^{2}$
$l=18 \mathrm{~m}$
$W_{y}=15187,794 \mathrm{~cm}^{3}$
$I_{y}=1290962,5 \mathrm{~cm}^{4}$
$S_{y}=9108,75 \mathrm{~cm}^{3}$
$i_{y}=63,715 \mathrm{~cm}, i_{z}=4,265 \mathrm{~cm}$

Design bending moment;
Design shear force;
Steel grade C255 with thickness $\mathrm{t}>20 \mathrm{~mm}$;
Beam span;
Geometric properties for a welded
I-section with flanges $240 \times 25 \mathrm{~mm}$ and a web $1650 \times 12 \mathrm{~mm}$.

SCAD Parameters. STEEL Postprocessor:
[Element No. 1] Forces

Analysis complies with SNiP II-23-81*
Structural member Section

Steel: C255

Member length 3,75 m
Limit slenderness for members in compression: 220
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor in the XoY plane $1,125 \mathrm{~m}$
Effective length factor in the XoZ plane 18 m

Section

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	0,99
Sec.5.12,5.18	Strength under action of lateral force Qz	0,41
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,99
Sec. 5.14*	Strength for reduced stresses at the simultaneous action of the bending moment and the lateral force	0,86
Sec.5.15	Stability of in-plane bending	0,99
Sec.6.15,6.16	Limit slenderness in XoY plane	0,09
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,09

Utilization factor 0,99 - Strength under action of bending moment My

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{3469,28 \cdot 100}{23}=15083,826 \mathrm{~cm}^{3} .
$$

2. Maximum tangential stresses in support sections of the beam:

$$
\tau_{\max }=\frac{Q_{\max } S_{y}}{I_{y} t_{w}}=\frac{925 \cdot 9108,75}{1290962,5 \cdot 1,2}=5,4388 \mathrm{kN} / \mathrm{cm}^{2} .
$$

3. Reduced stresses in the considered beam section:

$$
\begin{gathered}
\sigma_{y}=\frac{M_{y}}{I_{y}} \frac{h_{w}}{2}=\frac{3469,28 \cdot 100 \cdot 165}{1290962,5 \cdot 2}=22,1707 \mathrm{kN} / \mathrm{cm}^{2} \\
\tau_{y z}=\frac{Q_{z} S_{y f}}{I_{y} t_{w}}=\frac{925 \cdot(24 \cdot 2,5 \cdot(0,5 \cdot 165+0,5 \cdot 2,5))}{1290962,5 \cdot 1,2}=3,00 \mathrm{kN} / \mathrm{cm}^{2} \\
\sigma_{r e d}=\sqrt{\sigma_{y}^{2}+3 \tau_{y z}^{2}}=\sqrt{22,1707^{2}+3 \cdot 3,00^{2}}=22,7715 \mathrm{kN} / \mathrm{cm}^{2}
\end{gathered}
$$

4. Slenderness of the member in the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{18 \cdot 100}{63,715}=28,2508 .
$$

5. Slenderness of the member out of the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{1,125 \cdot 100}{4,265}=26,3775 .
$$

Comparison of solutions:

Factor	Manual calculation	SCAD	Deviation, \%
Strength under action of bending moment $M y$	$15083,826 / 15187,794=0,993$	0,993	0,0
Strength under action of lateral force $Q z$	$5,4388 / 13,3=0,4089$	0,408	0,0
Strength for reduced stresses	$22,7715 / 1,15 / 23=0,861$	0,86	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	0,993	0,0
Stability of in-plane bending	-	0,993	0,0
Limit slenderness in XoY plane	$26,3775 / 300=0,088$	0,088	0,0
Limit slenderness in XoZ plane	$28,2508 / 300=0,094$	0,094	0,0

Strength and Stiffness Analysis of a Rolled I-beam

Objective: Check of the Resistance of Sections mode in the "Steel" postprocessor of SCAD.
Task: Check the design section of a rolled I-beam for the stringers with a span of 6 m in a normal stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.2 SectionResistance_Example_4.2.spr;
report - 4.2 SectionResistance _Example_4.2.doc

Initial data:

$a=1,125 \mathrm{~m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$M=125,55 \mathrm{kNm}=12,798 \mathrm{Tm}$
$\gamma_{\mathrm{c}}=1$
$l=6 \mathrm{~m}$
$c_{\mathrm{x}}=1,1$
$W_{\mathrm{x}}=597 \mathrm{~cm}^{3}$
$i_{y}=13,524 \mathrm{~cm}, i_{z}=2,791 \mathrm{~cm}$

Spacing of stringers;
Steel grade C235;
Design bending moment;
Service factor;
Beam span;
Coefficient allowing for plastic deformations;
Selected I-beam No. 33 GOST 8239-89.

SCAD Parameters. STEEL Postprocessor:
[Element No. 1] Forces

Analysis complies with SNiP II-23-81*
Structural member section
Steel: C235
Member length 6 m
Limit slenderness for members in compression: 250
Limit slenderness for members in tension: 250
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1
Effective length factor XoY -- 1

Length between out-of-plane restraints $1,125 \mathrm{~m}$

Section

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 33

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	0,92
Sec.5.12,5.18	Strength under action of lateral force Qz	0,08
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,92
Sec.5.15	Stability of in-plane bending	0,92
Sec.6.15,6.16	Limit slenderness in XoY plane	0,86
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,18

Utilization factor $\mathbf{0 , 9 2}$ - Strength under action of bending moment My

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{n e s}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{125,55 \cdot 100}{23}=545,8696 \mathrm{~cm}^{3} .
$$

2. Slenderness of the member in the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{6 \cdot 100}{13,524}=44,3656 .
$$

3. Slenderness of the member out of the moment plane:

$$
\lambda_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{6 \cdot 100}{2,791}=214,9767
$$

Comparison of solutions:

Factor	Manual calculation	SCAD	Deviation, \%
Strength under action of bending moment $M y$	$545,8696 / 597=0,914$	0,915	-
Strength under combined action of longitudinal force and bending moments, no plasticity	-	0,915	-
Stability of in-plane bending	-	0,915	-
Limit slenderness in XoY plane	$214,9767 / 250=0,86$	0,86	-
Limit slenderness in XoZ plane	$44,3656 / 250=0,177$	0,177	-

Comments:

The check of the beam strength taking into account the development of the limited plastic deformations was not performed in the manual calculation, because according to the codes this calculation is possible
only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of a Rolled I-beam

Objective: Check of the Resistance of Sections mode in the "Steel" postprocessor of SCAD.
Task: Check the design section of a rolled I-beam for the stringers with a span of $4,5 \mathrm{~m}$ in a normal stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.3 SectionResistance_Example_4.3.spr;
report - 4.3 SectionResistance _Example_4.3.doc

Initial data:

$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$
$M=62,78 \mathrm{kNm}=6,4 \mathrm{Tm}$
$\gamma_{\mathrm{c}}=1$
$l=4,5 \mathrm{~m}$
$c_{\mathrm{x}}=1,1$
$W_{\mathrm{x}}=288,33 \mathrm{~cm}^{3}$
$i_{y}=9,971 \mathrm{~cm}, i_{z}=2,385 \mathrm{~cm}$

Steel grade C235;
Design bending moment;
Service factor;
Beam span;
Coefficient allowing for plastic deformations;
Selected I-beam No. 24 GOST 8239-89.

SCAD Parameters. STEEL Postprocessor:
[Element No. 1] Forces

Analysis complies with SNiP II-23-81*
Structural member section
Steel: C235
Member length 4,5 m
Limit slenderness for members in compression: 250
Limit slenderness for members in tension: 250
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1
Effective length factor XoY -- 1

Length between out-of-plane restraints $1,125 \mathrm{~m}$
Section

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 24

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	0,95
Sec.5.12,5.18	Strength under action of lateral force Qz	0,09
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,95
Sec.5.15	Stability of in-plane bending	0,95
Sec.6.15,6.16	Limit slenderness in XoY plane	0,75
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,18

Utilization factor $\mathbf{0 , 9 5}$ - Strength under action of bending moment My

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{62,78 \cdot 100}{23}=272,9565 \mathrm{~cm}^{3} .
$$

2. Slenderness of the member in the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{4,5 \cdot 100}{9,971}=45,131 .
$$

3. Slenderness of the member out of the moment plane:

$$
\lambda_{z}=\frac{\mu l}{i_{z}}=\frac{4,5 \cdot 100}{2,385}=188,679 .
$$

Comparison of solutions:

Factor	Manual calculation	SCAD	Deviation, \%
Strength under action of bending moment $M y$	$272,9565 / 288,33=0,9467$	0,947	0.0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	0,947	0.0
Stability of in-plane bending	-	0,947	0.0
Limit slenderness in XoY plane	$188,679 / 250=0,755$	0,755	0.0
Limit slenderness in XoZ plane	$45,131 / 250=0,1805$	0,181	0.0

Comments:

1. The check of the beam strength taking into account the development of the limited plastic deformations was not performed in the manual calculation, because according to the codes this calculation is possible
only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.
2. The check for the stability of in-plane bending was performed in the computer-aided calculation according to the codes at $\varphi_{b}=1,0$.

Strength and Stiffness Analysis of a Rolled I-beam

Objective: Check of the Resistance of Sections mode in the "Steel" postprocessor of SCAD.
Task: Check the design section of a rolled I-beam for the secondary beams with a span of 6 m in a complex stub girder system. The top chord of the secondary beams is restrained by the stringers arranged with a spacing of 1 m .

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.4 SectionResistance_Example_4.4.spr;
report - 4.4 SectionResistance _Example_4.4.doc

Initial data:

$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$M=508,5 \mathrm{kNm}=51,83486 \mathrm{Tm}$
$\gamma_{\mathrm{c}}=1$
$l=6 \mathrm{~m}$
$c_{\mathrm{x}}=1,1$
$W_{\mathrm{x}}=2034,982 \mathrm{~cm}^{3}$
$i_{y}=21,777 \mathrm{~cm}, i_{z}=3,39 \mathrm{~cm}$.

Steel grade C235;
Design bending moment;
Service factor;
Beam span;
Coefficient allowing for plastic deformations;
Selected I-beam No. 55 GOST 8239-89

SCAD Results. STEEL Postprocessor:
[Element No. 1] Forces

Analysis complies with SNiP II-23-81*
 Structural member section

Steel: C235
Member length 6 m
Limit slenderness for members in compression: 250
Limit slenderness for members in tension: 250
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1
Effective length factor XoY -- 1

Length between out-of-plane restraints $1,125 \mathrm{~m}$

Section

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 55

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	$\mathbf{1 , 0 9}$
Sec.5.12,5.18	Strength under action of lateral force Qz	0,12
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	$\mathbf{1 , 0 9}$
Sec.5.15	Stability of in-plane bending	$\mathbf{1 , 0 9}$
Sec.6.15,6.16	Limit slenderness in XoY plane	0,71
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,11

Utilization factor 1,09-Strength under action of bending moment My
Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{n e s}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{508,5 \cdot 100}{23}=2210,8696 \mathrm{~cm}^{3}
$$

2. Slenderness of the member in the moment plane and out of the moment plane:

$$
\begin{aligned}
& \lambda_{y}=\frac{\mu l}{i_{y}}=\frac{6,0 \cdot 100}{21,777}=27,552 ; \\
& \lambda_{z}=\frac{\mu l}{i_{z}}=\frac{6,0 \cdot 100}{3,39}=176,99 .
\end{aligned}
$$

Comparison of solutions:

Factor	Manual calculation	SCAD	Deviation, \%
Strength under action of bending moment $M y$	$2210,8696 / 2034,982=1,086$	1,086	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	1,086	0,0
Stability of in-plane bending	-	1,086	0,0
Limit slenderness in XoY plane	$176,99 / 250=0,708$	0,708	0,0
Limit slenderness in XoZ plane	$27,552 / 250=0,110$	0,11	0,0

Comments:

1. The check of the beam strength taking into account the development of the limited plastic deformations was not performed in the manual calculation, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.
2. The check for the stability of in-plane bending was performed in the computer-aided calculation according to the codes at $\varphi_{b}=1,0$ for the effective length $l_{e f}=1 \mathrm{~m}$.

Strength and Stiffness Analysis of a Welded I-beam

a-floor plan; b-design model of the main beam; c - beam section;
1 -load area

Objective: Check of the Resistance of Sections mode in the "Steel" postprocessor of SCAD.
Task: Check the design section of a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by secondary beams arranged with a spacing of $1,0 \mathrm{~m}$.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.5 SectionResistance_Example_4.5.spr;
report - 4.5 SectionResistance _Example_4.5.doc

Initial data:

$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}, R_{\mathrm{s}}=0,58 * 23=13,3 \mathrm{kN} / \mathrm{cm}^{2}$
$M=6245 \mathrm{kNm}=636,595 \mathrm{Tm}$
$\gamma_{\mathrm{c}}=1$
$l=18 \mathrm{~m}$
$I_{y}=2308077,083 \mathrm{~cm}^{4}$
$W_{y}=27153,848 \mathrm{~cm}^{3}$
$i_{y}=70,605 \mathrm{~cm}, i_{z}=11,577 \mathrm{~cm}$

Steel grade C 255 with thickness $\mathrm{t}>20 \mathrm{~mm}$;
Design bending moment;
Service factor;
Beam span;
Geometric properties for a welded
I-section with flanges $1650 \times 12 \mathrm{~mm}$ and a web
$530 \times 25 \mathrm{~mm}$.

SCAD Results. STEEL Postprocessor:
[Element No. 1] Forces

Analysis complies with SNiP II-23-81*
Structural member section
Steel: C255
Member length 18 m
Limit slenderness for members in compression: 250
Limit slenderness for members in tension: 250
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1
Effective length factor XoY -- 1

Length between out-of-plane restraints $1,125 \mathrm{~m}$
Section

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	1
Sec.5.12,5.18	Strength under action of lateral force Qz	0,14
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	1
Sec.5.15	Stability of in-plane bending	1
Sec.6.15,6.16	Limit slenderness in XoY plane	0,62
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,1

Utilization factor 1 - Strength under action of bending moment My

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{6245 \cdot 100}{23}=27152,174 \mathrm{~cm}^{3} .
$$

2. Slenderness of the member in the moment plane and out of the moment plane:

$$
\begin{aligned}
& \lambda_{y}=\frac{\mu l}{i_{y}}=\frac{18,0 \cdot 100}{70,605}=25,4939 \\
& \lambda_{z}=\frac{\mu l}{i_{z}}=\frac{18,0 \cdot 100}{11,577}=155,481
\end{aligned}
$$

Comparison of solutions:

Factor	Manual calculation	SCAD	Deviation, \%
Strength under action of bending moment $M \mathrm{y}$	$27152,174 / 27153,848=1,0$	1,0	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	1,0	0,0
Stability of in-plane bending	-	1,0	0,0
Limit slenderness in XoZ plane	$25,4939 / 250=0,102$	0,102	0,0
Limit slenderness in XoY plane	$155,481 / 250=0,622$	0,622	0,0

Comments:

1. The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.
2. The check for the stability of in-plane bending was performed in the computer-aided calculation according to the codes at $\varphi_{b}=1,0$ for the effective length $l_{e f}=1 \mathrm{~m}$.

Analysis of an Axially Compressed Welded I-beam Column

Objective: Check of the Resistance of Sections mode in the "Steel" postprocessor of SCAD
Task: Check the design section of a welded I-beam for the axially compressed column with a height of 6,5 m.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.6 SectionResistance_Example_4.6.spr;
report - 4.6 SectionResistance _Example_4.6.doc

Initial data:

$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2}$
$l=6,5 \mathrm{~m}$
$N=5000 \mathrm{kN}=509,684 \mathrm{~T}$
$\mu=0,7$
$\gamma_{\mathrm{c}}=1$
$A=230,4 \mathrm{~cm}^{2}$,
$I_{y}=118243,584 \mathrm{~cm}^{4}, I_{z}=33184,512 \mathrm{~cm}^{4}$
$W_{y}=4583,085 \mathrm{~cm}^{3}, W_{z}=1382,688 \mathrm{~cm}^{3}$
$i_{y}=22,654 \mathrm{~cm}, i_{z}=12,001 \mathrm{~cm}$

Steel grade C245;
Column height;
Design longitudinal compressive force;
The lower restraint is rigid and the upper one is pinned
for both principal planes of inertia;
Service factor;
Geometric properties for a welded
I-section with a web $480 \times 12 \mathrm{~mm}$ and flanges
$480 \times 18 \mathrm{~mm}$;

SCAD Results. STEEL Postprocessor:
[Element No. 1] Forces

Analysis complies with SNiP II-23-81*
Structural member section

Steel: C245

Member length 6,5 m
Limit slenderness for members in compression: 180-60■
Limit slenderness for members in tension: 250
Service factor 1
Importance factor 1
Effective length factor XoZ -- 0,7
Effective length factor XoY -- 0,7

Length between out-of-plane restraints $6,5 \mathrm{~m}$
Section

Results	Check	Utilization factor
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,9
Sec.5.3	Stability under compression in XoY (XoU) plane	$\mathbf{1}$
Sec.5.3	Stability under compression in XoZ (XoV) plane	0,94
Sec.5.1	Strength under axial compression/tension	0,9
Sec.6.15,6.16	Limit slenderness in XoY plane	0,316
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,162

Utilization factor 1 - Stability under compression in XoY (XoU) plane

Manual calculation (SNiP II-23-81*):

1. Load-bearing capacity of the element under axial compression/tension:

$$
N=A R_{y} \gamma_{c}=230,4 \cdot 24 \cdot 1=5529,6 \mathrm{kN}
$$

2. Slenderness of the element for both principal planes of inertia:

$$
\begin{gathered}
\lambda_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{\mu l}{i_{y}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654}=20,08475 \\
\bar{\lambda}_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{\mu l}{i_{z}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001}=37,9135
\end{gathered}
$$

3. Conditional slenderness of the element for both principal planes of inertia:

$$
\begin{gathered}
\bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{\mu l}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=0,68555 ; \\
\bar{\lambda}_{z}=\frac{l_{e f, z}}{i_{z}} \sqrt{\frac{R_{y}}{E}}=\frac{\mu l}{i_{z}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,2941 .
\end{gathered}
$$

4. Buckling coefficients under axial compression:

$$
\begin{gathered}
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\bar{\lambda}_{y}}=1-\left(0,073-5,53 \cdot \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 0,68555 \sqrt{0,68555}=0,9622 ; \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{z} \sqrt{\bar{\lambda}_{z}}=1-\left(0,073-5,53 \cdot \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,2941 \sqrt{1,2941}=0,902
\end{gathered}
$$

5. Load-bearing capacity of the element at its buckling:

$$
\begin{gathered}
N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,9622 \cdot 230,4 \cdot 24 \cdot 1=5320,58 \mathrm{kN} ; \\
N_{b, z}=\varphi_{z} A R_{y} \gamma_{c}=0,902 \cdot 230,4 \cdot 24 \cdot 1=4987,7 \mathrm{kN} .
\end{gathered}
$$

6. Limit slenderness:

$$
\begin{aligned}
& \lambda_{u y}=180-60 \cdot \frac{N}{\varphi_{y} A R_{y} \gamma_{c}}=180-60 \cdot \frac{5000}{0,9622 \cdot 230,4 \cdot 24 \cdot 1}=123,615 ; \\
& \lambda_{u z}=180-60 \cdot \frac{N}{\varphi_{z} A R_{y} \gamma_{c}}=180-60 \cdot \frac{5000}{0,902 \cdot 230,4 \cdot 24 \cdot 1}=119,852 .
\end{aligned}
$$

Comparison of solutions:

Factor	Source	Manual calculation	SCAD	Deviation, \%
Strength under combined action of longitudinal force and bending moments, no plasticity	-	$5000 / 5529,6=$ 0,904	0,904	0,0
Stability under compression in XoY (XoU) plane	$23,69 / 24=$	$5000 / 4987,7=$	1,002	0,0
Stability under compression in XoZ (XoV) plane	$-9,087$		$5000 / 5320,58=$	
0,94	0,94	0,0		
Strength under axial compression/tension	0,904	$5000 / 5529,6=$	0,904	0,0
Limit slenderness in XoY plane	-	3,904		
Limit slenderness in XoZ plane	-	0,316	$0,9135 / 119,852=$	0,316

Strength and Stiffness Analysis of Stringers for a Normal Stub Girder System

Objective: Check the mode for the beam analysis in the "Steel" postprocessor of SCAD.
Task: Select a rolled I-beam for the stringers with a span of 6 m in a normal stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.1 Beam_Example_3.1.spr;
report - 3.1 Beam_Example_3.1.doc

Initial data:

$a=1,125 \mathrm{~m}$
$q_{c h}=(0,77+20) \mathrm{kN} / \mathrm{m}^{2} \times 1,125 \mathrm{~m}=23,37 \mathrm{kN} / \mathrm{m}$
$q_{1}=1,05 \times 0,77 \mathrm{kN} / \mathrm{m}^{2} \times 1,125 \mathrm{~m}=0,91 \mathrm{kN} / \mathrm{m}$
$q_{2}=1,2 \times 20 \mathrm{kN} / \mathrm{m}^{2} \times 1,125 \mathrm{~m}=27 \mathrm{kN} / \mathrm{m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$
$l=6 \mathrm{~m}$
$[f]=1 / 250 \times 6,0 \mathrm{~m}=24 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{\mathrm{x}}=596,364 \mathrm{~cm}^{3}$
$I_{\mathrm{x}}=9840 \mathrm{~cm}^{4}, S_{x}=339 \mathrm{~cm}^{3}, t_{w}=7 \mathrm{~mm}$.

Spacing of stringers
Total characteristic load
Design permanent load
Design temporary load
Steel grade C235
Beam span
Limit deflection
Service factor
Selected I-beam No. 33 GOST 8239-89

SCAD Results. STEEL Postprocessor:
[Element No. 1] Forces

[Element No. 1] Deflections

X		Y	Z
			Max. -23,23 mm Snap 3 m
		Length of the bar 6 m Length of the flexible part 6 m Loading L1-"1"	

Analysis complies with SNiP II-23-81*
Structural member beam

Steel: C235

Member length 6 m
Limit slenderness for members in compression: 180
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1
Effective length factor XoY -- 1
Length between out-of-plane restraints $0,01 \mathrm{~m}$

Section

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 33

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	0,92
Sec.5.12,5.18	Strength under action of lateral force Qz	0,31
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,92
Sec.5.15	Stability of in-plane bending	0,92
Sec.6.15,6.16	Limit slenderness in XoY plane	0,72
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,15

Utilization factor 0,92 - Strength under action of bending moment My

Manual calculation:

1. Design bending moment and shear force:

$$
\begin{gathered}
M_{\max }=\frac{q_{\Sigma} l^{2}}{8}=\frac{(0.91+27) \cdot 6.0^{2}}{8}=125.593 \mathrm{kNm} ; \\
Q_{\max }=\frac{q_{\Sigma} l}{2}=\frac{(0.91+27) \cdot 6.0}{2}=83,73 \mathrm{kN} .
\end{gathered}
$$

2. Necessary beam section modulus assuming that the deformations of steel are elastic:

$$
W=\frac{M_{\max }}{R_{y}}=\frac{125.593 \cdot 100}{23}=546.057 \mathrm{~cm}^{3} .
$$

3. Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{h} l^{4}}{E I_{x}}=\frac{5}{384} \cdot \frac{23,37 \cdot 6^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 9840 \cdot 10^{-8}}=19,46 \mathrm{~mm} .
$$

4. Check of the maximum shear stresses:

$$
\tau_{\max }=\frac{Q_{\max } S_{x}}{I_{x} t_{w}}=\frac{83,73 \cdot 339}{9840 \cdot 0,7}=4,12577 \mathrm{kN} / \mathrm{cm}^{2}<R_{s} \gamma_{c}=0,58 \cdot 23=13,34 \mathrm{kN} / \mathrm{cm}^{2} .
$$

Comparison of solutions:

Factor	Strength under action of lateral force	Strength under action of bending moment	Stability of in- plane bending under moment	Maximum deflection
Manual calculation	$4,126 / 13,34=0,309$	$546,06 / 596,36=$ 0,916	-	$19,46 / 24=0,81$
SCAD	0,309	0,916	0,916	$23,23 / 1,1945 / 24=0,81$
Deviation, \%	0,0	0,0	0,0	0,0

Comments:

1. The check of the general stability of the beam was not performed in the manual calculation, because the compressed beam chord is restrained against lateral displacements out of the bending plane by a welded floor plate.
2. The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of Stringers for a Complex Stub Girder System

Objective: Check the mode for the beam analysis in the "Steel" postprocessor of SCAD.
Task: Select a rolled I-beam for the stringers with a span of $4,5 \mathrm{~m}$ in a complex stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.2 Beam_Example_3.2.spr;
report-3.2 Beam_Example_3.2.doc

Initial data:

$a=1,0 \mathrm{~m}$
$q_{c h}=(0,77+20) \mathrm{kN} / \mathrm{m}^{2} \times 1 \mathrm{~m}=20,77 \mathrm{kN} / \mathrm{m}$
$q_{1}=1,05 \times 0,77 \mathrm{kN} / \mathrm{m}^{2} \times 1 \mathrm{~m}=0,8085 \mathrm{kN} / \mathrm{m}$
$q_{2}=1,2 \times 20 \mathrm{kN} / \mathrm{m}^{2} \times 1 \mathrm{~m}=24 \mathrm{kN} / \mathrm{m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$l=4,5 \mathrm{~m}$
$[f]=1 / 250 \times 4,5 \mathrm{~m}=18 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{\mathrm{x}}=288,33 \mathrm{~cm}^{3}$
$I_{\mathrm{x}}=3460 \mathrm{~cm}^{4}$

Spacing of stringers;
Total characteristic load;
Design permanent load;
Design temporary load;
Steel grade C235;

Beam span;
Limit deflection;
Service factor;
Selected I-beam No. 24 GOST 8239-89.

SCAD Results. STEEL Postprocessor:
[Element No. 1] Forces

[Element No. 1] Deflections

Analysis complies with SNiP II-23-81*
Structural member beam

Steel: C235

Importance factor 1
Service factor 1
Limit slenderness for members in compression: 180
Limit slenderness for members in tension: 300
Member length $4,5 \mathrm{~m}$
Effective length factor XoZ -- 1
Effective length factor XoY -- 1
Length between out-of-plane restraints $0,01 \mathrm{~m}$

Section

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 24

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	0,95
Sec.5.12,5.18	Strength under action of lateral force Qz	0,35
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,95
Sec.5.15	Stability of in-plane bending	0,95
Sec.6.15,6.16	Limit slenderness in XoY plane	0,63
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,15

Utilization factor $\mathbf{0 , 9 5}$ - Strength under action of bending moment My

Manual calculation:

1. Design bending moment acting in the beam span:

$$
M_{\max }=\frac{q_{\Sigma} l^{2}}{8}=\frac{(0,8085+24) \cdot 4,5^{2}}{8}=62,7965 \mathrm{kNm} .
$$

2. Necessary beam section modulus assuming that the deformations of steel are elastic:

$$
W=\frac{M_{\max }}{R_{y}}=\frac{62,7965 \cdot 100}{23}=273,028 \mathrm{~cm}^{3} .
$$

3. Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{l} l^{4}}{E I_{x}}=\frac{5}{384} \cdot \frac{20,77 \cdot 4,5^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 3460 \cdot 10^{-8}}=15,56 \mathrm{~mm} .
$$

Comparison of solutions:

Factor	Strength under action of lateral force	Strength under action of bending moment	Stability of in- plane bending under moment	Maximum deflection
Manual calculation	not defined	$273,028 / 288,33=0,947$	not defined	$15,56 / 18=0,864$
SCAD	0,352	0,947	0,947	$18,58 / 1,1944 / 18=0,864$
Deviation, \%	0,0	0,0	0,0	0,0

Comments:

1. The check of tangential stresses was not performed in the manual calculation due to the absence of weakenings and a relatively large thickness of the beam webs.
2. The check of the general stability of the beam was not performed in the manual calculation, because the compressed beam chord is restrained against lateral displacements out of the bending plane by a welded floor plate.
3. The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of Secondary Beams for a Complex Stub Girder System

1 -stringer
2 - secondary beam
Objective: Check the mode for the beam analysis in the "Steel" postprocessor of SCAD.
Task: Select a rolled I-beam for the secondary beams with a span of 6 m in a complex stub girder system. The top chord of the secondary beams is restrained by the stringers arranged with a spacing of 1 m .

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.3 Beam_Example_3.3.spr;
report - 3.3 Beam_Example_3.3.doc

Initial data:

$a=45 \mathrm{~m}$
$q_{c h}=(0,77+27,3 / 102+20) \mathrm{kN} / \mathrm{m}^{2} \times 4,5 \mathrm{~m}=94,67 \mathrm{kN} / \mathrm{m}$
$q_{1}=1,05 \times(0,77+27,3 / 102) \mathrm{kN} / \mathrm{m}^{2} \times 4,5 \mathrm{~m}=4,9 \mathrm{kN} / \mathrm{m}$
$q_{2}=1,2 \times 20 \mathrm{kN} / \mathrm{m}^{2} \times 4,5 \mathrm{~m}=108 \mathrm{kN} / \mathrm{m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$l=6,0 \mathrm{~m}$
$[f]=1 / 250 \times 6,0 \mathrm{~m}=24 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{\mathrm{y}}=2034,98 \mathrm{~cm}^{3}$
$I_{\mathrm{y}}=55962 \mathrm{~cm}^{4}$

Spacing of secondary beams;
Total characteristic load;
Design permanent load;
Design temporary load;
Steel grade C235;
Beam span;
Limit deflection;
Service factor;
Selected I-beam No. 55 GOST 8239-89.

SCAD Results. STEEL Postprocessor:
[Element No. 1] Forces

[Element No. 1] Deflections

Analysis complies with SNiP II-23-81*
Structural member beam
Steel: C235
Member length 6 m
Limit slenderness for members in compression: 180
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1
Effective length factor XoY -- 1
Length between out-of-plane restraints $0,01 \mathrm{~m}$

Section

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 55

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	$\mathbf{1 , 0 9}$
Sec.5.12,5.18	Strength under action of lateral force Qz	0,49
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	$\mathbf{1 , 0 9}$
Sec.5.15	Stability of in-plane bending	$\mathbf{1 , 0 9}$
Sec.6.15,6.16	Limit slenderness in XoY plane	0,59
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,09

Utilization factor $\mathbf{1 , 0 9}$ - Strength under action of bending moment My

Manual calculation:

1. Design bending moment acting in the beam span:

$$
M_{\max }=\frac{q_{\Sigma} l^{2}}{8}=\frac{(4,9+108) \cdot 6,0^{2}}{8}=508,05 \mathrm{kNm}
$$

2. Necessary beam section modulus assuming that the deformations of steel are elastic:

$$
W_{n e s}=\frac{M_{\max }}{R_{y}}=\frac{508,05 \cdot 100}{23}=2208,913 \mathrm{~cm}^{3}
$$

3. Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{H} l^{4}}{E I_{y}}=\frac{5}{384} \cdot \frac{94,67 \cdot 6,0^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 55962 \cdot 10^{-8}}=13,858 \mathrm{~mm}
$$

4. Conditional limit slenderness of the compressed beam chord:

$$
\begin{aligned}
& \bar{\lambda}_{u b}=0,35+0,0032 \frac{b_{f}}{t_{f}}+\left(0,76-0,02 \frac{b_{f}}{t_{f}}\right) \frac{b_{f}}{h_{f}}=0,35+0,0032 \frac{180}{16,5}+ \\
& \left(0,76-0,02 \frac{180}{16,5}\right) \frac{180}{533,5}=0,5677 .
\end{aligned}
$$

5. Conditional actual slenderness of the compressed beam chord:

$$
\bar{\lambda}_{b}=\frac{l_{e f}}{b_{f}} \sqrt{\frac{R_{y}}{E}}=\frac{1000}{180} \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=0,1856<\bar{\lambda}_{u b}=0,5677-\text { the stability check is not }
$$

required.

Comparison of solutions:

Factor	Strength under action of lateral force	Strength under action of bending moment	Stability of in-plane bending under moment	Maximum deflection
Manual calculation	not defined	$2208,913 / 2034,98$ $=1,085$	check is not required	$13,858 / 24=0,577$
SCAD	0,488	1,085	1,085	$16,53 / 1,1925 / 24=0,577$
Deviation, \%	0,0	0,0	0,0	0,0

Comments:

1. The check of tangential stresses was not performed in the manual calculation due to the absence of weakenings and a relatively large thickness of the beam webs.
2. The check for the stability of in-plane bending of the beam was performed in the computer-aided calculation according to the codes at $\varphi_{b}=1,0$.
3. The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example a rolled beam without intermediate stiffeners was selected for the secondary beam.

Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems

a-floor plan; b-design model of the main beam; c-beam section;
1 -load area

Objective: Check the mode for the beam analysis in the "Steel" postprocessor of SCAD
Task: Select a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing of 1 m .

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.4 Beam_Example_3.4.spr;
report - 3.4 Beam_Example_3.4.doc

Initial data:

$a=6 \mathrm{~m}$
$g_{1}=1,16 \mathrm{kN} / \mathrm{m}^{2}$
$p=20 \mathrm{kN} / \mathrm{m}^{2}$
$q_{c h}=127,099 \mathrm{kN} / \mathrm{m}$
$q_{1}=1,05^{*} 1,16 \mathrm{kN} / \mathrm{m}^{2} * 6 \mathrm{~m} * 1,02=7,454 \mathrm{kN} / \mathrm{m}$
$q_{2}=1,2 * 20 \mathrm{kN} / \mathrm{m}^{2} * 6 \mathrm{~m}=144,0 \mathrm{kN} / \mathrm{m}$
$l=18 \mathrm{~m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$
$R_{\mathrm{s}}=0,58 * 23=13,34 \mathrm{kN} / \mathrm{cm}^{2}$
$[f]=l / 400=45 \mathrm{~mm}$
$b_{p} \times t_{p}=530 \times 20 \mathrm{~mm}$
$k_{p}=6 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{y}=27153,85 \mathrm{~cm}^{3}$
$I_{y}=2308077,083 \mathrm{~cm}^{4}$
$S_{y}=15180,625 \mathrm{~cm}^{3}$

Spacing of main beams
Weight of the floor plate and stringers
Temporary (live) load
Total characteristic load on the beam
Design permanent load
(coefficient 1,02 allows for the self-weight of the main beam)
Design live load
Main beam span
Steel grade C255 with thickness $\mathrm{t}>20 \mathrm{~mm}$

Limit deflection
Section of the bearing stiffener
Fillet weld leg in a welded connection between a bearing stiffener and a beam
Service factor
Geometric properties for a welded I-section with flanges $530 \times 25 \mathrm{~mm}$
and a web $1650 \times 12 \mathrm{~mm}$

SCAD Results. STEEL Postprocessor:
[Element No 3] Forces

[Element No. 3] Deflections

Analysis complies with SNiP II-23-81* Structural member main beam

Steel: C255

Member length 18 m
Limit slenderness for members in compression: 180
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1
Effective length factor XoY -- 1
Length between out-of-plane restraints 1 m

Section

Results	Check	Utilization factor
Sec.5.12	Strength under action of bending moment My	0,98
Sec.5.12,5.18	Strength under action of lateral force Qz	0,56
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,98
Sec.5.15	Stability of in-plane bending	0,98
Sec.6.15,6.16	Limit slenderness in XoY plane	0,52
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,08

Utilization factor 0,98 - Strength under action of bending moment My

Manual calculation (SNiP II-23-81*)

1. Maximum bending moment and shear force acting in the design sections of the beam:

$$
\begin{gathered}
M_{\max }=\frac{q_{\Sigma} l^{2}}{8}=\frac{(7,454+144) \cdot 18,0^{2}}{8}=6133,887 \mathrm{kNm} . \\
Q_{\max }=\frac{q_{\Sigma} l}{2}=\frac{(7,454+144) \cdot 18,0}{2}=1363,086 \mathrm{kN} .
\end{gathered}
$$

2. Necessary beam section modulus:

$$
W_{n e s}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{6133,887 \cdot 100}{23}=26669,074 \mathrm{~cm}^{3}
$$

3. Maximum tangential stresses in the support section of the beam:

$$
\tau_{\max }=\frac{Q_{\max } S_{y}}{I_{y} t_{w}}=\frac{1363,086 \cdot 15180,625}{2308077,083 \cdot 1,2}=7,471 \mathrm{kN} / \mathrm{cm}^{2}
$$

4. Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{H} l^{4}}{E I_{y}}=\frac{5}{384} \cdot \frac{127,099 \cdot 18,0^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 2308077,083 \cdot 10^{-8}}=36,539 \mathrm{~mm} .
$$

5. Conditional limit slenderness of the compressed beam chord:

$$
\begin{aligned}
& \bar{\lambda}_{u b}=0,35+0,0032 \frac{b_{f}}{t_{f}}+\left(0,76-0,02 \frac{b_{f}}{t_{f}}\right) \frac{b_{f}}{h_{f}}=0,35+0,0032 \frac{530}{25}+ \\
& \left(0,76-0,02 \frac{530}{25}\right) \frac{530}{1675}=0,524
\end{aligned}
$$

6. Conditional actual slenderness of the compressed beam chord:

$$
\bar{\lambda}_{b}=\frac{l_{e f}}{b_{f}} \sqrt{\frac{R_{y}}{E}}=\frac{1000}{530} \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=0,063<\bar{\lambda}_{u b}=0,524-\text { the stability check is not required. }
$$

Comparison of solutions:

Factor	Manual calculation	SCAD	Deviation, \%
Strength under action of lateral force	$7,471 / 13,34=0,56$	0,56	0,0
Strength under action of bending moment	$26669,074 / 27153,85=0,982$	0,982	0,0
Stability of in-plane bending under moment	-	0,982	0,0
Maximum deflection	$36,539 / 45=0,812$	$43,54 / 1,1916 / 45=$ 0,812	0,0

Comments:

The check for the stability of in-plane bending of the beam was performed in the computer-aided calculation according to the codes at $\varphi_{b}=1,0$.

Analysis of an Axially Compressed Welded I-beam Column

Objective: Check the mode for calculating columns of solid cross-section in the "Steel" postprocessor of SCAD.

Task: Check the design section of a welded I-beam for the axially compressed column with a height of 6,5 m.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

5.1 Column_Example_5.1.spr;
report - 5.1 Column_Example_5.1.doc

Initial data:

$l=6,5 \mathrm{~m}$
$\mu=0,7$
$N=5000 \mathrm{kN}$
$\gamma_{\mathrm{c}}=1$
$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2}$
$A=230,4 \mathrm{~cm}^{2}$
$I_{x}=118243,584 \mathrm{~cm}^{4}, I_{y}=33184,512 \mathrm{~cm}^{4}$
$i_{x}=22,654 \mathrm{~cm}, i_{y}=12,001 \mathrm{~cm}$

Column height
The lower restraint is rigid and the upper one is pinned
Design compressive force
Service factor
Steel grade C245
Geometric properties of the selected section

SCAD Results. STEEL Postprocessor:

[Element No 1] Forces

Analysis complies with SNiP II-23-81*
Structural member column
Steel: C245
Member length 6,5 m
Limit slenderness for members in compression: 180-60
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1

Effective length factor XoZ -- 0,7
Effective length factor XoY -- 0,7
Length between out-of-plane restraints 0 m

Section

Results	Check	Utilization factor
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,9
Sec.5.3	Stability under compression in XoY (XoU) plane	1
Sec.5.3	Stability under compression in XoZ (XoV) plane	0,94
Sec.5.1	Strength under axial compression/tension	0,9
Sec.6.15,6.16	Limit slenderness in XoY plane	0,316
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,162

Utilization factor 1 - Stability under compression in XoY (XoU) plane

Manual calculation (SNiP II-23-81*):

1. Strength check of the selected column section:

$$
\frac{N}{A R_{y} \gamma_{c}}=\frac{5000}{230,4 \cdot 24 \cdot 1}=0,904
$$

2. Slenderness of the column:

$$
\begin{aligned}
& \lambda_{x}=\frac{l_{e f, x}}{i_{x}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654}=20,08475 ; \\
& \lambda_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001}=37,9135 .
\end{aligned}
$$

3. Conditional slenderness of the column:

$$
\begin{aligned}
& \bar{\lambda}_{x}=\frac{l_{e f, x}}{i_{x}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=0,68555 ; \\
& \bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,2941 .
\end{aligned}
$$

4. Buckling coefficients:

$$
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\bar{\lambda}_{y}}=1-\left(0,073-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 0,68555 \sqrt{0,68555}=0,9622
$$

$$
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\bar{\lambda}_{y}}=1-\left(0,073-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 1,2941 \sqrt{1,2941}=0,902 .
$$

5. Strength of the column from the condition of providing the general stability under axial compression:

$$
\begin{gathered}
N_{b, x}=\varphi_{x} A R_{y} \gamma_{c}=0,9622 \cdot 230,4 \cdot 24 \cdot 1=5320,58 \mathrm{kN} \\
N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,902 \cdot 230,4 \cdot 24 \cdot 1=4987,7 \mathrm{kN} .
\end{gathered}
$$

6. Limit slenderness of the column:

$$
\begin{gathered}
{[\lambda]_{x}=180-60 \alpha_{x}=180-60 \cdot \frac{N}{\varphi_{x} A R_{y} \gamma_{c}}=180-60 \cdot \frac{5000}{5320,58}=123,615 ;} \\
{[\lambda]_{y}=180-60 \alpha_{y}=180-60 \cdot \frac{N}{\varphi_{y} A R_{y} \gamma_{c}}=180-60 \cdot 1=120 .}
\end{gathered}
$$

Comparison of solutions:

Factor	Source	Manual calculation	SCAD	Deviation, \%
Strength under combined action of longitudinal force and bending moments, no plasticity	-	0,904	0,904	0,0
Stability under compression in XoY (XoU) plane	23,69/24=0,987	$\begin{aligned} & \text { 5000/4987,7= } \\ & 1,002 \end{aligned}$	1,002	0,0
Stability under compression in $\mathrm{XoZ}(\mathrm{XoV})$ plane	-	$\begin{aligned} & \text { 5000/5320,58= } \\ & 0,940 \end{aligned}$	0,94	0,0
Strength under axial compression/tension	$\begin{aligned} & \text { 5000/230,4/24= } \\ & 0,904 \end{aligned}$	0,904	0,904	0,0
Limit slenderness in XoY plane	-	$\begin{aligned} & \hline 37,9135 / 120= \\ & 0,316 \end{aligned}$	0,316	0,0
Limit slenderness in XoZ plane	-	$\begin{aligned} & \mid 20,08475 / 123,615= \\ & 0,162 \end{aligned}$	0,162	0,0

Analysis of an Axially Compressed Electric Welded Circular Hollow Section Column

Objective: Check the mode for calculating columns of solid cross-section in the "Steel" postprocessor of SCAD

Task: Check the design section of an axially compressed electric welded circular hollow section column with a height of $7,7 \mathrm{~m}$.

Source: Kuznetsov A.F., Kozmin N.B., Amelkovich S.V. Examples of the analysis of steel structures of civil and industrial buildings. Textbook for students of construction specialties. - Chelyabinsk, 2009. p. 11, 12.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010, DBN B.2.6198:2014.

Initial data file:

5.3 Column_Example_5.3.spr;
report - 5.3 Column_Example_5.3.doc

Initial data:

$l=7,7 \mathrm{~m}$
$\mu=1,0$
$N=472,5 \mathrm{kN}$
$\gamma_{c}=1$
$R_{y}=23 \mathrm{kN} / \mathrm{cm}^{2}$
$A=51,12 \mathrm{~cm}^{2}$
$I_{y}=I_{z}=3868,506 \mathrm{~cm}^{4}$
$i_{y}=i_{z}=8,699 \mathrm{~cm}$

Column height
The lower and upper restraints are pinned
Design compressive force
Service factor
Steel grade C235
Geometric properties of
the selected section

SCAD Results. STEEL Postprocessor:
[Element No. 1] Forces

Analysis complies with SNiP II-23-81*
Structural member column1
Steel: C235
Member length 7,7 m
Limit slenderness for members in compression: 180-60■
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor XoZ -- 1,0
Effective length factor XoY -- 1,0

Length between out-of-plane restraints $7,7 \mathrm{~m}$

Section:

Results	Check	Utilization factor
Sec. $5.24,5.25$	Strength under combined action of longitudinal force and bending moments, no plasticity	0,4
Sec. 5.3	Stability under compression in XoY (XoU) plane	0,63
Sec. 5.3	Stability under compression in XoZ (XoV) plane	0,63
Sec. 5.34	Stability under compression and bending in two planes	0,63
Sec. 5.1	Strength under axial compression/tension	0,4
Sec. $6.15,6.16$	Limit slenderness in XoY plane	0,62
Sec. $6.15,6.16$	Limit slenderness in XoZ plane	0,62

Utilization factor 0,63 - Stability under compression in XoY (XoU) plane

Manual calculation (SNiP II-23-81*):

1. Strength check of the selected column section:

$$
\frac{N}{A R_{y} \gamma_{c}}=\frac{472,5}{51,12 \cdot 23 \cdot 1}=0,402 .
$$

2. Slenderness of the column:

$$
\begin{aligned}
& \lambda_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{1,0 \cdot 7,7 \cdot 100}{8,699}=88,516 ; \\
& \lambda_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{1,0 \cdot 7,7 \cdot 100}{8,699}=88,516 .
\end{aligned}
$$

3. Conditional slenderness of the column:

$$
\begin{aligned}
& \bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{1,0 \cdot 7,7 \cdot 100}{8,699} \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=2,9577 ; \\
& \bar{\lambda}_{z}=\frac{l_{e f, z}}{i_{z}} \sqrt{\frac{R_{y}}{E}}=\frac{1,0 \cdot 7,7 \cdot 100}{8,699} \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=2,9577 .
\end{aligned}
$$

4. Buckling coefficients at $2,5<\bar{\lambda} \leq 4,5$:

$$
\begin{aligned}
& \varphi_{y}=\varphi_{z}=1,47-13,0 \frac{R_{y}}{E}-\left(0,371-27,3 \frac{R_{y}}{E}\right) \bar{\lambda}_{y}+\left(0,0275-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y}^{2}= \\
& =1,47-\frac{13,0 \cdot 230}{2,06 \cdot 10^{5}}-\left(0,371-\frac{27,3 \cdot 230}{2,06 \cdot 10^{5}}\right) \cdot 2,9577+\left(0,0275-\frac{5,53 \cdot 230}{2,06 \cdot 10^{5}}\right) \cdot 2,9577^{2}=0,6349 .
\end{aligned}
$$

5. Strength of the column from the condition of providing the general stability under axial compression:

$$
N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,6349 \cdot 23 \cdot 51,12 \cdot 1=746,476 \mathrm{kN}
$$

$$
N_{b, z}=\varphi_{z} A R_{y} \gamma_{c}=0,6349 \cdot 23 \cdot 51,12 \cdot 1=746,476 \mathrm{kN} .
$$

6. Limit slenderness of the column:

$$
\begin{aligned}
& {[\lambda]_{y}=180-60 \alpha_{y}=180-60 \cdot \frac{N}{\varphi_{y} A R_{y} \gamma_{c}}=180-60 \cdot \frac{472,5}{746,476}=142,022 ;} \\
& {[\lambda]_{z}=180-60 \alpha_{z}=180-60 \cdot \frac{N}{\varphi_{z} A R_{y} \gamma_{c}}=180-60 \cdot \frac{472,5}{746,476}=142,022 .}
\end{aligned}
$$

Comparison of solutions:

Factor	Source	Manual calculation	SCAD	Deviation, $\mathbf{\%}$
Strength under combined action of longitudinal force and bending moments, no plasticity	-	0,402	0,4	0,0
Stability under compression in XoY (XoU) plane	0,966	$472,5 / 746,476=$ 0,633	0,63	0,0
Stability under compression in XoZ (XoV) plane	0,966	$472,5 / 746,476=$ 0,633	0,63	0,0
Strength under axial compression/tension	0,511	0,402	0,4	0,0
Limit slenderness in XoY plane	-	$88,516 / 142,022=$ 0,62	0,62	0,0
Limit slenderness in XoZ plane	-	$88,516 / 142,022=$	0,62	0,0

Analysis of a Top Truss Chord from Unequal Angles

Objective: Check the mode for calculating truss members in the "Steel" postprocessor of SCAD
Task: Check the top truss chord section from two unequal angles L160x100x9 mm. The truss panel length is $2,58 \mathrm{~m}$. The truss is restrained out of the bending plane through the panel.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] -13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 280.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010, DBN B.2.6198:2014.

Initial data file:

7.1 Truss_Element_Example_7.1.spr;
report - 7.1 Truss_Element_Example_7.1.doc

Initial data:

$N=535 \mathrm{kN} \quad$ Design compressive force
$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2} \quad$ Steel grade C245
$\gamma_{\mathrm{c}}=0,95$
$g=12 \mathrm{~mm}$
$l_{\mathrm{y}}=2,58, l_{\mathrm{z}}=5,16$
$i_{\mathrm{y}}=2,851 \mathrm{~cm}, A=45,74 \mathrm{~cm}^{2}$
$i_{\mathrm{z}}=7,745 \mathrm{~cm}$
Service factor
Thickness of the gusset plate
Effective lengths of the bar
Geometric properties of
the top chord section from two angles 160x100x9
SCAD Results. STEEL Postprocessor:

[Element No 1] Forces

Analysis complies with SNiP II-23-81* Structural member Truss chord

Steel: C245

Member length $2,58 \mathrm{~m}$
Limit slenderness for members in compression: 180-60
Limit slenderness for members in tension: 300
Service factor 0,95
Importance factor 1
Inelasticity is forbidden
Effective length factor in the $\mathrm{X}_{1} \mathrm{OZ}_{1}$ plane 1
Effective length factor in the $\mathrm{X}_{1} \mathrm{OY}_{1}$ plane 2
Length between the restraints out of the bending plane $2,58 \mathrm{~m}$

Section:

Profile: Unequal angle GOST 8510-86* L160x100x9

Results	Check	Utilization factor
Sec.5.24,5.25	Strength under combined action of longitudinal force and bending moments, no plasticity	0,51
Sec.5.3	Stability under compression in XoY (XoU) plane	0,66
Sec.5.3	Stability under compression in XoZ (XoV) plane	0,84
Sec.5.1	Strength under axial compression/tension	0,51
Sec.6.15,6.16	Limit slenderness in XoY plane	0,48
Sec.6.15,6.16	Limit slenderness in XoZ plane	0,7

Utilization factor $\mathbf{0 , 8 4}$ - Stability under compression in XoZ (XoV) plane

Manual calculation (SNiP II-23-81*):

1. Strength check

$$
\frac{N}{A}=\frac{535}{45,74}=11,69655 \mathrm{kN} / \mathrm{cm}^{2}<R_{y} \gamma_{c}=24 \cdot 0,95=22,8 \mathrm{kN} / \mathrm{cm}^{2}
$$

2. Slenderness of the truss member:

$$
\begin{gathered}
\lambda_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{2,58 \cdot 100}{2,851}=90,49456 \\
\lambda_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{5,16 \cdot 100}{7,745}=66,6236
\end{gathered}
$$

3. Conditional slenderness of the truss member:

$$
\begin{aligned}
& \bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{2,58 \cdot 100}{2,851} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=3,0888 ; \\
& \bar{\lambda}_{z}=\frac{l_{e f, z}}{i_{z}} \sqrt{\frac{R_{y}}{E}}=\frac{5,16 \cdot 100}{7,745} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=2,274 .
\end{aligned}
$$

4. Buckling coefficients:

$$
\begin{gathered}
\varphi_{y}=1,47-13,0 \frac{R_{y}}{E}-\left(0,371-27,3 \frac{R_{y}}{E}\right) \bar{\lambda}_{y}+\left(0,0275-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y}^{2}= \\
=1,47-\frac{13,0 \cdot 240}{2,06 \cdot 10^{5}}-\left(0,371-\frac{27,3 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 3,0888+\left(0,0275-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 3,0888^{2}=0,60805 \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{z} \sqrt{\lambda_{z}}=1-\left(0,073-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 2,274 \sqrt{2,274}=0,77176
\end{gathered}
$$

5. Strength of the truss member from the condition of providing the general stability under axial compression:

$$
\begin{gathered}
N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,60805 \cdot 45,74 \cdot 24 \cdot 0,95=634,118 \mathrm{kN} ; \\
N_{b, z}=\varphi_{z} A R_{y} \gamma_{c}=0,77176 \cdot 45,74 \cdot 24 \cdot 0,95=804,847 \mathrm{kN} .
\end{gathered}
$$

6. Limit slenderness of the truss member:

$$
\begin{aligned}
& {[\lambda]_{y}=180-60 \alpha_{y}=180-60 \cdot \frac{N}{\varphi_{y} A R_{y} \gamma_{c}}=180-60 \cdot \frac{535}{634,118}=129,3785} \\
& {[\lambda]_{z}=180-60 \alpha_{z}=180-60 \cdot \frac{N}{\varphi_{z} A R_{y} \gamma_{c}}=180-60 \cdot \frac{535}{804,847}=140,1166}
\end{aligned}
$$

Comparison of solutions:

Factor	Source	Manual calculation	SCAD	Deviation, $\mathbf{\%}$
Strength of member	$535 / 45,8 / 22,8=0,512$	$11,6966 / 22,8=$ 0,513	0,51	0,0
Stability of member in the truss plane	$21,4 / 22,8=0,938$	$535 / 634,118=$ 0,844	0,84	0,0
Stability of member out of the truss plane	not defined	$535 / 804,847=$ 0,665	0,66	0,0
Slenderness of the member in the truss plane	not defined	$90,4946 / 129,3785=$ 0,7	0,7	0,0
Slenderness of the member out of the truss plane	not defined	$66,6236 / 140,1166=$ 0,4755	0,48	0,0

Comments:

In the source the buckling coefficient for the conditional slenderness of the bar of 3.09 was mistakenly taken as 0.546 instead of 0.6081 , which caused the differences in the results of the stability analysis.

Reinforced Concrete Structural Members

Calculations according to SNiP 2.03.01-84*

Strength Analysis of a Rectangular Beam

Objective: Check the mode for calculating reinforced concrete structures in the "Reinforced Concrete" postprocessor of SCAD

Task: Check the strength of the cantilever beam section for the specified reinforcement
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 26.

Initial data file:
SCAD 3 SNiP.spr
report - SCAD 3 SNiP.doc
Compliance with the codes: SNiP 2.03.01-84.

Initial data:

$b=200 \mathrm{~mm} \quad$ Beam section sizes
$h=800 \mathrm{~mm}$
$a=50 \mathrm{~mm}$
$A_{s}=2945 \mathrm{~mm}^{2}(6 Ø 25)$
Distance from the center of gravity of the reinforcement to the compressed edge of the section
Cross-sectional area of reinforcement
Concrete class
B25
Class of reinforcement
A-III
$l=4,8 \mathrm{~m}$
$q=191 \mathrm{kN} / \mathrm{m}$
$\mathrm{M}=550 \mathrm{kNm}$

Beam span
Load on the beam
Bending moment in the section under the load

Results of the SCAD analysis:

Structural group Beam

Distance between the rebars in the first row S1 is less than the allowable value (see Sec. 5.12 of SNiP 2.03.01-84*) .

Elements: 1
Importance factor $\gamma_{n}=1$
Importance factor (serviceability limit state) $=1$
Member type - Flexural
Stress state - Uniaxial bending

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement				
\mathbf{a}_{1}				$\mathbf{a}_{\mathbf{2}}$
50	$\mathbf{m m}$	50		

Reinforcement	Class	Service factor
Longitudinal	A-III	1
Transverse	A-I	1

Concrete

Concrete type: Heavy-weight
Concrete class: B25
Hardening conditions: Natural
Hardening factor 1

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	0,9
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Humidity of environmental air - 40-75\%

Crack resistance

Category of crack resistance - 3
Conditions of operation: Indoors
Mode of concrete humidity - Natural humidity
Allowable crack opening width:
Short-term opening $0,4 \mathrm{~mm}$
Long-term opening $0,3 \mathrm{~mm}$

Structural group Beam. Element No. 1
Member length $5,0 \mathrm{~m}$

Specified reinforcement

Segment	Reinforcement	Section
1	$\mathrm{~S}_{1}-6 \varnothing 25$	\square
		\square

Segment	Utilization factor	Results	
Check	Checked according to SNiP		
1	0,83	Ultimate moment strength of the section	Sec. 3.15-3.20, 3.27- 3.28

Comparison of solutions

Check	strength of the section
Guide	$550 / 636,4=0,864$
SCAD	0,83
Deviation, $\%$	$4,1 \%$

Strength Analysis of a T-section

Objective: Check of the strength analysis of the section
Task: Check the strength of a simply supported T-beam with the length of $4,0 \mathrm{~m}$ and the specified reinforcement

References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 27-28.

Initial data file:

SCAD 7 SNiP.spr
report - SCAD 7 SNiP.doc
Compliance with the codes: SNiP 2.03.01-84.

Initial data:

$b=200 \mathrm{~mm}$
Beam section sizes
$h=600 \mathrm{~mm}$
$b_{f}^{\prime}=400 \mathrm{~mm}$
$h_{f}^{\prime}=100 \mathrm{~mm}$
$a=50 \mathrm{~mm} \quad$ Distance from the center of gravity of the reinforcement to the
$A_{s}=1964 \mathrm{~mm}^{2}(4 Ø 25)$ compressed edge of the section
Cross-sectional area of reinforcement
Concrete class
B25
Class of reinforcement A-III
$q=191 \mathrm{kN} / \mathrm{m}$
Load on the beam
$\mathrm{M}=300 \mathrm{kNm}$
Bending moment in the section

Results of the SCAD analysis:

Structural group Beam

Distance between the rebars in the first row S1 is less than the allowable value (see Sec. 5.12 of SNiP 2.03.01-84*) .

Elements: 1
Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Member type - Flexural
Stress state - Uniaxial bending

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement		
$\mathbf{\mathbf { a } _ { 1 }}$	$\mathbf{a}_{\mathbf{2}}$	
$\mathbf{m m}$	$\mathbf{~ m m}$	
58,5	20	

Reinforcement	Class	Service factor
Longitudinal	A-III	1
Transverse	A-I	1

Concrete

Concrete type: Heavy-weight
Concrete class: B25
Hardening conditions: Natural
Hardening factor 1

Service factor for concrete		
$\gamma_{b 2}$	allowance for the sustained loads	0,9
	resulting factor without $\gamma_{b 2}$	1

Humidity of environmental air - 40-75\%

Crack resistance

Category of crack resistance - 3
Conditions of operation: Indoors
Mode of concrete humidity - Natural humidity
Allowable crack opening width:
Short-term opening $0,4 \mathrm{~mm}$
Long-term opening $0,3 \mathrm{~mm}$

Structural group Beam. Element No. 1
Member length 4 m

Specified reinforcement

Segment	Reinforcement	Section
1	$\mathrm{~S}_{1}-4 \varnothing 25$	

Segment	Utilization factor	Results	
Check	Checked according to SNiP		
1	0,89	Ultimate moment strength of the section	Sec. 3.15-3.20, 3.27- 3.28

Comparison of solutions

Check	strength of the section
Guide	$300 / 327,1=0,917$
SCAD	0,89
Deviation, $\%$	$3,0 \%$

Strength Analysis of a Wall Panel

Objective: Check of the strength of the wall panel
Task: Check the strength of the section
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 32-34.

Initial data file:

SCAD 12 SNiP.spr
report - SCAD 12 SNiP.doc
Compliance with the codes: SNiP 2.03.01-84.

Initial data:

$l=5,8 \mathrm{~m}$
$b \times h=340 \times 1195 \mathrm{~mm}$
$q_{t o t}=3,93 \mathrm{kN} / \mathrm{m}^{2}$
($q_{x}=17,72 \mathrm{kN} / \mathrm{m}$)
$q_{w}=0,912 \mathrm{kN} / \mathrm{m}^{2}$
($q_{y}=3,83 \mathrm{kN} / \mathrm{m}$)
Concrete class
Class of reinforcement

Wall panel span
Wall panel section sizes
Total vertical uniformly distributed load
Reduced load in the panel plane
Wind load
Reduced load out of the panel plane
B3,5; D1100
A-III

Results of the SCAD analysis:

Structural group Wall panel

Importance factor $\gamma_{n}=1$
Member type - Member under compression and bending (in tension)
Stress state - Biaxial bending
Maximum percentage of reinforcement 10
Random eccentricity along $Z_{1} 0 \mathrm{~mm}$
Random eccentricity along $\mathrm{Y}_{1} 0 \mathrm{~mm}$
Structure is statically indeterminate
Effective length factor in the $\mathrm{X}_{1} \mathrm{OZ}_{1}$ plane 1
Effective length factor in the $\mathrm{X}_{1} \mathrm{OY}_{1}$ plane 1

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement				
\mathbf{a}_{1}				$\mathbf{a}_{\mathbf{2}}$
75	$\mathbf{m m}$	75		

Reinforcement	Class	Service factor
Longitudinal	A-III	1
Transverse	A-I	1

Concrete

Concrete type: Lightweight
Concrete class: B3,5
Grade by average density: D1100
Aggregate: Artificial dense
Hardening conditions: Natural
Hardening factor 1

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	1
	resulting factor without $\gamma_{\mathrm{b} 2}$	1,1

Humidity of environmental air - 40-75\%

Structural group Wall panel. Element No. 1

Member length $5,8 \mathrm{~m}$
Specified reinforcement

Segment	Reinforcement	Section
1	$\mathrm{S}_{1}-2 \varnothing 10$, second row $2 \varnothing 6$ Clear distance between rows 92 mm Slear distance between rows 467 mm Cle betw	\square

Segment	Utilization factor	Results	
Check	Checked according to SNiP		
1	0,99	Ultimate moment strength of the section	Sec. 3.15-3.20, 3.27- 3.28

Comparison of solutions:

Check	Strength of the section
Guide	$74,5 / 78,4=0,95$
SCAD	0,99
Deviation, $\%$	$4,2 \%$

Calculations according to SNiP 52-01-2003

Strength Analysis of a Rectangular Beam

Objective: Check the mode for calculating reinforced concrete structures in the "Reinforced Concrete" postprocessor of SCAD

Task: Check the strength of the beam section for the specified reinforcement
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 28.

Initial data file:

SCAD 6 SP.spr
report - SCAD 6 SP.doc
Compliance with the codes: SP 52-101-2003.

Initial data:

$b \times h=300 \times 700 \mathrm{~mm}$
$a=70 \mathrm{~mm}$
$a^{\prime}=30 \mathrm{~mm}$
$A_{s}=4826 \mathrm{~mm}^{2}(6 \varnothing 32)$
$A_{s}^{\prime}=339 \mathrm{~mm}^{2}(3 \varnothing 12)$
$l=6,0 \mathrm{~m}$
$q=140 \mathrm{kN} / \mathrm{m}$
$M=630 \mathrm{kNm}$
Concrete class
Class of reinforcement

Section sizes
Distance to the c.o.g. of tensile reinforcement
Distance to the c.o.g. of compressed reinforcement
Cross-sectional area of tensile reinforcement
Cross-sectional area of compressed reinforcement
Beam span
Load on the beam
Bending moment
B20
A400

Results of the SCAD analysis:

Structural group Beam

Distance between the rebars in the first row S1 is less than the allowable value (see Sec. 8.3.3 of SP 52-101-2003) .
Elements: 1

Importance factor $\gamma_{\mathrm{n}}=1$
Member type - Flexural
Stress state - Uniaxial bending

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement				
\mathbf{a}_{1}				\mathbf{a}_{2}
$\mathbf{m m}$	30			
70				

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A240	1

Concrete

Concrete type: Heavy-weight
Concrete class: B20

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance

Limited crack opening width
Requirements to crack opening width are based on the preservation of reinforcement
Allowable crack opening width:
Short-term opening $0,4 \mathrm{~mm}$
Long-term opening $0,3 \mathrm{~mm}$

Structural group Beam. Element No. 1
Member length 6 m

Specified reinforcement

Segment	Reinforcement	Section
1	$\mathrm{~S}_{1}-6 \varnothing 32$	
	$\mathrm{~S}_{2}-3 \varnothing 12$	

Results			
Segment	Utilization factor	Check	Checked according to SNiP
1	1,02	Ultimate moment strength of the section	

Comparison of solutions:

Check	Strength of the section
Guide	$630 / 606,2=1,039$
SCAD	1,02
Deviation, $\%$	$1,9 \%$

Calculation of a Rib of a TT-shaped Floor Slab for Load-bearing Capacity under Lateral Forces

Objective: Check the mode for calculating reinforced concrete structures in the "Reinforced Concrete" postprocessor of SCAD

Task: Verify the correctness of the strength analysis of oblique sections and a concrete strip between the oblique sections.

References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 56-57.

Initial data file:

when the lateral force is $\mathrm{Q}=62 \mathrm{kN}-\mathrm{SCAD}$ 12.1.SP. spr
report - SCAD 12.1.SP.doc.
when the lateral force is $\mathrm{Q}=58,4 \mathrm{kN}-\mathrm{SCAD}$ 12.2.SP. spr
report - SCAD 12.2.SP.doc.
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data:

$b \times h=85 \times 350 \mathrm{~mm}$
$a=35 \mathrm{~mm}$
Section sizes
$d=8 \mathrm{~mm}$
$s=100 \mathrm{~mm}$
$q=21,9 \mathrm{kN} / \mathrm{m}$
Distance to the c.o.g. of tensile reinforcement
Diameter of transverse reinforcement
Spacing of transverse reinforcement
$q=18 \mathrm{kN} / \mathrm{m}$
Load on the rib
Temporary equivalent load
$Q=62 \mathrm{kN}$
Lateral force on the support
Concrete class B15
Class of transverse reinforcement A400

Results of the SCAD analysis (when the lateral force is $Q=62 \mathrm{kN}$):

Structural group Beam

Number of rebars in a row must be not less than two (see Sec. 8.3.7 of SP 52-101-2003)
Distance between the rebars in the first row S1 is less than the allowable value (see Sec. 8.3.3 of SP 52-101-2003)
Elements: 1

Importance factor $\gamma_{n}=1$
Member type - Flexural
Stress state - Uniaxial bending

Normal sections Coefficients allowing for seismic action	
Oblique sections	0

Distance to the c.o.g. of reinforcement				
\mathbf{a}_{1}				\mathbf{a}_{2}
$\mathbf{m m}$	32			

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A400	1

Concrete

Concrete type: Heavy-weight
Concrete class: B15

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
γ_{62}	allowance for the failure behavior	1
γ_{63}	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance

No cracks

Structural group Beam. Element No. 1

Member length $3,11 \mathrm{~m}$

Specified reinforcement

Segment	Reinforcement	Section
1	$\mathrm{S}_{1}-2 \varnothing 6$ Transverse reinforcement along the Z axis $1 \varnothing 8$, spacing of transverse reinforcement 100 mm	
		\square

Segment	Utilization factor	Results	
Check	Checked according to SNiP		
1	0,9	Strength in a concrete strip between oblique sections	Sec. 6.2.33, Sec. 3.52 of the Guide

Comparison of solutions

Check	Strength in a concrete strip between oblique sections
Guide	$62 / 68,276=0,908$
SCAD	0,9
Deviation, $\%$	$0,9 \%$

Results of the SCAD analysis (when the lateral force is $Q=58,4 \mathrm{kN}$):

Structural group Beam

Number of rebars in a row must be not less than two (see Sec. 8.3.7 of SP 52-101-2003)
Distance between the rebars in the first row S1 is less than the allowable value (see Sec. 8.3.3 of SP 52-101-2003) .
Elements: 1

Importance factor $\gamma_{n}=1$
Member type - Flexural
Stress state - Uniaxial bending

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement		
	\mathbf{a}_{1}	\mathbf{a}_{2}
$\mathbf{m m}$	32	$\mathbf{m m}$
32		

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A400	1

Concrete

Concrete type: Heavy-weight
Concrete class: B15

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance

No cracks

Structural group Beam. Element No. 1

Member length $2,93 \mathrm{~m}$

Specified reinforcement

Segment	Reinforcement	Section
1	$\mathrm{S}_{1}-2 \not 06$ Transverse reinforcement along the Z axis $1 \varnothing 8$, spacing of transverse reinforcement 100 mm	

Segment	Utilization factor	Results	
	Check	Checked according to SNiP	
1	0,9	Strength for an oblique section	Sec. 6.2.34, Sec. $3.52,3.71$ of the Guide

Comparison of solutions:

Check	Strength for an oblique section
Guide	$58,4 / 63,97=0,913$
SCAD	0,9
Deviation, $\%$	$1,4 \%$

Calculation of a Simply Supported Rectangular Beam under Lateral Forces

Objective: Check the mode for calculating reinforced concrete structures in the "Reinforced Concrete" postprocessor of SCAD

Task: Check the strength of the oblique section of the beam for the specified reinforcement
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 57-58.

Initial data file:

SCAD 13 SP.spr
report - SCAD 13 SP.doc
Compliance with the codes: SP 52-101-2003.

Initial data:

$b \times h=200 \times 400 \mathrm{~mm}$
$a=30 \mathrm{~mm}$
$a^{\prime}=30 \mathrm{~mm}$
$A_{s w}=101 \mathrm{~mm}^{2}(2 \varnothing 8)$
$s_{w}=150 \mathrm{~mm}$
$q_{v}=36 \mathrm{kN} / \mathrm{m}$
$q_{g}=14 \mathrm{kN} / \mathrm{m}$
$Q=100,35 \mathrm{kNm}$

Section sizes

Distance to the c.o.g. of tensile reinforcement
Distance to the c.o.g. of compressed reinforcement
Cross-sectional area of transverse reinforcement
Spacing of transverse reinforcement
Temporary load on the beam
Permanent load on the beam
Lateral force on the support

Concrete class B25
Class of reinforcement 240

Results of the SCAD analysis.

Structural group Beam

Structural group Beam. Element No. 1

Importance factor $\gamma_{\mathrm{n}}=1$
Member type - Flexural
Stress state - Uniaxial bending

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement			
\mathbf{a}_{1}			$\mathbf{a}_{\mathbf{2}}$
$\mathbf{m m}$	30		
30			

Reinforcement	Class	Service factor
Longitudinal	A240	1
Transverse	A240	1

Concrete

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance

No cracks

Structural group Beam. Element No. 1

Member length $4,01 \mathrm{~m}$
Specified reinforcement

Segment	Reinforcement	Section
1	$\begin{aligned} & S_{1}-2 \varnothing 6 \\ & S_{2}-2 \varnothing 6 \end{aligned}$ Transverse reinforcement along the Z axis $2 \varnothing 8$, spacing of transverse reinforcement $150 \mathrm{~mm}$ Transverse reinforcement along the Y axis $2 \varnothing 8$, spacing of transverse reinforcement 150 mm	

Results			
Segment	Utilization factor	Check	Checked according to SNiP
1	0,98	Strength for an oblique section	Sec. 6.2.34, Sec. $3.52,3.71$ of the Guide

Comparison of solutions

Check	Strength of the section
Guide	$100,35 / 100,69=0,997$
SCAD	0,98
Deviation, \%	$1,7 \%$

Comments:

1. The strength check of oblique sections is performed by comparing a sum of lateral forces resisted by concrete and stirrups in the oblique section $\left(Q_{b}+Q_{\mathrm{sw}}\right)$, with a lateral force Q in the oblique section which is determined as a projection on the normal to the longitudinal axis of the element of the resultant of all external forces acting on the element on one side of the considered oblique section ($Q=Q_{\text {max }}-q_{1} c$). The lateral force in the normal section is taken as $Q=100,35 \mathrm{kN}$ according to the Guide.
2. The data on the longitudinal reinforcement has to be specified in SCAD. Since it is not defined in the problem, the following reinforcement is used: class A240, rebars $2 Ø 6$.

Calculation of a Column of a Multi-storey Frame for Load-bearing Capacity under a Lateral Force

Objective: Check the mode for calculating reinforced concrete structures in the "Reinforced Concrete" postprocessor of SCAD

Task: Check the strength of the column section for the specified reinforcement
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 104-105.

Initial data file:

SCAD 34 SP.spr
report - SCAD 34 SP-2003.doc
report - SCAD 34 SP-2012.doc
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data:

$b \times h=400 \times 600 \mathrm{~mm}$
$a=50 \mathrm{~mm}$
$a^{\prime}=50 \mathrm{~mm}$
$A_{s w}=226 \mathrm{~mm}^{2}(2 \varnothing 12)$
$s_{w}=400 \mathrm{~mm}$
$l=3,3 \mathrm{~m}$
$M_{i n f}=250 \mathrm{kNm}$
$M_{\text {sup }}=350 \mathrm{kNm}$
$N=572 \mathrm{kN}$

Section sizes

Distance to the c.o.g. of tensile reinforcement
Distance to the c.o.g. of compressed reinforcement
Cross-sectional area of tensile reinforcement Cross-sectional area of compressed reinforcement

Column length
Bending moment in the lower support section
Bending moment in the upper support section
Longitudinal compressive force
Concrete class B25
Class of transverse reinforcement
A240

Results of the SCAD analysis:

Structural group Column

Spacing of transverse reinforcement is greater than the allowable value (see Sec. 8.3.11 of SP 52-1012003)

Elements: 1

Importance factor $\gamma_{\mathrm{n}}=1$
Member type - Member under compression and bending (in tension)
Stress state - Uniaxial bending
Maximum percentage of reinforcement 10
Random eccentricity along $Z_{1} 0 \mathrm{~mm}$
Random eccentricity along $\mathrm{Y}_{1} 0 \mathrm{~mm}$
Structure is statically indeterminate
Effective length factor in the $\mathrm{X}_{1} \mathrm{OZ}_{1}$ plane 1
Effective length factor in the $\mathrm{X}_{1} \mathrm{OY}_{1}$ plane 1

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement				
\mathbf{a}_{1}				\mathbf{a}_{2}
$\mathbf{m m}$	50	$\mathbf{m m}$		
50				

Reinforcement	Class	Service factor
Longitudinal	A240	1
Transverse	A240	1

Concrete

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance

No cracks

Structural group Column. Element No. 1

Member length 3,3 m

Results			
Segment	Utilization factor	Check	Checked according to SNiP
1	0,98	Strength for an oblique section	Sec. 6.2 .34, Sec. $3.52,3.71$ of the Guide

Comparison of solutions (according to SNiP 52-101-2003):

Check	Strength for an oblique section
Guide	$181,8 / 184,8=0,984$
SCAD	0,98
Deviation, $\%$	$0,4 \%$

Structural group Column

Spacing of transverse reinforcement is greater than the allowable value (see Sec. 10.3.13 of SP 63.13330.2012) .

Elements: 1

Importance factor $\gamma_{\mathrm{n}}=1$
Member type - Member under compression and bending (in tension)
Stress state - Uniaxial bending
Maximum percentage of reinforcement 10
Random eccentricity along $\mathrm{Z}_{1} 0 \mathrm{~mm}$
Random eccentricity along $\mathrm{Y}_{1} 0 \mathrm{~mm}$
Structure is statically indeterminate
Effective length factor in the $\mathrm{X}_{1} \mathrm{OZ}_{1}$ plane 1
Effective length factor in the $\mathrm{X}_{1} \mathrm{OY}_{1}$ plane 1

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement			
\mathbf{a}_{1}			
$\mathbf{m m}$	\mathbf{a}_{2}		
50		$\mathbf{~ m m}$	

Reinforcement	Class	Service factor
Longitudinal	A240	1
Transverse	A240	1

Concrete

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{\mathrm{b} 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{\mathrm{b} 3}$	allowance for the vertical position during concreting	1
$\gamma_{\mathrm{b} 5}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance

No cracks

Structural group Column. Element No. 1

Member length $3,3 \mathrm{~m}$
Specified reinforcement

Segment	Reinforcement	
1	$\mathrm{~S}_{1}-2 \varnothing 6$	
	Sransverse reinforcement along the Z axis $2 \varnothing 12$, spacing of transverse reinforcement 400 mm	
	Transverse reinforcement along the Y axis $2 \varnothing 12$, spacing of transverse reinforcement 400 mm	

$\left.$| Results | | |
| :---: | :---: | :---: |
| Segment | Utilization factor | Check | | Checked according to |
| :---: |
| SNiP | \right\rvert\, | SNe. 8.1.33, 8.1.34 |
| :---: |
| 1 |

Comparison of solutions (according to SP 63.13330.2012)

Check	Strength for an oblique section
Guide	$181,8 / 184,8=0,984$
SCAD	0,84
Deviation, $\%$	$14,6 \%$

Comment:

The difference between the utilization factors of $14,6 \%$ in the results of the solution in the Guide and in SCAD according to SP 63.13330 .2012 is due to the fact that compressive stresses are taken into account in different ways according to the given codes (Sec. 8.1.34) and according to SNiP 52-101-2003.

Example of Punching Near the Edge of the Slab

1 - closed design contour No.1, 2 - open design contour No.2, 3 - open design contour No.3.

Punching Analysis of a Flat Monolithic Floor Slab

Objective: Check the Punching mode in the "Reinforced Concrete" postprocessor of SCAD Task: Verify the correctness of the punching strength analysis of a concrete element under a concentrated force and a bending moment when the load application area is near the edge of the slab.
Compliance with the codes: SNiP 52-101-2003, SP 63.13330.2012.
Initial data file:
SCAD 41 SP-2003.spr, SCAD 41 SP-2012.spr
report - SCAD 41 SP-2003.doc
report - SCAD 41 SP-2012.doc

Initial data:

$h=230 \mathrm{~mm}$
$h_{0}=200 \mathrm{~mm}$
$a \times b=500 \times 400 \mathrm{~mm}$
$F=150 \mathrm{kN}$
$M_{\text {sup }}=80 \mathrm{kN} \cdot \mathrm{m}$
$M_{i n f}=90 \mathrm{kN} \cdot \mathrm{m}$
$x_{0}=500 \mathrm{~mm}$
Concrete class

Slab thickness
Average effective height of the slab
Column section sizes
Load transferred from the floor slab to the column
Moment in the column section on the upper face of the slab
Moment in the column section on the lower face of the slab
Distance from the center of the column section to the free edge of the slab B25

Analytical solution:

In this case it is necessary to check the strength of three contours of the design crosssection:
contour No. 1 - closed contour around the column section at a distance of $0,5 h_{0}$ from the column contour;
contour No. 2 - open contour around the column section at a distance of $0,5 h_{0}$ from the column contour with the extension of the contour to the free edge of the slab;
contour No. 3 - open contour around the column section at a distance of $1,5 h_{0}$ from the column contour (contour of the verification analysis without the consideration of the reinforcement).

1. Closed contour No.1:

$L_{x}=A_{x}+h_{0}=500+200=700 \mathrm{~mm}=0,7 \mathrm{~m}$,
$L_{y}=A_{y}+h_{0}=400+200=600 \mathrm{~mm}=0,6 \mathrm{~m}$,
Perimeter of the design contour of the cross-section:
$u=2\left(L_{x}+L_{y}\right)=2(0,7+0,6)=2,6 \mathrm{~m}$.
Area of the design contour of the cross-section:
$A_{b}=u h_{0}=2,6 \times 0,2=0,52 \mathrm{~m}^{2}$.
Ultimate force resisted by concrete:

$$
F_{b, u l t}=R_{b t} A_{b}=1,05 \times 10^{3} \times 0,52=546 \mathrm{kN} .
$$

Moment of inertia of the design contour with respect to the X axis passing through its center of gravity:

$$
I_{b x}=2 \frac{L_{y}^{3}}{12}+2 L_{x}\left(\frac{L_{y}}{2}\right)^{2}=2 \frac{0,6^{3}}{12}+2 \cdot 0,7\left(\frac{0,6}{2}\right)^{2}=0,162 \mathrm{~m}^{3} .
$$

Section modulus of the design contour of concrete

$$
W_{b x}=\frac{I_{b x}}{y_{\max }}==\frac{0,162}{0,3}=0,54 \mathrm{~m}^{2} .
$$

Moment of inertia of the design contour with respect to the Y axis passing through its center of gravity:

$$
I_{b y}=2 \frac{L_{x}^{3}}{12}+2 \cdot L_{y}\left(\frac{L_{x}}{2}\right)^{2}=2 \frac{0,7^{3}}{12}+2 \cdot 0,6\left(\frac{0,7}{2}\right)^{2}=0,204 \mathrm{~m}^{3}
$$

Section modulus of the design contour of concrete

$$
W_{b y}=\frac{I_{b y}}{x_{\max }}==\frac{0,204}{0,35}=0,583 \mathrm{~m}^{2} .
$$

Bending moment which can be resisted by concrete in the design cross-section:

$$
\begin{aligned}
& M_{b x, \text { ult }}=R_{b t} W_{b x} h_{0}=1,05 \times 10^{3} \times 0,54 \times 0,2=113,4 \mathrm{kNm} . \\
& M_{b y, \text { ult }}=R_{b t} W_{b y} h_{0}=1,05 \times 10^{3} \times 0,583 \times 0,2=122,4 \mathrm{kNm} .
\end{aligned}
$$

For SNiP 52-101-2003:

$$
\frac{M_{x}}{M_{b x, u l t}} \leq \frac{F}{F_{b, u l t}} ; \quad \frac{M_{y}}{M_{b y, u l t}} \leq \frac{F}{F_{b, u l t}}
$$

$\frac{M_{y}}{M_{b y, u l t}}=\frac{85}{122,4}=0,694 \leq \frac{F}{F_{b, u l t}}=\frac{150}{546}=0,275-$ condition is not met.
Assume
$\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,275$
Punching strength of the slab:

$$
\begin{aligned}
& K 1=\left[\frac{F}{F_{b, \text {,utt }}}+\frac{M_{x}}{\left.M_{b_{x, \text { alt }}}+\frac{M_{y}}{M_{b, \text { valt }}}\right] \leq 1,0}\right. \\
& K 1=0,275+0+0,275=0,55
\end{aligned}
$$

For SP 63.13330.2012:

$$
\frac{M_{x}}{M_{b x, u l t}}+\frac{M_{y}}{M_{b y, u t t}} \leq 0,5 \frac{F}{F_{b, u l t}}
$$

$\frac{M_{y}}{M_{b y, \text { ult }}}=\frac{85}{122,4}=0,694 \leq 0,5 \frac{F}{F_{b, u l t}}=\frac{150}{546}=0,5 \cdot 0,275=0,1375-$ condition is not met.
Assume
$\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u t t}}=0,1375$
Punching strength of the slab:

$$
\begin{aligned}
K 1 & =\left[\frac{F}{F_{\text {bulut }}}+\frac{M_{x}}{M_{\text {bratut }}}+\frac{M_{y}}{M_{\text {by,uth }}}\right] \leq 1,0 \\
K 1 & =0,275+0+0,1375=0,413
\end{aligned}
$$

Open contour No.2:

$L_{x}=A_{x}+h_{0}+150=500+200+150=850 \mathrm{~mm}=0,85 \mathrm{~m}$,
$L_{y}=A_{y}+h_{0}=400+200=600 \mathrm{~mm}=0,6 \mathrm{~m}$,
Perimeter of the design contour of the cross-section:
$u=2 L_{x}+L_{y}=2 \times 0,85+0,6=2,3 \mathrm{~m}$.
Area of the design contour of the cross-section:

$$
A_{b}=u h_{0}=2,3 \times 0,2=0,46 \mathrm{~m}^{2} .
$$

X coordinate of the center of gravity of the open contour with respect to the left edge of the slab:

$$
X=\frac{425 \cdot 850 \cdot 2+850 \cdot 600}{850 \cdot 2+600}=535,869 \mathrm{~mm}
$$

Ultimate force resisted by concrete:
$F_{b, u l t}=R_{b t} A_{b}=1,05 \times 10^{3} \times 0,46=483 \mathrm{kN}$.
Moment of inertia of the design contour with respect to the X axis passing through its center of gravity:

$$
I_{b x}=\frac{L_{y}^{3}}{12}+2 L_{x}\left(\frac{L_{y}}{2}\right)^{2}=\frac{0,6^{3}}{12}+2 \cdot 0,85\left(\frac{0,6}{2}\right)^{2}=0,171 \mathrm{~m}^{3} .
$$

Section modulus of the design contour of concrete

$$
W_{b x}=\frac{I_{b x}}{y_{\max }}=\frac{0,171}{0,3}=0,57 \mathrm{~m}^{2} .
$$

Moment of inertia of the design contour with respect to the Y axis passing through its center of gravity:
$I_{b y}=2 \frac{L_{x}^{3}}{12}+2 L_{x}(0,075+0,035869)^{2}+L_{y}(0,35-0,035869)^{2}=2 \frac{0,85^{3}}{12}+2 \cdot 0,85(0,075+0,035869)^{2}+0,6(0,35-0,035869)^{2}$ $=0,183 \mathrm{~m}^{3}$.

Section modulus of the design contour of concrete
$W_{b y}=\frac{I_{b y}}{x_{\max }}=\frac{0,183}{0,535869}=0,341 \mathrm{~m}^{2}$.
Bending moment which can be resisted by concrete in the design cross-section:

$$
\begin{aligned}
& M_{b x, u l t}=R_{b t} W_{b x} h_{0}=1,05 \times 10^{3} \times 0,57 \times 0,2=119,7 \mathrm{kNm} . \\
& M_{b y, u l t}=R_{b t} W_{b y} h_{0}=1,05 \times 10^{3} \times 0,341 \times 0,2=71,6 \mathrm{kNm} . \\
& M_{y}=M_{y}-F e_{0}=85-150 \times 0,035869=85-5,38=79,62 \mathrm{kNm} .
\end{aligned}
$$

For SNiP 52-101-2003:

$$
\frac{M_{x}}{M_{b x, u l t}} \leq \frac{F}{F_{b, u l t}} ; \quad \frac{M_{y}}{M_{b y, u l t}} \leq \frac{F}{F_{b, u l t}}
$$

$\frac{M_{y}}{M_{b y, u l t}}=\frac{79,62}{71,6}=1,112 \leq \frac{F}{F_{b, u t t}}=\frac{150}{483}=0,311-$ condition is not met.
Assume
$\frac{M_{y}}{M_{b y, \text { ult }}}=\frac{F}{F_{b, u l t}}=0,311$
Punching strength of the slab:

$$
\begin{aligned}
& K 1=\left[\frac{F}{F_{b, u t t}}+\frac{M_{x}}{M_{b x, u t}}+\frac{M_{y}}{M_{b y, u l t}}\right] \leq 1,0 \\
& K 1=0,311+0+0,311=0,622
\end{aligned}
$$

For SP 63.13330.2012:

$$
\frac{M_{x}}{M_{b x, u l t}}+\frac{M_{y}}{M_{b y, u l t}} \leq 0,5 \frac{F}{F_{b, u l t}}
$$

$\frac{M_{y}}{M_{b y, u l t}}=\frac{79,62}{71,6}=1,112 \leq 0,5 \frac{F}{F_{b, \text { ult }}}=\frac{150}{483}=0,5 \cdot 0,311=0,155-$ condition is not met. Assume
$\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,155$
Punching strength of the slab:

$$
\begin{aligned}
& K 1=\left[\frac{F}{F_{b, u t t}}+\frac{M_{x}}{M_{b x, u t t}}+\frac{M_{y}}{M_{b y, u l t}}\right] \leq 1,0 \\
& K 1=0,311+0+0,155=0,466
\end{aligned}
$$

Open contour No.3:

$L_{x}=A_{x}+1,5 h_{0}+250=500+1,5 \times 200+250=1050 \mathrm{~mm}=1,05 \mathrm{~m}$,
$L_{y}=A_{y}+2 \cdot 1,5 h_{0}=400+2 \times 1,5 \times 200=1000 \mathrm{~mm}=1,0 \mathrm{~m}$,
Perimeter of the design contour of the cross-section:
$u=2 L_{x}+L_{y}=2 \times 1,05+1,0=3,1 \mathrm{~m}$.
Area of the design contour of the cross-section:

$$
A_{b}=u h_{0}=3,1 \times 0,2=0,62 \mathrm{~m}^{2} .
$$

X coordinate of the center of gravity of the open contour with respect to the left edge of the slab:

$$
X=\frac{525 \cdot 1050 \cdot 2+1050 \cdot 1000}{1050 \cdot 2+1000}=694,355 \mathrm{~mm}
$$

Ultimate force resisted by concrete:
$F_{b, u l t}=R_{b t} A_{b}=1,05 \times 10^{3} \times 0,62=651 \mathrm{kN}$.
Moment of inertia of the design contour with respect to the X axis passing through its center of gravity:

$$
I_{b x}=\frac{L_{y}^{3}}{12}+2 L_{x}\left(\frac{L_{y}}{2}\right)^{2}=\frac{1,05^{3}}{12}+2 \cdot 1,05\left(\frac{1,0}{2}\right)^{2}=0,608 \mathrm{~m}^{3} .
$$

Section modulus of the design contour of concrete

$$
W_{b x}=\frac{I_{b x}}{y_{\max }}=\frac{0,608}{0,5}=1,217 \mathrm{~m}^{2} .
$$

Moment of inertia of the design contour with respect to the Y axis passing through its center of gravity:
$I_{b y}=2 \frac{L_{x}^{3}}{12}+2 L_{x}(0,194355-0,025)^{2}+L_{y}(1,05-0,694355)^{2}=2 \frac{1,05^{3}}{12}+2 \cdot 1,05(0,194355-0,025)^{2}+1,0(1,05-0,694355)^{2}=0$, $38 \mathrm{~m}^{3}$.

Section modulus of the design contour of concrete

$$
W_{b y}=\frac{I_{b y}}{x_{\max }}=\frac{0,38}{0,694355}=0,547 \mathrm{~m}^{2} .
$$

Bending moment which can be resisted by concrete in the design cross-section:

$$
\begin{aligned}
& M_{b x, u l t}=R_{b t} W_{b x} h_{0}=1,05 \times 10^{3} \times 1,217 \times 0,2=255,57 \mathrm{kNm} . \\
& M_{b y, u l t}=R_{b t} W_{b y} h_{0}=1,05 \times 10^{3} \times 0,547 \times 0,2=114,87 \mathrm{kNm} . \\
& M_{y}=M_{y}-F e_{0}=85-150 \times 0,194355=85-29,15=55,85 \mathrm{kNm} .
\end{aligned}
$$

For SNiP 52-101-2003:

$$
\frac{M_{x}}{M_{b x, u l t}} \leq \frac{F}{F_{b, u l t}} ; \quad \frac{M_{y}}{M_{b y, \text { ult }}} \leq \frac{F}{F_{b, u l t}}
$$

$\frac{M_{y}}{M_{b y, \text { ult }}}=\frac{55,85}{114,87}=0,486 \leq \frac{F}{F_{b, u l t}}=\frac{150}{651}=0,23-$ condition is not met.
Assume
$\frac{M_{y}}{M_{b y, u t t}}=\frac{F}{F_{b, u t t}}=0,23$
Punching strength of the slab:

$$
\begin{gathered}
K 1=\left[\frac{F}{F_{b, \text { utt }}}+\frac{M_{x}}{M_{b x, \text { utut }}}+\frac{M_{y}}{M_{b \text { b, ,ut }}}\right] \leq 1,0 \\
\\
K 1=0,23+0+0,23=0,46
\end{gathered}
$$

For SP 63.13330.2012:

$$
\frac{M_{x}}{M_{b x, u l t}}+\frac{M_{y}}{M_{b y, u l t}} \leq 0,5 \frac{F}{F_{b, u l t}}
$$

$\frac{M_{y}}{M_{b y, \text { ult }}}=\frac{55,85}{114,87}=0,486 \leq 0,5 \frac{F}{F_{b, u l t}}=\frac{150}{651}=0,5 \cdot 0,23=0,115-$ condition is not met.
Assume
$\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,155$
Punching strength of the slab:

$$
\begin{aligned}
& K 1=\left[\frac{F}{F_{b, u t t}}+\frac{M_{x}}{M_{b r, u t t}}+\frac{M_{y}}{M_{b y, u t t}}\right] \leq 1,0 \\
& K 1=0,23+0+0,115=0,345
\end{aligned}
$$

Results of the SCAD analysis:

Node No. 5

Importance factor $\gamma_{n}=1$

Concrete

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Distance to the c.o.g. of reinforcement			
a_{1}	a_{2}	a_{3}	a_{4}
mm	mm	mm	mm
30	30	0	0

Results

Design case - edge column
Length of the upper base of the bearing pyramid - 1800 mm
Length of the lower base of the bearing pyramid - 2300 mm

Comparison of solutions (according to SNiP 52-101-2003)

Checked according to SNiP	Check	Utilization factor
Sec.6.2.49	Strength without the consideration of the reinforcement	0,62

Check	punching strength of an unclosed concrete element under a concentrated force and bending moments (including additional ones caused by the eccentric application of a force with respect to the punched contour) with their vectors along X,Y-axes (load application area is near the edge of the slab)
Analytical solution	0,622
SCAD	0,62
Deviation, $\%$	$0,1 \%$

Comparison of solutions (according to SP 63.13330.2012)

Checked according to SP	Check	Utilization factor
Sec.8.1.49	Strength without the consideration of the reinforcement	0,47

Check	punching strength of an unclosed concrete element under a concentrated force and bending moments (including additional ones caused by the eccentric application of a force with respect to the punched contour) with their vectors along X,Y-axes (load application area is near the edge of the slab)
Analytical solution	0,466
SCAD	0,47
Deviation, $\%$	$0,1 \%$

Analysis of a Reinforced Concrete Foundation Slab for Normal Crack Opening

Objective: Check the calculation of the crack opening width in the "Reinforced Concrete" postprocessor of SCAD

Task: Verify the correctness of the analysis of normal crack opening.

References:

1. Guide on designing of concrete and reinforced concrete structures made of heavy-weight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 155-157.
2. M.A. Perelmuter, K.V. Popok, L.N. Skoruk, Calculation of the Normal Crack Opening Width for SP 63.13330.2012, Concrete and. Reinforced Concrete, 2014, №1, p.21-22.

Initial data file:

SCAD 43 SP.spr
report - SCAD 43 SP-2003.doc
Compliance with the codes: SP 52-101-2003.

Initial data:

$b \times h=1150 \times 300 \mathrm{~mm}$
$a=42 \mathrm{~mm}$
$A_{s w}=923 \mathrm{~mm}^{2}(6 \varnothing 14)$
$M_{l}=50 \mathrm{kNm}$
$M_{s h}=10 \mathrm{kNm}$
Concrete class B15
Class of reinforcement A400

Slab section sizes
Distance to the c.o.g. of tensile reinforcement
Cross-sectional area of tensile reinforcement
Moment in the design section from permanent and longterm loads
Moment from short-term loads

Results of the SCAD analysis:

Structural group Beam

Importance factor $\gamma_{\mathrm{n}}=1$
Member type - Flexural
Stress state - Uniaxial bending
Maximum percentage of reinforcement 10

Coefficients allowing for seismic action	
Normal sections	0
Oblique sections	0

Distance to the c.o.g. of reinforcement				
\mathbf{a}_{1}				\mathbf{a}_{2}
42	$\mathbf{m m}$			

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A240	1

Concrete

Concrete type: Heavy-weight
Concrete class: B15

Service factor for concrete		
γ_{01}	allowance for the sustained loads	1
y_{02}	allowance for the failure behavior	1
$\gamma_{\text {b3 }}$	allowance for the vertical position during concreting	1
$\gamma_{\text {b4 }}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance

Limited crack opening width
Requirements to crack opening width are based on the preservation of reinforcement Allowable crack opening width
Short-term opening $0,4 \mathrm{~mm}$
Long-term opening $0,3 \mathrm{~mm}$

Structural group Beam. Element No. 1

Member length 1 m

Specified reinforcement

Segment	Reinforcement	Section
1	$\mathrm{~S}_{1}-6 \varnothing 14$	
		\square

Results			
Segment	Utilization factor	Check	Checked according to SNiP
1	0,97	crack opening width (long-term)	Sec. 7.2.3, 7.2.4, 7.2.12

Comparison of solutions

Check	crack opening width (long-term)
Guide	$0,306 / 0,3=1,02$
SCAD	0,97
Deviation, $\%$	$4,9 \%$

Comments:

1. The value of the total moment acting in the section, $M=M_{l}+M_{s h}=50+10=60 \mathrm{kN} \cdot \mathrm{m}$, factor for sustained load is equal to $M l / M=50 / 60=0,833$.
2. The deviation of the results of SCAD from the theoretical solution is due to the fact that in order to provide computational stability, diagrams in which the horizontal part of the graph $\sigma(\varepsilon)$ has a small slope are used in SCAD instead of the perfect diagrams of the material behavior.

[^0]: Values of vertical displacements Z (m)

[^1]: Values of transverse displacements Z (m) for the design model 3

[^2]: Bar model

[^3]: | M | M |
 | :---: | :---: |
 | 0.10474 | -0.098193 |0,0474 -0,098193

 $\square-0,098193 \cdot-0,091647$

 | \square | $-0,091647$ | $-0,08510$ | | | |
|---|---|---|---|---|---|
 | \square | $-0,085101$ | $-0,07855$ |$-0,078555-0,072008$ $\square-0,072008 \cdot 0,065462$ $\square-0,065462 \cdot 0,058916$ $\square \cdot 0,058916 \cdot 0,05237$ | $\square-0,05237$ | $-0,045824$ |
 | :--- | :--- | :--- | $\square-0,045824-0,03927$

 $\square-0,032731-0,026185$ $\square \cdot 0,026185 \cdot 0,019639$ $\square-0.019639-0.013092$ $\square-0,019639 \cdot-0,013092$ $\square-0,006546 \quad 0$

