SCAD Office

Version 23

VERIFICATION EXAMPLES

Volume 2

Electronic edition

Kyiv • 2024

TABLE OF CONTENTS

COMEIN 7
Calculation of the Load-bearing Capacity of the Column under Axial Compression 8
Calculation of the T-section Wall Segment for Eccentric Compression (Eccentricity towards the Web) 10
Calculation of the T-section Wall Segment for Eccentric Compression (Eccentricity towards the Flange) 12
Calculation of the T-section Wall Segment for Load-bearing Capacity and Crack Opening - Rigid Supports 14
Calculation of the Brick Column with Mesh Reinforcement for the Load-bearing Capacity 17
Calculation of the External Load-bearing Wall for Eccentric Compression 20
Calculation of the Load-bearing Capacity of the Basement Wall of a Brick Building 22
Check of the Support Joint of a Steel Floor Beam 25
Calculation of the Cantilever Beam Embedment in Masonry and Check of the Masonry for Local Bearing 27
Calculation of the Hanging Wall 29
KRISTALL 31
RESISTANCE OF SECTIONS 32
Strength and Stiffness Analysis of a Welded I-beam 32
Strength and Stiffness Analysis of a Rolled I-beam 35
Strength and Stiffness Analysis of a Rolled I-beam 38
Strength and Stiffness Analysis of a Rolled I-beam 41
Strength and Stiffness Analysis of a Welded I-beam 44
Analysis of an Axially Compressed Welded I-beam Column 46
Analysis of a Lattice Axially Compressed Column from Two Continuous Chords with a Channel Section on Battens 49
COLUMNS 54
Analysis of an Axially Compressed Welded I-beam Column 54
Analysis of a Lattice Axially Compressed Column from Two Rolled Channels 57
BEAMS 62
Strength and Stiffness Analysis of Stringers for a Normal Stub Girder System 62
Strength and Stiffness Analysis of Stringers for a Complex Stub Girder System 65
Strength and Stiffness Analysis of Secondary Beams for a Complex Stub Girder System 68
Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems 71
TRUSS MEMBER 75
Analysis of a Top Truss Chord from Unequal Angles 75
BASE PLATES 78
Analysis of the Base of a Solid I-beam Column 78
Analysis of the Base of a Solid I-beam Column 80
Analysis of the Base of a Solid I-beam Column 82
WELDED CONNECTIONS 84
Analysis of a Welded Connection with Fillet Welds for a Bending Moment 84
Analysis of a Welded Connection with Fillet Welds for a Bending Moment Acting in the Weld Plane 86
Analysis of a Welded Connection with Fillet Welds at the Simultaneous Action of Longitudinal and Lateral Forces 89
Analysis of a Connection between a Bar in Tension from Two Angles and a Gusset Plate 92
Analysis of a Welded Connection between an Angle Cleat and a Column Flange 94
Analysis of a Connection between an Angle Cleat and a Column Flange for an Eccentrically Applied Force 96
Analysis of a Welded Connection of Elements with Packings 98
Analysis of a Welded Connection for a Bending Moment Acting in the Fillet Weld Plane 100
Analysis of an Overlapping Welded Connection of an Element in Tension 103
Analysis of a Welded Connection between a Bar in Tension from Two Angles and a Gusset Plate.. 105
BOLTED CONNECTIONS 107
Analysis of an Overlapping Bolted Connection of Steel Sheets with Ordinary Bolts 107
Analysis of an Overlapping Bolted Connection of Steel Sheets with Ordinary Bolts 109
Analysis of a Bolted Connection between an Angle and a Gusset Plate with Ordinary Bolts 111
FRICTION CONNECTIONS 114
Analysis of an Overlapping Bolted Connection of Steel Sheets with High Strength Bolts 114
Analysis of an Erection Joint in the Beam Chord with High Strength Bolts 116
Analysis of an Erection Joint in the Beam Web with High Strength Bolts 118
Analysis of an Overlapping Bolted Connection of Steel Sheets with High Strength Bolts 120
ARBAT 122
CALCULATIONS ACCORDING TO SNIP 2.03.01-84* 123
Strength Analysis of a Rectangular Section 123
Strength Analysis of a T-section 126
Strength Analysis of a Wall Panel 128
Local Compression Analysis 131
Slab Deflection Analysis 134
Girder Deflection Analysis 136
Tee Slab Deflection Analysis 139
Analysis of Short Cantilevers 142
CALCULATIONS ACCORDING TO SNIP 52-01-2003 144
Strength Analysis of a Section 144
Calculation of a Rib of a TT-shaped Floor Slab for Load-bearing Capacity under Lateral Forces 147
Calculation of a Simply Supported Floor Beam for Load-bearing Capacity under Lateral Forces 151
Calculation of a Column of a Multi-storey Frame for Load-bearing Capacity under a Lateral Force. 154
Local Compression Analysis 157
Punching Analysis of a Reinforced Concrete Floor Slab 159
Punching Analysis of a Flat Monolithic Floor Slab 163
Analysis of a Reinforced Concrete Foundation Slab for Normal Crack Opening 171
Slab Deflection Analysis 175
CALCULATIONS ACCORDING TO DBN V 2.6-98:2009 177
Section bearing capacity 177
Selection of beam reinforcement, Example 1 179
Selection of beam reinforcement, Example 2 181
Selection of beam reinforcement, Example 3 183
Beam Deflection Analysis 185
Calculation of the crack opening width 188
Bearing capacity of inclined section 190
DECOR 193
Check of the Load-bearing Capacity of a Bottom Truss Chord Section under Central Tension 194
Check of the Load-bearing Capacity of an Axially Compressed Column 196
Check of the Load-bearing Capacity of a Section of an Axially Compressed Weakened Element with a Symmetric Weakening Reaching the Edge 198
Check of the Load-bearing Capacity of a Section of an Axially Compressed Element Weakened by Holes in a Section of 150 mm 200
Check of a Section of a Flexural Member 202
Analysis of a Purlin for Biaxial Bending 207
Check the Load-bearing Capacity of a Connection with Dowels 212
Check the Load-bearing Capacity of the Bottom (Tensile) Truss Chord 214
Check of the Load-bearing Capacity of a Truss Support Joint 216
MAGNUM 218
Calculation of the Gross Cross-Sectional Properties of a Load-Bearing Member from a C-shaped Cold-Formed Profile (Rotation of the Principal Axes of Inertia) 219
Calculation of the Gross Cross-Sectional Properties of a Load-Bearing Member from a C-shaped Cold-Formed Profile 221
Calculation of the Gross Cross-Sectional Properties of a Load-Bearing Member from a Cold- Formed Hat Channel 223
Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a C- shaped Cold-Formed Profile under Axial Compression 224
Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a Cold- Formed Hat Channel under Axial Compression 225
Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a C- shaped Cold-Formed Profile under Bending 226
Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a Cold- Formed Hat Channel under Bending (the Flange is in Compression) 228
Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a Cold- Formed Hat Channel under Bending (the Flange is in Tension) 230
Calculation of the Load-Bearing Capacity of a Bar Structural Member from a C-shaped Cold- Formed Profile under Axial Compression 232
Calculation of the Load-Bearing Capacity of a Bar Structural Member from a Cold-Formed Hat Channel under Axial Compression 234

COMEIN

Calculation of the Load-bearing Capacity of the Column under Axial Compression
Objective: Check of the load-bearing capacity of the column under axial compression
Task: Check the capacity of masonry of the column under axial compression.
References: Nasonov S.B. Manual for Design and Analysis of Building Structures. M: ASV Publishing House, 2013, p. 181.

Initial data file:

Example 6.SAV
Example 6 mechnical.SAV
Example 6 fire.SAV
report - ComeIn 6 Nasonov.doc.
report - ComeIn 6 Nasonov-mechanical.doc.
report - ComeIn 6 Nasonov-fire.doc.
Compliance with the codes: SP 15.13330.2012

Initial data:

$l_{o}=4,5 \mathrm{~m}$
$h=380 \mathrm{~mm}$
$b=510 \mathrm{~mm}$
$N=200 \mathrm{kN}$
Brick grade
Mortar grade

Column height
Cross-sectional height
Cross-sectional width
Design load on the wall
M150
M50

COMEIN initial data:
Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 150
Mortar - regular cement with mineral plasticizers
Mortar grade - 50

Structure:

Effective height in the XoY plane	Effective height in the XoZ plane

Comparison of solutions:

Check	Stability under axial compression
Manual	$200 / 234,2=0,854$
COMEIN	0,848
Deviation, $\%$	$0,7 \%$

Calculation of the T-section Wall Segment for Eccentric Compression (Eccentricity towards the Web)

Objective: Check of the calculation of eccentrically compressed columns.
Task: Verify the correctness of the stability analysis under eccentric compression.
References: Reference manual on design of masonry and reinforced masonry structures (supplement to SNiP II-22-81), 1989, p. 18-19.

Compliance with the codes: SNiP II-22-81, SP 15.13330.2012.

Initial data file:

Example 1.SAV;
ComeIn 1.doc - report

Initial data:

$N=850 \mathrm{kN}$
Longitudinal force;
$M=102 \mathrm{kN} \cdot \mathrm{m} \quad$ Bending moment;
$H=5 \mathrm{~m}$
Stone/brick
Mortar
$R=1,5 \mathrm{MPa}$ Storey height;
Molded clay brick, grade 100;
Regular cement with mineral plasticizers, grade 50;
Design resistance of masonry;
Thickness of the precast reinforced concrete floor slab, embedded into wall masonry on the supports.

COMEIN initial data:

Importance factor $\gamma_{n}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 100
Mortar - regular cement with mineral plasticizers
Mortar grade - 50

Structure:

Effective height in the XoY plane	Effective height in the XoZ plane
	Bracing scheme Precast floor slabs Distance between transverse rigid structures 5 m Effective height factor 0,9
Bracing scheme Precast floor slabs Distance between transverse rigid structures 5 m Effective height factor 0,9	

Comparison of solutions:

Check	stability in the eccentricity plane
Theory	$850 / 1100=0,773$
COMEIN	0,757
Deviation, \%	2,07

Comments:

1. The eccentricity of the longitudinal force has to be specified in ComeIn instead of the value of the design moment. Its value is equal to $e_{0}=\frac{M}{N}=\frac{102}{850}=0,12 \mathrm{~m}$.
2. The column height in ComeIn is taken as the difference between the storey height and the floor slab thickness $H-H_{f}=5-0,22=4,78 \mathrm{~m}$.
3. Distance between transverse rigid structures has to be specified in ComeIn. Since it is not determined in the problem, the value of 5 m is used.
4. Age of masonry and working life have to be specified in ComeIn. Since they are not determined in the problem, the following data are used: "up to a year" and 25 years respectively.
5. Deviation of the stability factor value in ComeIn from the result of the solution of the problem is caused by the fact that the requirements of Sec. 4.7 of SNiP II-22-81 (Sec. 7.7 of SP 15.13330 .2012) for determining slenderness for the compressed part of the section for an alternating bending moment diagram are not taken into account when solving the problem.

Calculation of the T-section Wall Segment for Eccentric Compression (Eccentricity towards the Flange)

Objective: Check of the calculation of eccentrically compressed columns.
Task: Verify the correctness of the stability analysis under eccentric compression.
References: Reference manual on design of masonry and reinforced masonry structures (supplement to SNiP II-22-81), 1989, p. 19-20.

Initial data file:

Example 2.SAV;
ComeIn 2.doc - report

Initial data:

$N=850 \mathrm{kN}$
$e_{0}=0,16 \mathrm{~m}$
$H=5 \mathrm{~m}$
Stone/brick
Mortar
$R=1,5 \mathrm{MPa}$
Longitudinal force;
Force eccentricity;
Storey height;
Molded clay brick, grade 100;
Regular cement with mineral plasticizers, grade 50;
Design resistance of masonry;
$H_{f}=0,22 \mathrm{~m} \quad$ Thickness of the precast reinforced concrete floor slab, embedded into wall masonry on the supports.

COMEIN initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 100
Mortar - regular cement with mineral plasticizers
Mortar grade - 50

Structure:

Effective height in the XoY plane	Effective height in the XoZ plane
Bracing scheme Precast floor slabs Distance between transverse rigid structures 5 m Effective height factor 0,9	Bracing scheme Precast floor slabs Distance between transverse rigid structures 5 m Effective height factor 0,9

Comparison of solutions:

Check	Stability in the eccentricity plane under eccentric compression
Theory	$850 / 1080=0,787$
COMEIN	0,774
Deviation, \%	1,652

Comments:

1. The column height in ComeIn is taken as the difference between the storey height and the floor slab thickness $H-H_{f}=5-0,22=4,78 \mathrm{~m}$.
2. Distance between transverse rigid structures has to be specified in ComeIn. Since it is not determined in the problem, the value of 5 m is used.
3. Age of masonry and working life have to be specified in ComeIn. Since they are not determined in the problem, the following data are used: "up to a year" and 25 years respectively.
4. Deviation of the stability factor value in ComeIn from the result of the solution of the problem is caused by the fact that the requirements of Sec. 4.7 of SNiP II-22-81 (Sec. 7.7 of SP 15.13330.2012) for determining slenderness for the compressed part of the section for an alternating bending moment diagram are not taken into account when solving the problem.

Calculation of the T-section Wall Segment for Load-bearing Capacity and Crack Opening - Rigid Supports

Objective: Check of the calculation of eccentrically compressed columns.
Task: Verify the correctness of the analysis of stability and masonry seam opening under eccentric compression.

References: Reference manual on design of masonry and reinforced masonry structures (supplement to SNiP II-22-81), 1989, p. 20-21.

Initial data file:

1. when the longitudinal force is $N=326 \mathrm{kN}$:

Example 3.1.SAV;
ComeIn 3.1.doc - report
2. when the longitudinal force is $N=160 \mathrm{kN}$:

Example 3.2.SAV;
ComeIn 3.2.doc - report

Initial data:

$e_{0}=-0,45 \mathrm{~m}$
$H=5 \mathrm{~m}$
Stone/brick
Mortar
$R=1,5 \mathrm{MPa}$
$H_{f}=0,22 \mathrm{~m}$

Force eccentricity
Storey height
Molded clay brick, grade 100
Regular cement with mineral plasticizers, grade 50
Design resistance of masonry
Thickness of the precast reinforced concrete floor slab, embedded into wall masonry on the supports

COMEIN initial data when the longitudinal force is $N=326 \mathrm{kN}$:
Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 50 years
Stone/brick - Molded clay brick
Stone/brick grade - 100
Mortar - regular cement with mineral plasticizers

Mortar grade - 50
Structure:

Effective height in the XoY plane	Effective height in the XoZ plane
Bracing scheme Precast floor slabs Distance between transverse rigid structures 5 m Effective height factor 0,9	Bracing scheme Precast floor slabs Distance between transverse rigid structures 5 m Effective height factor 0,9

COMEIN initial data when the longitudinal force is $N=160 \mathrm{kN}$:
Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 50 years
Stone/brick - Molded clay brick
Stone/brick grade - 100
Mortar - regular cement with mineral plasticizers
Mortar grade - 50

Structure:

Effective height in the XoY plane	Effective height in the XoZ plane		
Bracing scheme			
Precast floor slabs			
Distance between transverse rigid structures 5 m			
Effective height factor 0,9		\quad	Bracing scheme
:---			
Precast floor slabs			
Distance between transverse rigid structures 5 m			
Effective height factor 0,9			

Comparison of solutions:

Longitudinal force	$N=326 \mathrm{kN}$	$N=160 \mathrm{kN}$
Check	stability	masonry seam opening
Theory	$326 / 326=1$	$160 / 160=1$
COMEIN	0,958	0,999
Deviation, \%	0,398	0,1

Comments:

1. Specific value of the applied longitudinal force is not determined in the problem, therefore ComeIn uses the calculated values of the load-bearing capacity $N=326 \mathrm{kN}$ and $N=160 \mathrm{kN}$ for stability and masonry seam opening respectively.
2. The column height in ComeIn is taken as the difference between the storey height and the floor slab thickness $H-H_{f}=5-0,22=4,78 \mathrm{~m}$.
3. Distance between transverse rigid structures has to be specified in ComeIn. Since it is not determined in the problem, the value of 5 m is used.
4. Age of masonry has to be specified in ComeIn. Since it is not determined in the problem, the value of "up to a year" is used.

Calculation of the Brick Column with Mesh Reinforcement for the Load-bearing Capacity

Objective: Check of the calculation of eccentrically compressed reinforced columns.
Task: It is necessary to verify the correctness of the analysis of stability in the eccentricity plane under eccentric compression and out of the eccentricity plane under axial compression.

References: Reference manual on design of masonry and reinforced masonry structures (supplement to SNiP II-22-81), 1989, p. 33-34.

Initial data file:

Example 8.SAV;
ComeIn 8.doc - report

Initial data:

$b \times h=0,51 \times 0,64 \mathrm{~m} \quad$ Column dimensions in plan
$l_{0}=3 \mathrm{~m} \quad$ Effective column height
$N=800 \mathrm{kN} \quad$ Design longitudinal force
$e_{0}=5 \mathrm{~cm}$
Stone/brick Molded clay brick, grade 100
Mortar
Regular cement with mineral plasticizers, grade 75
Selection of reinforcement is performed in the example given in the Manual, therefore the results of the selection are used for the verification of ComeIn.

Class of reinforcement Bp-I
Rebar diameter 4 mm
Spacing between meshes 2 masonry courses
Spacing dimensions in plan $3,2 \times 3,2 \mathrm{~cm}$

COMEIN initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 100
Mortar - regular cement with mineral plasticizers
Mortar grade - 75

Structure:

Reinforcement:

Rectangular meshes							Class of reinforcement Bp-I Rebar diameter 4 mm Rebar spacing in meshes 40 mm Number of masonry courses between meshes 2

Comparison of solutions:

Check	stability in the eccentricity plane under eccentric compression	stability out of the eccentricity plane under axial compression
Theory	$800 / 828=0,966$	$800 / 1060=0,755$
COMEIN	0,902	0,776
Deviation, $\%$	6,62	1,44

Comments:

1. In order to ensure the value of the percentage of reinforcement μ, equal to the value obtained in the problem ($\mu=0,4 \%$) the spacing dimension in plan is taken as 40 mm .
2. Age of masonry and working life have to be specified in ComeIn. Since they are not determined in the problem, the following data are used: "up to a year" and 50 years respectively.
3. The column height has to be specified in ComeIn. Since the effective column height determined in the problem is 3 m , this value is used for the column height in the pinned connection model, for which the effective height factor is equal to 1 .
4. Deviation from the theory of the value of the position stability factor in the eccentricity plane under eccentric compression of $6,62 \%$ is caused by the difference between the characteristic and design reinforcement strength $R_{s n}$ and R_{s}. The following values $R_{s n} \cdot \gamma_{c s}=$ $405 \cdot 0,6=243 \mathrm{MPa}$ and $R_{s} \cdot \gamma_{c s}=365 \cdot 0,6=219 \mathrm{MPa}$ in accordance with SNiP 2.03.01$84^{*}$ are used in the problem; and the following values $R_{s n} \cdot \gamma_{c s}=490 \cdot 0,6=294 \mathrm{MPa}$ and R_{s} $\cdot \gamma_{c s}=410 \cdot 0,6=246 \mathrm{MPa}$ in accordance with the modification No. 2 of SNiP 2.03.01-84* (dated 12.11.1991) are used in ComeIn.

Calculation of the External Load-bearing Wall for Eccentric Compression

Objective: Check of the load-bearing capacity of an external wall.
Task: Check the capacity of masonry for eccentric compression.
References: Nasonov S.B. Manual for Design and Analysis of Building Structures. M: ASV Publishing House, 2013, p. 183-185.

Initial data file:

Example 7.SAV
report - ComeIn 7 Nasonov.doc.
Compliance with the codes: SP 15.13330.2012

Initial data:

$l_{o}=3,0 \mathrm{~m}$	Wall height $h=380 \mathrm{~mm}$ Wall width Length of a wall section without openings
	Design load on the wall
$N=350 \mathrm{kN}$	Design eccentricity
$e_{o}=0,03 \mathrm{~m}$	Load
Brick grade	M150
Mortar grade	M50

COMEIN initial data:

Importance factor $\gamma_{n}=1$
Importance factor (serviceability limit state) $=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 150
Mortar - regular cement with mineral plasticizers
Mortar grade - 50
Specific weight of masonry $1,8 \mathrm{~T} / \mathrm{m}^{3}$

Structure:

Effective height

Precast floor slabs.
Distance between transverse rigid structures 6 m .
Effective height factor 0,9.

Loads along the wall length

	Wind load $\mathrm{q}=0 \mathrm{~T} / \mathrm{m}^{2}$ Loads from the floor above the wall $\mathrm{N}_{3}=350 \mathrm{kN} / \mathrm{m}$
$\mathrm{E}_{3}=0,03 \mathrm{~m}$	
Factor for sustained load 1	

Comparison of solutions:

Check	For eccentric compression in the upper section (under the floor slab)
Source	$350 / 563,18=0,621$
COMEIN	0,614
Deviation, $\%$	$1,1 \%$

Calculation of the Load-bearing Capacity of the Basement Wall of a Brick Building

Objective: Check the calculation of the basement wall.
Task: Verify the correctness of the analysis of stability in the eccentricity plane under eccentric compression of the section with the maximum bending moment.

References: Reference manual on design of masonry and reinforced masonry structures (supplement to SNiP II-22-81), 1989, p. 81-82.

Initial data file:

Example 18.SAV;
ComeIn 18.doc - report

Initial data:

$H=2,8 \mathrm{~m}$
$b \times h=0,4 \times 0,58 \mathrm{~m}$
$A_{v}=25 \%$
$V_{\mathrm{v}}=15 \%$
$l_{0}=2,65 \mathrm{~m}$
$b_{1}=0,51 \mathrm{~m}$
$N_{l}=150 \mathrm{kN}$
$e_{1}=5,5 \mathrm{~cm}$
$N_{2}=22 \mathrm{kN}$
Height of the basement wall;
Dimensions of concrete blocks;
Void percentage of blocks over the area of the middle horizontal cross-section;
Void percentage of blocks over the volume;
Effective height of the basement wall;
Thickness of the first floor brick wall;
Design load per 1 m of the basement wall from the first floor wall;
Eccentricity of the load from the first floor wall;
Design load per 1 m of the basement wall from the floor slab above the basement bearing on this wall;
$e_{2}=16 \mathrm{~cm}$
$\gamma=16 \mathrm{kN} / \mathrm{m}^{3}$
$\varphi=38^{\circ}$
$p=10 \mathrm{kN} / \mathrm{m}^{2}$
Stone/brick
Mortar

Eccentricity of the load from the floor slab above the basement bearing on the basement wall;
Specific weight of fill-up soil;
Design internal friction angle of soil;
Characteristic value of the surface load from the fill-up soil;
Large hollow concrete blocks, grade 100;
Regular cement with mineral plasticizers, grade 50.

COMEIN initial data:

Importance factor $\gamma_{n}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Large concrete blocks, $500 \mathrm{~mm} \leq H \leq 1000 \mathrm{~mm}$
Stone/brick grade - 100
Mortar - regular cement with mineral plasticizers
Mortar grade - 50
Reduction factor 0,5
Specific weight of masonry $22,44 \mathrm{kN} / \mathrm{m}^{3}$
Structure:

Loads per unit length

	Load on surface $12 \mathrm{kN} / \mathrm{m}^{2}$ Specific weight of soil $19,2 \mathrm{kN} / \mathrm{m}^{3}$ Angle of repose of soil 38 degrees Factor for sustained load 1 $\begin{aligned} & \mathrm{Nf}=22 \mathrm{kN} / \mathrm{m} \\ & \mathrm{Ef}=0,16 \mathrm{~m} \end{aligned}$ Loads from the above floor slabs $\begin{aligned} & \mathrm{N}=150 \mathrm{kN} / \mathrm{m} \\ & \mathrm{E}=0,055 \mathrm{~m} \end{aligned}$ Factor for sustained load 1

Comparison of solutions:

Check	stability under eccentric compression of the middle cross- section
Theory	$181,5 / 380=0,478$
COMEIN	0,481

Deviation, \% 0,624

Comments:

1. The manual uses characteristic values of the load on surface and specific weight of soil, which are then multiplied by the corresponding overload factors $n_{1}=n_{2}=1,2$. Their obtained design values are used in ComeIn: $p \cdot n_{1}=10 \cdot 1,2=12 \mathrm{kN} / \mathrm{m}^{2}$ and $\gamma \cdot n_{2}=16 \cdot 1,2=$ $19,2 \mathrm{~N} / \mathrm{m}^{3}$ respectively.
2. The value of the specific weight of soil is obtained by multiplying the specific weight of concrete $24 \mathrm{kN} / \mathrm{m}^{3}$ by a factor of 0,85 , taking into account the void percentage of blocks over the volume $\mathrm{V}_{\mathrm{v}}=15 \%$, and the overload factor for masonry structures $1,1: \gamma_{\mathrm{m}}=$ $24 \cdot 0,85 \cdot 1,1=22,44 \mathrm{kN} / \mathrm{m}^{3}$.
3. Age of masonry and working life have to be specified in ComeIn. Since they are not determined in the problem, the following data are used: "up to a year" and 50 years respectively.
4. The column height has to be specified in ComeIn. Since the effective column height determined in the problem is 3 m , this value is used for the column height at the effective height factors equal to 1 .

Check of the Support Joint of a Steel Floor Beam

Objective: Check of the local strength of masonry
Task: Check the load-bearing capacity of masonry under bearing stresses
References: Nasonov S.B. Manual for Design and Analysis of Building Structures. M: ASV Publishing House, 2013, p. 217-221.

Initial data file:

Example 13 Nasonov-2.SAV
report - ComeIn 13 Nasonov.doc.
Compliance with the codes: SP 15.13330.2012

Initial data:

$l_{o}=6,0 \mathrm{~m}$
$a_{1}=200 \mathrm{~mm}$
$b=510 \mathrm{~mm}$
$q=5 \mathrm{kN} / \mathrm{m} \quad$ Uniformly distributed load on the beam
$Q=15 \mathrm{kN}$
Beam support reaction
$\begin{array}{ll}\text { Brick grade } & \text { M100 } \\ \text { Mortar grade } & \text { M50 }\end{array}$

COMEIN initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 100
Mortar - regular cement with mineral plasticizers
Mortar grade - 50

Support design:

Support conditions:

Comparison of solutions:

Check	Bearing deformation of masonry under the beam
Manual	$15 / 23,4=0,641$
COMEIN	0,652
Deviation, $\%$	$1,7 \%$

Comment: The difference in the results of the calculation is related to the fact that the self-weight of beams is always taken into account in ComeIn.

Calculation of the Cantilever Beam Embedment in Masonry and Check of the Masonry for Local Bearing

Objective: Check of the local strength of masonry
Task: Check the load-bearing capacity of masonry under bearing stresses
References: Nasonov S.B. Manual for Design and Analysis of Building Structures. M: ASV Publishing House, 2013, p. 234-235.

Initial data file:

Example 16 SP 2012.SAV
report - ComeIn 16 Nasonov.doc.
Compliance with the codes: SP 15.13330.2012
Initial data:
$l_{o}=1,5 \mathrm{~m}$
$a_{1}=500 \mathrm{~mm}$
$b=640 \mathrm{~mm}$
$q=5 \mathrm{kN} / \mathrm{m}$
$Q=7,5 \mathrm{kN}$
Brick grade
Mortar grade

Cantilever overhang length
Length of the bearing part
Brick wall thickness
Uniformly distributed load on the beam
Beam support reaction
M150
M50

COMEIN initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 150
Mortar - regular cement with mineral plasticizers
Mortar grade - 50

Support design:

Support conditions:

Comparison of solutions:

Check	Bearing deformation of masonry under the beam
Manual	$7,5 / 39,0=0,192$
COMEIN	0,185
Deviation, $\%$	$3,8 \%$

Comment: The difference in the results of the calculation is related to the fact that the self-weight of beams is always taken into account in ComeIn and only single beams are considered.

Calculation of the Hanging Wall

Objective: Check of the load-bearing capacity of the hanging wall.
Task: Check the bearing strength of masonry above the support of the foundation beam.
References: Bedov A. I., Schepetieva T. A., Design of masonry and reinforced masonry constructions, Moskow : ASV publisher, 2003, p. 228

Compliance with the codes: SNiP II-22-81, SP 15.13330.2012.

Initial data file:

Example 15.SAV;
ComeIn.doc - report

Initial data:

The hanging wall without openings $7,2 \mathrm{~m}$ high and $0,8 \mathrm{~m}$ thick is supported on the foundation reinforced concrete beam $0,38 \times 0,42$ (h) from heavy-weight natural hardening concrete of class B15 ($\left.E_{b}=23000 \mathrm{MPa}\right)$. The distance between the supports of the beam is $6,0 \mathrm{~m}$, the width of a support is $0,9 \mathrm{~m}$.

The wall is made of molded clay brick of grade 75 with regular cement mortar of grade 25 . The design resistance of masonry for compression is $R=1,3 \mathrm{MPa}$, the temporary resistance of masonry for compression is $R_{\mathrm{u}}=k R=2 \times 1,3=2,6 \mathrm{MPa}$. The elastic characteristic of masonry is α $=1000$. The deformation modulus of masonry is $E=0,5 E_{0}=0,5 \alpha R_{\mathrm{u}}=0,5 \times 1000 \times 2,6=1300 \mathrm{MPa}$.

Analytical solution:

The design beam support reaction without taking into account the load from its self-weight is equal to $\mathrm{N}=0,38 \times 7,2 \times 18 \times 1,1 \times(6+2 \times 0,45) / 2=186,89 \kappa \mathrm{H}$

Moment of inertia of the beam

$$
I=\frac{b h^{3}}{12}=\frac{0,38 \cdot 0,42^{3}}{12}=0,002346 \mathrm{~m}^{4}
$$

The height of the conventional chord with the equivalent rigidity is determined according to the following formula

$$
H_{0}=2 \cdot \sqrt[3]{\frac{0,85 E_{b} I}{E \cdot b}}=2 \cdot \sqrt[3]{\frac{0,85 \cdot 23000 \cdot 0,002346}{1300 \cdot 0,38}}=0,905 \mathrm{~m}
$$

The length of the base of the pressure distribution diagram
$l_{c}=a_{1}+0,8 H_{0}=0,43+0,9 \times 0,905=1,2445 \mathrm{~m}$.
Bearing area
$A_{c}=1,2445 \times 0,38=0,473 \mathrm{~m}^{2}$.
Design bearing resistance of the masonry
$R_{c}=\xi R=1,0 \times 1,3=1,3 \mathrm{M}$ Па
Bearing strength of the masonry

$$
N_{c}=\psi d R_{c} A_{c}=\psi(1,5-0,5 \psi) R_{c} A_{c}=0,5 \times 1,25 \times 1,3 \times 0,473=384,3 \kappa Н>N=186,89 \kappa Н \text {, i.e. }
$$

the strength of the masonry is provided.

COMEIN initial data

Importance factor $\gamma_{\mathrm{n}}=1$
Age of masonry - up to a year
Working life is 25 years
Stone/brick - Molded clay brick
Stone/brick grade - 75
Mortar - regular cement with mineral plasticizers
Mortar grade - 50

Supporting beam

Reinforced concrete beam
Single-span

		Concrete Concrete type: Heavy-weight Concrete class: B15 Density of concrete 2,5 T/m3 Hardening conditions: Natural Hardening factor 1

Structure

Comparison of solutions:

Check	Bearing strength of masonry above the support of the foundation beam
Manual	$186,89 / 384,3=0,486$
COMEIN	0,465
Deviation, $\%$	$3,6 \%$

KRISTALL

RESISTANCE OF SECTIONS

Strength and Stiffness Analysis of a Welded I-beam

Objective: Check of the Resistance of Sections mode

a - cross-section variation along the beam length; \boldsymbol{b} - beam section and stress diagrams
Task: Check the design section of a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing of $1,125 \mathrm{~m}$.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p 195.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.1.sav; report - Kristall4.1.doc

Initial data:

$M_{1}=3469,28 \mathrm{kNm} \quad$ Design bending moment;
$Q_{1}=925 \mathrm{kN}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}, R_{\mathrm{s}}=0,58 * 23=13,3 \mathrm{kN} / \mathrm{cm}^{2}$
$l=18 \mathrm{~m}$
$W_{y}=15187,794 \mathrm{~cm}^{3}$
$I_{y}=1290962,5 \mathrm{~cm}^{4}$
Design shear force;
Steel grade C255 with thickness $\mathrm{t}>20 \mathrm{~mm}$; Beam span;
Geometric properties for a welded
I-section with flanges $240 \times 25 \mathrm{~mm}$ and a web $1650 \times 12 \mathrm{~mm}$;
$S_{y}=9108,75 \mathrm{~cm}^{3}$
$i_{y}=63,715 \mathrm{~cm}, i_{z}=4,265 \mathrm{~cm}$

KRISTALL parameters:

Steel: C255
Group of structures according to the table 50* of SNiP II-23-81* 3

Importance factor 1
Service factor 1
Limit slenderness for members in compression: 220
Limit slenderness for members in tension: 300

Section:

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{3469,28 \cdot 100}{23}=15083,826 \mathrm{~cm}^{3} .
$$

2. Maximum tangential stresses in support sections of the beam:

$$
\tau_{\max }=\frac{Q_{\max } S_{y}}{I_{y} t_{w}}=\frac{925 \cdot 9108,75}{1290962,5 \cdot 1,2}=5,4388 \mathrm{kN} / \mathrm{cm}^{2}
$$

3. Reduced stresses in the considered beam section:

$$
\begin{gathered}
\sigma_{y}=\frac{M_{y}}{I_{y}} \frac{h_{w}}{2}=\frac{3469,28 \cdot 100 \cdot 165}{1290962,5 \cdot 2}=22,1707 \mathrm{kN} / \mathrm{cm}^{2} \\
\tau_{y z}=\frac{Q_{z} S_{y f}}{I_{y} t_{w}}=\frac{925 \cdot(24 \cdot 2,5 \cdot(0,5 \cdot 165+0,5 \cdot 2,5))}{1290962,5 \cdot 1,2}=3,00 \mathrm{kN} / \mathrm{cm}^{2} \\
\sigma_{r e d}=\sqrt{\sigma_{y}^{2}+3 \tau_{y z}^{2}}=\sqrt{22,1707^{2}+3 \cdot 3,00^{2}}=22,7715 \mathrm{kN} / \mathrm{cm}^{2}
\end{gathered}
$$

4. Slenderness of the member in the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{18 \cdot 100}{63,715}=28,2508 .
$$

5. Slenderness of the member out of the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{1,125 \cdot 100}{4,265}=26,3775 .
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALLDeviation from the manual calculation, \%	
Strength under action of bending moment $M y$	0,99	$15083,826 / 15187,794=$ $=0,993$	0,993	0,0
Strength under action	-	$5,4388 / 13,3=0,4089$	0,408	0,0

Verification Examples

Factor	Source	Manual calculation	KRISTALLDeviation from the manual calculation, \%	
of lateral force $Q z$		$22,7715 / 1,15 / 23=0,861$	0,861	0,0
Strength for reduced stresses	-	$15083,826 / 15187,794=$ $=0,993$	0,993	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	$15083,826 / 1 / 15187,794$ $=$ $=0,993$	0,993	0,0
Stability of in-plane bending	-	$26,3775 / 300=0,088$	0,088	0,0
Limit slenderness in XoY plane	-	$28,2508 / 300=0,094$	0,094	0,0
Limit slenderness in XoZ plane	-			

Strength and Stiffness Analysis of a Rolled I-beam

Objective: Check of the Resistance of Sections mode

Task: Check the design section of a rolled I-beam for the stringers with a span of 6 m in a normal stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.2.sav; report - Kristall4.2.doc

Initial data:

$a=1,125 \mathrm{~m} \quad$ Spacing of stringers;
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$M=125,55 \mathrm{kNm}$
Steel grade C235;
$\gamma_{\mathrm{c}}=1$
$l=6 \mathrm{~m}$
Design bending moment;
Service factor;
$c_{\mathrm{x}}=1,1$
Beam span;
Coefficient allowing for plastic deformations;
$W_{\mathrm{x}}=597 \mathrm{~cm}^{3}$
$i_{y}=13,524 \mathrm{~cm}, i_{z}=2,791 \mathrm{~cm}$.

KRISTALL parameters:

Steel: C235

Group of structures according to the table 50* of SNiP II-23-81* 4
Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Service factor 1

Structure:

Restraints against lateral displacements and rotations:

	Left	Right
Displacement along Y	Restrained	Restrained
Displacement along Z	Restrained	Restrained
Rotation about Y		
Rotation about Z		

Continuous restraint of the compressed chord out of the bending plane

Section:

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 33

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{n e s}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{125,55 \cdot 100}{23}=545,8696 \mathrm{~cm}^{3} .
$$

2. Slenderness of the member in the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{6 \cdot 100}{13,524}=44,3656 .
$$

3. Slenderness of the member out of the moment plane:

$$
\lambda_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{6 \cdot 100}{2,791}=214,9767 .
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, \%
Strength under action of bending moment M_{y}	0,83	$545,8696 / 597=0,914$	0,915	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	$545,8696 / 597=0,914$	0,915	0,0
Stability of in-plane bending	-	$545,8696 / 1 / 597=0,914$	0,915	0,0
Limit slenderness in XoY plane	-	$214,9767 / 250=0,86$	0,86	0,0
Limit slenderness in XoZ plane	-	$44,3656 / 250=0,177$	0,177	0,0

Comments:

1. In the source the check of the beam strength was performed taking into account the development of the limited plastic deformations.
2. The check of the beam strength taking into account the development of the limited plastic deformations was not performed in the manual calculation, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of a Rolled I-beam

Objective: Check of the Resistance of Sections mode

Task: Check the design section of a rolled I-beam for the stringers with a span of $4,5 \mathrm{~m}$ in a normal stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.3.sav; report - Kristall4.3.doc

Initial data:

$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$
$M=62,78 \mathrm{kNm}$
$\gamma_{\mathrm{c}}=1$
$l=4,5 \mathrm{~m}$
$c_{\mathrm{x}}=1,1$
$W_{\mathrm{x}}=288,33 \mathrm{~cm}^{3}$
$i_{y}=9,971 \mathrm{~cm}, i_{z}=2,385 \mathrm{~cm}$

Steel grade C235;
Design bending moment;
Service factor;
Beam span;
Coefficient allowing for plastic deformations;
Selected I-beam No. 24 GOST 8239-89;

KRISTALL parameters:

Steel: C235
Group of structures according to the table 50 * of SNiP II-23-81* 4
Importance factor 1
Service factor 1
Limit slenderness for members in compression: 180-60 α
Limit slenderness for members in tension: 250

Section:

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 24
Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{62,78 \cdot 100}{23}=272,9565 \mathrm{~cm}^{3} .
$$

2. Slenderness of the member in the moment plane:

$$
\lambda_{y}=\frac{\mu l}{i_{y}}=\frac{4,5 \cdot 100}{9,971}=45,131 .
$$

3. Slenderness of the member out of the moment plane:

$$
\lambda_{z}=\frac{\mu l}{i_{z}}=\frac{4,5 \cdot 100}{2,385}=188,679 .
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, $\boldsymbol{\%}$
Strength under action of bending moment M_{y}	0,86	$272,9565 / 288,33=0,947$	0,947	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	$272,9565 / 288,33=0,947$	0,947	0,0
Stability of in-plane bending	-	$272,9565 / 1 / 288,33=0,947$	0,947	0,0
Limit slenderness in XoY plane	-	$188,679 / 250=0,755$	0,755	0,0
Limit slenderness in XoZ plane	-	$45,131 / 250=0,1805$	0,181	0,0

Comments:

1. In the source the check of the beam strength was performed taking into account limited plastic deformations.
2. The check of the beam strength taking into account the development of the limited plastic deformations was not performed in the manual calculation, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of a Rolled I-beam

Objective: Check of the Resistance of Sections mode

1 -stringer; $\quad 2$-secondary beam
Task: Check the design section of a rolled I-beam for the secondary beams with a span of 6 m in a complex stub girder system. The top chord of the secondary beams is restrained by the stringers arranged with a spacing of 1 m .

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.4.sav; report - Kristall4.4.doc

Initial data:

$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$M=508,5 \mathrm{kNm}$
$\gamma_{\mathrm{c}}=1$
$l=6 \mathrm{~m}$
$c_{\mathrm{x}}=1,1$
$W_{\mathrm{x}}=2034,982 \mathrm{~cm}^{3}$
$i_{y}=21,777 \mathrm{~cm}, i_{z}=3,39 \mathrm{~cm}$.
Steel grade C235;
Design bending moment;
Service factor;
Beam span;
Coefficient allowing for plastic deformations;
Selected I-beam No. 55 GOST 8239-89;

KRISTALL parameters:

Steel: C235
Group of structures according to the table 50* of SNiP II-23-81* 4
Importance factor 1

Service factor 1
Limit slenderness for members in compression: 180-60 α
Limit slenderness for members in tension: 250

Section:

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 55

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{508,5 \cdot 100}{23}=2210,8696 \mathrm{~cm}^{3} .
$$

2. Slenderness of the member in the moment plane and out of the moment plane:

$$
\begin{aligned}
& \lambda_{y}=\frac{\mu l}{i_{y}}=\frac{6,0 \cdot 100}{21,777}=27,552 ; \\
& \lambda_{z}=\frac{\mu l}{i_{z}}=\frac{6,0 \cdot 100}{3,39}=176,99 .
\end{aligned}
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALLDeviation from the manual calculation, \%	
Strength under action of bending moment M_{y}	0,99	$2210,8696 / 2034,982=1,086$	1,086	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	$2210,8696 / 2034,982=1,086$	1,086	0,0
Stability of in-plane bending	-	K210,8696/1/2034,982 $=1,08$ 6	1,086	0,0
Limit slenderness in XoY plane	-	$176,99 / 250=0,708$	0,708	0,0
Limit slenderness in XoZ plane	-	$27,552 / 250=0,110$	0,11	0,0

Comments:

1. In the source the check of the beam strength was performed taking into account the development of the limited plastic deformations.
2. The check of the beam strength taking into account the development of the limited plastic deformations was not performed in the manual calculation, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of a Welded I-beam
Objective: Check of the Resistance of Sections mode

a-floor plan; b-design model of the main beam; \boldsymbol{c} - beam section;
1 - load area
Task: Check the design section of a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by secondary beams arranged with a spacing of $1,0 \mathrm{~m}$.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.5.sav; report — Kristall4.5.doc

Initial data:

$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}, R_{\mathrm{s}}=0,58 * 23=13,3 \mathrm{kN} / \mathrm{cm}^{2}$
$M=6245 \mathrm{kNm}$
$\gamma_{\mathrm{c}}=1$
$l=18 \mathrm{~m}$
$I_{y}=2308077,083 \mathrm{~cm}^{4}$
$W_{y}=27153,848 \mathrm{~cm}^{3}$
$i_{y}=70,605 \mathrm{~cm}, i_{z}=11,577 \mathrm{~cm}$.

Steel grade C255 with thickness $\mathrm{t}>20 \mathrm{~mm}$;
Design bending moment;
Service factor;
Beam span;
Geometric properties for a welded
I-section with flanges $1650 \times 12 \mathrm{~mm}$ and a web $530 \times 25 \mathrm{~mm}$;

KRISTALL parameters:

Steel: C255
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1
Limit slenderness for members in compression: 180-60 α
Limit slenderness for members in tension: 250

Section:

Manual calculation (SNiP II-23-81*):

1. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{6245 \cdot 100}{23}=27152,174 \mathrm{~cm}^{3} .
$$

2. Slenderness of the member in the moment plane and out of the moment plane:

$$
\begin{aligned}
& \lambda_{y}=\frac{\mu l}{i_{y}}=\frac{18,0 \cdot 100}{70,605}=25,4939 \\
& \lambda_{z}=\frac{\mu l}{i_{z}}=\frac{18,0 \cdot 100}{11,577}=155,481
\end{aligned}
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, \%
Strength under action of bending moment M_{y}	1,0	$27152,174 / 27153,848=1,0$	1,0	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	$27152,174 / 27153,848=1,0$	1,0	0,0
Stability of in-plane bending	-	27152,174/1/27153,848 = 1,0	1,0	0,0
Limit slenderness in XoZ plane	-	25,4939/250 $=0,102$	0,102	0,0
Limit slenderness in XoY plane	-	155,481/250 $=0,622$	0,622	0,0

Comments:

The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Analysis of an Axially Compressed Welded I-beam Column

Objective: Check of the Resistance of Sections mode

Task: Check the design section of a welded I-beam for the axially compressed column with a height of $6,5 \mathrm{~m}$.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.6.sav; report - Kristall4.6.doc

Initial data:

$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2}$
$l=6,5 \mathrm{~m}$
$N=5000 \mathrm{kN}$
$\mu=0,7$
$\gamma_{\mathrm{c}}=1$
$A=230,4 \mathrm{~cm}^{2}$,
$I_{y}=118243,584 \mathrm{~cm}^{4}, I_{z}=33184,512 \mathrm{~cm}^{4}$
$W_{y}=4583,085 \mathrm{~cm}^{3}, W_{z}=1382,688 \mathrm{~cm}^{3}$
$i_{y}=22,654 \mathrm{~cm}, i_{z}=12,001 \mathrm{~cm}$

Steel grade C245

Column height
Design longitudinal compressive force
The lower restraint is rigid and the upper one is pinned
for both principal planes of inertia
Service factor
Geometric properties for a welded
I-section with a web $480 \times 12 \mathrm{~mm}$ and flanges
$480 \times 18 \mathrm{~mm}$

KRISTALL parameters:

Steel: C245
Group of structures according to the table 50 * of SNiP II-23-81* 3
Importance factor 1
Service factor 1
Limit slenderness for members in compression: 180-60
Limit slenderness for members in tension: 250

Section:

Manual calculation (SNiP II-23-81*):

1. Load-bearing capacity of the element under axial compression/tension:

$$
N=A R_{y} \gamma_{c}=230,4 \cdot 24 \cdot 1=5529,6 \mathrm{kN} .
$$

2. Slenderness of the element for both principal planes of inertia:

$$
\begin{aligned}
\lambda_{y} & =\frac{l_{e f, y}}{i_{y}}=\frac{\mu l}{i_{y}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654}=20,08475 ; \\
\bar{\lambda}_{z} & =\frac{l_{e f, z}}{i_{z}}=\frac{\mu l}{i_{z}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001}=37,9135 .
\end{aligned}
$$

3. Conditional slenderness of the element for both principal planes of inertia:

$$
\begin{aligned}
& \bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{\mu l}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=0,68555 ; \\
& \bar{\lambda}_{z}=\frac{l_{e f, z}}{i_{z}} \sqrt{\frac{R_{y}}{E}}=\frac{\mu l}{i_{z}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,2941 .
\end{aligned}
$$

4. Buckling coefficients under axial compression:

$$
\begin{gathered}
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\bar{\lambda}_{y}}=1-\left(0,073-5,53 \cdot \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 0,68555 \sqrt{0,68555}=0,9622 \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{z} \sqrt{\bar{\lambda}_{z}}=1-\left(0,073-5,53 \cdot \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,2941 \sqrt{1,2941}=0,902
\end{gathered}
$$

5. Load-bearing capacity of the element at its buckling:

$$
\begin{gathered}
N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,9622 \cdot 230,4 \cdot 24 \cdot 1=5320,58 \mathrm{kN} ; \\
N_{b, z}=\varphi_{z} A R_{y} \gamma_{c}=0,902 \cdot 230,4 \cdot 24 \cdot 1=4987,7 \mathrm{kN} .
\end{gathered}
$$

6. Limit slenderness:

$$
\begin{aligned}
& \lambda_{u y}=180-60 \cdot \frac{N}{\varphi_{y} A R_{y} \gamma_{c}}=180-60 \cdot \frac{5000}{0,9622 \cdot 230,4 \cdot 24 \cdot 1}=123,615 ; \\
& \lambda_{u z}=180-60 \cdot \frac{N}{\varphi_{z} A R_{y} \gamma_{c}}=180-60 \cdot \frac{5000}{0,902 \cdot 230,4 \cdot 24 \cdot 1}=119,852 .
\end{aligned}
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation \%
Strength under combined action of longitudinal force and bending moments, no plasticity	-	$5000 / 5529,6=$	0,904	-
Stability under compression in XoY (XoU) plane	2,904			
Stability under compression in	-	$-98724=$	$5000 / 4987,7=$	1,002
XoZ (XoV) plane	1,002	$5000 / 5320,58=$	0,94	-
Strength under axial	0,904	$5000 / 5529,6=$	0,904	-
compression/tension		0,904	-	
Limit slenderness in XoY	-	$37,9135 / 119,852=$	0,316	-
plane	0,316		-	
Limit slenderness in XoZ	-	$20,085 / 123,615=$	0,162	-
plane	0,162			

Analysis of a Lattice Axially Compressed Column from Two Continuous Chords with a Channel Section on Battens

Objective: Check of the Resistance of Sections mode

Task: Check the design lattice section on battens with two continuous chords from rolled channels for the axially compressed column with a height of 6 m .

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others]-13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 257.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

4.7.sav; report — Kristall-4.7.doc

Initial data:

$l=6 \mathrm{~m}$	Column height;
$\mu=1$	Pinned restraint in both principal planes of
inertia;	
$N=1400 \mathrm{kN}$	Design compressive force;
$\gamma_{\mathrm{c}}=1$	Service factor ;
$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2}$	Steel grade C245;
$B=300 \mathrm{~mm}$	Distance between the chords (outer dimension);
$b=170 \mathrm{~mm}, s=1120 \mathrm{~mm}$	Batten height, distance between the batten axes;
$t=10 \mathrm{~mm}$	Batten thickness;
$A=70,4 \mathrm{~cm}^{2}, I_{y}=8320 \mathrm{~cm}^{4}, I_{z}=11576,86 \mathrm{~cm}^{4}$	Geometric properties of the lattice section;
$i_{y}=10,871 \mathrm{~cm}, i_{z}=12,824 \mathrm{~cm}$	
$A_{b}=35,2 \mathrm{~cm}^{2}, I_{b}=I_{z}=262 \mathrm{~cm}^{4}$	Geometric properties of the chord section;
$i_{y}=10,871 \mathrm{~cm}, i_{z}=2,728 \mathrm{~cm}$	
$W_{b, z \text { min }}=37,269 \mathrm{~cm}^{3}$.	

KRISTALL parameters:

Steel: C245
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1

Limit slenderness for members in compression: 180-60 α
Limit slenderness for members in tension: 250

Section:

Lattice

$$
\begin{aligned}
& \mathrm{b}=170 \mathrm{~mm} \\
& \mathrm{t}_{0}=10 \mathrm{~mm} \\
& \mathrm{~s}=1120 \mathrm{~mm}
\end{aligned}
$$

Profile: Channel with sloped inner flange surfaces
GOST 8240-89 27

Manual calculation (SNiP II-23-81*):

1. Moment of inertia and section modulus of one batten with respect to its own axis:

$$
\begin{aligned}
& I_{s}=\frac{t_{0} b^{3}}{12}=\frac{1 \cdot 17^{3}}{12}=409,4167 \mathrm{~cm}^{4} \\
& W_{s}=\frac{t_{0} b^{2}}{6}=\frac{1 \cdot 17^{2}}{6}=48,167 \mathrm{~cm}^{3}
\end{aligned}
$$

2. Distance between chord axes:

$$
b=B-2 z_{0}=30-2 \cdot 2,47=25,06 \mathrm{~cm} .
$$

3. Slenderness of one of the chords in the sections between the battens (in the clear):

$$
\begin{gathered}
\lambda_{1, y}=\frac{l_{1, y}}{i_{1, y}}=\frac{600}{10,871}=55,193 ; \quad \bar{\lambda}_{1, y}=\lambda_{1, y} \sqrt{\frac{R_{y}}{E}}=55,193 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,884 \leq 5 ; \\
\lambda_{1, z}=\frac{l_{1, z}}{i_{1, z}}=\frac{s-b}{i_{1, z}}=\frac{112-17}{2,728}=34,824<40 ; \quad \bar{\lambda}_{1, z}=\lambda_{1, z} \sqrt{\frac{R_{y}}{E}}=34,824 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,1886 \leq 5 .
\end{gathered}
$$

4. Column slenderness and respective conditional slenderness:

$$
\begin{gathered}
\lambda_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{600}{10,871}=55,193 ; \Rightarrow \bar{\lambda}_{y}=\lambda_{y} \sqrt{\frac{R_{y}}{E}}=55,193 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,884<2,5 ; \\
\lambda_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{600}{12,824}=46,787 .
\end{gathered}
$$

5. Reduced and conditional reduced slenderness of the column with respect to the free axis:

$$
\begin{gathered}
\text { When } \frac{I_{s} s}{I_{b} b}=\frac{409,4167 \cdot 112}{262 \cdot 25,06}=6,984>5: \\
\lambda_{z}=\lambda_{e f, z}=\sqrt{\lambda_{z}^{2}+\lambda_{1, z}^{2}}=\sqrt{46,787^{2}+34,824^{2}}=58,3244 ; \\
\bar{\lambda}_{z}=\lambda_{z} \sqrt{\frac{R_{y}}{E}}=58,3244 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,991<2,5 .
\end{gathered}
$$

6. Buckling coefficients:

$$
\begin{gathered}
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\lambda_{y}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,884 \sqrt{1,884}=0,8279 ; \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{z} \sqrt{\lambda_{z}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,991 \sqrt{1,991}=0,813 .
\end{gathered}
$$

7. Limit compressive forces causing the column buckling about the respective axes:

$$
\begin{aligned}
& N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,8279 \cdot 70,4 \cdot 24 \cdot 1=1398,82 \mathrm{kN} \\
& N_{b, z}=\varphi_{z} A R_{y} \gamma_{c}=0,813 \cdot 70,4 \cdot 24 \cdot 1=1373,645 \mathrm{kN} .
\end{aligned}
$$

8. Conditional shear force $Q_{f i c}$:

$$
Q_{f i c}=7,15 \cdot 10^{-6}\left(2330-\frac{E}{R_{y}}\right) \frac{N}{\varphi_{z}}=7,15 \cdot 10^{-6}\left(2330-\frac{2,06 \cdot 10^{5}}{240}\right) \frac{1400}{0,813}=18,1198 \mathrm{kN} .
$$

9. Force F, shearing the batten, and moment M_{1}, bending the batten in its plane:

$$
\begin{gathered}
F=\frac{Q_{s} s}{b}=\frac{Q_{f i c} s}{2 b}=\frac{18,1198 \cdot 112}{2 \cdot 25,06}=40,4912 \mathrm{kN} \\
M_{1}=\frac{Q_{s} s}{2}=\frac{Q_{f i c} s}{4}=\frac{18,1198 \cdot 112}{4}=507,3544 \mathrm{kNcm} .
\end{gathered}
$$

10. Load-bearing capacity of the batten under bending:

$$
W_{s} R_{y} \gamma_{c}=48,167 \cdot 24 \cdot 1=1156,01 \mathrm{kNcm} .
$$

11. Bending moment acting on the column chord and caused by the bending of the batten:

$$
M_{b}=2 M_{1}=2 \cdot 507,3544=1014,7088 \mathrm{kNcm} .
$$

12. Load-bearing capacity of the chord under bending in the batten plane:

$$
W_{b, z, \min } R_{y} \gamma_{c}=37,269 \cdot 24 \cdot 1=894,456 \mathrm{kNcm} .
$$

13. Strength of the chord under the combined action of the longitudinal force and bending moment in the batten plane without taking the plasticity into account:

$$
\frac{1}{R_{y} \gamma_{c}}\left(\frac{N}{A}+\frac{M_{b}}{W_{b, z, \text { min }}}\right)=\frac{1}{24 \cdot 1}\left(\frac{1400}{70,4}+\frac{1014,7088}{37,269}\right)=1,963 .
$$

14. Buckling coefficients for a chord:

$$
\begin{gathered}
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{1, y} \sqrt{\bar{\lambda}_{1, y}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) 1,884 \sqrt{1,884}=0,828 \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \lambda_{1, z} \sqrt{\lambda_{1, z}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,1886 \sqrt{1,1886}=0,914 .
\end{gathered}
$$

15. Load-bearing capacity of the chord under compression:

$$
\begin{aligned}
& \varphi_{y} A R_{y} \gamma_{c}=0,828 \cdot 35,2 \cdot 24 \cdot 1=699,398 \mathrm{kN} \\
& \varphi_{z} A R_{y} \gamma_{c}=0,914 \cdot 35,2 \cdot 24 \cdot 1=772,1472 \mathrm{kN} .
\end{aligned}
$$

16. Relative eccentricity, cross-section shape coefficient, reduced eccentricity, and buckling coefficient under eccentric compression of the chord:

$$
\begin{gathered}
m_{z}=\frac{M_{z}}{N} \cdot \frac{A_{b}}{W_{b, z, \text { min }}}=\frac{1014,7088}{700} \cdot \frac{35,2}{37,269}=1,36911 \leq 5 ; \\
\frac{A_{f}}{A_{w}}=\frac{16,2}{19,95}=0,812 ;
\end{gathered}
$$

$\eta=\left(1,25-0,05 m_{z}\right)-0,01\left(5-m_{z}\right) \bar{\lambda}_{1, z}=(1,25-0,05 \cdot 1,36911)-0,01(5-1,36911) \cdot 1,1886=1,13838$
(for the section type 9 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=0,5$);

$$
\eta=\left(1,5-0,1 m_{z}\right)-0,02\left(5-m_{z}\right) \bar{\lambda}_{1, z}=(1,5-0,1 \cdot 1,36911)-0,02(5-1,36911) \cdot 1,1886=1,27678
$$

(for the section type 9 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=1,0$);
$\eta=1,2247$ (for the section type 9 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=0,812$); $\eta=1,45+0,04 m_{z}=1,45+0,04 \cdot 1,36911=1,50476$ (for the section type 11 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=0,5$); $\eta=1,8+0,12 m_{z}=1,8+0,12 \cdot 1,36911=1,9643$ (for the section type 11 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=1,0$); $\eta=1,7915$ (for the section type 11 according to the table 73 of SNiP II-23-81* when

$$
\begin{gathered}
\left.\frac{A_{f}}{A_{w}}=1,33811\right) \\
m_{z, e f}=\eta m_{z}=1,7915 \cdot 1,36911=2,453
\end{gathered}
$$

$$
\varphi_{e}=0,4174 \text { (according to the table } 74 \text { of SNiP II-23-81*). }
$$

17. Stability check of the chord in the batten bending plane:

$$
\frac{N}{2 \varphi_{e} A_{b}}=\frac{1400}{2 \cdot 0,4174 \cdot 35,2}=47,6434 \mathrm{kN} / \mathrm{cm}^{2}>R_{y} \gamma_{c}=24 \cdot 1=24 \mathrm{kN} / \mathrm{cm}^{2} .
$$

18. Stability check of the chord out of the batten bending plane is performed as a stability check of an axially compressed bar in the respective plane according to Sec. 5.32 of SNiP II-23-81*.

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, $\%$
General stability of a bar under axial compression in XoY plane	$24 / 24=1$	$1400 / 1373,645=$ 1,019	1,019	0,0
General stability of a bar under axial compression in XoZ plane	$23,6 / 24=0,983$	$1400 / 1398,82=$ 1,001	1,001	0,0
Resistance of a batten to bending	-	$507,3544 / 1156,01=$ 0,439	0,439	0,0
Strength under action of bending moment M_{z}	-	$1014,7088 / 894,456=$ 1,134	1,134	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	1,963	1,963	0,0
Stability of chord under compression in XoY plane	-	$700 / 772,1472=$ 0,9066	0,907	0,0
Stability of chord under	$23,6 / 24=0,983$	$700 / 699,398=$	1,001	0,0

Verification Examples

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, $\%$
compression in XoZ plane		1,001		
Stability of chord in the moment M_{z} plane under eccentric compression	-	$47,6434 / 24=1,985$	1,985	0,0
Stability of chord out of the moment M_{z} plane under eccentric compression	-	$24,01735 / 24=1,001$	1,001	0,0
Limit slenderness in XoY plane	-	$58,3244 / 120=0,486$	0,486	0,0
Limit slenderness in XoZ plane	-	$55,193 / 120=0,46$	0,46	0,0

COLUMNS

Analysis of an Axially Compressed Welded I-beam Column

Objective: Check the mode for calculating columns of solid cross-section

Task: Check the design section of a welded I-beam for the axially compressed column with a height of $6,5 \mathrm{~m}$.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

5.1.sav; report - Kristall-5.1.doc

Initial data:

$l=6,5 \mathrm{~m}$
Column height
$\mu=0,7$
The lower restraint is rigid and the upper one is pinned
$N=5000 \mathrm{kN}$
$\gamma_{\mathrm{c}}=1$
Design compressive force
$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2}$
Service factor
$A=230,4 \mathrm{~cm}^{2}$
$I_{y}=118243,584 \mathrm{~cm}^{4}, I_{z}=33184,512 \mathrm{~cm}^{4}$
$i_{y}=22,654 \mathrm{~cm}, i_{z}=12,001 \mathrm{~cm}$

Steel grade C245
Geometric properties of the selected section

KRISTALL parameters:

Steel: C245
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1

Member length -6.5 m

Length between out-of-plane restraints -6.5 m
Limit slenderness for members in compression: 180-60■
Limit slenderness for members in tension: 250

Section:

Manual calculation (SNiP II-23-81*):

1. Strength check of the selected column section:

$$
\frac{N}{A R_{y} \gamma_{c}}=\frac{5000}{230,4 \cdot 24 \cdot 1}=0,904 .
$$

2. Slenderness of the column:

$$
\begin{gathered}
\lambda_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654}=20,08475 \\
\lambda_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001}=37,9135
\end{gathered}
$$

3. Conditional slenderness of the column:

$$
\bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{22,654} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=0,68555 ;
$$

$$
\bar{\lambda}_{z}=\frac{l_{e f, z}}{i_{z}} \sqrt{\frac{R_{y}}{E}}=\frac{0,7 \cdot 6,5 \cdot 100}{12,001} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,2941 .
$$

4. Buckling coefficients:

$$
\begin{gathered}
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\bar{\lambda}_{y}}=1-\left(0,073-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 0,68555 \sqrt{0,68555}=0,9622 ; \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \overline{\lambda_{z}} \sqrt{\bar{\lambda}_{z}}=1-\left(0,073-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 1,2941 \sqrt{1,2941}=0,902 .
\end{gathered}
$$

5. Strength of the column from the condition of providing the general stability under axial compression:

$$
\begin{gathered}
N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,9622 \cdot 230,4 \cdot 24 \cdot 1=5320,58 \mathrm{kN} \\
N_{b, z}=\varphi_{z} A R_{y} \gamma_{c}=0,902 \cdot 230,4 \cdot 24 \cdot 1=4987,7 \mathrm{kN} .
\end{gathered}
$$

6. Limit slenderness of the column:

$$
\begin{gathered}
{[\lambda]_{y}=180-60 \alpha_{y}=180-60 \cdot \frac{N}{\varphi_{y} A R_{y} \gamma_{c}}=180-60 \cdot \frac{5000}{5320,58}=123,615 ;} \\
{[\lambda]_{z}=180-60 \alpha_{z}=180-60 \cdot \frac{N}{\varphi_{z} A R_{y} \gamma_{c}}=180-60 \cdot 1=120 .}
\end{gathered}
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	$\begin{gathered} \text { Deviatio } \\ \mathrm{n}, \% \end{gathered}$
Strength under combined action of longitudinal force and bending moments, no plasticity	-	0,904	0,904	-
Stability under compression in XoY (XoU) plane	23,69/24=0,987	$\begin{aligned} & 5000 / 4987,7= \\ & 1,002 \end{aligned}$	1,002	-
Stability under compression in XoZ (XoV) plane	-	$\begin{aligned} & 5000 / 5320,58= \\ & 0,940 \end{aligned}$	0,94	-
Strength under axial compression/tension	$\begin{aligned} & \hline 5000 / 230,4 / 24= \\ & 0,904 \end{aligned}$	0,904	0,904	-
Limit slenderness in XoY plane	-	$\begin{aligned} & 37,9135 / 120= \\ & 0,316 \end{aligned}$	0,316	-
Limit slenderness in XoZ plane	-	$\begin{aligned} & 20,08475 / 123,615 \\ & = \\ & 0,1625 \end{aligned}$	0,1625	-

Analysis of a Lattice Axially Compressed Column from Two Rolled Channels

Objective: Check the mode for calculating columns of lattice cross-section
Task: Check the design lattice section from two channels on battens for the axially compressed column with a height of $6,5 \mathrm{~m}$.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 257.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

5.2.sav; report — Kristall-5.2.doc

Initial data:

$l=6 \mathrm{~m}$	Column height;
$\mu=1$	Pinned restraint;
$N=1400 \mathrm{kN}$	Design compressive force;
$\gamma_{\mathrm{c}}=1$	Service factor
$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2}$	Steel grade C245;
$B=300 \mathrm{~mm}$	Distance between the outer faces of the chord;
$b=170 \mathrm{~mm}, s=1120 \mathrm{~mm}$	Batten height, distance between the batten axes;
$t=10 \mathrm{~mm}$	Batten thickness;
$A=70,4 \mathrm{~cm}^{2}, I_{y}=8320 \mathrm{~cm}^{4}, I_{z}=11576,86 \mathrm{~cm}^{4}$	Geometric properties of the lattice section;
$i_{y}=10,871 \mathrm{~cm}, i_{z}=12,824 \mathrm{~cm}$	
$A_{b}=35,2 \mathrm{~cm}^{2}, I_{b}=I_{z}=262 \mathrm{~cm}^{4}$	Geometric properties of the chord section;
$i_{y}=10,871 \mathrm{~cm}, i_{z}=2,728 \mathrm{~cm}$	
$W_{b, \text {, min }}=37,269 \mathrm{~cm}^{3}$.	

KRISTALL parameters:

Steel: C245
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1

Member length -6 m

Limit slenderness for members in compression: 180-60 α
Limit slenderness for members in tension: 250

Section:

Lattice

$$
\begin{aligned}
& \mathrm{b}=170 \mathrm{~mm} \\
& \mathrm{t}_{0}=10 \mathrm{~mm} \\
& \mathrm{~s}=1120 \mathrm{~mm}
\end{aligned}
$$

Profile: Channel with sloped inner flange surfaces GOST 8240-89 27

Manual calculation (SNiP II-23-81*):

1. Moment of inertia and section modulus of one batten with respect to its own axis:

$$
\begin{aligned}
& I_{s}=\frac{t_{0} b^{3}}{12}=\frac{1 \cdot 17^{3}}{12}=409,4167 \mathrm{~cm}^{4} \\
& W_{s}=\frac{t_{0} b^{2}}{6}=\frac{1 \cdot 17^{2}}{6}=48,167 \mathrm{~cm}^{3} .
\end{aligned}
$$

2. Distance between chord axes:

$$
b=B-2 z_{0}=30-2 \cdot 2,47=25,06 \mathrm{~cm} .
$$

3. Slenderness of one of the chords in the sections between the battens (in the clear):

$$
\begin{gathered}
\lambda_{1, y}=\frac{l_{1, y}}{i_{1, y}}=\frac{600}{10,871}=55,193 ; \quad \bar{\lambda}_{1, y}=\lambda_{1, y} \sqrt{\frac{R_{y}}{E}}=55,193 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,884 \leq 5 ; \\
\lambda_{1, z}=\frac{l_{1, z}}{i_{1, z}}=\frac{s-b}{i_{1, z}}=\frac{112-17}{2,728}=34,824<40 ; \quad \bar{\lambda}_{1, z}=\lambda_{1, z} \sqrt{\frac{R_{y}}{E}}=34,824 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,1886 \leq 5 .
\end{gathered}
$$

4. Column slenderness and respective conditional slenderness:

$$
\begin{gathered}
\lambda_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{600}{10,871}=55,193 ; \Rightarrow \bar{\lambda}_{y}=\lambda_{y} \sqrt{\frac{R_{y}}{E}}=55,193 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,884<2,5 ; \\
\lambda_{z}=\frac{l_{e f, z}}{i_{z}}=\frac{600}{12,824}=46,787 .
\end{gathered}
$$

5. Reduced and conditional reduced slenderness of the column with respect to the free axis:

$$
\begin{gathered}
\text { When } \frac{I_{s} s}{I_{b} b}=\frac{409,4167 \cdot 112}{262 \cdot 25,06}=6,984>5: \\
\lambda_{z}=\lambda_{e f, z}=\sqrt{\lambda_{z}^{2}+\lambda_{1, z}^{2}}=\sqrt{46,787^{2}+34,824^{2}}=58,3244 ; \\
\bar{\lambda}_{z}=\lambda_{z} \sqrt{\frac{R_{y}}{E}}=58,3244 \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=1,991<2,5 .
\end{gathered}
$$

6. Buckling coefficients:

$$
\begin{gathered}
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\lambda_{y}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,884 \sqrt{1,884}=0,8279 ; \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{z} \sqrt{\bar{\lambda}_{z}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,991 \sqrt{1,991}=0,813 .
\end{gathered}
$$

7. Limit compressive forces causing the column buckling about the respective axes:

$$
\begin{aligned}
& N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,8279 \cdot 70,4 \cdot 24 \cdot 1=1398,82 \mathrm{kN} \\
& N_{b, z}=\varphi_{z} A R_{y} \gamma_{c}=0,813 \cdot 70,4 \cdot 24 \cdot 1=1373,645 \mathrm{kN} .
\end{aligned}
$$

8. Conditional shear force $Q_{f i c}$:

$$
Q_{f i c}=7,15 \cdot 10^{-6}\left(2330-\frac{E}{R_{y}}\right) \frac{N}{\varphi_{z}}=7,15 \cdot 10^{-6}\left(2330-\frac{2,06 \cdot 10^{5}}{240}\right) \frac{1400}{0,813}=18,1198 \mathrm{kN} .
$$

9. Force F, shearing the batten, and moment M_{1}, bending the batten in its plane:

$$
\begin{gathered}
F=\frac{Q_{s} s}{b}=\frac{Q_{f i c} s}{2 b}=\frac{18,1198 \cdot 112}{2 \cdot 25,06}=40,4912 \mathrm{kN} ; \\
M_{1}=\frac{Q_{s} s}{2}=\frac{Q_{f i c} s}{4}=\frac{18,1198 \cdot 112}{4}=507,3544 \mathrm{kNcm} .
\end{gathered}
$$

10. Load-bearing capacity of the batten under bending:

$$
W_{s} R_{y} \gamma_{c}=48,167 \cdot 24 \cdot 1=1156,01 \mathrm{kNcm} .
$$

11. Bending moment acting on the column chord and caused by the bending of the batten:

$$
M_{b}=2 M_{1}=2 \cdot 507,3544=1014,7088 \mathrm{kNcm} .
$$

12. Load-bearing capacity of the chord under bending in the batten plane:

$$
W_{b, z, \min } R_{y} \gamma_{c}=37,269 \cdot 24 \cdot 1=894,456 \mathrm{kNcm} .
$$

13. Strength of the chord under the combined action of the longitudinal force and bending moment in the batten plane without taking the plasticity into account:

$$
\frac{1}{R_{y} \gamma_{c}}\left(\frac{N}{A}+\frac{M_{b}}{W_{b, z, \text { min }}}\right)=\frac{1}{24 \cdot 1}\left(\frac{1400}{70,4}+\frac{1014,7088}{37,269}\right)=1,963 .
$$

14. Buckling coefficients for a chord:

$$
\begin{gathered}
\varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{1, y} \sqrt{\bar{\lambda}_{1, y}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) 1,884 \sqrt{1,884}=0,828 ; \\
\varphi_{z}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \lambda_{1, z} \sqrt{\lambda_{1, z}}=1-\left(0,073-5,53 \frac{240}{2,06 \cdot 10^{5}}\right) \cdot 1,1886 \sqrt{1,1886}=0,914 .
\end{gathered}
$$

15. Load-bearing capacity of the chord under compression:

$$
\begin{aligned}
& \varphi_{y} A R_{y} \gamma_{c}=0,828 \cdot 35,2 \cdot 24 \cdot 1=699,398 \mathrm{kN} \\
& \varphi_{z} A R_{y} \gamma_{c}=0,914 \cdot 35,2 \cdot 24 \cdot 1=772,1472 \mathrm{kN} .
\end{aligned}
$$

16. Relative eccentricity, cross-section shape coefficient, reduced eccentricity, and buckling coefficient under eccentric compression of the chord:

$$
\begin{gathered}
m_{z}=\frac{M_{z}}{N} \cdot \frac{A_{b}}{W_{b, z, \text { min }}}=\frac{1014,7088}{700} \cdot \frac{35,2}{37,269}=1,36911 \leq 5 ; \\
\frac{A_{f}}{A_{w}}=\frac{16,2}{19,95}=0,812 ;
\end{gathered}
$$

$\eta=\left(1,25-0,05 m_{z}\right)-0,01\left(5-m_{z}\right) \bar{\lambda}_{1, z}=(1,25-0,05 \cdot 1,36911)-0,01(5-1,36911) \cdot 1,1886=1,13838$
(for the section type 9 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=0,5$);

$$
\eta=\left(1,5-0,1 m_{z}\right)-0,02\left(5-m_{z}\right) \bar{\lambda}_{1, z}=(1,5-0,1 \cdot 1,36911)-0,02(5-1,36911) \cdot 1,1886=1,27678
$$

(for the section type 9 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=1,0$);
$\eta=1,2247$ (for the section type 9 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=0,812$); $\eta=1,45+0,04 m_{z}=1,45+0,04 \cdot 1,36911=1,50476$ (for the section type 11 according to the table 73 of SNiP II-23-81* when $\frac{A_{f}}{A_{w}}=0,5$);
$\eta=1,8+0,12 m_{z}=1,8+0,12 \cdot 1,36911=1,9643$ (for the section type 11 according to the table 73 of

$$
\text { SNiP II-23-81* when } \left.\frac{A_{f}}{A_{w}}=1,0\right) \text {; }
$$

$\eta=1,7915$ (for the section type 11 according to the table 73 of SNiP II-23-81* when

$$
\begin{gathered}
\left.\frac{A_{f}}{A_{w}}=1,33811\right) \\
m_{z, e f}=\eta m_{z}=1,7915 \cdot 1,36911=2,453
\end{gathered}
$$

$$
\varphi_{e}=0,4174 \text { (according to the table } 74 \text { of SNiP II-23-81*). }
$$

17. Stability check of the chord in the batten bending plane:

$$
\frac{N}{2 \varphi_{e} A_{b}}=\frac{1400}{2 \cdot 0,4174 \cdot 35,2}=47,6434 \mathrm{kN} / \mathrm{cm}^{2}>R_{y} \gamma_{c}=24 \cdot 1=24 \mathrm{kN} / \mathrm{cm}^{2}
$$

18. Stability check of the chord out of the batten bending plane is performed as a stability check of an axially compressed bar in the respective plane according to Sec. 5.32 of SNiP II-23-81*.

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation ,$\%$
General stability of a bar under axial compression in XoY plane	$24 / 24=1$	$1400 / 1373,645=$ 1,019	1,019	0,0

Verification \quad Ex amples

General stability of a bar under axial compression in XoZ plane	$23,6 / 24=0,983$	$1400 / 1398,82=$ 1,001	1,001	0,0
Resistance of a batten to bending	-	$507,3544 / 1156,01=$ 0,439	0,439	0,0
Strength under action of bending moment Mz	-	$1014,7088 / 894,456=$ 1,134	1,134	0,0
Strength under combined action of longitudinal force and bending moments, no plasticity	-	1,963	1,963	0,0
Stability of chord under compression in XoY plane	-	$700 / 772,1472=$ 0,9066	1,001	0,907
Stability of chord under compression in XoZ plane	$23,6 / 24=0,983$	$700 / 699,398=$		
Stability of chord in the moment M_{z} plane under eccentric compression	-	$47,6434 / 24=1,985$	1,985	0,0
Stability of chord out of the moment M_{z} plane under eccentric compression	-	$24,01735 / 24=1,001$	1,001	0,0
Limit slenderness in XoY plane	-	$58,3244 / 120=0,486$	0,486	0,0
Limit slenderness in XoZ plane	-	$55,193 / 120=0,46$	0,46	0,0

BEAMS

Strength and Stiffness Analysis of Stringers for a Normal Stub Girder System

Objective: Check the mode for calculating and selecting beams

Task: Select a rolled I-beam for the stringers with a span of 6 m in a normal stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

References: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.1.sav; report - Kristall3.1.doc

Initial data:

$a=1,125 \mathrm{~m}$
$q_{t}=(0,77+20) \mathrm{kN} / \mathrm{m}^{2} \times 1,125 \mathrm{~m}=23,37 \mathrm{kN} / \mathrm{m}$
Spacing of stringers;
$q_{1}=1,05 \times 0,77 \mathrm{kN} / \mathrm{m}^{2} \times 1,125 \mathrm{~m}=0,91 \mathrm{kN} / \mathrm{m}$
$q_{2}=1,2 \times 20 \mathrm{kN} / \mathrm{m}^{2} \times 1,125 \mathrm{~m}=27 \mathrm{kN} / \mathrm{m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$l=6 \mathrm{~m}$
$[f]=1 / 250 \times 6,0 \mathrm{~m}=24 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{\mathrm{x}}=596,364 \mathrm{~cm}^{3}$

Total characteristic load;
Design permanent load;
Design temporary load;
Steel grade C235;
Beam span;
Limit deflection;
Service factor ;
Selected I-beam No. 33 GOST 8239-89;
$I_{\mathrm{x}}=9840 \mathrm{~cm}^{4}, S_{x}=339 \mathrm{~cm}^{3}, t_{w}=7 \mathrm{~mm}$.

KRISTALL parameters:

Steel: C235
Group of structures according to the table 50* of SNiP II-23-81* 4
Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Service factor 1

Structure:

Restraints against lateral displacements and rotations:

	Left	Right
Displacement along Y	Restrained	Restrained
Displacement along Z	Restrained	Restrained
Rotation about Y		
Rotation about Z		

Continuous restraint of the compressed chord out of the bending plane

Section:

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 33

Manual calculation:

1. Design bending moment and shear force:

$$
M_{\max }=\frac{q_{\Sigma} l^{2}}{8}=\frac{(0.91+27) \cdot 6.0^{2}}{8}=125.593 \mathrm{kNm} ;
$$

$$
Q_{\max }=\frac{q_{\Sigma} l}{2}=\frac{(0.91+27) \cdot 6.0}{2}=83,73 \mathrm{kN} .
$$

2. Necessary beam section modulus assuming that the deformations of steel are elastic:

$$
W=\frac{M_{\max }}{R_{y}}=\frac{125.593 \cdot 100}{23}=546.057 \mathrm{~cm}^{3} .
$$

3. Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{t} l^{4}}{E I_{x}}=\frac{5}{384} \cdot \frac{23,37 \cdot 6^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 9840 \cdot 10^{-8}}=19,46 \mathrm{~mm} .
$$

4. Check of the maximum shear stresses:

$$
\tau_{\max }=\frac{Q_{\max } S_{x}}{I_{x} t_{w}}=\frac{83,73 \cdot 339}{9840 \cdot 0,7}=4,12577 \mathrm{kN} / \mathrm{cm}^{2}<R_{s} \gamma_{c}=0,58 \cdot 23=13,34 \mathrm{kN} / \mathrm{cm}^{2} .
$$

Comparison of solutions:

Factor	Strength under action of lateral force	Strength under action of bending moment	Stability of in-plane bending under moment	Maximum deflection
Manual calculation	$4,126 / 13,34=0,309$	$546,06 / 596,36=0,916$	-	$19,46 / 24=0,81$
KRISTALL	0,309	0,916	0,916	$19,451 / 24=0,81$
Deviation from the manual calculation, $\%$	0,0	0,0	0,0	0,0
Source	-			

Comments:

1. The check of the general stability of the beam was not performed in the manual calculation, because the compressed beam chord is restrained against lateral displacements out of the bending plane by a welded floor plate.
2. In the source the check of the beam strength was performed taking into account the development of the limited plastic deformations.
3. The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of Stringers for a Complex Stub Girder System

Objective: Check the mode for calculating and selecting beams

Task: Select a rolled I-beam for the stringers with a span of $4,5 \mathrm{~m}$ in a complex stub girder system. The top chord of the stringers is continuously restrained by the floor plate.

References: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.2.sav; report - Kristall3.2.doc

Initial data:

$a=1,0 \mathrm{~m}$
$q_{H}=(0,77+20) \mathrm{kN} / \mathrm{m}^{2} \times 1 \mathrm{~m}=20,77 \mathrm{kN} / \mathrm{m}$
$q_{1}=1,05 \times 0,77 \mathrm{kN} / \mathrm{m}^{2} \times 1 \mathrm{~m}=0,8085 \mathrm{kN} / \mathrm{m}$
$q_{2}=1,2 \times 20 \mathrm{kN} / \mathrm{m}^{2} \times 1 \mathrm{~m}=24 \mathrm{kN} / \mathrm{m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
$l=4,5 \mathrm{~m}$
$[f]=1 / 250 \times 4,5 \mathrm{~m}=18 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{\mathrm{x}}=288,33 \mathrm{~cm}^{3}$
$I_{\mathrm{x}}=3460 \mathrm{~cm}^{4}$.

Spacing of stringers;
Total characteristic load;
Design permanent load;
Design temporary load;
Steel grade C235;
Beam span;
Limit deflection;
Service factor ;
Selected I-beam No. 24 GOST 8239-89;

KRISTALL parameters:

Steel: C235
Group of structures according to the table 50* of SNiP II-23-81* 4

Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Service factor 1

Structure:

Restraints against lateral displacements and rotations:

	Left	Right
Displacement along Y	Restrained	Restrained
Displacement along Z	Restrained	Restrained
Rotation about Y		
Rotation about Z		

Continuous restraint of the compressed chord out of the bending plane

Section:

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 24

Manual calculation:

1. Design bending moment acting in the beam span:

$$
M_{\max }=\frac{q_{\Sigma} l^{2}}{8}=\frac{(0,8085+24) \cdot 4,5^{2}}{8}=62,7965 \mathrm{kNm} .
$$

2. Necessary beam section modulus assuming that the deformations of steel are elastic:

$$
W=\frac{M_{\max }}{R_{y}}=\frac{62,7965 \cdot 100}{23}=273,028 \mathrm{~cm}^{3} .
$$

3 Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{u} l^{4}}{E I_{x}}=\frac{5}{384} \cdot \frac{20,77 \cdot 4,5^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 3460 \cdot 10^{-8}}=15,56 \mathrm{~mm} .
$$

Comparison of solutions:

Factor	Strength under action of lateral force	Strength under action of bending moment	Stability of in- plane bending under moment	Maximum deflection
Manual calculation	-	$273,028 / 288,33=0,947$	-	$15,56 / 18=0,864$
KRISTALL	0,352	0,947	0,947	$15,56 / 18=0,864$
Deviation from the manual calculation, $\%$	0,0	0,0	0,0	0,0
Source	-	0,858	-	0,87

Comments:

1. The check of tangential stresses was not performed in the manual calculation due to the absence of weakenings and a relatively large thickness of the beam webs.
2. The check of the general stability of the beam was not performed in the manual calculation, because the compressed beam chord is restrained against lateral displacements out of the bending plane by a welded floor plate.
3. In the source the check of the beam strength under the action of the bending moment was performed taking into account the development of the limited plastic deformations.
4. The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example the stringer was specified without any intermediate stiffeners.

Strength and Stiffness Analysis of Secondary Beams for a Complex Stub Girder

System

Objective: Check the mode for calculating and selecting beams

Task: Select a rolled I-beam for the secondary beams with a span of 6 m in a complex stub girder system. The top chord of the secondary beams is restrained by the stringers arranged with a spacing of 1 m .

References: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.3.sav; report - Kristall3.3.doc

Initial data:

$a=4,5 \mathrm{~m}$
Spacing of secondary beams;
$q_{H}=(0,77+27,3 / 102+20) \mathrm{kN} / \mathrm{m}^{2} \times 4,5 \mathrm{~m}=94,67 \mathrm{kN} / \mathrm{m}$ Total characteristic load;
$q_{1}=1,05 \times(0,77+27,3 / 102) \mathrm{kN} / \mathrm{m}^{2} \times 4,5 \mathrm{~m}=4,9 \mathrm{kN} / \mathrm{m}$
Design permanent load;
$q_{2}=1,2 \times 20 \mathrm{kN} / \mathrm{m}^{2} \times 4,5 \mathrm{~m}=108 \mathrm{kN} / \mathrm{m}$
Design temporary load;
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$,
Steel grade C235;
$l=6,0 \mathrm{~m}$
Beam span;
$[f]=1 / 250 \times 6,0 \mathrm{~m}=24 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{\mathrm{y}}=2034,98 \mathrm{~cm}^{3}$
$I_{\mathrm{y}}=55962 \mathrm{~cm}^{4}$.

Limit deflection;
Service factor ;
Selected I-beam No. 55 GOST 8239-89;

KRISTALL parameters:

Steel: C235
Group of structures according to the table 50 * of SNiP II-23-81* 4
Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Service factor 1

Structure:

Restraints against lateral displacements and rotations:

	Left	Right
Displacement along Y	Restrained	Restrained
Displacement along Z	Restrained	Restrained
Rotation about Y		
Rotation about Z		

Restraints out of the bending plane $n+\frac{i, i, i}{n} n=6$

Section:

Profile: I-beam with sloped inner flange surfaces GOST 8239-89 5

Manual calculation.

1. Design bending moment acting in the beam span:

$$
M_{\max }=\frac{q_{\Sigma} l^{2}}{8}=\frac{(4,9+108) \cdot 6,0^{2}}{8}=508,05 \mathrm{kNm} .
$$

2. Necessary beam section modulus assuming that the deformations of steel are elastic:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y}}=\frac{508,05 \cdot 100}{23}=2208,913 \mathrm{~cm}^{3} .
$$

3. Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{l} l^{4}}{E I_{y}}=\frac{5}{384} \cdot \frac{94,67 \cdot 6,0^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 55962 \cdot 10^{-8}}=13,858 \mathrm{~mm} .
$$

4. Conditional limit slenderness of the compressed beam chord:

$$
\bar{\lambda}_{u b}=0,35+0,0032 \frac{b_{f}}{t_{f}}+\left(0,76-0,02 \frac{b_{f}}{t_{f}}\right) \frac{b_{f}}{h_{f}}=0,35+0,0032 \frac{180}{16,5}+\left(0,76-0,02 \frac{180}{16,5}\right) \frac{180}{533,5}=0,5677
$$

5. Conditional actual slenderness of the compressed beam chord:
$\bar{\lambda}_{b}=\frac{l_{e f}}{b_{f}} \sqrt{\frac{R_{y}}{E}}=\frac{1000}{180} \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=0,1856<\bar{\lambda}_{u b}=0,5677-$ the stability check is not required.

Comparison of solutions:

Factor	Strength under action of lateral force	Strength under action of bending moment	Stability of in- plane bending under moment	Maximum deflection
Manual calculation	-	$2208,913 / 2034,98=1,085$	-	$13,858 / 24=0,577$
KRISTALL	0,488	1,085	1,085	$13,856 / 24=0,577$
Deviation from the manual calculation, $\%$	0,0	0,0	0,0	0,0
Source	-			

Comments:

1. The check of tangential stresses was not performed in the manual calculation due to the absence of weakenings and a relatively large thickness of the beam webs.
2. In the source the check of the beam strength under the action of the bending moment was performed taking into account the development of the limited plastic deformations.
3. The check of the beam strength taking into account the development of the limited plastic deformations was not performed, because according to the codes this calculation is possible only when the beam web has stiffeners. In the initial data of the example a rolled beam without intermediate stiffeners was selected for the secondary beam.

Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems
Objective: Check the mode for calculating and selecting beams

a-floor plan; b-design model of the main beam; \boldsymbol{c} - beam section; 1 - load area

Task: Select a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing of 1 m .

References: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.4.sav; report - Kristall3.4.doc

Initial data:

$a=6 \mathrm{~m}$
$g_{1}=1,16 \mathrm{kN} / \mathrm{m}^{2}$
$p=20 \mathrm{kN} / \mathrm{m}^{2}$
$q_{H}=127,099 \mathrm{kN} / \mathrm{m}$
$q_{l}=1,05^{*} 1,16 \mathrm{kN} / \mathrm{m}^{2} * 6 \mathrm{~m} * 1,02=7,454 \mathrm{kN} / \mathrm{m}$
$q_{2}=1,2 * 20 \mathrm{kN} / \mathrm{m}^{2} * 6 \mathrm{~m}=144,0 \mathrm{kN} / \mathrm{m}$
$l=18 \mathrm{~m}$
$R_{\mathrm{y}}=23 \mathrm{kN} / \mathrm{cm}^{2}$
$R_{\mathrm{s}}=0,58 * 23=13,34 \mathrm{kN} / \mathrm{cm}^{2}$
$[f]=l / 400=45 \mathrm{~mm}$
$b_{p} \times t_{p}=530 \times 20 \mathrm{~mm}$
$k_{p}=6 \mathrm{~mm}$
$\gamma_{\mathrm{c}}=1$
$W_{y}=27153,85 \mathrm{~cm}^{3}$
$I_{y}=2308077,083 \mathrm{~cm}^{4}$
$S_{y}=15180,625 \mathrm{~cm}^{3}$.

Spacing of main beams;
Weight of the floor plate and stringers;
Temporary (live) load;
Total characteristic load on the beam;
Design permanent load;
(coefficient 1,02 allows for the self-weight of the main beam);
Design live load;
Main beam span;
Steel grade C255 with thickness t>20 mm;
Limit deflection;
Section of the bearing stiffener;
Fillet weld leg in a welded connection between a bearing stiffener and a beam;
Service factor ;
Geometric properties for a welded
I-section with flanges $530 \times 25 \mathrm{~mm}$ and a web $1650 \times 12 \mathrm{~mm}$;

KRISTALL parameters:

Steel: C255
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Service factor 1

Structure:

Restraints against lateral displacements and rotations:

	Left	Right
Displacement along Y	Restrained	Restrained
Displacement along Z	Restrained	Restrained
Rotation about Y		
Rotation about Z		

Restraints out of the bending plane $\underbrace{n, i, i^{n}}_{n=17}$
Leg of girth welds - 8 mm
Leg of welds that attach the bearing stiffener -6 mm

Section:

Manual calculation (SNiP II-23-81*):

1. Maximum bending moment and shear force acting in the design sections of the beam:

$$
\begin{aligned}
M_{\max } & =\frac{q_{\Sigma} l^{2}}{8}=\frac{(7,454+144) \cdot 18,0^{2}}{8}=6133,887 \mathrm{kNm} . \\
Q_{\max } & =\frac{q_{\Sigma} l}{2}=\frac{(7,454+144) \cdot 18,0}{2}=1363,086 \mathrm{kN} .
\end{aligned}
$$

2. Necessary beam section modulus:

$$
W_{\text {nes }}=\frac{M_{\max }}{R_{y} \gamma_{c}}=\frac{6133,887 \cdot 100}{23}=26669,074 \mathrm{~cm}^{3} .
$$

3. Maximum tangential stresses in the support section of the beam:

$$
\tau_{\max }=\frac{Q_{\max } S_{y}}{I_{y} t_{w}}=\frac{1363,086 \cdot 15180,625}{2308077,083 \cdot 1,2}=7,471 \mathrm{kN} / \mathrm{cm}^{2} .
$$

4. Maximum deflection occurring in the middle of the beam span:

$$
f_{\max }=\frac{5}{384} \cdot \frac{q_{u} l^{4}}{E I_{y}}=\frac{5}{384} \cdot \frac{127,099 \cdot 18,0^{4}}{2,06 \cdot 10^{5} \cdot 10^{3} \cdot 2308077,083 \cdot 10^{-8}}=36,539 \mathrm{~mm} .
$$

5. Conditional limit slenderness of the compressed beam chord:

$$
\bar{\lambda}_{u b}=0,35+0,0032 \frac{b_{f}}{t_{f}}+\left(0,76-0,02 \frac{b_{f}}{t_{f}}\right) \frac{b_{f}}{h_{f}}=0,35+0,0032 \frac{530}{25}+\left(0,76-0,02 \frac{530}{25}\right) \frac{530}{1675}=0,524
$$

6. Conditional actual slenderness of the compressed beam chord:

$$
\bar{\lambda}_{b}=\frac{l_{e f}}{b_{f}} \sqrt{\frac{R_{y}}{E}}=\frac{1000}{530} \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=0,063<\bar{\lambda}_{u b}=0,524-\text { the stability check is not required. }
$$

7. Conditional slenderness of the overhang of the compressed beam flange:
$\bar{\lambda}_{f}=\frac{b_{e f}}{t_{f}} \sqrt{\frac{R_{y}}{E}}=\frac{b_{f}-t_{w}}{2 t_{f}} \sqrt{\frac{R_{y}}{E}}=\frac{530-12}{2 \cdot 25} \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=0,346<\bar{\lambda}_{u f}=0,5$.
8. Strength of the bearing stiffener at the bearing of its end surface ($R_{u n}=370 \mathrm{MPa}$, $R_{p}=\frac{370}{1,025}=360,98 \mathrm{MPa}\left(\right.$ see Table $\left.1^{*}\right)$):

$$
N_{p}=A_{p} R_{p}=53,0 \cdot 2 \cdot 36,098=3826,388 \mathrm{kN} .
$$

9. Reduced area, moment of inertia and slenderness of the bearing stiffener in the analysis of its stability:

$$
\begin{gathered}
A_{\text {red }}=b_{p} t_{p}+0,65 t_{w}^{2} \sqrt{\frac{E}{R_{y}}}=53,0 \cdot 2,0+0,65 \cdot 1,2^{2} \sqrt{\frac{2,06 \cdot 10^{5}}{230}}=134,012 \mathrm{~cm}^{2} \\
I_{p}=\frac{1}{12}\left(t_{p} b_{p}^{3}+0,65 t_{w}^{4} \sqrt{\frac{E}{R_{y}}}\right)=\frac{1}{12}\left(2,0 \cdot 53,0^{3}+0,65 \cdot 1,2^{4} \sqrt{\frac{2,06 \cdot 10^{5}}{230}}\right)=24816,1948 \mathrm{~cm}^{4} . \\
\lambda_{p}=l_{e f} \sqrt{\frac{A_{\text {red }}}{I_{p}}}=(165+2,5) \cdot \sqrt{\frac{134,012}{24816,1948}}=12,309 \\
\bar{\lambda}_{p}=\lambda_{p} \sqrt{\frac{R_{y}}{E}}=12,309 \cdot \sqrt{\frac{230}{2,06 \cdot 10^{5}}}=0,411 .
\end{gathered}
$$

10. Buckling coefficient of the bearing stiffener of the beam:

$$
\varphi=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{p} \sqrt{\lambda_{p}}=1-\left(0,073-5,53 \cdot \frac{230}{2,06 \cdot 10^{5}}\right) 0,411 \sqrt{0,411}=0,9824
$$

11. Load-bearing capacity of the bearing stiffener from the condition of providing its stability:

$$
N_{p, b}=\varphi A_{\text {red }} R_{y}=0,9824 \cdot 134,012 \cdot 23,0=3028,028 \mathrm{kN} .
$$

12. Load-bearing capacity of the fillet welds attaching the bearing stiffener to the beam web:

$$
N_{f}=2 \beta_{f} k_{f} l_{f} R_{w f} \gamma_{w f}=2 \beta_{f} k_{f}\left(85 \beta_{f} k_{f}\right) R_{w f} \gamma_{w f}=2 \cdot 0,7 \cdot 0,6 \cdot(85 \cdot 0,7 \cdot 0,6) \cdot 18,0 \cdot 1,0=539,784 \mathrm{kN} .
$$

13. Load-bearing capacity per unit length of fillet welds attaching the beam flanges to the web:

$$
N_{f}=2 \beta_{f} k_{f} R_{w f} \gamma_{w f}=2 \cdot 0,7 \cdot 0,8 \cdot 18,0 \cdot 1,0=20,16 \mathrm{kN} / \mathrm{cm} .
$$

14. Shear force per unit length acting on the fillet welds attaching the beam flanges to the web:

$$
T=\frac{Q_{\max } S_{y f}}{I_{y}}=\frac{1363,086 \cdot 53,0 \cdot 2,5 \cdot 83,75}{2308077,083}=6,5535 \mathrm{kN} / \mathrm{cm} .
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation, \%
Stability of bearing stiffener	-	$1363,086 / 3028,028=0,450$	0,45	0,0
Bearing stiffener in bearing	-	$1363,086 / 3826,388=0,356$	0,357	0,0
Strength of girth weld	-	$6,5535 / 20,16=0,325$	0,315	$1,23 \%$
Strength of bearing stiffener weld	-	$1363,086 / 539,784=2,525$	2,525	0,0
Strength under action of lateral force	0,617	$7,471 / 13,34=0,56$	0,56	0,0
Strength under action of bending moment	1,0	$26669,074 / 27153,85=0,982$	0,982	0,0
Stability of in- plane bending under moment	-	-	0,982	0,0
Local stability of web	-	-	0,6	0,0
Local stability of chord overhang	0,71	$0,346 / 0,5=0,692$	0,692	0,0
Maximum deflection	-	$36,539 / 45=0,812$	0,812	0,0

Comments:

1. In the source the check of the tangential stresses was performed according to the approximate formula.
2. The check of the local stability of the chord overhang performed in the source is incorrect.

TRUSS MEMBER

Analysis of a Top Truss Chord from Unequal Angles

Objective: Check the mode for calculating truss members
Task: Check the top truss chord section from two unequal angles L160x100x9. The truss panel length is $2,58 \mathrm{~m}$. The top truss chord is restrained out of the plane through the panel.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others]-13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 280.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

7.1.sav; report — Kristall-7.1.doc

Initial data:

$N=535 \mathrm{kN} \quad$ Design compressive force;
$R_{\mathrm{y}}=24 \mathrm{kN} / \mathrm{cm}^{2}$
$\gamma_{\mathrm{c}}=0,95$
$g=12 \mathrm{~mm}$
$l_{\mathrm{x}}=2,58 \mathrm{~m}, l_{\mathrm{y}}=5,16 \mathrm{~m}$
$i_{\mathrm{x}}=2,851 \mathrm{~cm}, \mathrm{~A}=45,74 \mathrm{~cm}^{2}$
$i_{y}=7,745 \mathrm{~cm}$
160 x 100 x 9 .

Steel grade C245;
Service factor ;
Thickness of the gusset plate;
Effective lengths of the bar;
Geometric properties of
the top chord section from two angles

KRISTALL parameters:

Steel: C245
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Type of element - Truss member
Panel length 2.58 m
Length between out-of-plane restraints -5.16 m
Section:

Profile: Unequal angle GOST 8510-86* L160x100x9
Manual calculation (SNiP II-23-81*):

1. Strength check

$$
\frac{N}{A}=\frac{535}{45,74}=11,69655 \mathrm{kN} / \mathrm{cm}^{2}<R_{y} \gamma_{c}=24 \cdot 0,95=22,8 \mathrm{kN} / \mathrm{cm}^{2} .
$$

2. Slenderness of the truss member:

$$
\begin{aligned}
& \lambda_{x}=\frac{l_{e f, x}}{i_{x}}=\frac{2,58 \cdot 100}{2,851}=90,49456 ; \\
& \bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}}=\frac{5,16 \cdot 100}{7,745}=66,6236 .
\end{aligned}
$$

3. Conditional slenderness of the truss member:

$$
\begin{aligned}
& \bar{\lambda}_{x}=\frac{l_{e f, x}}{i_{x}} \sqrt{\frac{R_{y}}{E}}=\frac{2,58 \cdot 100}{2,851} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=3,0888 ; \\
& \bar{\lambda}_{y}=\frac{l_{e f, y}}{i_{y}} \sqrt{\frac{R_{y}}{E}}=\frac{5,16 \cdot 100}{7,745} \sqrt{\frac{240}{2,06 \cdot 10^{5}}}=2,274
\end{aligned}
$$

4. Buckling coefficients:

$$
\begin{aligned}
& \varphi_{x}=1,47-13,0 \frac{R_{y}}{E}-\left(0,371-27,3 \frac{R_{y}}{E}\right) \bar{\lambda}_{x}+\left(0,0275-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{x}^{2}= \\
& =1,47-\frac{13,0 \cdot 240}{2,06 \cdot 10^{5}}-\left(0,371-\frac{27,3 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 3,0888+\left(0,0275-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 3,0888^{2}=0,60805 \\
& \varphi_{y}=1-\left(0,073-5,53 \frac{R_{y}}{E}\right) \bar{\lambda}_{y} \sqrt{\bar{\lambda}_{y}}=1-\left(0,073-\frac{5,53 \cdot 240}{2,06 \cdot 10^{5}}\right) \cdot 2,274 \sqrt{2,274}=0,77176 .
\end{aligned}
$$

5. Strength of the truss member from the condition of providing the general stability under axial compression:

$$
\begin{aligned}
& N_{b, x}=\varphi_{x} A R_{y} \gamma_{c}=0,60805 \cdot 45,74 \cdot 24 \cdot 0,95=634,118 \mathrm{kN} ; \\
& N_{b, y}=\varphi_{y} A R_{y} \gamma_{c}=0,77176 \cdot 45,74 \cdot 24 \cdot 0,95=804,847 \mathrm{kN} .
\end{aligned}
$$

6. Limit slenderness of the truss member:

$$
\begin{aligned}
& {[\lambda]_{x}=180-60 \alpha_{x}=180-60 \cdot \frac{N}{\varphi_{x} A R_{y} \gamma_{c}}=180-60 \cdot \frac{535}{634,118}=129,3785} \\
& {[\lambda]_{y}=180-60 \alpha_{y}=180-60 \cdot \frac{N}{\varphi_{y} A R_{y} \gamma_{c}}=180-60 \cdot \frac{535}{804,847}=140,1166 .}
\end{aligned}
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, $\boldsymbol{\%}$
Strength of member	$535 / 45,8 / 22,8=0,512$	$11,6966 / 22,8=$ 0,513	0,513	0,0
Stability of member in the truss plane	$21,4 / 22,8=0,938$	$535 / 634,118=$	0,844	0,0
Stability of member out	not defined	0,844	$535 / 804,847=$	0,665
of the truss plane		0,665	0,0	
Slenderness of member	not defined	$90,4946 / 129,3785=$	0,7	0,0
		0,7		

Comments:

1. In the source the buckling coefficient for the conditional slenderness of the bar of 3.09 was mistakenly taken as 0.546 instead of 0.6081 , which caused the differences in the results of the stability analysis.
2. When checking the slenderness of the truss member the value of the factor was taken as the larger one calculated for the slenderness of the element in two principal planes of inertia of the section.

BASE PLATES

Analysis of the Base of a Solid I-beam Column

Objective: Check the mode for calculating base plates

Design models of the column base (figures in the circles indicate the numbers of the design sections of the base plate: 1 - wing plate; 2 - base plate)

Task: Check the load-bearing capacity of the base plate for the design section No.1.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 259.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

6.1.sav; report - Kristall-6.1.doc

Initial data:

$\sigma_{f}=1,19 \mathrm{kN} / \mathrm{cm}^{2}=11,9 \mathrm{MPa}$
$R_{y}=30 \mathrm{kN} / \mathrm{cm}^{2}$
$b / a=480 \mathrm{~mm} / 234 \mathrm{~mm}$
Stress under the base plate
Steel grade C345
Dimensions of the design section of the base
plate
KRISTALL parameters:
Steel: C345 category 1
Group of structures according to the table 50* of SNiP II-23-81* 3

Importance factor 1
Service factor 1,15

$$
\begin{aligned}
& \mathrm{a}=0.48 \mathrm{~m} \\
& \mathrm{~b}=0.234 \mathrm{~m} \\
& \text { Plate thickness }=4 \mathrm{~cm} \\
& \text { Load } 11.9 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

Manual calculation (SNiP II-23-81*):

1. Design bending moment acting in the design section of the base plate:

$$
M=\alpha \sigma_{f} a^{2}=0,125 \cdot 1,19 \cdot 23,4^{2}=81,45 \mathrm{kN} / \mathrm{cm}
$$

2. Check the bending strength of the base plate ($\gamma_{c}=1,15-$ according to the table 6^{*} of SNiP II-23-81*):

$$
\frac{6 M}{t_{p}^{2}}=\frac{6 \cdot 81,45}{4^{2}}=30,5436 \mathrm{kN} / \mathrm{cm}^{2}<R_{y} \gamma_{c}=30 \cdot 1,15=34,5 \mathrm{kN} / \mathrm{cm}^{2} .
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, $\boldsymbol{\%}$
for bending strength of the plate	$4 / 4=1$	$30,5436 / 34,5=$ 0,885	0,885	0,0

Comments:

The service factor of the base plate according to the table 6^{*} of SNiP II-23-81* is not taken into account in the source.

Analysis of the Base of a Solid I-beam Column

Objective: Check the mode for calculating base plates

Design models of the column base (figures in the circles indicate the numbers of the design sections of the base plate: $1-$ wing plate; 2 - base plate)

Task: Check the load-bearing capacity of the base plate for the design section No.2.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 259.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

6.2.sav; report — Kristall-6.2.doc

Initial data:

$\sigma_{f}=1,19 \mathrm{kN} / \mathrm{cm}^{2}=11,9 \mathrm{MPa}$
$R_{y}=30 \mathrm{kN} / \mathrm{cm}^{2}$
$b / a=90 \mathrm{~mm} / 680 \mathrm{~mm}$

Stress under the base plate
Steel grade C345
Dimensions of the design section of the base
plate

KRISTALL parameters:

Steel: C345 category 1
Group of structures according to the table 50* of SNiP II-23-81*3
Importance factor 1

Service factor 1,15

	$\mathrm{a}=0.68 \mathrm{~m}$ $\mathrm{~b}=0.09 \mathrm{~m}$ Plate thickness $=4 \mathrm{~cm}$ Load $11.9 \mathrm{~N} / \mathrm{mm}^{2}$

Manual calculation (SNiP II-23-81*):

1. Design bending moment acting in the design section of the base plate:

$$
M=0,5 \sigma_{f} c^{2}=0,5 \cdot 1,19 \cdot 9,0^{2}=48,195 \mathrm{kN} / \mathrm{cm} .
$$

2. Check the bending strength of the base plate ($\gamma_{c}=1,15-$ according to the table 6^{*} of SNiP II-23-81*):

$$
\frac{6 M}{t_{p}^{2}}=\frac{6 \cdot 48,195}{4^{2}}=18,073125 \mathrm{kN} / \mathrm{cm}^{2}<R_{y} \gamma_{c}=30 \cdot 1,15=34,5 \mathrm{kN} / \mathrm{cm}^{2} .
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, $\%$
for bending strength of the plate	$48,2 / 81,45=0,592$	$18,073 / 34,5=$ 0,524	0,524	0,0

Comments:

The service factor of the base plate according to the table 6^{*} of SNiP II-23-81* is not taken into account in the source.

Analysis of the Base of a Solid I-beam Column

Objective: Check the mode for calculating base plates

Design models of the column base (figures in the circles indicate the numbers of the design sections of the base plate: 1 - wing plate; 2 - base plate)

Task: Check the load-bearing capacity of the base plate for the design section No.3.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 259.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

6.3.sav; report — Kristall-6.3.doc

Initial data:

$\sigma_{f}=1,19 \mathrm{kN} / \mathrm{cm}^{2}=11,9 \mathrm{MPa}$
$R_{y}=30 \mathrm{kN} / \mathrm{cm}^{2}$
$b / a=480 \mathrm{~mm} / 82 \mathrm{~mm}$

Stress under the base plate
Steel grade C345
Dimensions of the design section of the base
plate

KRISTALL parameters:

Steel: C345 category 1
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1,15

$$
\mathrm{a}=0.082 \mathrm{~m}
$$

$\mathrm{b}=0.48 \mathrm{~m}$
Plate thickness $=4 \mathrm{~cm}$
Load $11.9 \mathrm{~N} / \mathrm{mm}^{2}$
Manual calculation (SNiP II-23-81*):

1. Design bending moment acting in the design section of the base plate:

$$
M=0,5 \sigma_{f} c^{2}=0,5 \cdot 1,19 \cdot 8,2^{2}=40,0078 \mathrm{kN} / \mathrm{cm} .
$$

2. Check the bending strength of the base plate ($\gamma_{c}=1,15-$ according to the table 6^{*} of SNiP II-23-81*):

$$
\frac{6 M}{t_{p}^{2}}=\frac{6 \cdot 40,0078}{4^{2}}=15,002925 \mathrm{kN} / \mathrm{cm}^{2}<R_{y} \gamma_{c}=30 \cdot 1,15=34,5 \mathrm{kN} / \mathrm{cm}^{2} .
$$

Comparison of solutions:

Factor	Source	Manual calculation	KRISTALL	Deviation from the manual calculation, \%
for bending strength of the plate	$40 / 81,45=0,491$	$15,0029 / 34,5=$ 0,43487	0,435	0,0

Comments:

The service factor of the base plate according to the table 6^{*} of SNiP II-23-81* is not taken into account in the source.

WELDED CONNECTIONS

Analysis of a Welded Connection with Fillet Welds for a Bending Moment

Objective: Check the mode for calculating welded connections

Task: Check the welded connection with fillet welds for a bending moment
References: Manual to SNiP II-23-81. Welded Connections. 1984. p. 28-29.
Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data file:

1.1.sav; report - Kristall1.1.doc

Initial data:

$M=75 \mathrm{kNm}$
Bending moment
$R_{\mathrm{yn}}=345 \mathrm{MPa}, R_{\mathrm{un}}=490 \mathrm{MPa}$
$R_{\mathrm{wf}}=215 \mathrm{MPa}, \beta_{\mathrm{f}}=0,9$
Steel 15HSND
Flat CO2 semiautomatic welding with a 2 mm diameter Sv 08G2S wire
Service factors
$\gamma_{\mathrm{wf}}=\gamma_{\mathrm{c}}=1$
KRISTALL parameters:
Steel: C345 category 3

Importance factor	1
Service factor	1
Group of structures according to the table 50^{*} of SNiP II-23-81*	1

Properties of welding materials:

Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\mathrm{wun}}$	$49949,032 \mathrm{~T} / \mathrm{m}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$21916,412 \mathrm{~T} / \mathrm{m}^{2}$
Type of welding	Automatic and semiautomatic, diameter of the electrode wire not

Properties of welding materials:	
	less than $1.4-2.0 \mathrm{~mm}$
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Leg Leg of weld near flange $=4 \mathrm{~mm}$ Leg of weld near web $=4 \mathrm{~mm}$
Section - Full assortment of GOST profiles..	
Wide flange I-beam GOST 26020-83 26W1	

Internal forces and moments:

$\mathrm{N}=0 \mathrm{~N}$
$\mathrm{M}_{\mathrm{y}}=75000 \mathrm{Nm}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{~N}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{Nm}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{~N}$
Comparison of solutions:

Factor	Strength of the weld metal
Source	$208 / 215=0,967$
KRISTALL	0,951
Deviation, \%	1,655

Comments:

Deviations in the results of the calculation are due to the differences in the initial data. In this mode KRISTALL enables to select an I-section only from the assortment of rolled profiles. The Isection specified in theoretical solution has cross-sectional dimensions which do not have an exact assortment analog. When checking the connection with the help of KRISTALL, the closest Isection was selected - I-beam 26W1 GOST 26020-83.

Analysis of a Welded Connection with Fillet Welds for a Bending Moment Acting in the Weld Plane

$$
l_{1}=30 \mathrm{~cm} ; l_{2}=20 \mathrm{~cm}
$$

Objective: Check the mode for calculating welded connections
Task: Check the welded connection with fillet welds. The connection is loaded with a bending moment acting in the weld plane.

References: Manual to SNiP II-23-81. Welded Connections. 1984. p. 29-30.
Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data file:

1. when the weld leg is $k_{\mathrm{f}}=10 \mathrm{~mm}: 1.2-1 . \mathrm{sav}$; report - Kristall1.2-1.doc
2. when the weld leg is $k_{\mathrm{f}}=6 \mathrm{~mm}: 1.2-2 . \mathrm{sav}$; report — Kristall1.2-2.doc

Initial data:

$M=55 \mathrm{kNm} \quad$ Bending moment
$R_{\text {un }}=370 \mathrm{MPa} \quad$ Steel VSt3
$R_{\mathrm{wf}}=200 \mathrm{MPa}, \beta_{\mathrm{f}}=0,7 \quad$ Welding with coated E46 electrodes
$\gamma_{\mathrm{wf}}=\gamma_{\mathrm{c}}=1 \quad$ Service factors
KRISTALL initial data when the weld leg is 10 mm :
Steel: C255

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	1

Properties of welding materials:	
Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\text {wun }}$	$45871,56 \mathrm{~T} / \mathrm{m}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$20387,36 \mathrm{~T} / \mathrm{m}^{2}$
Type of welding	Manual
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=10 \mathrm{~mm}$ $\mathrm{~b}=300 \mathrm{~mm}$ $\mathrm{~h}=200 \mathrm{~mm}$ $\mathrm{t}=10 \mathrm{~mm}$ $t_{f}=10 \mathrm{~mm}$

Internal forces and moments:

$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=55 \mathrm{kNm}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$
KRISTALL initial data when the weld leg is 6 mm :
Steel: C255

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	1

Properties of welding materials:				
Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\mathrm{wun}}$	$45871,56 \mathrm{~T} / \mathrm{m}^{2}$			
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$20387,36 \mathrm{~T} / \mathrm{m}^{2}$			
Type of welding		\quad Manual	Position of weld	Flat
:---	:---			
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$			

Type:	Parameters:
	Weld leg $=6 \mathrm{~mm}$ $\mathrm{~b}=300 \mathrm{~mm}$ $\mathrm{~h}=200 \mathrm{~mm}$ $\mathrm{t}=10 \mathrm{~mm}$ $t_{f}=10 \mathrm{~mm}$

Internal forces and moments:
$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=55 \mathrm{kNm}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$

Comparison of solutions:

Weld leg, mm	10	6
Check	of the weld metal	of the weld metal

Source	$117 / 200=0,58$	$199 / 200=0,995$
KRISTALL	0,555	0,937
Deviation, \%	4,31	5,8

Analysis of a Welded Connection with Fillet Welds at the Simultaneous Action of
Longitudinal and Lateral Forces
Objective: Check the mode for calculating welded connections

Task: Check the welded connection with fillet welds. The connection is loaded with longitudinal and lateral forces.

References: Manual to SNiP II-23-81. Welded Connections. 1984. p. $30-33$.
Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data file:

1. when the weld leg is $k_{\mathrm{f}}=10 \mathrm{~mm}: 1.3-1 . \mathrm{sav}$; report — Kristall1.3-1.doc
2. when the weld leg is $k_{\mathrm{f}}=5 \mathrm{~mm}: 1.3-1$.sav; report - Kristall1.3-2.doc

Initial data:

$N=100 \mathrm{kN} \quad$ Longitudinal force
$Q=38 \mathrm{kN} \quad$ Lateral force
$R_{\text {un }}=370 \mathrm{MPa}$
Steel VSt3
$R_{\mathrm{wf}}=200 \mathrm{MPa}, \beta_{\mathrm{f}}=0,7$
Welding with coated E46 electrodes
$\gamma_{\mathrm{wf}}=\gamma_{\mathrm{c}}=1$
KRISTALL initial data when the weld leg is 10 mm :
Steel: C255

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	1

Properties of welding materials:	
Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\text {wun }}$	$45871.56 \mathrm{~T} / \mathrm{m}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$20387.36 \mathrm{~T} / \mathrm{m}^{2}$
Type of welding	Manual
Position of weld	Flat

Properties of welding materials:	
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=10 \mathrm{~mm}$ $\mathrm{~b}=300 \mathrm{~mm}$ $\mathrm{~h}=200 \mathrm{~mm}$ $\mathrm{t}=10 \mathrm{~mm}$ $t_{\mathrm{f}}=10 \mathrm{~mm}$

Internal forces and moments:

$\mathrm{N}=100 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=30.78 \mathrm{kNm}$
$\mathrm{Q}_{\mathrm{z}}=-38 \mathrm{kN}$
KRISTALL initial data when the weld leg is 5 mm :
Steel: C255

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	1

Properties of welding materials:	
Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\text {wun }}$	$45871.56 \mathrm{~T} / \mathrm{m}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$20387.36 \mathrm{~T} / \mathrm{m}^{2}$
Type of welding	Manual
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=5 \mathrm{~mm}$ $\mathrm{~b}=300 \mathrm{~mm}$ $\mathrm{~h}=200 \mathrm{~mm}$ $\mathrm{t}=10 \mathrm{~mm}$ $t_{\mathrm{f}}=10 \mathrm{~mm}$

Internal forces and moments:

$\mathrm{N}=100 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=30.78 \mathrm{kNm}$
$\mathrm{Q}_{\mathrm{z}}=-38 \mathrm{kN}$

Comparison of solutions:

Weld leg, mm	10	5
Check	of the weld metal	of the weld metal
Source	$96,2 / 200=0,48$	$198 / 200=0,99$
KRISTALL	0,461	0,941
Deviation, $\%$	3,95	4,9

Comments:

The difference in the results is due to the inaccuracy made by the authors of the example in the design section of the weld. It should be also noted, that in the problem the force Q is transferred through the cantilever of 81 cm , therefore the moment $M=38 \mathrm{kN} * 0,81 \mathrm{~m}=30,78 \mathrm{kNm}$ is additionally specified in KRISTALL.

Analysis of a Connection between a Bar in Tension from Two Angles and a Gusset Plate

Objective: Check the mode for calculating welded connections.

Task: Check the connection between a steel bar in tension from two equal angles and a gusset plate.

References: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. $83-84$.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data:

$R_{\text {un }}=490 \mathrm{MPa}$
Section
$t=12 \mathrm{~mm}$
$R_{\mathrm{wf}}=215 \mathrm{MPa}$
$N=700 \mathrm{kN}$
$k_{\mathrm{f} 1}=6 \mathrm{~mm}$
$k_{\mathrm{f} 2}=6 \mathrm{~mm}$
$l_{\mathrm{w} 1}=22 \mathrm{~cm}$
$l_{\mathrm{w} 2}=10 \mathrm{~cm}$

Steel C345
Angle 80x7 mm
Thickness of the gusset plate
CO2 semiautomatic welding with a Sv-08G2S wire
Longitudinal force
Weld at free leg
Weld at connected leg
weld length at free leg
weld length at connected leg

Initial data file:

1.4.sav; report — Kristall1.4.doc

KRISTALL initial data:

Steel: C345 category 1

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	1

Properties of welding materials:

Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\mathrm{wun}}$	$490 \mathrm{~N} / \mathrm{mm}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$215 \mathrm{~N} / \mathrm{mm}^{2}$

Properties of welding materials:	
Type of welding	Automatic and semiautomatic, diameter of the electrode wire not less than 1.4-2.0 mm
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld at free leg $=6 \mathrm{~mm}$ Weld at connected leg $=6 \mathrm{~mm}$ $\mathrm{~b}=220 \mathrm{~mm}$
Se56.31 degrees	

Internal forces:

$\mathrm{N}=700 \mathrm{kN}$

Checked according to SNiP	Check	Utilization factor
Sec.11.2 Formula (120)	of the weld metal	$\mathbf{1 . 0 3 6}$
Sec.11.2 Formula (121)	of the metal of the fusion border	0.902

Comparison of solutions

Check	of the weld metal
Source	$9,04 \mathrm{~cm} / 9 \mathrm{~cm}=1,0044$
	$21,1 \mathrm{~cm} / 21 \mathrm{~cm}=1,0048$
KRISTALL	1,036
Deviation, \%	3,01
Refined manual calculation (see comments)	$0,72125 \times 9,04 \mathrm{~cm} / 0,7 \times 9 \mathrm{~cm}=1,035$
	$0,72125 \times 21,1 \mathrm{~cm} / 0,7 \times 21 \mathrm{~cm}=1,035$
Deviation, \%	0,1

Comments:

The distribution of the external longitudinal force between the welds along the toe and heel of the angle is not specified precisely in the verification example, i.e. the longitudinal force in the weld along the heel is given as 70% of the external longitudinal force, and that along the toe is given as 30% of the force. The exact value of the longitudinal force acting in the welds along the heel is calculated as:

$$
\left(b_{\text {angle }}-y_{0}\right) / b_{\text {angle }} \times N=0,72125 \times N,
$$

where $b_{\text {angle }}$ - angle leg width, y_{0} - length of a perpendicular dropped from the center of mass of the angle to the respective external leg face.

Analysis of a Welded Connection between an Angle Cleat and a Column Flange

Objective: Check the mode for calculating welded connections.

Task: Check the welded connection with fillet welds between an angle cleat and a column flange.
References: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 85.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data:

$N=1000 \mathrm{kN}$
$R_{\text {un }}=370 \mathrm{MPa}$
$R_{\text {wf }}=215 \mathrm{MPa}$
$\mathrm{b}=200 \mathrm{~mm}$
$k_{\mathrm{f}}=12 \mathrm{~mm}$
$h=150 \mathrm{~mm}$
Force
Steel C245
CO 2 semiautomatic welding with a $\mathrm{Sv}-08 \mathrm{G} 2 \mathrm{~S}$ wire width of the cleat (transverse fillet weld)
Weld leg
height of the cleat (longitudinal fillet welds)

Initial data file:

1.5.sav; report — Kristall1.5.doc

KRISTALL initial data:
Steel: C245

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	1

Properties of welding materials:	
Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\mathrm{wun}}$	$490 \mathrm{~N} / \mathrm{mm}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$215 \mathrm{~N} / \mathrm{mm}^{2}$
Type of welding	Automatic and semiautomatic, diameter of the electrode wire not less than 1.4-2.0 mm
Position of weld	Flat

Properties of welding materials:	
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=12 \mathrm{~mm}$ $\mathrm{~b}=150 \mathrm{~mm}$ $\mathrm{~h}=200 \mathrm{~mm}$ $\mathrm{t}=30 \mathrm{~mm}$ $t_{\mathrm{f}}=30 \mathrm{~mm}$

Internal forces and moments:
$\mathrm{N}=1000 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kNm}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$

Checked according to SNiP	Check	Utilization factor
Sec.11.2 Formula (120)	of the weld metal	$\mathbf{1 . 0 4 2}$
Sec.11.2 Formula (121)	of the metal of the fusion border	1.001

Comparison of solutions:

Check	of the weld metal
Source	$48 \mathrm{~cm} / 47.64 \mathrm{~cm}=1,0076$
KRISTALL	1,042
Deviation, \%	3,3

Comments:

The difference can be explained by the fact that in the source book the value of the design resistance is taken as $R_{\mathrm{wf}}=215 \mathrm{MPa}$, while KRISTALL uses the value of $R_{\mathrm{wf}}=200 \mathrm{MPa}$ in full compliance with tables 55* and 56 SNiP II-23-81*.

Analysis of a Connection between an Angle Cleat and a Column Flange for an Eccentrically Applied Force

Objective: Check the mode for calculating welded connections

Task: Check the fillet welded connection between an angle cleat and a column flange for an eccentrically applied force.

References: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 86-87.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data:

$N=700 \mathrm{kN}$
$e=80 \mathrm{~mm}$
$R_{\text {un }}=370 \mathrm{MPa}$
$R_{\text {wf }}=185 \mathrm{MPa}$
$h=380 \mathrm{~mm}$
$k_{\mathrm{f}}=12 \mathrm{~mm}$
$t=20 \mathrm{~mm}$

Force
Eccentricity
Steel C245
Manual welding with E42 electrodes
height of the cleat
Weld leg
thickness of elements

Initial data file:

1.6.sav; report — Kristall1.6.doc

KRISTALL initial data:
Steel: C245

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	4

Properties of welding materials:

Characteristic resistance of the weld metal based on the $410000 \mathrm{kN} / \mathrm{m}^{2}$ ultimate strength, $\mathrm{R}_{\text {wun }}$
Design resistance of the fillet welds for shear in the $\quad 180000 \mathrm{kN} / \mathrm{m}^{2}$

Properties of welding materials:	
weld metal, R_{wf}	
Type of welding	Manual
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=12 \mathrm{~mm}$ $\mathrm{~h}=380 \mathrm{~mm}$ $\mathrm{t}=20 \mathrm{~mm}$ $\mathrm{t}_{\mathrm{f}}=20 \mathrm{~mm}$

Internal forces and moments:

$\mathrm{N}=0 \mathrm{~N}$
$\mathrm{M}_{\mathrm{y}}=56000 \mathrm{Nm}$
$\mathrm{Q}_{\mathrm{z}}=700000 \mathrm{~N}$

Checked according to SNiP	Check	Utilization factor
Sec.11.2 Formula (120)	of the weld metal	1.025
Sec.11.2 Formula (121)	of the metal of the fusion border	0.775

Comparison of solutions:

Check	of the weld metal
Source	$18,44 \mathrm{kN} / \mathrm{cm}^{2} / 18,5 \mathrm{kN} / \mathrm{cm}^{2}=0,997$
KRISTALL	1,025
Deviation, \%	2,81

Comments:

The difference can be explained by the fact that in the book the value of the design resistance is taken as $R_{\mathrm{wf}}=185 \mathrm{MPa}$, while KRISTALL uses the value of $R_{\mathrm{wf}}=180 \mathrm{MPa}$ in full compliance with SP 16.13330.2011 and DBN B.2.6-163:2010.

Analysis of a Welded Connection of Elements with Packings

Objective: Check the mode for calculating welded connections.

Task: Check the fillet welded connection between two strips in tension with packings.
References: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 87-88.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data:

300×20 mm
250x12 mm
$R_{\mathrm{un}}=360 \mathrm{MPa}$
$N=1380 \mathrm{kN}$
$R_{\mathrm{wf}}=180 \mathrm{MPa}$
$k_{\mathrm{f}}=10 \mathrm{~mm}$

Strip section
Packing section
Steel C235
Force
Manual welding with E42 electrodes
Weld leg

Initial data file:

1.7.sav; report - Kristall1.7.doc

KRISTALL initial data:

Steel: C235

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	4

Properties of welding materials:

Characteristic resistance of the weld metal based on the $410000 \mathrm{kN} / \mathrm{m}^{2}$ ultimate strength, $\mathrm{R}_{\text {wun }}$
Design resistance of the fillet welds for shear in the $\quad 180000 \mathrm{kN} / \mathrm{m}^{2}$

Properties of welding materials:	
weld metal, R_{wf}	
Type of welding	Manual
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=10 \mathrm{~mm}$ $\mathrm{~b}=260 \mathrm{~mm}$ $\mathrm{~h}=60 \mathrm{~mm}$ $\mathrm{t}=12 \mathrm{~mm}$ $t_{f}=20 \mathrm{~mm}$

Internal forces and moments:

$\mathrm{N}=1380 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$

Checked according to SNiP	Check	Utilization factor
Sec.11.2 Formula (120)	of the weld metal	0.944
Sec.11.2 Formula (121)	of the metal of the fusion border	0.734

Comparison of solutions:

Check	of the weld metal
Source	$27,4 \mathrm{~cm} / 28 / \mathrm{cm}=0,979$
KRISTALL	0,944
Deviation, $\%$	3,58

Comments:

In the example, the plates are cut in the shape of a fish, the theoretical length of the weld along the diagonal is 290 mm , one of the legs has the size of 260 mm , and the other $-290-260=30 \mathrm{~mm}$. Therefore, the width of the plate is specified in KRISTALL as $2 * 30 \mathrm{~mm}=60 \mathrm{~mm}$ to maintain the same length of the welds.

Analysis of a Welded Connection for a Bending Moment Acting in the Fillet Weld Plane

Objective: Check the mode for calculating welded connections.

Task: Check the welded connection with fillet welds. The connection is loaded with a bending moment acting in the weld plane.

References: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 88-89.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data:

$R_{\mathrm{un}}=370 \mathrm{MPa}$
$M=51 \mathrm{kNm}$
Steel C245
$11=20 \mathrm{~cm}$
$12=25 \mathrm{~cm}$
$R_{\mathrm{wf}}=185 \mathrm{MPa}$
$k_{\mathrm{f}}=8 \mathrm{~mm}$

Force
Geometric length of longitudinal fillet welds
Geometric length of the transverse fillet weld
Manual welding with E46 electrodes
Weld leg

Initial data file:

1.8.sav; report — Kristall1.8.doc

KRISTALL initial data:
Steel: C245

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	4

Properties of welding materials:	
Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\mathrm{wun}}$	$450000 \mathrm{kN} / \mathrm{m}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$200000 \mathrm{kN} / \mathrm{m}^{2}$
Type of welding	Manual
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=8 \mathrm{~mm}$ $\mathrm{~b}=200 \mathrm{~mm}$ $\mathrm{l}=250 \mathrm{~mm}$ $\mathrm{t}=20 \mathrm{~mm}$ $t_{f}=24 \mathrm{~mm}$

Internal forces and moments:

$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=51 \mathrm{kNm}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$

Checked according to SNiP	Check	Utilization factor
Sec.11.2 Formula (120)	of the weld metal	0.793
Sec.11.2 Formula (121)	of the metal of the fusion border	0.659

Comparison of solutions

Check	of the weld metal	of the metal of the fusion border
Source	$1760 \mathrm{kN} / \mathrm{cm}^{2} / 1850 \mathrm{kN} / \mathrm{cm}^{2}=$ 0,951	$1231,5 \mathrm{kN} / \mathrm{cm}^{2} / 1665 \mathrm{kN} / \mathrm{cm}^{2}$ $=0,740$
KRISTALL	0,793	0,659
Deviation, \%	16,6	10,95
Refined manual calculation (see comments)	$1636,178 \mathrm{kN} / \mathrm{cm}^{2} / 2000$ $\mathrm{kN} / \mathrm{cm}^{2}=0,818$	$1135,787 \mathrm{kN} / \mathrm{cm}^{2} / 1665$ $\mathrm{kN} / \mathrm{cm}^{2}=0,682$
Deviation, \%	3,06	3,37

Comments:

The difference in the results is due to the inaccuracy made by the authors of the example in the design section of the weld. Moreover, the design resistance of the fillet welds for shear in the weld metal for the E46 electrodes was incorrectly taken in the example as $R_{\mathrm{wf}}=185 \mathrm{MPa}$, while KRISTALL and design codes use the value of $R_{\mathrm{wf}}=200 \mathrm{MPa}$.

Let's determine the moments of inertia of the weld with respect to the principal axes of inertia for the correct design section of the weld given in the figure:

$$
\begin{aligned}
& I_{f x}=\frac{25^{3} \cdot 0,7 \cdot 0,8}{12}+\frac{(0,7 \cdot 0,8)^{3} \cdot 20}{6}+2 \cdot 0,7 \cdot 0,8 \cdot 20 \cdot\left(\frac{25}{2}+\frac{0,8 \cdot 0,7}{2}\right. \\
& =4388,31 \mathrm{~cm}^{4} \\
& I_{f y}=\frac{25 \cdot(0,7 \cdot 0,8)^{3}}{12}+25 \cdot 0,7 \cdot 0,8 \cdot\left(6,31-\frac{0,7 \cdot 0,8}{2}\right)^{2}+\frac{0,7 \cdot 0,8 \cdot 21}{6} \\
& +2 \cdot 0,7 \cdot 0,8 \cdot 20 \cdot\left(\frac{20}{2}-6,31\right)^{2}=1561,086 \mathrm{~cm}^{4}
\end{aligned}
$$

Design section of the weld

$$
\begin{aligned}
& I_{z x}=\frac{25^{3} \cdot 1,0 \cdot 0,8}{12}+\frac{(1,0 \cdot 0,8)^{3} \cdot 20}{6}+2 \cdot 1,0 \cdot 0,8 \cdot 20 \cdot\left(\frac{25}{2}+\frac{0,8 \cdot 1,0}{2}\right) \\
& =6368,5 \mathrm{~cm}^{4} \\
& I_{z y}=\frac{25 \cdot(1,0 \cdot 0,8)^{3}}{12}+25 \cdot 1,0 \cdot 0,8 \cdot\left(6,31-\frac{1,0 \cdot 0,8}{2}\right)^{2}+\frac{1,0 \cdot 0,8 \cdot 20^{3}}{6} \\
& +2 \cdot 1,0 \cdot 0,8 \cdot 20 \cdot\left(\frac{20}{2}-6,31\right)^{2}=2202,01 \mathrm{~cm}^{4}
\end{aligned}
$$

Then the strength checks of the weld will be as follows:

- of the weld metal:
$\sigma_{f}=\frac{510000}{4388,31+1561,086} \sqrt{13,3^{2}+13,69^{2}}=1636,178 \mathrm{kN} / \mathrm{cm}^{2}<2000 \mathrm{kN} / \mathrm{cm}^{2}$
- of the metal of the fusion border:
$\sigma_{f}=\frac{510000}{6368,5+2202,01} \sqrt{13,3^{2}+13,69^{2}}=1135,787 \mathrm{kN} / \mathrm{cm}^{2}<1665 \mathrm{kN} / \mathrm{cm}^{2}$.

Analysis of an Overlapping Welded Connection of an Element in Tension
Objective: Check the mode for calculating welded connections.

Task: Check the overlapping fillet welded connection of an element in tension.
References: Steel Structures. In 3 v. - V. 1. Elements of Steel Structures/ Gorev V.V., Uvarov B.Yu., Filippov V.V. and others - M.: High school, 2004. p. 158-159.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data:

$R_{\text {un }}=400 \mathrm{MPa}$
$t=10 \mathrm{~mm}$
$h=200 \mathrm{~mm}$
$N=540 \mathrm{kN}$
$k_{\mathrm{f}}=8 \mathrm{~mm}$
$R_{\mathrm{wf}}=205 \mathrm{MPa}$
$l=15 \mathrm{~cm}$

Steel C285
Thickness of the plate
Height of the plate
Longitudinal force
Weld leg
Manual welding with E46 electrodes
Lap length

Initial data file:

1.9.sav; report - Kristall1.9.doc

KRISTALL initial data:
Steel: C285

Importance factor	1
Service factor	1
Group of structures according to the table 50^{*} of SNiP II-23-81*	1

Properties of welding materials:	
Characteristic resistance of the weld metal based on the ultimate strength, $\mathrm{R}_{\text {wun }}$	$450 \mathrm{~N} / \mathrm{mm}^{2}$
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$200 \mathrm{~N} / \mathrm{mm}^{2}$
Type of welding	Manual
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld leg $=8 \mathrm{~mm}$ $\mathrm{~b}=150 \mathrm{~mm}$ $\mathrm{~h}=200 \mathrm{~mm}$ $\mathrm{t}=10 \mathrm{~mm}$ $t_{f}=12 \mathrm{~mm}$

Internal forces and moments:

$\mathrm{N}=540 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kNm}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$

Checked according to SNiP	Check	Utilization factor
Sec.11.2 Formula (120)	of the weld metal	0.964
Sec.11.2 Formula (121)	of the metal of the fusion border	0.789

Comparison of solutions:

Check	of the weld metal
Source	$161 / 11,5 / 14=1$
KRISTALL	0,964
Deviation, \%	3,6

Comments:

The slight difference in the results is explained by the difference in the value of the design resistances $R_{\mathrm{wf}}=205 \mathrm{MPa}$ (source) and $R_{\mathrm{wf}}=200 \mathrm{MPa}$ (code and KRISTALL).

Analysis of a Welded Connection between a Bar in Tension from Two Angles and a Gusset Plate

Objective: Check the mode for calculating welded connections.

Task: Check the fillet welded connection between a bar in tension from two angles 75×8 and a gusset plate.

References: Steel Structures. In 3 v. - V. 1. Elements of Steel Structures/ Gorev V.V., Uvarov B.Yu., Filippov V.V. and others - M.: High school, 2004. p. 159-160.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6163:2010, DBN B.2.6-198:2014.

Initial data:

$\mathrm{t}=10 \mathrm{~mm}$
$N=425 \mathrm{kN}$
$R_{\text {un }}=380 \mathrm{MPa}$
$R_{\mathrm{wf}}=220 \mathrm{MPa}$
$k_{\mathrm{fl}}=6 \mathrm{~mm}$
$k_{\mathrm{f} 2}=6 \mathrm{~mm}$
Section
$l_{\mathrm{w} 1}=175 \mathrm{~mm}$
$l_{\mathrm{w} 2}=80 \mathrm{~mm}$
thickness of the gusset plate
Longitudinal force
Steel C245
CO 2 semiautomatic welding with a $\mathrm{Sv}-08 \mathrm{G} 2 \mathrm{~S}$ wire,
$\mathrm{d}=1,2 \mathrm{~mm}$
Weld at connected leg
Weld at free leg
Angle 75x8 mm
weld length along the free leg
weld length along the connected leg

Initial data file:

1.10.sav; report - Kristall1.10.doc

KRISTALL initial data:
Steel: C245

Importance factor	1
Service factor	1
Group of structures according to the table 50* of SNiP II-23-81*	1

Properties of welding materials:

Characteristic resistance of the weld metal based on the
$490 \mathrm{~N} / \mathrm{mm}^{2}$ ultimate strength, $\mathrm{R}_{\text {wun }}$

Properties of welding materials:	
Design resistance of the fillet welds for shear in the weld metal, R_{wf}	$215 \mathrm{~N} / \mathrm{mm}^{2}$
Type of welding	Automatic and semiautomatic, diameter of the electrode wire not less than $1.4-2.0 \mathrm{~mm}$
Position of weld	Flat
Climatic region	with temperature $\mathrm{t}>-40^{\circ} \mathrm{C}$

Type:	Parameters:
	Weld at free leg $=6 \mathrm{~mm}$ Weld at connected leg $=6 \mathrm{~mm}$ $\mathrm{~b}=175 \mathrm{~mm}$ $\varphi=51.71$ degrees $\mathrm{t}=10 \mathrm{~mm}$

Internal forces:

$\mathrm{N}=425 \mathrm{kN}$

Checked according to SNiP	Check	Utilization factor
Sec.11.2 Formula (120)	of the weld metal	$\mathbf{1 . 0 1 8}$
Sec.11.2 Formula (121)	of the metal of the fusion border	0.921

Comparison of solutions:

Check	of the weld metal along the free leg
Source	$7,9 \mathrm{~cm} / 8 \mathrm{~cm}=0,9875$
	$17,2 \mathrm{~cm} / 17,5 \mathrm{~cm}=0,9829$
KRISTALL	1,018
Deviation, $\%$	3,0
Refined manual calculation (see comments)	$0,7133 \times 425 /(2 \times 0,7 \times 0,6 \times 16,5 \mathrm{~cm} \times 21,50)=1,017$
Deviation, $\%$	0,1

Comments

The difference in the results is due to the difference in the assumed values of the design resistance $R_{\mathrm{wf}}=220 \mathrm{MPa}$ (book) and $R_{\mathrm{wf}}=215 \mathrm{MPa}$ (design codes and KRISTALL). Moreover, the distribution of the external longitudinal force between the welds along the toe and heel of the angle is not specified precisely in the verification example, i.e. the longitudinal force in the weld along the heel is given as 70% of the external longitudinal force, and that along the toe is given as 30% of the force. The exact value of the longitudinal force acting in the welds along the heel is calculated as:

$$
\left(b_{\text {angle }}-y_{0}\right) / b_{\text {angle }} \times N=0,7133 \times N,
$$

where $b_{\text {angle }}$ - angle leg width, y_{0} - length of a perpendicular dropped from the center of mass of the angle to the respective external leg face.

BOLTED CONNECTIONS

Analysis of an Overlapping Bolted Connection of Steel Sheets with Ordinary Bolts

Objective: Check the mode for calculating bolted connections
Task: Check an overlapping connection of $500 \times 12 \mathrm{~mm}$ sheets with ordinary bolts from steel grade C245 for a shear force.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 165.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

2.1.sav; report - Kristall2.1.doc

Initial data from the source:

$N=1000 \mathrm{kN}$
$R_{\mathrm{bp}}=450 \mathrm{MPa}$
$R_{\mathrm{bs}}=200 \mathrm{MPa}$
$\gamma_{\mathrm{c}}=1$
$\gamma_{\mathrm{b}}=0,9$

Shear force;
Steel grade C245;
Thickness of plates: two external - 8 mm , internal - 12 mm ;
Bolts of 5.8 strength class and C accuracy class;
Diameter of bolts 20 mm , diameter of holes 23 mm ;
Service factor of the structure;
Service factor of the bolted connection.

KRISTALL initial data:
Steel: C245
Group of structures according to Annex C of SP 16.13330.2011 2

Importance factor	1
Service factor	1
Service factor of members to be joined	1
Design shear strength of bolts R_{bs}	$20897,044 \mathrm{~T} / \mathrm{m}^{2}$
Design bearing strength of bolt elements R_{bp}	$49541,284 \mathrm{~T} / \mathrm{m}^{2}$

Type:	Bolts:	Parameters:
	Diameter of bolts 20 mm Diameter of holes 23 mm 	$\mathrm{m}=5$ $\mathrm{n}=1$

Internal forces and moments:

$\mathrm{N}=101,937 \mathrm{~T}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{~T} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{~T}$

Manual calculation (SP 16.13330.2011):

1. Design shear resistance of the bolts was calculated as follows
$R_{b s}=0.41 R_{b u n}=0.41 \times 500=205 \mathrm{MPa}$ (see table 5).
2. Design bearing resistance of the bolts was calculated as follows
$R_{b p}=1.35 R_{u}=1.35 \times 360=486 \mathrm{MPa}$ (see table 5).
3. Shear strength of the bolts was calculated according to the following formula:

$$
N_{b s}=R_{b s} A_{b} n_{s} \gamma_{b} \gamma_{c}=205 \times 10^{3} \times 3,14 \times 10^{-4} \times 2 \times 1,0 \times 0,9=115,866 \mathrm{kN} \text {. }
$$

4. Bearing strength of the bolts was calculated according to the following formula:

$$
N_{b p}=R_{b p} D\left(\sum_{i} t_{i}\right)_{\min } \quad \gamma_{b} \gamma_{c}=486 \times 10^{3} \times 20 \times 12 \times 10^{-6} \times 1,0 \times 0.9=104.976 \mathrm{kN} .
$$

Manual calculation (SNiP II-23-81*):

1. Design shear resistance of the bolts was calculated as follows $R_{b s}=0,4 R_{b u n}=0,4 \times 500=200 \mathrm{MPa}$ (see table 5^{*}).
2. Design bearing resistance of the bolts was taken as (see table 5^{*}):

$$
R_{b p}=\left(0,6+340 \frac{R_{u n}}{E}\right) R_{u n}=\left(0,6+340 \cdot \frac{370}{2,06 \cdot 10^{5}}\right) \cdot 370=447,95 \mathrm{MPa} .
$$

3. Shear strength of the bolts was calculated according to the following formula:

$$
N_{b s}=R_{b s} A_{b} n_{s} \gamma_{b} \gamma_{c}=200 \times 10^{3} \times 3,14 \times 10^{-4} \times 2 \times 1,0 \times 0,9=113,04 \mathrm{kN} .
$$

4. Bearing strength of the bolts was calculated according to the following formula:

$$
N_{b p}=R_{b p} D\left(\sum_{i} t_{i}\right)_{\min } \quad \gamma_{b} \gamma_{c}=447,95 \times 10^{3} \times 20 \times 12 \times 10^{-6} \times 1,0 \times 0,9=96,7575 \mathrm{kN} .
$$

Comparison of solutions:

Factor	Codes	Shear strength	Bearing strength
Manual calculation	SP 16.13330 .2011	$1000 /\left(12^{*} 115,866\right)=0,719$	$1000 /\left(12^{*} 104,976\right)=0,794$
KRISTALL	SP 16.13330 .2011	0,719	0,794
Deviation from the manual calculation, $\%$		0,0	0,0
Manual calculation	SNiP II-23-81*	$1000 /\left(12^{*} 113,04\right)=0,737$	$1000 /(12 * 96,7575)=0,861$
KRISTALL	SNiP II-23-81*	0,737	0,865
Deviation from the manual calculation, $\%$		0,0	0,5
Source	SNiP II-23-81*	0,737	0,857

Analysis of an Overlapping Bolted Connection of Steel Sheets with Ordinary Bolts
Objective: Check the mode for calculating bolted connections

Task: Check an overlapping connection of $300 \times 14 \mathrm{~mm}$ sheets with ordinary bolts from steel grade C275 for a shear force.

Source: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 100.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

2.5.sav; report - Kristall2.5.doc

Initial data:

$N=800 \mathrm{kN}$
$R_{\mathrm{bp}}=450 \mathrm{MPa}$,
$R_{\mathrm{bs}}=190 \mathrm{MPa}$,
$\gamma_{\mathrm{c}}=1,1$
$\gamma_{\mathrm{b}}=0,9$

Shear force;
Steel grade C275;
Thickness of the gusset plate 8 mm , middle plate 14 mm ;
Bolts of 5.6 strength class and C accuracy class;
Diameter of bolts 20 mm , diameter of holes 22 mm ;
Service factor;
Service factor of the bolted connection.

KRISTALL parameters:
Steel: C275
Group of structures according to the table 50* of SNiP II-23-81* 3

Importance factor	1
Service factor	1
Service factor of members to be joined	1
Product of the joint service factor $\left(\mathrm{y}_{\mathrm{b}}\right)$ and the service factor of members to be joined $\left(\mathrm{y}_{\mathrm{c}}\right)$	1
Design shear strength of bolts R_{bs}	$190 \mathrm{~N} / \mathrm{mm}^{2}$

Design bearing strength of bolt elements R_{bp}	$459.139 \mathrm{~N} / \mathrm{mm}^{2}$

Internal forces and moments:

$\mathrm{N}=800 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN} \mathrm{m}_{\mathrm{m}}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$

Manual calculation (SNiP II-23-81*):

1. Design shear resistance of the bolts was calculated as follows
$R_{b s}=0,38 R_{b u n}=0,38 \times 500=190 \mathrm{MPa}$ (see table 5^{*}).
2. Design bearing resistance of the bolts was calculated as follows (see table 5^{*}):

$$
R_{b p}=\left(0,6+340 \frac{R_{u n}}{E}\right) R_{u n}=\left(0,6+340 \cdot \frac{370}{2,06 \cdot 10^{5}}\right) \cdot 370=447,95 \mathrm{MPa} .
$$

3. Shear strength of the bolts was calculated according to the following formula:

$$
N_{b s}=R_{b s} A_{b} n_{s} \gamma_{b} \gamma_{c}=190 \times 10^{3} \times 3,14 \times 10^{-4} \times 2 \times 0,9 \times 1,1=118,127 \mathrm{kN} \text {. }
$$

4. Bearing strength of the bolts was calculated according to the following formula:

$$
N_{b p}=R_{b p} D\left(\sum_{i} t_{i}\right)_{\min } \quad \gamma_{b} \gamma_{c}=447,95 \times 10^{3} \times 20 \times 14 \times 10^{-6} \times 0,9 \times 1,1=124,172 \mathrm{kN} \text {. }
$$

Comparison of solutions:

Factor	Manual calculation	KRISTALL	Deviation from the manual calculation, \%
shearing of bolts	$800 / 8 / 118,127=0,8465$	0,846	0,06
bearing	$800 / 8 / 124,172=0,805$	0,809	0,5

Analysis of a Bolted Connection between an Angle and a Gusset Plate with Ordinary Bolts
Objective: Check the mode for calculating bolted connections

Task: Check a bolted connection between two 90 x 9 mm angles and a 20 mm thick gusset plate with bolts of 8.8 strength class for a shear force of 400 kN .

Source: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 102.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

2.7.sav; report - Kristall2.7.doc

Initial data:

$N=400 \mathrm{kN}$
$a=100 \mathrm{~mm}$
$\gamma_{\mathrm{b}}=0,9$

Shear force;
Distance between bolts;
Service factor of the bolted connection;
Diameter of bolts 20 mm , diameter of holes 22 mm .

KRISTALL parameters:

Steel: C255

Group of structures according to the table 50* of SNiP II-23-81* 3

Importance factor	1
Service factor	1
Service factor of members to be joined	1
Product of the joint service factor $\left(\mathrm{y}_{\mathrm{b}}\right)$ and the service factor of members to be joined $\left(\mathrm{y}_{\mathrm{c}}\right)$	1
Design shear strength of bolts R_{bs}	$320 \mathrm{~N} / \mathrm{mm}^{2}$
Design bearing strength of bolt elements R_{bp}	$440.64 \mathrm{~N} / \mathrm{mm}^{2}$

Type:	Bolts:	Parameters:
Attachment of double angles	$\begin{array}{l}\text { Diameter of bolts } 20 \mathrm{~mm} \\ \text { Clearance 2 } \mathrm{mm}\end{array}$	$\begin{array}{l}\mathrm{m}=2 \\ \mathrm{a}=100 \mathrm{~mm} \\ \text { diameter of holes } 22 \mathrm{~mm} \\ \text { Class of bolts } 8.8\end{array}$
Accuracy class B or C		
$\mathrm{r}=49 \mathrm{~mm}$		
$\mathrm{t}_{0}=20 \mathrm{~mm}$		

Internal forces:

$\mathrm{N}=400 \mathrm{kN}$

Manual calculation (SNiP II-23-81*):

1. Design shear resistance of the bolts was calculated as follows $R_{b s}=0,40 R_{\text {bun }}=0,40 \times 800=320 \mathrm{MPa}$ (see table 5^{*}).
2. Design bearing resistance of the bolts was taken as (see table 5^{*}):

- when a 20 mm thick gusset plate is in bearing, $R_{u n}=370 \mathrm{MPa}$:

$$
R_{b p}=\left(0,6+340 \frac{R_{u n}}{E}\right) R_{u n}=\left(0,6+340 \cdot \frac{370}{2,06 \cdot 10^{5}}\right) \cdot 370=447,95 \mathrm{MPa} ;
$$

- when a 9 mm thick angle is in bearing, $R_{u n}=380 \mathrm{MPa}$:

$$
R_{b p}=\left(0,6+340 \frac{R_{u n}}{E}\right) R_{u n}=\left(0,6+340 \cdot \frac{380}{2,06 \cdot 10^{5}}\right) \cdot 380=466,33 \mathrm{MPa} .
$$

3. Shear strength of the bolts was calculated according to the following formula:

$$
N_{b s}=R_{b s} A_{b} n_{s} \gamma_{b} \gamma_{c}=320 \times 10^{3} \times 3,14 \times 10^{-4} \times 2 \times 1,0 \times 0,9=180,864 \mathrm{kN} .
$$

4. Bearing strength of the bolts was calculated according to the following formula:

- when a 20 mm thick gusset plate is in bearing, $R_{b p}=447,95 \mathrm{MPa}$:

$$
N_{b p}=R_{b p} D\left(\sum_{i} t_{i}\right)_{\min } \quad \gamma_{b} \gamma_{c}=447,95 \times 10^{3} \times 20 \times 20 \times 10^{-6} \times 1,0 \times 0,9=161,262 \mathrm{kN} ;
$$

- when a 9 mm thick angle is in bearing, $R_{b p}=466,33 \mathrm{MPa}$:

$$
N_{b p}=R_{b p} D\left(\sum_{i} t_{i}\right)_{\min } \quad \gamma_{b} \gamma_{c}=466,33 \times 10^{3} \times 20 \times 18 \times 10^{-6} \times 1,0 \times 0,9=151,091 \mathrm{kN} .
$$

5. Design force per one bolt of the connection calculated taking into account the eccentricity $e=2,35 \mathrm{~mm}$:

$$
N_{\text {red }}=\sqrt{\left(\frac{N}{3}\right)^{2}+\left(\frac{e N}{2 a}\right)^{2}}=\sqrt{\left(\frac{400}{3}\right)^{2}+\left(\frac{400 \cdot 2,35}{2 \cdot 100}\right)^{2}}=133,416 \mathrm{kN},
$$

where a-bolt spacing in the connection.
6. Cross-sectional area of one angle weakened by the holes:

$$
A_{\text {net }}=A-t d_{0}=15,6-0,9 \cdot 2,2=13,62 \mathrm{~cm}^{2} .
$$

Comparison of solutions:

Factor	Shear strength	Bearing strength	Strength of the weakened section
Manual	$133,416 / 180,864=0,737$	$133,416 / 151,091=0,883$	$400 / 2 / 13,62 / 25=0,587$

Verification Examples

calculation				
KRISTALL	0,737	0,885	0,587	
Deviation from the manual calculation, $\%$	0,0	0,2	0,0	
Source	0,737	0,857	-	

FRICTION CONNECTIONS

Analysis of an Overlapping Bolted Connection of Steel Sheets with High Strength Bolts

Objective: Check the mode for calculating friction connections
Task: Check an overlapping connection of $500 \times 12 \mathrm{~mm}$ sheets with high strength bolts from steel grade C245 for a shear force.

References: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 165.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

2.2.sav; report - Kristall2.1.doc

Initial data from the source:

$N=1000 \mathrm{kN}$
$R_{\mathrm{y}}=240 \mathrm{MPa}$
$R_{\text {bun }}=110 \mathrm{kN} / \mathrm{cm}^{2}$
$\gamma_{\mathrm{c}}=1$
$\gamma_{b}=0,9$
$\mu=0,42$
$\gamma_{\mathrm{h}}=1,12$

Shear force;
Steel grade C245;
Thickness of plates: two external - 8 mm , internal - 12 mm ;
High strength bolts from 40 H "select" steel;
Diameter of bolts 20 mm , diameter of holes 23 mm ;
Service factor ;
Service factor of the friction connection;
Method of cleaning the surfaces - flame treatment, without preservation;
Coefficient of friction;
Tightening control - by the nut rotation angle.

KRISTALL parameters:

Steel: C245

Importance factor	1
Service factor	1
Service factor of members to be joined	1

Diameter of bolts 20 mm
Steel: 40 H "select"
Clearance 3 mm
Method of cleaning the surfaces to be joined: Flame treatment of two surfaces, without preservation

Type:	Parameters:
	$\begin{aligned} & \mathrm{m}=1 \\ & \mathrm{n}=3 \\ & \mathrm{a}=60 \mathrm{~mm} \\ & \mathrm{~b}=60 \mathrm{~mm} \\ & \mathrm{c}=50 \mathrm{~mm} \\ & \mathrm{t}=8 \mathrm{~mm} \\ & \mathrm{t}_{0}=12 \mathrm{~mm} \end{aligned}$

Internal forces and moments:

$\mathrm{N}=1000 \mathrm{kN}$
$\mathrm{M}=0 \mathrm{kNm}$
$\mathrm{Q}=0 \mathrm{kN}$

Manual calculation:

1. Design tension resistance of high strength bolts was calculated according to the following formula:

$$
R_{b h}=0.7 R_{b u n}=0.7 \times 1100=770 \mathrm{~N} / \mathrm{mm}^{2}=77,0 \mathrm{kN} / \mathrm{cm}^{2} .
$$

2. Design force which can be resisted by each plane of friction:

$$
Q_{b h}=R_{b h} A_{b n} \mu / \gamma_{h}=77 \times 2.45 \times 0.42 / 1,02=77,68 \mathrm{kN},
$$

where $\gamma_{h}=1,02$ for flame treatment without preservation, when the difference between the nominal diameters of the holes and of the bolts is 3 mm , and the bolt tightening is controlled by the nut rotation angle.
3. Required number of bolts:

$$
n \geq \frac{N}{Q_{b h} \kappa \gamma_{b} \gamma_{c}}=\frac{1000}{77.68 \times 2 \times 0.9 \times 1.0}=7,152 .
$$

Comparison of solutions:

Factor	Friction force limit
Manual calculation	$7,152 / 8=0,894$
KRISTALL	0,894
Deviation from the manual calculation, $\%$	0,0
	0,893
Source	

Analysis of an Erection Joint in the Beam Chord with High Strength Bolts

Objective: Check the mode for calculating friction bolted connections

Task: Check the erection joint of the chords of a compound I-beam with high strength bolts.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 216.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

2.3.sav; report - Kristall2.3.doc

Initial data from the source:
$N=3003 \mathrm{kN}$
$R_{\mathrm{y}}=240 \mathrm{MPa}$
$R_{\text {bun }}=110 \mathrm{kN} / \mathrm{cm} 2$
$\gamma_{\mathrm{c}}=1$
$\gamma_{b}=1$
$\mu=0,42$
$\gamma_{\mathrm{h}}=1,12$

Shear force
Steel grade C245;
Beam chord section: $530 \times 25 \mathrm{~mm}$;
High strength bolts from 40H "select" steel;
Diameter of bolts 24 mm , diameter of holes 27 mm ;
Service factor ;
Service factor of the friction connection;
Method of cleaning the surfaces - flame treatment, without preservation;
Coefficient of friction;
Tightening control - by the torque.

KRISTALL parameters:

Steel: C245

Importance factor	1
Service factor	1
Service factor of members to be joined	1

Diameter of bolts 24 mm
Steel: 40H "select"
Clearance 3 mm
Method of cleaning the surfaces to be joined: Flame treatment of two surfaces, without preservation

Type:	Parameters:
	$\begin{aligned} & \mathrm{m}=3 \\ & \mathrm{n}=3 \\ & \mathrm{a}=70 \mathrm{~mm} \\ & \mathrm{~b}=125 \mathrm{~mm} \\ & \mathrm{c}=50 \mathrm{~mm} \\ & \mathrm{t}=16 \mathrm{~mm} \\ & \mathrm{t}_{0}=24 \mathrm{~mm} \end{aligned}$

Internal forces and moments:

$\mathrm{N}=3003 \mathrm{kN}$
$\mathrm{M}=0 \mathrm{kNm}$
$\mathrm{Q}=0 \mathrm{kN}$

Manual calculation:

1. Design tension resistance of high strength bolts was calculated according to the following formula:

$$
R_{b h}=0.7 R_{b u n}=0,7 \times 1100=770 \mathrm{~N} / \mathrm{mm}^{2}=77,0 \mathrm{kN} / \mathrm{cm}^{2} .
$$

2. Design force which can be resisted by each plane of friction:

$$
Q_{b h}=R_{b h} A_{b n} \mu / \gamma_{h}=77,0 \times 3.53 \times 0.42 / 1.12=101,93 \mathrm{kN} .
$$

3. Required number of bolts:

$$
n \geq \frac{N}{Q_{b h} \kappa \gamma_{b} \gamma_{c}}=\frac{3003}{101,93 \times 2 \times 1,0 \times 1,0}=14,731 .
$$

Comparison of solutions:

Factor	Friction force limit
Manual calculation	$14,731 / 16=0,921$
KRISTALL	0,923
Deviation from the manual calculation, $\%$	0,2
	0,925
Source	

Analysis of an Erection Joint in the Beam Web with High Strength Bolts

Objective: Check the mode for calculating friction bolted connections

Task: Check the erection joint of the compound I-beam web with high strength bolts.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 216.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

2.4.sav; report - Kristall2.4.doc

Initial data from the source:
$M=1216 \mathrm{kNm}$
Bending moment acting in the web plane;
$R_{\mathrm{y}}=240 \mathrm{MPa}$,
$R_{\text {bun }}=110 \mathrm{kN} / \mathrm{cm} 2$,
$\gamma_{\mathrm{c}}=1$
Steel C245;
Thickness of the beam web 8 mm ;
High strength bolts from 40 H "select" steel;
Diameter of bolts 24 mm , diameter of holes 27 mm ;
Service factor;
Service factor of the friction connection;
Method of cleaning the surfaces - flame treatment, without preservation;
$\mu=0,42$
Coefficient of friction;
Tightening control - by the torque.

KRISTALL parameters:

Steel: C245

Importance factor	1
Service factor	1
Service factor of members to be joined	1

Diameter of bolts 24 mm
Steel: 40 H "select"
Clearance 3 mm
Method of cleaning the surfaces to be joined: Flame treatment of two surfaces, without preservation

Type	Parameters
	$\begin{aligned} & \mathrm{m}=1 \\ & \mathrm{n}=9 \\ & \mathrm{a}=70 \mathrm{~mm} \\ & \mathrm{~b}=170 \mathrm{~mm} \\ & \mathrm{c}=50 \mathrm{~mm} \\ & \mathrm{t}=16 \mathrm{~mm} \\ & \mathrm{t}_{0}=16 \mathrm{~mm} \end{aligned}$

Internal forces and moments:

$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}=1216 \mathrm{kNm}$
$\mathrm{Q}=0 \mathrm{kN}$

Manual calculation:

1. Design tension resistance of high strength bolts was calculated according to the following formula:

$$
R_{b h}=0.7 R_{b u n}=0.7 \times 1100=770 \mathrm{~N} / \mathrm{mm}^{2}=77,0 \mathrm{kN} / \mathrm{cm}^{2} .
$$

2. Design force which can be resisted by each plane of friction:

$$
Q_{b h}=\kappa R_{b h} A_{b n} \mu / \gamma_{h}=2 \times 77,0 \times 3,53 \times 0.42 / 1,12=203,8575 \mathrm{kN} .
$$

3. Force on the end bolt:

$$
N_{\max }=\frac{M \cdot y_{\max }}{2 \sum_{i} y_{i}^{2}}=\frac{1216 \cdot 1.53}{2\left((1 \cdot 0.17)^{2}+(3 \cdot 0.17)^{2}+(5 \cdot 0.17)^{2}+(7 \cdot 0.17)^{2}+(9 \cdot 0.17)^{2}\right)}=195.080 \mathrm{kN} .
$$

Comparison of solutions:

Factor	Friction force limit
Manual calculation	$195,080 / 203,8575=0,957$
KRISTALL	0,956
Deviation from the manual calculation, $\%$	0,1
Source	0,96

Comments:

In the considered example the vertical distance between bolts is taken as 170 mm , which exceeds the limiting distance $12 t=12 * 8 \mathrm{~mm}=96 \mathrm{~mm}$, calculated according to the codes. To perform the computer-aided calculation in KRISTALL the thickness values of the web and the gusset plates were specified as $t=t_{0}=16 \mathrm{~mm}$, which does not affect the result of the calculation.

Analysis of an Overlapping Bolted Connection of Steel Sheets with High Strength Bolts

Objective: Check the mode for calculating bolted connections

Task: Check an overlapping connection of $300 \times 14 \mathrm{~mm}$ sheets with high strength bolts from steel grade C275 for a shear force.

Source: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 101.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

2.6.sav; report - Kristall2.6.doc

Initial data:

$N=800 \mathrm{kN}$
$R_{\text {bh }}=945 \mathrm{MPa}$
$\gamma_{\mathrm{c}}=1 ; \gamma_{\mathrm{b}}=0,9$
$\mu=0,35$
$\gamma_{\mathrm{h}}=1,06$

Shear force;
Bolts from steel grade 30H3MF;
Diameter of bolts 20 mm , diameter of holes 23 mm ;
Service factors;
Method of cleaning the surfaces - steel brush;
Tightening control - by the nut rotation angle.

KRISTALL parameters:

Steel: C275

Importance factor	1
Service factor	1
Service factor of members to be joined	1

Diameter of bolts 20 mm
Steel: 30H3MF
Clearance 3 mm
Method of cleaning the surfaces to be joined: Steel brush, two surfaces without preservation

Internal forces and moments:
$\mathrm{N}=800 \mathrm{kN}$
$\mathrm{M}=0 \mathrm{kNm}$
$\mathrm{Q}=0 \mathrm{kN}$

Manual calculation:

1. Design tension resistance of high strength bolts was calculated according to the following formula:

$$
R_{b h}=0.7 R_{b u n}=0,7 \times 1350=945 \mathrm{~N} / \mathrm{mm}^{2}=94,5 \mathrm{kN} / \mathrm{cm}^{2} .
$$

2. Design force which can be resisted by each plane of friction:

$$
Q_{b h}=R_{b h} A_{b n} \mu / \gamma_{h}=94,5 \times 2,45 \times 0,35 / 1,06=76,447 \mathrm{kN} .
$$

3. Required number of bolts:

$$
n \geq \frac{N}{Q_{b h} K \gamma_{b} \gamma_{c}}=\frac{800}{76,447 \times 2 \times 0,9 \times 1,0}=5,814 .
$$

Comparison of solutions:

Factor	Manual calculation	KRISTALL	Deviation from the manual calculation, $\%$
Friction force limit	$5,814 / 6=0,969$	0,969	0,0

ARBAT

CALCULATIONS ACCORDING TO SNIP 2.03.01-84*

Strength Analysis of a Rectangular Section

Objective: Check of the strength analysis of the section
Task: Verify the correctness of the strength analysis of the section
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 26.

Initial data file:

Example 3 Guide to SNiP.SAV
report - Arbat 3 SNiP.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$b=200 \mathrm{~mm}$
Beam section sizes
$h=800 \mathrm{~mm}$
$a=50 \mathrm{~mm}$
$A_{s}=2945 \mathrm{~mm}^{2}(6 Ø 25)$
Concrete class
Distance from the center of gravity of the reinforcement to the compressed edge of the section
Cross-sectional area of reinforcement

Class of reinforcement
B25
A-III
$\mathrm{M}=550 \mathrm{kNm}$
Bending moment in the section

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 2.03.01-84* (Russia and other CIS countries) Random eccentricity along Y according to SNiP 2.03.01-84* (Russia and other CIS countries)
Structure is statically determinate
Limit slenderness - 200

Section:

Reinforcement	Class	Service factor
Longitudinal	A-III	1
Transverse	A-I	1

Concrete:

Concrete type: Heavy-weight
Concrete class: B25
Hardening conditions: Natural
Hardening factor 1

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	0.9
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Results for combinations of loadings

	N	M_{y}	Q_{z}	M_{z}	Q_{y}	T	Safety factor for load	Factor for sustained load	Short-term	Seismic
	kN	kN*m	kN	kN*m	kN	kN*m				
1	0	550	0	0	0	0	1	1		

Comparison of solutions:

Check	strength of the section
Guide	$550 / 636,4=0,864$
ARBAT	0,859

Verification Examples
Deviation, \%
$0,6 \%$

Strength Analysis of a T-section

Objective: Check of the strength analysis of the section
Task: Verify the correctness of the strength analysis of the section
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 27-28.

Initial data file:

Example 7.SAV
report - Arbat 7 SNiP.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$b=200 \mathrm{~mm}$
Beam section sizes
$h=600 \mathrm{~mm}$
$b_{f}^{\prime}=400 \mathrm{~mm}$
$h_{f}^{\prime}=100 \mathrm{~mm}$
$a=50 \mathrm{~mm}$
$A_{s}=1964 \mathrm{~mm}^{2}(4 Ø 25)$
Concrete class
Distance from the center of gravity of the reinforcement to the compressed edge of the section Cross-sectional area of reinforcement

Class of reinforcement
B25
$\mathrm{M}=300 \mathrm{kN} * \mathrm{~m}$
Bending moment in the section

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 2.03.01-84* (Russia and other CIS countries)
Random eccentricity along Y according to SNiP 2.03.01-84* (Russia and other CIS countries)
Structure is statically determinate
Limit slenderness - 200

Section:

Reinforcement	Class	Service factor
Longitudinal	A-III	1
Transverse	A-I	1

Concrete:

Concrete type: Heavy-weight
Concrete class: B25
Hardening conditions: Natural
Hardening factor 1

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	0.9
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Results for combinations of loadings

	N	M_{y}	Q_{z}	M_{z}	Q_{y}	T	Safety factor for load	Factor for sustained load	Short-term	Seismic
	kN	$\mathrm{kN} * \mathrm{~m}$	kN	$\mathrm{kN} * \mathrm{~m}$	kN	$\mathrm{kN} * \mathrm{~m}$	for			
1	0	300	0	0	0	0	1	1		

Comparison of solutions:

Check	strength of the section
Guide	$300 / 327,1=0,917$
ARBAT	0,914
Deviation, $\%$	$0,3 \%$

Strength Analysis of a Wall Panel

Objective: Check of the strength of the wall panel
Task: Check the strength of the section
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 32-34.

Initial data file:

Example 12 SNiP.SAV
report - Arbat 12.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$l=5,8 \mathrm{~m}$	
$b \times h=340 \times 1195 \mathrm{~mm}$	Wall panel span
$q_{\text {tot }}=3,93 \mathrm{kN} / \mathrm{m}^{2}$	Wall panel section sizes
$q_{w}=0,912 \mathrm{kN} / \mathrm{m}^{2}$	Total vertical uniformly distributed load
Concrete class	Wind load
Class of reinforcement	A-III

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Member length 5.8 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 2.03.01-84* (Russia and other CIS countries)
Random eccentricity along Y according to SNiP 2.03.01-84* (Russia and other CIS countries)
Structure is statically determinate
Limit slenderness - 200

Section:

Reinforcement	Class	Service factor
Longitudinal	A-III	1
Transverse	A-I	1

Concrete:

Concrete type: Lightweight
Concrete class: B3,5
Grade by average density: D1100
Aggregate: Artificial dense
Hardening conditions: Natural
Hardening factor 1

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	1.1
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Comparison of solutions:

Check	strength of the section
Guide	$74,5 / 78,4=0,950$
ARBAT	0,953
Deviation, $\%$	$0,3 \%$

Local Compression Analysis

Objective: Check the local compression analysis of the foundation
Task: Verify the correctness of the local compression analysis
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 101-102.

Initial data file:

Example 48.SAV
report - Arbat 48.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$b=0,8 \mathrm{~m}$
Width of the foundation
$a_{1} \times a_{2}=300 \times 200 \mathrm{~mm}$
$A_{s x}=A_{s y}=7,1 \mathrm{~mm}^{2}(1 Ø 3)$
$N=1000 \mathrm{kN}$
Concrete class
Sizes of the load application area
Cross-sectional area of reinforcement
Vertical load

Class of reinforcement
B12,5
Bp-I

ARBAT initial data:

Importance factor $\gamma_{n}=1$

Load arrangement:

Local load applied to a part of length and width of an element Local edge load within a protruding part of a wall or a pier	$\begin{aligned} & \mathrm{a}=300 \mathrm{~mm} \\ & \mathrm{~b}=800 \mathrm{~mm} \\ & \mathrm{c}=200 \mathrm{~mm} \\ & \mathrm{~d}=200 \mathrm{~mm} \end{aligned}$ Number of load application areas - one

Lateral reinforcement by flat meshes:

Class of reinforcement: B500
Arrangement of meshes

| \downarrow | |
| :--- | :--- | :--- |
| | |

Meshes:

Concrete:

Concrete type: Heavy-weight
Concrete class: B12,5

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	0.9
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Comparison of solutions:

Verification Examples

Check	strength condition of local compression
Guide	$1000 / 1182=0,846$
ARBAT	0,84
Deviation, $\%$	$0,7 \%$

Slab Deflection Analysis

Objective: Check of the slab deflection analysis
Task: Verify the correctness of the deflection calculation
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 139-140.

Initial data file:

Example 57.SAV
report - Arbat 57.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$l=3,1 \mathrm{~m}$
$b \times h=1000 \times 150 \mathrm{~mm}$
$a=15 \mathrm{~mm}$
$A_{s}=393 \mathrm{~mm}^{2}(5 \emptyset 10)$
$q_{t o t}=7 \mathrm{kN} / \mathrm{m}$
$q_{l}=6 \mathrm{kN} / \mathrm{m}$

Concrete class
Class of reinforcement

Slab span
Slab section sizes
Distance from the center of gravity of the reinforcement to the compressed edge of the section
Cross-sectional area of reinforcement
Total vertical uniformly distributed load
Part of the total uniformly distributed load from permanent and long-term loads
B25
A-II

ARBAT initial data:

Importance factor $\gamma_{n}=1$
Importance factor (serviceability limit state) $=1$

Structure:

Section:

Reinforcement	Class	Service factor
Longitudinal	A-II	1
Transverse	A-I	1

Specified reinforcement:

Span	Segment	Length (m)	Reinforceme nt	Section
span 1	1	3.1	$\mathrm{~S}_{1}-5 \square 10$	

Concrete:

Concrete type: Heavy-weight
Concrete class: B25
Density of concrete $2,5 \mathrm{~T} / \mathrm{m}^{3}$

Service factor for concrete:		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	1
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Conditions of operation:

Mode of concrete humidity - Natural humidity
Humidity of environmental air - 40-75\%

Comparison of solutions:

Check	maximum deflection
Guide	$12,1 \mathrm{~mm}$
ARBAT	$13,098 \mathrm{~mm}$
Deviation, $\%$	$8,2 \%$

Comment: The difference in the results is due to the fact that approximate empirical formulas are used in the Guide.

Girder Deflection Analysis

Objective: Check of the girder deflection analysis
Task: Verify the correctness of the deflection calculation
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 140.

Initial data file:

Example 58.SAV
report - Arbat 58.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$l=4,8 \mathrm{~m}$
$b \times h=200 \times 600 \mathrm{~mm}$
$a=80 \mathrm{~mm}$
$A_{s}=2463 \mathrm{~mm}^{2}(4 Ø 28)$
$q_{t o t}=85,5 \mathrm{kN} / \mathrm{m}$
$q_{l}=64 \mathrm{kN} / \mathrm{m}$
Concrete class
Class of reinforcement

Girder span
Girder section sizes
Distance from the center of gravity of the reinforcement to the compressed edge of the section
Cross-sectional area of reinforcement
Total uniformly distributed load
Part of the total uniformly distributed load from permanent and long-term loads
B25
A-III

Deflection is limited by aesthetic requirements.

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Structure:

Section:

Reinforcement	Class	Service factor
Longitudinal	A-III	1
Transverse	A-I	1

Specified reinforcement:

Span	Segment	Length (m)	Reinforcement	Section
span 1	1	4.8	$\mathrm{~S}_{1}-4 \varnothing 28$	
				\square

Concrete:

Concrete type: Heavy-weight
Concrete class: B25
Density of concrete $2,5 \mathrm{~T} / \mathrm{m}^{3}$
Hardening conditions: In steam-curing chambers
Hardening factor 1

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	1
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Conditions of operation:

Mode of concrete humidity - Natural humidity
Humidity of environmental air-40-75\%

Comparison of solutions:

Check	maximum deflection
Guide	$19,7 \mathrm{~mm}$
ARBAT	$20,298 \mathrm{~mm}$
Deviation, $\%$	$3,4 \%$

Comment: Since the deflection is limited by aesthetic requirements, the load was taken as $q_{l}=64$ kN / m (see Sec. 1.17 of the Guide).

Tee Slab Deflection Analysis

Objective: Check of the slab deflection analysis
Task: Verify the correctness of the deflection calculation
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 140-141.

Initial data file:

Example 59.SAV
report - Arbat 59.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$l=5,7 \mathrm{~m}$
$b \times h=80 \times 300 \mathrm{~mm}$
$a=31 \mathrm{~mm}$
$A_{s}=380 \mathrm{~mm}^{2}(1 Ø 22)$
$q_{l}=8,75 \mathrm{kN} / \mathrm{m}$

Concrete class
Class of reinforcement

Slab span
Slab section sizes
Distance from the center of gravity of the reinforcement to the compressed edge of the section
Cross-sectional area of reinforcement
Permanent and long-term distributed load
B25, D1600
A-II

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Structure:

\square

Section:

Reinforcement	Class	Service factor
Longitudinal	A-II	1
Transverse	A-I	1

Specified reinforcement:

Span	Segment	Length (m)	Reinforcement	Section
span 1	1	5.7	$\mathrm{~S}_{1}-1 \varnothing 22$	

Concrete:

Concrete type: Lightweight
Concrete class: B25
Grade by average density: D1600
Aggregate: Artificial dense
Density of concrete $1.6 \mathrm{~T} / \mathrm{m}^{3}$
Hardening conditions: In steam-curing chambers
Hardening factor 1

Service factor for concrete		1
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	1
	resulting factor without $\gamma_{\mathrm{b} 2}$	1

Conditions of operation:

Mode of concrete humidity - Natural humidity
Humidity of environmental air - 40-75\%

Comparison of solutions:

Check	maximum deflection
Guide	$23,2 \mathrm{~mm}$
ARBAT	$22,905 \mathrm{~mm}$
Deviation, $\%$	$1,3 \%$

Verification Examples

Comment. The difference in the results is due to the fact that approximate empirical formulas are used in the Guide.

Analysis of Short Cantilevers

Objective: Check of the analysis of short cantilevers
Task: Verify the correctness of the analysis of short cantilevers
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 105-106.

Initial data file:

Example 49.SAV
report - Arbat 49.doc.
Compliance with the codes: SNiP 2.03.01-84*.

Initial data:

$b=400 \mathrm{~mm}$
Width of the cantilever
$h=700 \mathrm{~mm}$
$l_{l}=350 \mathrm{~mm}$
$l_{s u p, f}=300 \mathrm{~mm}$
$A_{s}=1140 \mathrm{~mm}^{2}(3 Ø 22)$
$A_{s w}=157 \mathrm{~mm}^{2}(1 Ø 10)$
$N=700 \mathrm{kN}$
Vertical load on the cantilever
Concrete class B25
Class of reinforcement
AIII

ARBAT initial data:

Importance factor $\gamma_{n}=1$
Hinge bearing of the girder on the column cantilever

Width of the column (cantilever) $\mathrm{b}=400 \mathrm{~mm}$
Length of the girder bearing area $\mathrm{L}_{2}=300 \mathrm{~mm}$
Concrete cover $\mathrm{a}_{1}=19 \mathrm{~mm}$
Width of the girder $b_{1}=400 \mathrm{~mm}$
Load on the column cantilever $\mathrm{Q}_{\mathrm{c}}=700 \mathrm{kN}$
Longitudinal reinforcement of the cantilever A-III $3 \varnothing 22$
Transverse reinforcement of the cantilever A-III $\varnothing 10$, spacing of stirrups 150 mm

Concrete:

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{\mathrm{b} 2}$	allowance for the sustained loads	0.9

Comparison of solutions:

Check	Providing strength in an oblique compressed strip between a load and a support
Guide	$700 / 717=0,976$
ARBAT	0,973
Deviation, $\%$	$0,3 \%$

Check	Load-bearing capacity of the longitudinal reinforcement
Guide	$1002 / 1140=0,879$
ARBAT	0,879
Deviation, $\%$	0%

CALCULATIONS ACCORDING TO SNIP 52-01-2003

Strength Analysis of a Section

Objective: Check of the strength analysis of the section
Task: Verify the correctness of the strength analysis of the section
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 28.

Initial data file:

Example 6 Guide to SP.SAV
report - Arbat 6 SP.doc.
Compliance with the codes: SP 52-101-2003.

Initial data:

$b \times h=300 \times 700 \mathrm{~mm}$
$a=70 \mathrm{~mm}$
$a^{\prime}=30 \mathrm{~mm}$
$A_{s}=4826 \mathrm{~mm}^{2}(6 \varnothing 32)$
$A_{s}^{\prime}=339 \mathrm{~mm}^{2}(3 \varnothing 12)$
Section sizes
Distance to the c.o.g. of tensile reinforcement
Distance to the c.o.g. of compressed reinforcement
Cross-sectional area of tensile reinforcement
Cross-sectional area of compressed reinforcement
$M=630 \mathrm{kNm} \quad$ Bending moment
Concrete class B20
Class of reinforcement A400

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Member length 3 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 52-01-2003 (Russia)
Random eccentricity along Y according to SNiP 52-01-2003 (Russia)
Structure is statically determinate
Limit slenderness - 200
Plane of loading

Section:

$\mathrm{b}=300 \mathrm{~mm}$
$\mathrm{h}=700 \mathrm{~mm}$
$\mathrm{a}_{1}=70 \mathrm{~mm}$
$\mathrm{a}_{2}=30 \mathrm{~mm}$

Areas of reinforcement
$\mathrm{AS}_{1}=48.258 \mathrm{~cm}^{2}$
$\mathrm{AS}_{2}=3.393 \mathrm{~cm}^{2}$

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A240	1

Concrete:

Concrete type: Heavy-weight
Concrete class: B20

Service factor for concrete		1
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	

Humidity of environmental air - 40-75\%

Comparison of solutions:

Check	Strength of the section
Guide	$630 / 606,2=1,039$
ARBAT	1,039
Deviation, $\%$	0%

Calculation of a Rib of a TT-shaped Floor Slab for Load-bearing Capacity under Lateral Forces

Objective: Check of the calculation of the resistance of reinforced concrete sections.
Task: Verify the correctness of the strength analysis of oblique sections and a concrete strip between the oblique sections.

References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 56-57.

Initial data file:

when the lateral force is $Q=62 \mathrm{kN}$ — Example 12.1.SAV
report - Arbat 12.1.doc.
when the lateral force is $Q=58,4 \mathrm{kN}$ - Example 12.2.SAV
report - Arbat 12.2.doc.
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data:

$b \times h=85 \times 350 \mathrm{~mm}$	Slab rib section sizes $a=35 \mathrm{~mm}$ Distance from the center of gravity of the longitudinal reinforcement to the fiber of the section under the greatest tension
$d=8 \mathrm{~mm}$	Diameter of transverse reinforcement $s_{w}=100 \mathrm{~mm}$ $q=21,9 \mathrm{kN} / \mathrm{m}$
Spacing of transverse reinforcement	
$q_{v}=18 \mathrm{kN} / \mathrm{m}$	Load on the rib
$Q_{\max }=62 \mathrm{kN}$	Temporary equivalent load
Lateral force on the support	

Concrete class B15
Class of reinforcement A400
ARBAT initial data when the lateral force is $Q=62 k N$:
Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 52-01-2003 (Russia)
Random eccentricity along Y according to SNiP 52-01-2003 (Russia)
Structure is statically indeterminate
Limit slenderness - 200

Section:

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A400	1

Concrete:

Concrete type: Heavy-weight
Concrete class: B15

Service factor for concrete		
$\gamma_{\mathrm{b} 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{\mathrm{b} 3}$	allowance for the vertical position during concreting	1
$\gamma_{\mathrm{b} 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance:

No cracks

Forces:

$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=62 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{kN}$
$\mathrm{T}=0 \mathrm{kN} * \mathrm{~m}$
Factor for sustained load 1

ARBAT initial data when the lateral force is $Q=58,4 \mathrm{kN}$:

Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 52-01-2003 (Russia)

Random eccentricity along Y according to SNiP 52-01-2003 (Russia)
Structure is statically indeterminate
Limit slenderness - 200

Section:

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A400	1

Concrete:

Concrete type: Heavy-weight
Concrete class: B15

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air-40-75\%

Crack resistance:

No cracks

Forces:

$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN}{ }^{*} \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=58,4 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{kN}$
$\mathrm{T}=0 \mathrm{kN} * \mathrm{~m}$
Factor for sustained load 1

Comparison of solutions:

Check	strength in a concrete strip between oblique sections	strength for an oblique section
Guide	$62 / 68,276=0,908$	$58,4 / 63,97=0,913$
ARBAT	0,908	0,912
Deviation, $\%$	-	0,11

Comments:

1. The strength check of oblique sections is performed by comparing a sum of lateral forces resisted by concrete and stirrups in the oblique section $\left(Q_{b}+Q_{\text {sw }}\right)$, with a lateral force Q in the oblique section which is determined as a projection on the normal to the longitudinal axis of the element of the resultant of all external forces acting on the element on one side of the considered oblique section ($Q=Q_{\text {max }}-q_{1} c$). In order to check the strength of the oblique section the value of the lateral force in the normal section is taken as $Q=58,4 \mathrm{kN}$ according to the Guide.
2. The member length has to be specified in ARBAT. Since it is not defined in the problem, it is taken as 1 m .
3. The data on the longitudinal reinforcement has to be specified in ARBAT. Since it is not defined in the problem, the following reinforcement is used: class A400, rebars $2 Ø 6$. Respectively, the value of the concrete cover is $a_{1}=a_{2}=a-d / 2=35-6 / 2=32 \mathrm{~mm}$.

Calculation of a Simply Supported Floor Beam for Load-bearing Capacity under Lateral Forces

Objective: Check of the calculation of the resistance of reinforced concrete sections.
Task: Verify the correctness of the strength analysis of oblique sections.
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 57-58.

Initial data file:

Example 13.SAV
report - Arbat 13.doc.
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data:

$b \times h=200 \times 400 \mathrm{~mm}$
$h_{0}=370 \mathrm{~mm}$
$d=8 \mathrm{~mm}$
$s_{w}=150 \mathrm{~mm}$
$q_{v}=36 \mathrm{kN} / \mathrm{m}$
$q_{g}=14 \mathrm{kN} / \mathrm{m}$
$Q_{\text {max }}=137,5 \mathrm{kN}$
Concrete class B25
Class of reinforcement A240

Beam section sizes
Effective height of the beam section
Diameter of transverse reinforcement (two-leg stirrups)
Spacing of transverse reinforcement
Temporary equivalent load
Permanent load
Lateral force on the support

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 52-01-2003 (Russia)
Random eccentricity along Y according to SNiP 52-01-2003 (Russia)
Structure is statically indeterminate
Limit slenderness - 200

Section:

$S_{1}-2 \varnothing 6$
Transverse reinforcement along the Z axis $2 \varnothing 8$, spacing of transverse reinforcement 150 mm

Reinforcement	Class	Service factor
Longitudinal	A240	1
Transverse	A240	1

Concrete:

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{\mathrm{b} 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{\mathrm{b} 3}$	allowance for the vertical position during concreting	1
$\gamma_{\mathrm{b} 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance:

No cracks

Forces:

$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{~T}^{*} \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=100,35 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{~T} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{kN}$
$\mathrm{T}=0 \mathrm{~T} * \mathrm{~m}$
Factor for sustained load 1
Comparison of solutions:

Check	strength for an oblique section
Guide	$100,35 / 100,69=0,997$
ARBAT	0,982
Deviation, $\%$	1,5

Comments:

1. The strength check of oblique sections is performed by comparing a sum of lateral forces resisted by concrete and stirrups in the oblique section $\left(Q_{b}+Q_{\text {sw }}\right)$, with a lateral force Q in the oblique section which is determined as a projection on the normal to the longitudinal axis of the element of the resultant of all external forces acting on the element on one side of the considered oblique section $\left(Q=Q_{\max }-q_{l} c\right)$. In order to check the strength of the oblique section the value of the lateral force in the normal section is taken as $Q=58,4 \mathrm{kN}$ according to the Guide.
2. The member length has to be specified in ARBAT. Since it is not defined in the problem, it is taken as 1 m .
3. The data on the longitudinal reinforcement has to be specified in ARBAT. Since it is not defined in the problem, the following reinforcement is used: class A400, rebars 206. Respectively, the value of the concrete cover is $a_{1}=a_{2}=h-h_{0}-d / 2=400-370-6 / 2=$ 27 mm .

Calculation of a Column of a Multi-storey Frame for Load-bearing Capacity under a Lateral Force

Objective: Check of the calculation of the resistance of reinforced concrete sections.
Task: Verify the correctness of the strength analysis of oblique sections.
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SNiP 52-101-2003), 2005, p. 104-105.

Initial data file:

Example 34.SAV;
report:
when the analysis is performed according to SNiP 52-01-2003 - Arbat 34.1.doc,
when the analysis is performed according to SP 63.13330.2012 - Arbat 34.2.doc.
Compliance with the codes: SNiP 52-101-2003, SP 63.13330.2012.

Initial data from the source:

$b \times h=400 \times 600 \mathrm{~mm}$
$l=3,3 \mathrm{~m}$
$a=a^{\prime}=50 \mathrm{~mm}$
$d=12 \mathrm{~mm}$
$s_{w}=400 \mathrm{~mm}$
$M_{\text {sup }}=350 \mathrm{kN} \cdot \mathrm{m}$
$M_{i n f}=250 \mathrm{kN} \cdot \mathrm{m}$
$N=572 \mathrm{kN}$
Concrete class
Class of transverse reinforcement

Column section sizes
Column length (distance between support sections)
Distance from the center of gravity of the longitudinal reinforcement to the fiber of the section under the greatest tension
Diameter of transverse reinforcement
Spacing of transverse reinforcement
Bending moment in the upper support section
Bending moment in the lower support section
Longitudinal force
B25
A240

ARBAT initial data:

Importance factor $\square_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Member length 3,3 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 52-01-2003 (Russia)
Random eccentricity along Y according to SNiP 52-01-2003 (Russia)
Structure is statically indeterminate
Limit slenderness - 200

Section

$S_{1}-2 \varnothing 6$
Transverse reinforcement along the Z axis $2 \varnothing 12$, spacing of transverse reinforcement 400 mm

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A240	1

Concrete

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{\text {b3 }}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance:

No cracks

Forces

	N	M_{y}	Q_{z}	M_{z}	Q_{y}	T	Safety factor for load	Factor for sustained load	Short-term	Seismic
	kN	$\mathrm{kN} * \mathrm{~m}$	kN	$\mathrm{kN} * \mathrm{~m}$	kN	$\mathrm{kN}^{*} \mathrm{~m}$				
1	-572	600	181,8	0	0	0	1	1		

Comparison of solutions (according to SNiP 52-101-2003):

File	Example 34.SAV
Report file	Arbat 34.1.doc
Check	strength for an oblique section
Guide	$181,8 / 184,8=0,984$
ARBAT	0,982
Deviation, $\%$	$0,17 \%$

Comparison of solutions (according to SP 63.13330.2012):

File	Example 34.SAV
Report file	Arbat 34.2.doc
Check	strength for an oblique section
Guide	$181,8 / 184,8=0,984$

ARBAT	0,843
Deviation, $\%$	$14,3 \%$

Comments:

1. Bending moment M_{y} is determined as a sum of moments in the upper and lower support sections $M_{y}=M_{\text {sup }}+M_{i n f}=350+250=600 \mathrm{kN}$.
2. The lateral force in the column is determined as: $Q_{z}=M_{y} / l=600 / 3,3=181,8 \mathrm{kN}$.
3. The data on the longitudinal reinforcement has to be specified in ARBAT. Since it is not defined in the problem, the following reinforcement is used: class A400, rebars 206. Respectively, the value of the concrete cover is $a_{1}=a_{2}=a-d / 2=50-6 / 2=47 \mathrm{~mm}$.
4. The difference between the utilization factors of $14,3 \%$ in the results of the solution in the Guide and in ARBAT according to SP 63.13330.2012 is due to the fact that compressive stresses are taken into account in different ways according to the given codes (Sec. 8.1.34) and according to SNiP 52-101-2003.

Local Compression Analysis

Objective: Check the local compression analysis of the foundation
Task: Verify the correctness of the local compression analysis
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 128-129.

Initial data file:

Example 39.SAV
report - Arbat 39.doc.
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data:

$b=0,8 \mathrm{~m}$
$a_{1} \times a_{2}=300 \times 200 \mathrm{~mm}$
$A_{s x}=A_{s y}=12,6 \mathrm{~mm}^{2}(1 Ø 4)$
Width of the foundation
$N=1000 \mathrm{kN}$
Cross-sectional area of reinforcement
Vertical load
Concrete class B10
Class of reinforcement B500

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Load arrangement:

Local load near one edge of an element	$a=300 \mathrm{~mm}$ $b=800 \mathrm{~mm}$ $c=400 \mathrm{~mm}$ $d=200 \mathrm{~mm}$

Lateral reinforcement by flat meshes:

Class of reinforcement: B500
Arrangement of meshes

Meshes:

Meshes
Rebars along X

Diameter 4 mm
Spacing $\mathrm{a}_{\mathrm{x}}=100 \mathrm{~mm}$
Number of rebars - 7
Rebars along Y
Diameter 4 mm
Spacing $\mathrm{a}_{\mathrm{y}}=100 \mathrm{~mm}$
Number of rebars - 8

Concrete:

Concrete type: Heavy-weight
Concrete class: B10

Service factor for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 4}$	allowance for the freezing/thawing and negative temperatures	1

Comparison of solutions:

Check	strength condition of local compression
Guide	$1000 / 1147,2=0,872$
ARBAT	0,873
Deviation, $\%$	$0,1 \%$

Punching Analysis of a Reinforced Concrete Floor Slab

Figure 1. To the example of the calculation 40
1-1-st design section, 2-2-nd design section
Objective: Check the Punching mode.

Task: Verify the correctness of the punching strength analysis of a concrete element with transverse reinforcement under a concentrated force and bending moments and punching strength analysis beyond the boundary of transverse reinforcement.

References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 137-140.

Initial data file:

Example 40.SAV
report - Arbat 40.doc
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data from the source:

$h=220 \mathrm{~mm}$
$a \times b=500 \times 800 \mathrm{~mm}$
$N=800 \mathrm{kN}$
$M_{x, \text { sup }}=70 \mathrm{kN} \cdot \mathrm{m}$
$M_{y, s u p}=30 \mathrm{kN} \cdot \mathrm{m}$
$M_{x, i n f}=60 \mathrm{kN} \cdot \mathrm{m}$
$M_{y, i n f}=27 \mathrm{kN} \cdot \mathrm{m}$
$d=6 \mathrm{~mm}$
Concrete class
Class of reinforcement

Slab thickness
Column section sizes
Load transferred from the floor slab to the column
Moment in the column section on the upper face of the slab in the direction of the X axis
The same in the direction of the Y axis
Moment in the column section on the lower face of the slab in the direction of the X axis
The same in the direction of the Y axis
Diameter of transverse reinforcement
B30
A240

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Load application area is inside the element

	$\begin{aligned} & \mathrm{a}=500 \mathrm{~mm} \\ & \mathrm{~b}=800 \mathrm{~mm} \end{aligned}$ Effective height of the section for longitudinal reinforcement along X-axis - 190 mm along Y -axis - 190 mm

Concrete:

Concrete type: Heavy-weight
Concrete class: B30

Service factor for concrete		
$\gamma_{\mathrm{b} 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{\mathrm{b} 3}$	allowance for the vertical position during concreting	1
$\gamma_{\mathrm{b} 4}$	allowance for the freezing/thawing and negative temperatures	1

Loads:

	P	M_{x}	M_{y}
	kN	kN m	$\mathrm{kN}^{*} \mathrm{~m}$
1	800		

Uniform reinforcement:

Class of reinforcement: A240
Diameter 6 mm
Distance to the load application area 75 mm
Spacing of rebars in a row 60 mm
Number of rebars in a row 20
Spacing of rows 60 mm
Number of rows of rebars 25

```
O0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-8%
```



```
    000500 %00%%** 0.0.0
    , %%a00%%%%!
    #
```



```
    ",
```



```
    6, %%%%%%%%
```



```
- rebars taken into account (120 pcs)
- rebars not taken into account
```


Forces:

$\mathrm{P}=800 \mathrm{kN}$
$\mathrm{M}_{\mathrm{x}}=57 \mathrm{kN} * \mathrm{~m}$
$\mathrm{M}_{\mathrm{y}}=130 \mathrm{kN} * \mathrm{~m}$

Comparison of solutions:

Check	punching strength of a concrete element with transverse reinforcement under a concentrated force and bending moments with their vectors along X and Y axes	punching strength of a concrete element with transverse reinforcement under a concentrated force beyond the boundary of transverse reinforcement
Guide	$343,5 / 347,7=0,988$	$146,5 / 218,5=0,67$
ARBAT	0,973	0,75
Deviation, $\%$	$1,518 \%$	$10,667 \%$

Comments:

1. The average effective height of the slab is taken as $h_{0}=190 \mathrm{~mm}$ in the calculation of the problem in the Guide. This value is used in ARBAT.
2. In the Guide moments M_{x} and M_{y} are moments in the directions of X and Y axes respectively. In ARBAT moments M_{x} and M_{y} are moments about X and Y axes respectively, therefore moments M_{x} and M_{y} in the example of the Guide correspond to the moments M_{y} and M_{x} in ARBAT. The values of the sum of moments $M_{\text {sup }}$ and $M_{\text {inf }}$ on the upper and lower faces of the slab are used in ARBAT. Thus, $M_{x}=30+27=57 \mathrm{kN} \cdot \mathrm{m}, M_{y}=70+60=130 \mathrm{kN} \cdot \mathrm{m}$.
3. The number of rebars in a row 20 and the number of rows of rebars 25 are taken in accordance with the sizes given in the drawing in the Guide.
4. The difference between the second factor and the solution from the Guide is due to the following reasons:

- in the problem the boundaries of the second design contour are considered at the distance of $0,5 h_{0}$ from the boundary of the specified transverse reinforcement. Moreover, in the calculation of the geometric properties in the Guide the sizes of the contour were incorrectly taken as greater by $0,5 h_{0}$ than the sizes of the considered contour. In ARBAT the boundaries of the second design contour were taken at the distance of $0,5 h_{0}$ from the boundary of the transverse reinforcement considered in the calculation;
- in the Guide this strength check is performed taking into account the bending moments. In ARBAT the check is performed according to Sec.6.2.48 of SP 52-101-2003 by the formula for the punching analysis under the action of a concentrated force.

Punching Analysis of a Flat Monolithic Floor Slab

1 - force application point $N ; 2$ - center of gravity of the open contour; $3-$ open contour of the design section

Objective: Check the Punching mode.
Task: Verify the correctness of the punching strength analysis of a concrete element under a concentrated force and a bending moment when the load application area is near the edge of the slab.

References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 140-142.

Initial data file:

Example 41.SAV;
report:
when the analysis is performed according to SNiP 52-01-2003 - Arbat 41.1.doc, when the analysis is performed according to SP 63.13330.2012 - Arbat 41.2.doc.

Compliance with the codes: SNiP 52-101-2003, SP 63.13330.2012.

Initial data from the source:

$h=230 \mathrm{~mm}$	Slab thickness $a \times b=500 \times 400 \mathrm{~mm}$
Column section sizes	
$N=150 \mathrm{kN}$	Load transferred from the floor slab to the column
$M_{\text {sup }}=80 \mathrm{kN} \cdot \mathrm{m}$	Moment in the column section on the upper face of the slab
$M_{\text {inf }}=90 \mathrm{kN} \cdot \mathrm{m}$	Moment in the column section on the lower face of the slab $x_{0}=500 \mathrm{~mm}$
	Distance from the center of the column section to the free edge of the slab
Concrete class	B25

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Load application area is near the free edge of the element

	$\begin{aligned} & \mathrm{a}=0,5 \mathrm{~m} \\ & \mathrm{~b}=0,4 \mathrm{~m} \\ & \mathrm{c}=0,25 \mathrm{~m} \\ & \mathrm{~d}=4 \mathrm{~m} \end{aligned}$ Effective height of the section for longitudinal reinforcement along X -axis $-0,2 \mathrm{~m}$ along Y-axis $-0,2 \mathrm{~m}$

Concrete:

Concrete type: Heavy-weight
Concrete class: B25

Service factor for concrete		
$\gamma_{\mathrm{b} 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{\mathrm{b} 3}$	allowance for the vertical position during concreting	1
$\gamma_{\mathrm{b} 4}$	allowance for the freezing/thawing and negative temperatures	1

Loads:

	P	M_{x}	M_{y}
	kN	$\mathrm{kN} * \mathrm{~m}$	$\mathrm{kN} * \mathrm{~m}$
1	150		

Forces:

$\mathrm{P}=150 \mathrm{kN}$
$\mathrm{M}_{\mathrm{x}}=0 \mathrm{kN} \mathrm{km}^{\mathrm{m}}$
$\mathrm{M}_{\mathrm{y}}=170 \mathrm{kN} * \mathrm{~m}$
Comparison of solutions (according to SP 52-101-2003):

Report file	Arbat 41.1.doc	
Check	punching strength of a concrete element under a concentrated force and bending moments with their vectors along X and Y axes	punching strength of an unclosed concrete element under a concentrated force and bending moments (including additional ones caused by the eccentric application of a force with respect to the punched contour) with their vectors along X,Y- axes (load application area is near the edge of the slab)
Guide	$203,4 / 210=0,969$	$202,2 / 210=0,963$
ARBAT	0,549	0,621

Verification Examples

Deviation, $\%$	$43,4 \%$	$35,5 \%$
Analytical solution (see below)	0,550	0,622
Deviation, $\%$	$0,1 \%$	$0,1 \%$

Comparison of solutions (according to SP 63.13330.2012):

Report file	Arbat 41.2.doc	
Check	punching strength of a concrete element under a concentrated force and bending moments with their vectors along X and Y axes	punching strength of an unclosed concrete element under a concentrated force and bending moments (including additional ones caused by the eccentric application of a force with respect to the punched contour) with their vectors along X,Y- axes (load application area is near the edge of the slab)
ARBAT	0,413	0,466
Analytical solution (see below)	0,412	0%
Deviation, \%	$0,1 \%$	

Comments:

1. The average effective height of the slab is taken as $h_{0}=200 \mathrm{~mm}$ in the calculation of the problem in the Guide. This value is used in ARBAT.
2. The value of the sum of moments $M_{\text {sup }}$ and $M_{\text {inf }}$ on the upper and lower faces of the slab is used in ARBAT. Thus, $M=80+90=170 \mathrm{kN} \cdot \mathrm{m}$.
3. Distance from the edge of the load application area to the free edge of the slab c is equal to the difference between the distance from the center of the column section to the free edge of the slab and half the size of the column section in this direction: $c=x_{0}-a / 2=0,5-$ $0,5 / 2==0,25 \mathrm{~m}$.
4. In order to analyze the case when the (column) load transfer area is located near the edge of the flat element (floor slab), in ARBAT one of the values of the distance from the edge of the load application area to the free edge of the slab has to be greater than three times the effective height of the slab. Thus, $d=4 \mathrm{~m}>3 h_{0}=0,6 \mathrm{~m}$.
5. Such significant differences in the obtained factors with the solution from the Guide are due to the following reasons:

- it is indicated in the codes that the calculations use the smallest values of the section moduli $W_{b x}$, determined from the following formulas:

$$
W_{\mathrm{bx}}=\frac{I_{\mathrm{bx}}}{x_{0}} \text { and } W_{\mathrm{bx}}=\frac{I_{\mathrm{bx}}}{L_{\mathrm{x}}-x_{0}} \text {. }
$$

In this problem the smaller value is the one determined by the first formula, since $x_{0}=$ $0,5+0,0359=0,5359 \mathrm{~m}>L_{x}-x_{0}=0,85-0,5359=0,3141 \mathrm{~m}$ (where x_{0} is the position of the center of gravity of the design open contour in the direction of the X axis). Thus, the value $W_{b x}$ determined by the first formula is used in ARBAT. While the value determined by the second formula is used in the Guide;

- the check of the strength requirements in the Guide does not take into account the recommendations of the codes according to which under the action of concentrated moments and a force the ratio between the acting concentrated moments M, taken into account at punching, and the ultimate ones $M_{u l t}$ should be taken not greater than the ratio between the acting concentrated force F and the ultimate one $F_{\text {ult }}$ (Sec. 6.2.46 of

SNiP 52-101-2003) and not greater than half the ratio between the acting concentrated force F and the ultimate one $F_{u l t}$ (Sec. 8.1.46 of SP 63.13330.2012).
6. The analytical solution is given below.

Analytical solution

1 - closed design contour №1, 2 - open design contour №2, 3 - open design contour №3.
In this case it is necessary to check the strength of three contours of the design cross-section: contour №1 - closed contour around the column section at a distance of $0,5 h_{0}$ from the column contour;
contour № 2 - open contour around the column section at a distance of $0,5 h_{0}$ from the column contour with the extension of the contour to the free edge of the slab;
contour № 3 - open contour around the column section at a distance of $1,5 h_{0}$ from the column contour (contour of the verification analysis without the consideration of the reinforcement).

Closed contour №1:

$$
\begin{aligned}
& L_{x}=A_{x}+h_{0}=500+200=700 \mathrm{~mm}=0,7 \mathrm{~m}, \\
& L_{y}=A_{y}+h_{0}=400+200=600 \mathrm{~mm}=0,6 \mathrm{~m}
\end{aligned}
$$

Perimeter of the design contour of the cross-section:

$$
u=2\left(L_{x}+L_{y}\right)=2(0,7+0,6)=2,6 \mathrm{~m} .
$$

Area of the design contour of the cross-section:

$$
A_{b}=u h_{0}=2,6 \times 0,2=0,52 \mathrm{~m}^{2}
$$

Ultimate force resisted by concrete:

$$
F_{b, u l t}=R_{b t} A_{b}=1,05 \times 10^{3} \times 0,52=546 \mathrm{kN} .
$$

Moment of inertia of the design contour with respect to the X axis passing through its center of gravity:

$$
I_{b x}=2 \frac{L_{y}^{3}}{12}+2 L_{x}\left(\frac{L_{y}}{2}\right)^{2}=2 \frac{0,6^{3}}{12}+2 \cdot 0,7\left(\frac{0,6}{2}\right)^{2}=0,162 \mathrm{~m}^{3}
$$

Section modulus of the design contour of concrete:

$$
W_{b x}=\frac{I_{b x}}{y_{\max }}=\frac{0,162}{0,3}=0,54 \mathrm{~m}^{2} .
$$

Moment of inertia of the design contour with respect to the Y axis passing through its center of gravity:

$$
I_{b y}=2 \frac{L_{x}^{3}}{12}+2 \cdot L_{y}\left(\frac{L_{x}}{2}\right)^{2}=2 \frac{0,7^{3}}{12}+2 \cdot 0,6\left(\frac{0,7}{2}\right)^{2}=0,204 \mathrm{~m}^{3} .
$$

Section modulus of the design contour of concrete:

$$
W_{b y}=\frac{I_{b y}}{x_{\max }}=\frac{0,204}{0,35}=0,583 \mathrm{~m}^{2} .
$$

Bending moment which can be resisted by concrete in the design cross-section:

$$
\begin{aligned}
& M_{b x, \text { ult }}=R_{b t} W_{b x} h_{0}=1,05 \times 10^{3} \times 0,54 \times 0,2=113,4 \mathrm{kNm} . \\
& M_{b y, \text { ult }}=R_{b t} W_{b y} h_{0}=1,05 \times 10^{3} \times 0,583 \times 0,2=122,4 \mathrm{kNm} .
\end{aligned}
$$

For SNiP 52-101-2003:

$$
\begin{gathered}
\frac{M_{x}}{M_{b x, u l t}} \leq \frac{F}{F_{b, u l t}} ; \quad \frac{M_{y}}{M_{b y, u l t}} \leq \frac{F}{F_{b, u l t}} \\
\frac{M_{y}}{M_{b y, u l t}}=\frac{85}{122,4}=0,694 \leq \frac{F}{F_{b, u l t}}=\frac{150}{546}=0,275-\text { condition is not met. }
\end{gathered}
$$

Assume

$$
\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,275
$$

Punching strength of the slab:

$$
\begin{aligned}
& K_{1}=\left[\frac{F}{F_{\text {b,utt }}}+\frac{M_{x}}{M_{\text {bx,ult }}}+\frac{M_{y}}{M_{\text {b,y.ut }}}\right] \leq 1,0 \\
& K_{1}=0,275+0+0,275=0,55
\end{aligned}
$$

For SP 63.13330.2012:

$$
\begin{gathered}
\frac{M_{x}}{M_{b x, u l t}}+\frac{M_{y}}{M_{b y, u l t}} \leq 0,5 \frac{F}{F_{b, u l t}} \\
\frac{M_{y}}{M_{b y, u l t}}=\frac{85}{122,4}=0,694 \leq 0,5 \frac{F}{F_{b, u l t}}=\frac{150}{546}=0,5 \cdot 0,275=0,1375-\text { condition is not met. }
\end{gathered}
$$

Assume

$$
\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,1375
$$

Punching strength of the slab:

$$
\begin{aligned}
K_{1} & =\left[\frac{F}{F_{b \text { valt }}}+\frac{M_{x}}{M_{b_{\text {ruat }}}}+\frac{M_{y}}{M_{\text {by,utl }}}\right] \leq 1,0 \\
K_{1} & =0,275+0+0,1375=0,413
\end{aligned}
$$

Open contour №2:

$$
\begin{aligned}
& L_{x}=A_{x}+h_{0}+150=500+200+150=850 \mathrm{~mm}=0,85 \mathrm{~m}, \\
& L_{y}=A_{y}+h_{0}=400+200=600 \mathrm{~mm}=0,6 \mathrm{~m},
\end{aligned}
$$

Perimeter of the design contour of the cross-section:

$$
u=2 L_{x}+L_{y}=2 \times 0,85+0,6=2,3 \mathrm{~m} .
$$

Area of the design contour of the cross-section:

$$
A_{b}=u h_{0}=2,3 \times 0,2=0,46 \mathrm{~m}^{2}
$$

X coordinate of the center of gravity of the open contour with respect to the left edge of the slab:

$$
X=\frac{425 \cdot 850 \cdot 2+850 \cdot 600}{850 \cdot 2+600}=535,869 \mathrm{~mm}
$$

Ultimate force resisted by concrete:

$$
F_{b, \text { ult }}=R_{b t} A_{b}=1,05 \times 10^{3} \times 0,46=483 \mathrm{kN} .
$$

Moment of inertia of the design contour with respect to the X axis passing through its center of gravity:

$$
I_{b x}=\frac{L_{y}^{3}}{12}+2 L_{x}\left(\frac{L_{y}}{2}\right)^{2}=\frac{0,6^{3}}{12}+2 \cdot 0,85\left(\frac{0,6}{2}\right)^{2}=0,171 \mathrm{~m}^{3} .
$$

Section modulus of the design contour of concrete:

$$
W_{b x}=\frac{I_{b x}}{y_{\max }}=\frac{0,171}{0,3}=0,57 \mathrm{~m}^{2} .
$$

Moment of inertia of the design contour with respect to the Y axis passing through its center of gravity:
$I_{b y}=2 \frac{L_{x}^{3}}{12}+2 L_{x}(0,075+0,035869)^{2}+L_{y}(0,35-0,035869)^{2}=2 \frac{0,85^{3}}{12}+2 \cdot 0,85(0,075+0,035869)^{2}+0,6(0,35-0,035869)^{2}=0$, $183 \mathrm{~m}^{3}$.

Section modulus of the design contour of concrete:

$$
W_{b y}=\frac{I_{b y}}{x_{\max }}=\frac{0,183}{0,535869}=0,341 \mathrm{~m}^{2} .
$$

Bending moment which can be resisted by concrete in the design cross-section:

$$
\begin{aligned}
& M_{b x, u l t}=R_{b t} W_{b x} h_{0}=1,05 \times 10^{3} \times 0,57 \times 0,2=119,7 \mathrm{kNm} ; \\
& M_{b y, \text {,ult }}=R_{b t} W_{b y} h_{0}=1,05 \times 10^{3} \times 0,341 \times 0,2=71,6 \mathrm{kNm} ; \\
& M_{y}=M_{y}-F e_{0}=85-150 \times 0,035869=85-5,38=79,62 \mathrm{kNm} .
\end{aligned}
$$

For SNiP 52-101-2003:

$$
\begin{gathered}
\frac{M_{x}}{M_{b x, u l t}} \leq \frac{F}{F_{b, u l t}} ; \quad \frac{M_{y}}{M_{b y, u l t}} \leq \frac{F}{F_{b, u l t}} \\
\frac{M_{y}}{M_{b y, y l t}}=\frac{79,62}{71,6}=1,112 \leq \frac{F}{F_{b, u l t}}=\frac{150}{483}=0,311-\text { condition is not met. }
\end{gathered}
$$

Assume

$$
\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,311
$$

Punching strength of the slab:

$$
\begin{aligned}
& K_{1}=\left[\frac{F}{F_{\text {b,utt }}}+\frac{M_{x}}{M_{b r, u t t}}+\frac{M_{y}}{M_{b y, u l t}}\right] \leq 1,0 \\
& K_{1}=0,311+0+0,311=0,622
\end{aligned}
$$

For SP 63.13330.2012:

$$
\frac{M_{x}}{M_{b x, u l t}}+\frac{M_{y}}{M_{b y, u l t}} \leq 0,5 \frac{F}{F_{b, u l t}}
$$

$$
\frac{M_{y}}{M_{b y, u l t}}=\frac{79,62}{71,6}=1,112 \leq 0,5 \frac{F}{F_{b, u l t}}=\frac{150}{483}=0,5 \cdot 0,311=0,155-\text { condition is not met. }
$$

Assume

$$
\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,155
$$

Punching strength of the slab:

$$
\begin{aligned}
& K_{1}=\left[\frac{F}{F_{b, u t t}}+\frac{M_{x}}{M_{b x, u t t}}+\frac{M_{y}}{M_{b y, \text {,ut }}}\right] \leq 1,0 \\
& K_{1}=0,311+0+0,155=0,466
\end{aligned}
$$

Open contour №3:

$$
\begin{aligned}
& L_{x}=A_{x}+1,5 h_{0}+250=500+1,5 \times 200+250=1050 \mathrm{~mm}=1,05 \mathrm{~m}, \\
& L_{y}=A_{y}+2 \cdot 1,5 h_{0}=400+2 \times 1,5 \times 200=1000 \mathrm{~mm}=1,0 \mathrm{~m},
\end{aligned}
$$

Perimeter of the design contour of the cross-section:

$$
u=2 L_{x}+L_{y}=2 \times 1,05+1,0=3,1 \mathrm{~m} .
$$

Area of the design contour of the cross-section:

$$
A_{b}=u h_{0}=3,1 \times 0,2=0,62 \mathrm{~m}^{2} .
$$

X coordinate of the center of gravity of the open contour with respect to the left edge of the slab:

$$
X=\frac{525 \cdot 1050 \cdot 2+1050 \cdot 1000}{1050 \cdot 2+1000}=694,355 \mathrm{~mm}
$$

Ultimate force resisted by concrete:

$$
F_{b, u l t}=R_{b t} A_{b}=1,05 \times 10^{3} \times 0,62=651 \mathrm{kN} .
$$

Moment of inertia of the design contour with respect to the X axis passing through its center of gravity:

$$
I_{b x}=\frac{L_{y}^{3}}{12}+2 L_{x}\left(\frac{L_{y}}{2}\right)^{2}=\frac{1,05^{3}}{12}+2 \cdot 1,05\left(\frac{1,0}{2}\right)^{2}=0,608 \mathrm{~m}^{3} .
$$

Section modulus of the design contour of concrete:

$$
W_{b x}=\frac{I_{b x}}{y_{\max }}=\frac{0,608}{0,5}=1,217 \mathrm{~m}^{2}
$$

Moment of inertia of the design contour with respect to the Y axis passing through its center of gravity:
$I_{b y}=2 \frac{L_{x}^{3}}{12}+2 L_{x}(0,194355-0,025)^{2}+L_{y}(1,05-0,694355)^{2}=2 \frac{1,05^{3}}{12}+2 \cdot 1,05(0,194355-0,025)^{2}+1,0(1,05-0,694355)^{2}=0,3$ $8 \mathrm{~m}^{3}$ 。

Section modulus of the design contour of concrete:

$$
W_{b y}=\frac{I_{b y}}{x_{\max }}=\frac{0,38}{0,694355}=0,547 \mathrm{~m}^{2} .
$$

Bending moment which can be resisted by concrete in the design cross-section:

$$
\begin{aligned}
& M_{b x, u l t}=R_{b t} W_{b x} h_{0}=1,05 \times 10^{3} \times 1,217 \times 0,2=255,57 \mathrm{kNm} . \\
& M_{b y, u l t}=R_{b t} W_{b y} h_{0}=1,05 \times 10^{3} \times 0,547 \times 0,2=114,87 \mathrm{kNm} . \\
& M_{y}=M_{y}-F e_{0}=85-150 \times 0,194355=85-29,15=55,85 \mathrm{kNm} .
\end{aligned}
$$

For SNiP 52-101-2003:

$$
\begin{array}{r}
\frac{M_{x}}{M_{b x, u l t}} \leq \frac{F}{F_{b, u l t}} ; \quad \frac{M_{y}}{M_{b y, u l t}} \leq \frac{F}{F_{b, u l t}} \\
\frac{M_{y}}{M_{b y, u l t}}=\frac{55,85}{114,87}=0,486 \leq \frac{F}{F_{b, u l t}}=\frac{150}{651}=0,23-\text { condition is not met. }
\end{array}
$$

Assume

$$
\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,23
$$

Punching strength of the slab:

$$
\begin{gathered}
K_{1}=\left[\frac{F}{F_{\text {b,ut }}}+\frac{M_{x}}{M_{b \text { br,utt }}}+\frac{M_{y}}{M_{b y, \text { ath }}}\right] \leq 1,0 \\
K_{1}=0,23+0+0,23=0,46
\end{gathered}
$$

For SP 63.13330.2012:

$$
\begin{gathered}
\frac{M_{x}}{M_{b x, u l t}}+\frac{M_{y}}{M_{b y, u l t}} \leq 0,5 \frac{F}{F_{b, u l t}} \\
\frac{M_{y}}{M_{b y, \text { ult }}}=\frac{55,85}{114,87}=0,486 \leq 0,5 \frac{F}{F_{b, \text { ult }}}=\frac{150}{651}=0,5 \cdot 0,23=0,115-\text { condition is not met. }
\end{gathered}
$$

Assume

$$
\frac{M_{y}}{M_{b y, u l t}}=\frac{F}{F_{b, u l t}}=0,155
$$

Punching strength of the slab:

$$
\begin{aligned}
& K_{1}=\left[\frac{F}{F_{b, u l t}}+\frac{M_{x}}{M_{b x, u t t}}+\frac{M_{y}}{M_{b y, u t l}}\right] \leq 1,0 \\
& K_{1}=0,23+0+0,115=0,345
\end{aligned}
$$

Analysis of a Reinforced Concrete Foundation Slab for Normal Crack Opening

Figure 1. Design cross-section of the element
Objective: Check the calculation of the crack opening width.
Task: Verify the correctness of the analysis of normal crack opening.

References:

1. Guide on designing of concrete and reinforced concrete structures made of heavy-weight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 155-157.
2. M.A. Perelmuter, K.V. Popok, L.N. Skoruk, Calculation of the Normal Crack Opening Width for SP 63.13330.2012, Concrete and Reinforced Concrete, 2014, №1, p.21,22

Initial data file:

Example 43.SAV
report - Arbat 43.doc
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data:

$b \times h=1150 \times 300 \mathrm{~mm}$
Slab section sizes
$a=42 \mathrm{~mm}$
$A_{s}=923 \mathrm{~mm}^{2}(6 Ø 14)$
$M_{l}=50 \mathrm{kN} \cdot \mathrm{m}$
$M_{s h}=10 \mathrm{kN} \cdot \mathrm{m}$
Concrete class B15
Class of reinforcement A400

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to SNiP 52-01-2003 (Russia)
Random eccentricity along Y according to SNiP 52-01-2003 (Russia)
Structure is statically indeterminate
Limit slenderness - 200

Section:

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A240	1

Concrete:

Concrete type: Heavy-weight
Concrete class: B15

Service factor for concrete		
$\gamma_{\mathrm{b} 1}$	allowance for the sustained loads	1
$\gamma_{\mathrm{b} 2}$	allowance for the failure behavior	1
$\gamma_{\mathrm{b} 3}$	allowance for the vertical position during concreting	1
$\gamma_{\mathrm{b} 4}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air - 40-75\%

Crack resistance:

Limited crack opening width
Requirements to crack opening width are based on the preservation of reinforcement
Allowable crack opening width:
Short-term opening $0,4 \mathrm{~mm}$
Long-term opening $0,3 \mathrm{~mm}$

Forces:

$\mathrm{N}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=60 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{kN}$
$\mathrm{T}=0 \mathrm{kN} * \mathrm{~m}$
Factor for sustained load 0,83333

Theoretical solution:

Diagrams of the strain ε and stress σ distribution in concrete for the determination of the stress σ_{s} obtained in the theoretical calculation [2] based on the nonlinear deformation model are shown in Fig. 2. The following values of the internal longitudinal force N and bending moment M correspond to these diagrams

$$
\begin{aligned}
& N=0,00439 \mathrm{kN} \approx 0 \\
& M=50,096 \approx 50 \mathrm{kNm} .
\end{aligned}
$$

There is a balance between internal and external forces. In this solution the stress in the tensile reinforcement is $\sigma_{s}=236,692 \mathrm{MPa}$.

Figure 2. Strain ε and stress σ diagrams (for the determination of σ_{s})

Similarly, solving the problem of determining the cracking moment, we obtain the following diagrams (Fig. 3), which satisfy the requirements of Sec. 8.2.14 of SP 63.13330.2012.

Figure 3. Strain ε and stress σ diagrams (for the determination of $\sigma_{s, c r c}$)

In accordance with these diagrams $M_{c r c}=36,244 \mathrm{kN} \cdot \mathrm{m}, \sigma_{s, c r c}=22,651 \mathrm{MPa}$.
On the basis of formula (1) (formula (8.128) SP 63.13330.2012) we obtain $a_{c r c}=\mathbf{0 , 3 0 6} \mathbf{~ m m}$.

$$
\begin{equation*}
a_{c r c}=\varphi_{1} \cdot \varphi_{2} \cdot \varphi_{3} \cdot \psi_{s} \cdot \frac{\sigma_{s}}{E_{s}} \cdot l_{s} . \tag{1}
\end{equation*}
$$

Comparison of solutions:

Check	crack opening width (long-term)
Theory	$0,306 / 0,3=1,02$
ARBAT	0,974
Deviation, $\%$	$4,51 \%$

Comments:

1. The member length and the class of transverse reinforcement have to be specified in ARBAT. Since they are not determined in the problem, the following data are used 1 m and A240, respectively.
2. The value of the concrete cover is equal to $a-d / 2=42-14 / 2=35 \mathrm{~mm}$.
3. The value of the total moment acting in the section, $M=M_{l}+M_{s h}=50+10=60 \mathrm{kN} \cdot \mathrm{m}$, factor for sustained load is equal to $M_{l} / M=50 / 60=0,833$.
4. The crack opening width obtained in the Guide [1] is equal to 0.227 mm . Such a significant discrepancy with the above theoretical solution is due to the use of the approach based on the ultimate forces, instead of the nonlinear deformation model (see [2]).
5. The deviation of the results of ARBAT from the theoretical solution is due to the fact that in order to provide computational stability, diagrams in which the horizontal part of the graph $\sigma(\varepsilon)$ has a small slope are used in ARBAT instead of the perfect diagrams of the material behavior.

Slab Deflection Analysis

Objective: Check of the slab deflection analysis
Task: Verify the correctness of the deflection calculation
References: Guide on designing of concrete and reinforced concrete structures made of heavyweight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 173-174.

Initial data file:

Example 45.SAV
report - Arbat 45.doc.
Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.

Initial data:

$l=5,6 \mathrm{~m}$
$b \times h=1000 \times 200 \mathrm{~mm}$
$a=27 \mathrm{~mm}$
$A_{s}=769 \mathrm{~mm}^{2}(5 Ø 14)$
$q=7 \mathrm{kN} / \mathrm{m}$
$q_{l}=6,5 \mathrm{kN} / \mathrm{m}$
Concrete class
Class of reinforcement

Slab span
Slab section sizes
Distance from the center of gravity of the reinforcement to the compressed edge of the section
Cross-sectional area of reinforcement
Total uniformly distributed load
Part of the total uniformly distributed load from permanent and long-term loads
B15
A400

ARBAT initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$

Structure:

Section:

Reinforcement	Class	Service factor
Longitudinal	A400	1
Transverse	A240	1

Specified reinforcement:

Span	Segment	Length (m)	Reinforceme nt	Section
span 1	1	5,6	$\mathrm{~S}_{1}-5 \varnothing 14$	
				$\boxed{\text {.... }}$

Concrete:

Concrete type: Heavy-weight
Concrete class: B15
Density of concrete $2,5 \mathrm{~T} / \mathrm{m}^{3}$

Service factors for concrete		
$\gamma_{b 1}$	allowance for the sustained loads	1
$\gamma_{b 2}$	allowance for the failure behavior	1
$\gamma_{b 3}$	allowance for the vertical position during concreting	1
$\gamma_{b 5}$	allowance for the freezing/thawing and negative temperatures	1

Humidity of environmental air-40-75\%

Conditions of operation:

Mode of concrete humidity - Natural humidity
Humidity of environmental air - 40-75\%

Comparison of solutions:

Check	maximum deflection
Guide	$31,5 \mathrm{~mm}$
ARBAT	$32,847 \mathrm{~mm}$
Deviation, $\%$	$4,2 \%$

Comment: The difference in the results is due to the fact that approximate empirical formulas are used in the Guide.

CALCULATIONS ACCORDING TO DBN V 2.6-98:2009

Section bearing capacity

Objective: Section bearing capacity
Task: Calculate ultimate moment strength of the section
References: Bliharsky Z.Y. Calculation and construction of bending reinforced concrete elements: Educational Guide / Z.Y. Bliharsky, I.I. Karhut. - Lviv: Lviv Polytechnic Publisher, 2017. - 188 p. (Example 5.10, pp. 73-75)

Initial data file:

ARBAT program section - Check, mode - Strength of RC Sections
Example-5.10-DBN.SAV report - Arbat 5.10-DBN.doc.

Compliance with the codes: DBN V 2.6-98:2009, DSTU B.V 2.6-156:2010

Initial data:

$b \times h=300 \times 900 \mathrm{~mm}$	Beam section sizes Distance from the edge of the lower reinforcement to the lower edge of the cross-section (protective layer) Distance from the edge of the upper reinforcement to the upper edge of the section (protective layer)
$A_{2}=27,5 \mathrm{~mm}$	Area of the lower reinforcement
$A_{s l}=2945 \mathrm{~mm}^{2}(6 Ø 25)$	Cross-sectional area of reinforcement
$A_{s 2}=942 \mathrm{~mm}^{2}(3 Ø 20)$	Area of the u reinforcement
$M=810,7 \mathrm{kNm}^{\text {Bm }}$	Bending moment Concrete class
Class of reinforcement	C20/25
A400C	

Initial data in ARBAT:

Importance factor $\gamma_{\mathrm{n}}=1$
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to DBN B.2.6-98:2009 with modification No. 1
Random eccentricity along Y according to DBN B.2.6-98:2009 with modification No. 1

The structure is statically determinate
Section

Reinforcement	Class	Additional service factor
Longitudinal	A400C	1
Transverse	A240C	1

Concrete

Concrete type: Heavy-weight
Concrete class: C20/25
Aggregate: Quartzite

Additional parameters		
Additional service factor	1	
Age of concrete (days)	28	
Cement strength class	Class R	
Creep development time	36500	days
Temperature $\mathrm{T}(\Delta \mathrm{t})$	20	${ }^{\circ} \mathrm{C}$
Number of days when the temperature T prevails $\Delta \mathrm{t}$	28	days
Relative humidity	40	$\%$

Results of analysis by load case combinations

	N	M_{y}	Q_{z}	M_{z}	Q_{y}	T	Factor for	Shortterm	Seismicit y	Special
	kN	${ }_{\mathrm{kN}} \mathrm{M}_{\mathrm{v}}{ }_{\text {m }}$	k ${ }^{\text {¢ }}$	${ }_{\mathrm{kN}} \mathrm{M}_{\text {\% }} \mathrm{m}^{\text {m }}$	k ${ }^{\text {V }}$	$\mathrm{kN}^{\mathrm{T}} \mathrm{m}$	sustained load			
1	0	810,7	0	0	0	0	1			

Checked according to DBN	Check	Utilization Factor
	Ultimate moment strength of the section	0,991

Comparison of solutions

Check	Ultimate moment strength of the section
Guide	$810,7 \mathrm{kNm}$
ARBAT	$810,7 / 0,991=818,1 \mathrm{kNm}$
Deviation, \%	$0,9 \%$

Selection of beam reinforcement, Example 1

Objective: Selection of beam reinforcement
Task: Select area of the longitudinal reinforcement
References: Bliharsky Z.Y. Calculation and construction of bending reinforced concrete elements: Educational Guide / Z.Y. Bliharsky, I.I. Karhut. - Lviv: Lviv Polytechnic Publisher, 2017. - 188 p. (Example 4.1, p. 47-48)

Initial data file:

ARBAT mode - Selection of section reinforcement

Example-4.1-DBN.SAV
report - Arbat 4.1-DBN.doc.
Compliance with the codes: DBN V 2.6-98:2009, DSTU B.V 2.6-156:2010

Initial data:

$b \times h=250 \times 600 \mathrm{~mm} \quad$ Cross-section sizes
$a=40 \mathrm{~mm} \quad$ Distance to the center of gravity of reinforcement
$M=200$ кНм
Bending moment
Concrete class
C12/15
Class of reinforcement
A240C

Initial data in ARBAT:

Importance factor $\gamma_{\mathrm{n}}=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to DBN B.2.6-98:2009 with modification No. 1 Random eccentricity along Y according to DBN B.2.6-98:2009 with modification No. 1 The structure is statically determinate

Section

$\mathrm{b}=250 \mathrm{~mm}$
$\mathrm{h}=600 \mathrm{~mm}$
$\mathrm{a}_{1}=40 \mathrm{~mm}$
$\mathrm{a}_{2}=40 \mathrm{~mm}$

Reinforcement	Class	Additional service factor
Longitudinal	A240C	1
Transverse	A240C	1

Concrete

Concrete type: Heavy-weight
Concrete class: C12/15
Aggregate: Quartzite

Additional parameters		
Additional service factor	1	
Age of concrete (days)	28	
Cement strength class	Class R	
Creep development time	36500	days
Temperature $\mathrm{T}(\Delta \mathrm{t})$	20	${ }^{\circ} \mathrm{C}$
Number of days when the temperature T prevails $\Delta \mathrm{t}$	28	days
Relative humidity	40	$\%$

	N	$\mathbf{M}_{\mathbf{y}}$	$\mathbf{Q}_{\mathbf{z}}$	$\mathbf{M}_{\mathbf{z}}$	Q ${ }_{\text {y }}$	T	Factor for sustaine d load	Shortterm	Seismicit y	Special
	kN	kN*m	kN	$\mathbf{k N} * \mathbf{m}$	kN	kN*m				
1		200	0	0		0	1			

Results of the reinforcement selection

Type	Asymmetric reinforcement		Symmetric reinforcement	
	$\mathbf{A S}_{1}$	\%	$\mathbf{A S ~}_{1}$	\%
	$\mathbf{c m}^{2}$		cm^{2}	
total	19,328	1,381	16,989	2,427

Comparison of solutions

Check	Selected reinforcement
Guide	$1938,6 \mathrm{~mm}^{2}$
ARBAT	$1932,8 \mathrm{~mm}^{2}$
Deviation, \%	$0,3 \%$

Selection of beam reinforcement, Example 2

Objective: Selection of beam reinforcement
Task: Select area of the longitudinal reinforcement
References: Bliharsky Z.Y. Calculation and construction of bending reinforced concrete elements: Educational Guide / Z.Y. Bliharsky, I.I. Karhut. - Lviv: Lviv Polytechnic Publisher, 2017. - 188 p. (Example 4.2, p. 48-49)

Initial data file:

ARBAT mode - Selection of section reinforcement
Example-4.2-DBN.SAV
report - Arbat 4.2-DBN.doc.
Compliance with the codes: DBN V 2.6-98:2009, DSTU B.V 2.6-156:2010

Initial data:

$b \times h=200 \times 600 \mathrm{~mm}$	Cross-section sizes
$a=30 \mathrm{~mm}$	Distance to the center of gravity of reinforcement
$M=135 \mathrm{\kappa Hm}$	Bending moment
Concrete class	C20/25
Class of reinforcement	A400C

Initial data in ARBAT:

Importance factor $\gamma_{\mathrm{n}}=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to DBN B.2.6-98:2009 with modification No. 1
Random eccentricity along Y according to DBN B.2.6-98:2009 with modification No. 1
The structure is statically determinate

Section

Reinforcement	Class	Additional service factor
Longitudinal	A400C	1
Transverse	A240C	1

Concrete

Concrete type: Heavy-weight
Concrete class: C20/25
Aggregate: Quartzite

Additional parameters		
Additional service factor	1	
Age of concrete (days)	28	
Cement strength class	Class R	
Creep development time	36500	days
Temperature T($\Delta \mathrm{t})$	20	${ }^{\circ} \mathrm{C}$
Number of days when the temperature T prevails $\Delta \mathrm{t}$	28	days
Relative humidity	40	$\%$

Results of the reinforcement selection

Type	Asymmetric reinforcement		Symmetric reinforcement	
	$\mathbf{A S}_{\mathbf{1}}$	$\boldsymbol{\%}$	$\mathbf{A S}_{\mathbf{1}}$	$\%$
	$\mathbf{c m}^{\mathbf{2}}$		$\mathbf{c m}^{\mathbf{2}}$	
total	7,13	0,625	6,941	

Comparison of solutions

Check	Selected reinforcement
Guide	$707,6 \mathrm{~mm}^{2}$
ARBAT	$713,0 \mathrm{~mm}^{2}$
Deviation, $\%$	$0,8 \%$

Selection of beam reinforcement, Example 3

Objective: Selection of beam reinforcement
Task: Select area of the longitudinal reinforcement
References: Bliharsky Z.Y. Calculation and construction of bending reinforced concrete elements: Educational Guide / Z.Y. Bliharsky, I.I. Karhut. - Lviv: Lviv Polytechnic Publisher, 2017. - 188 p. (Example 4.3, p. 50-51)

Initial data file:

ARBAT mode - Selection of section reinforcement
Example-4.3-DBN.SAV
report - Arbat 4.3-DBN.doc.
Compliance with the codes: DBN V 2.6-98:2009, DSTU B.V 2.6-156:2010

Initial data:

$b \times h=200 \times 700 \mathrm{~mm}$	Cross-section sizes
$a=30 \mathrm{~mm}$	Distance to the center of gravity of reinforcement
$M=475 \mathrm{\kappa Hm}$	Bending moment
Concrete class	C30/35
Class of reinforcement	A500C

Initial data in ARBAT:

Importance factor $\gamma_{\mathrm{n}}=1$
Member length 1 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to DBN B.2.6-98:2009 with modification No. 1
Random eccentricity along Y according to DBN B.2.6-98:2009 with modification No. 1
The structure is statically determinate

Section

Reinforcement	Class	Additional service factor
Longitudinal	A500C	1
Transverse	A240C	1

Concrete

Concrete type: Heavy-weight
Concrete class: C20/25
Aggregate: Quartzite

Additional parameters		
Additional service factor	1	
Age of concrete (days)	28	
Cement strength class	Class R	
Creep development time	36500	days
Temperature T $(\Delta \mathrm{t})$	20	${ }^{\circ} \mathrm{C}$
Number of days when the temperature T prevails $\Delta \mathrm{t}$	28	days
Relative humidity	40	$\%$

	N	M ${ }_{\text {y }}$	$\mathbf{Q}_{\mathbf{z}}$	$\mathrm{M}_{\mathbf{z}}$	$\mathbf{Q}_{\mathbf{y}}$	T	Factor			
	kN	$\mathbf{k N}{ }^{*} \mathbf{m}$	kN	kN*m	kN	kN*m	sustained load	term	Seismicity	Special
1	0	475	0	0	0	0	1			

Results of the reinforcement selection

Type	Asymmetric reinforcement		Symmetric reinforcement	
	$\mathrm{AS}_{1} \mathrm{~cm}^{\mathbf{2}}$	\%	$\mathbf{A S}_{1} \mathbf{c m}^{\mathbf{2}}$	\%
total	18,652	0,942	17,791	1,797

Comparison of solutions

Check	Selected reinforcement
Guide	$1941,7 \mathrm{~mm}^{2}$
ARBAT	$1865,2 \mathrm{~mm}^{2}$
Deviation, \%	$4,1 \%$

Beam Deflection Analysis

Objective: Calculate beam deflection
Task: Calculate the value of beam deflection
References: Practical calculation of elements of reinforced concrete structures according to DBN V. 2.6-98:2009 in comparison with calculations according to SNiP 2.03.01-84* and EN 1992-1-1 (Eurocode 2) / V.M. Babaev, A.M. Bambura, O.M. Pustovoitova et.al., edited by V.S. Shmukler, Kharkiv: Golden Pages, 2015. - p. 280. (Example 15, p. 92.)
Initial data file:
ARBAT mode - Single-Span Beam Deflection
Example-15.1-DBN.sav
report - Arbat 15.1-DBN.doc
Compliance with the codes: DBN V 2.6-98:2009, DSTU B.V 2.6-156:2010

Initial data:

$l=6,0 \mathrm{~m} \quad$ Beam span
$b \times h=200 \times 500 \mathrm{~mm} \quad$ Beam section sizes
$a=26 \mathrm{~mm} \quad$ Distance from the edge of the reinforcement to the edge of the section
$A_{s}=1232 \mathrm{~mm}^{2}$ (2Ø28) Cross-sectional area of reinforcement
$q=35,555 \mathrm{kN} / \mathrm{m} \quad$ Uniformly distributed load
Concrete class C20/25
Class of reinforcement A400C

Initial data in ARBAT:

Importance factor $\gamma_{n}=1$
Member length 6 m

Section

Reinforcement	Class	Additional service factor
Longitudinal	A400C	1
Transverse	A240C	1

Specified reinforcement

Span	Segment	Length (m)	Reinforcement	Section
span 1	1	6	$\mathrm{S}_{1}-2 \varnothing 28$ Transverse reinforcement along axis Z 2ø16, spacing of transverce reinforcement 100 mm	

Concrete

Concrete type: Heavy-weight
Concrete class: C20/25
Aggregate: Quartzite

Additional parameters		
Additional service factor	1	
Age of concrete (days)	28	
Cement strength class	Class R	
Creep development time	36500	days
Temperature $\mathrm{T}(\Delta \mathrm{t})$	20	${ }^{\circ} \mathrm{C}$
Number of days when the temperature T prevails $\Delta \mathrm{t}$	28	days
Relative humidity	40	$\%$

Calculated deflections

Span	Maximum deflection		Minimum deflection	
	Value	Snap	Value	Snap
	mm	m	mm	m
span 1	19,107	3,012	0	6

Comparison of solutions

Check	Deflection value
Guide	$22,2 \mathrm{~mm}$
ARBAT $(\mathrm{M} \neq$ const $)$	$19,107 \mathrm{~mm}$
Deviation, $\%$	$16,2 \%$

Comment. The difference in the results is due to the fact that the Manual uses approximate empirical formulas for determining deflection, based on the use of curvature in the section with the maximum bending moment. In the ARBAT program, deflection is determined at the corresponding curvatures in different sections along the length of the beam.

Calculation of the crack opening width

Objective: Determine the crack resistance of a beam
Task: Determine the crack opening width
References: Practical calculation of elements of reinforced concrete structures according to DBN V. 2.6-98:2009 in comparison with calculations according to SNiP 2.03.01-84* and EN 1992-1-1 (Eurocode 2) / V.M. Babaev, A.M. Bambura, O.M. Pustovoitova et.al., edited by V.S. Shmukler, Kharkiv: Golden Pages, 2015. - pp. 88-90.

Initial data file:

Example-14DBN.SAV
report - Arbat 14DBN. doc.
Compliance with the codes: DBN V 2.6-98:2009, DSTU B.V 2.6-156:2010

Initial data:

$l=6,0 \mathrm{~m}$
$b \times h=200 \times 500 \mathrm{~mm}$
$a=26 \mathrm{~mm}$
$A_{s}=1232 \mathrm{~mm}^{2}(2028)$
$M=160 \mathrm{kNm}$
Concrete class
Class of reinforcement

Beam span
Beam section sizes
Distance from the edge of the reinforcement to the edge of the section
Cross-sectional area of reinforcement
Bending moment
C20/25
A400C

Initial data in ARBAT:
Importance factor $\gamma_{\mathrm{n}}=1$
Member length 6 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to DBN B.2.6-98:2009 with modification No. 1
Random eccentricity along Y according to DBN B.2.6-98:2009 with modification No. 1
The structure is statically determinate

Section

Reinforcement	Class	Additional service factor
Longitudinal	A400C	1
Transverse	A240C	1

Concrete

Concrete type: Heavy-weight
Concrete class: C20/25
Aggregate: Quartzite

Additional parameters		
Additional service factor	1	
Age of concrete (days)	28	
Cement strength class	Class R	
Creep development time	36500	days
Temperature T $(\Delta \mathrm{t})$	20	${ }^{\circ} \mathrm{C}$
Number of days when the temperature T prevails $\Delta \mathrm{t}$	28	days
Relative humidity	40	$\%$

Crack resistance

Parameters				mm
Maximum crack opening width $W_{\max }$	0,3	m		

Checked according to DBN	Check	Utilization Factor
Sec. 7.3.4.2, Sec. 5.3.1.4 DSTU B V.2.6- 156-2010	Crack opening width	0,869

Comparison of solutions

Check	Crack opening width
Guide	$0,26 \mathrm{~mm}$
ARBAT	$0,869 \mathrm{x} 0,3=0,261 \mathrm{~mm}$
Deviation, \%	$0,4 \%$

Bearing capacity of inclined section

Objective: Determine the load-bearing capacity of an inclined section
Task: Check the shear resistance of an element with transverse reinforcement
References: Design of reinforced concrete structures. Guide / A.M. Bambura, I.R. Sazonova, O.V. Dorohova, O.V. Wojciechovsky; Under the editorship A.M. Bambura - Kyiv: Master of Books, 2018. - 240 p. (Example 5.2, p. 151-153)

Initial data file:

ARBAT mode - Strength of RC Section

Example-5.2-DBN.SAV
report - Arbat 5.2-DBN.doc
Compliance with the codes: DBN V 2.6-98:2009, DSTU B.V 2.6-156:2010

Initial data:

$b \times h=300 \times 600$ мм	Cross-section sizes
$a=25$ мм	The size of the protective layer of concrete
$V_{E d}=91 \mathrm{\kappa H}$	Design shear force
$3 \varnothing 25 A 500 C$	Lower tension reinforcement
Concrete class	C25/30
Класс продольной арматуры	A500C
Класс поперечной арматуры	A400С

Initial data in ARBAT:
Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (emergency state) 1
Member length 6 m
Effective length factor in the XoY plane 1
Effective length factor in the XoZ plane 1
Random eccentricity along Z according to DBN B.2.6-98:2009 with Change No 1 Random eccentricity along Y according to DBN B.2.6-98:2009 with Change No 1 Structure is statically determinate

Section

$S_{1}-3 \varnothing 25$
Transverse reinforcement along axis $Z 2 \not 88$, spacing of transverce reinforcement 75 mm

Reinforcement	Class	Additional service factor
Longitudinal	A500C	1
Transverse	A400C	1

Concrete

Concrete type: Heavy-weight
Concrete class: C25/30
Aggregate: Quartzite

Additional parameters		
additional service factor	1	
Concrete age (days)	28	
Cement strength class	Class R	
Creep progress time	36500	days
Temperature $\mathrm{T}(\square \mathrm{t})$	20	${ }^{\circ} \mathrm{C}$
The number of days where a temperature T prevails $\square \mathrm{t}$	28	days
Relative humidity	40	$\%$

Results of analysis by load case combinations

| | N | M_{y} | Q_{z} | M_{z} | Q_{y} | T | Factor for
 sustained
 load | Short-term | Seismicity |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | Special

Checked according to DBN	Check	Utilization Factor
Sec. 6.2.1.7	Shear resistance to Vz without transverse reinforcement	$\mathbf{1 , 9 1 5}$
Sec. 6.2.1.6	Shear resistance to Vz with transverse reinforcement	0,987

Comparison of solutions

Check	Shear resistance without transverse reinforcement
Guide	$191 / 100=1,91$
ARBAT	1,915
Deviation, \%	$0,3 \%$
Check	Shear resistance with transverse reinforcement

Guide	$191 / 194=0,985$
ARBAT	0,987
Deviation, $\%$	$0,2 \%$

DECOR

Check of the Load-bearing Capacity of a Bottom Truss Chord Section under Central Tension

Objective: Check of the calculation of the resistance of sections.
Task: Verify the correctness of the strength analysis of normal sections.
References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 62-63.

Initial data file: Example 3.SAV; report - Decor 3.doc.
Software version: DECOR 21.1.1.1, 17.02.2016.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$b \times h=15 \times 10 \mathrm{~cm} \quad$ Section sizes of the element
$l=3 \mathrm{~m}$
Member length
$d=1,6 \mathrm{~cm} \quad$ Diameter of the hole
$N=60 \mathrm{kN}$
Tensile force
Material of the element: pine.
Grade of wood: 2.
Operating conditions class: 1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2
Limit slenderness of members in tension - 200
Limit slenderness of members in compression - 120
Member length 3 m

Effective length factor in the XoY plane - 1

Effective length factor in the XoZ plane - 1
Section:
Nonsmes:

Weakening not reaching the edge
Area of the weakening - $24 \mathrm{~cm}^{2}$

Forces:

$\mathrm{N}=60 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN} \mathrm{N}^{\star} \mathrm{m}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{kN} \mathrm{N}^{\star} \mathrm{m}$
$Q_{y}=0 \mathrm{kN}$
Comparison of solutions:

File	Example 3.SAV
Report file	Décor 3.doc
Check	Strength of the member under a longitudinal tensile force
Theory	$0,47 / 0,56=0,839$
DECOR	0,85
Deviation, $\%$	$1,3 \%$

Comments:

1. The area of the weakening in the section is determined as the product of the width of the crosssection by the diameter of the hole $15 \times 1,6=24 \mathrm{~cm}^{2}$.
2. Service factor for 1 (A2) class $m_{\mathrm{B}}=1$ (table 5 of SNiP II-25-80, table 7 of SP 64.13330.2011).
3. Limit slenderness of the truss chord in tension (not in the vertical plane) is equal to $\lambda_{\max }=200$ (table 14 of SNiP II-25-80, table 17 of SP 64.13330.2011).
4. Boundary conditions of the element have to be specified in DECOR. Since they are not determined in the problem, it is assumed that the element is simply supported ($\mu_{y}=\mu_{z}=1$).

Check of the Load-bearing Capacity of an Axially Compressed Column

Objective: Check of the calculation of the resistance of sections.
Task: Verify the correctness of the stability analysis of normal sections.
References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 66-67.

Initial data file: Example 4.SAV; report - Decor 4.doc.
Software version: DECOR 21.1.1.1, 17.02.2016.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$b \times h=10 \times 15 \mathrm{~cm} \quad$ Section sizes of the element
$l=2,5 \mathrm{~m}$
Column height
$\mu_{x}=\mu_{y}=1$
Effective length factors
$N=60 \mathrm{kN}$
Compressive force
Material of the element: pine.
Grade of wood: 2.
Operating conditions class: 1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2

Limit slenderness of members in tension - 200
Limit slenderness of members in compression - 120
Member length 2,5 m

Effective length factor in the XoY plane - 1

Effective length factor in the XoZ plane -1

Section:

Forces:

$\mathrm{N}=-60 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{kN}$
Comparison of solutions:

File		
Report file	Décor 4.doc	
Check	Stability in the XOZ plane under a longitudinal force	Stability in the XOY plane under a longitudinal force
Theory	$0,55 / 1,3=0,423$	$1 / 1,3=0,769$
DECOR	0,42	0,769
Deviation, $\%$	$0,83 \%$	-

Comments:

1. Service factor for 1 (A2) class $m_{\mathrm{B}}=1$ (table 5 of SNiP II-25-80, table 7 of SP 64.13330.2011).
2. Limit slenderness of the compressed column is equal to $\lambda_{\max }=120$ (table 14 of SNiP II-25-80, table 17 of SP 64.13330.2011).

Check of the Load-bearing Capacity of a Section of an Axially Compressed Weakened Element with a Symmetric Weakening Reaching the Edge

Objective: Check of the calculation of the resistance of sections.
Task: Verify the correctness of the stability analysis of normal sections.
References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 67-68.

Initial data file: Example 5.SAV; report - Decor 5.doc.
Software version: DECOR 21.1.1.1, 17.02.2016.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$b \times h=15 \times 20 \mathrm{~cm} \quad$ Section sizes of the element
$a=20 \mathrm{~mm} \quad$ Height of the weakened section (Fig. 1)
$l=4 \mathrm{~m} \quad$ Member length
$\mu_{x}=\mu_{y}=1 \quad$ Effective length factors
$N=100 \mathrm{kN} \quad$ Compressive force
Material of the element: pine.
Grade of wood: 2.
Operating conditions class: 1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2
Limit slenderness of members in tension - 200
Limit slenderness of members in compression - 120
Member length 4 m

Effective length factor in the XoZ plane - 1

Section:

Weakening reaching the edge
Area of the weakening - $60 \mathrm{~cm}^{2}$
Forces:
$\mathrm{N}=-100 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN}{ }^{*} \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{kN}{ }^{*} \mathrm{~m}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{kN}$

Comparison of solutions:

File	Example 5.SAV
Report file	Décor 5.doc
Check	Stability in the XOY plane under a longitudinal force
Theory	$1,19 / 1,5=0,793$
DECOR	0,79
Deviation, $\%$	$0,4 \%$

Comments:

1. The area of the weakening in the section is determined as $2(a \times b)=2 \cdot(2 \times 15)=60 \mathrm{~cm}^{2}$.
2. Service factor for 1 (A2) class $m_{\mathrm{B}}=1$ (table 5 of SNiP II-25-80, table 7 of SP 64.13330.2011).
3. Limit slenderness of the compressed element is equal to $\lambda_{\max }=120$ (table 14 of SNiP II-25-80, table 17 of SP 64.13330.2011).

Check of the Load-bearing Capacity of a Section of an Axially Compressed Element Weakened by Holes in a Section of 150 mm

Objective: Check of the calculation of the resistance of sections.
Task: Verify the correctness of the stability analysis of normal sections.
References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 68-69.

Initial data file: Example 6.SAV; report - Decor 6.doc.
Software version: DECOR 21.1.1.1, 28.03.2016.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$b \times h=20 \times 15 \mathrm{~cm} \quad$ Section sizes of the element
$d=40 \mathrm{~mm} \quad$ Diameter of the hole
$\mathrm{a}=150 \mathrm{~mm} \quad$ Distance between the centers of the holes
$l=3 \mathrm{~m} \quad$ Member length
$\mu_{x}=\mu_{y}=1 \quad$ Effective length factors
$N=100 \mathrm{kN}$
Material of the element: pine.
Grade of wood: 2.
Operating conditions class: 1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2
Limit slenderness of members in tension - 200
Limit slenderness of members in compression - 120
Member length 3 m

$\overbrace{0}^{3}$

Effective length factor in the XoY plane - 1

Effective length factor in the XoZ plane - 1

Section:

Section:
Non-glued timber section
$\mathrm{b}=200 \mathrm{~mm}$
$\mathrm{~h}=150 \mathrm{~mm}$

Weakening not reaching the edge
Area of the weakening - $80 \mathrm{~cm}^{2}$

Forces:

$\mathrm{N}=-100 \mathrm{kN}$
$\mathrm{M}_{\mathrm{y}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{z}}=0 \mathrm{kN}$
$\mathrm{M}_{\mathrm{z}}=0 \mathrm{kN} * \mathrm{~m}$
$\mathrm{Q}_{\mathrm{y}}=0 \mathrm{kN}$

Comparison of solutions:

File	Example 6.SAV
Report file	Décor 6.doc
Check	Stability in the XOZ plane under a longitudinal force
Theory	$0,55 / 1,5=0,367$
DECOR	0,369
Deviation, $\%$	$0,62 \%$

Comments:

1. The area of the weakening in the section is determined as the product of the width of the cross-section by the diameter of the hole $20 \times 4=80 \mathrm{~cm}^{2}$.
2. Service factor for 1 (A2) class $m_{\mathrm{B}}=1$ (table 5 of SNiP II-25-80, table 7 of SP 64.13330.2011).
3. Limit slenderness of the compressed element is equal to $\lambda_{\max }=120$ (table 14 of SNiP II-25-80, table 17 of SP 64.13330.2011).

Check of a Section of a Flexural Member

Objective: Check of the beam analysis.
Task: Verify the correctness of the strength analysis and the calculation of the deflection of the element.

References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 80-82.

Initial data file: Example 9.SAV; report - Decor 9.doc.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$b \times h=10 \times 15 \mathrm{~cm} \quad$ Section sizes of the element
$l=3 \mathrm{~m} \quad$ Member length
$\mu_{x}=\mu_{y}=1 \quad$ Effective length factors (Fig. 1)
$q_{\mathrm{s}}^{\mathrm{ch}}=3,1 \mathrm{kN} / \mathrm{m} \quad$ Uniformly distributed characteristic
serviceability load
Uniformly distributed design
serviceability load
Material of the element: pine.
Grade of wood: 2.
Operating conditions class: 1 (A2 according to SNiP II-25-80).
The beam is restrained out of the bending plane along the whole length of the compressed chord.

DECOR initial data:

Importance factor $\gamma_{n}=1$
Importance factor (serviceability limit state) $=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2
Density of wood $5 \mathrm{kN} / \mathrm{m}^{3}$

Structure:

Restraints against lateral displacements and rotations:

	Left	Right
Displacement along Y	Restrained	Restrained
Displacement along Z	Restrained	Restrained
Rotation about Y		
Rotation about Z		

Continuous restraint of the compressed section elements out of the bending plane
Section:

Load case 1 - permanent

	Load type	Value	Dead weight factor	
	length $=3 \mathrm{~m}$			
	II	3,7	kN / m	

Load case 2 - permanent

	Load type	Value		
	$\mathbf{\Xi}^{\downarrow}$	0,075	kN / m	1,1

Load case 2 - permanent
Safety factor for load: 1,1

	Support reactions			
	Force in support 1		Force in support 2	
	$\mathbf{k N}$		$\mathbf{k N}$	
by criterion $\mathrm{M}_{\max }$	5,674	574		
by criterion $\mathrm{M}_{\min }$	5,674	5,674		
by criterion $\mathrm{Q}_{\max }$	5,674	5,674		
by criterion $\mathrm{Q}_{\min }$	5,674	5,674		

Comparison of solutions:

File	Example 9SAV		
Report file	Décor 9.doc		
Check	Strength of the member under the bending moment	Strength under the lateral force	Deflection
Theory	$1,14 / 1,3=0,877$	$0,057 / 0,16=0,356$	$1,19 / 1,2=0,992$
DECOR	0,873	0,355	1,04
Deviation, $\%$	$0,463 \%$	$0,46 \%$	$4,62 \%$

Comments:

1. Maximum allowable deflection for interstorey floor beams is determined as $(1 / 250) l=0,004 l$ (table 16 of SNiP II-25-80, table 19 of SP 64.13330.2011).
2. The loads in DECOR are specified in the following way:

- Load case 1 - external load (design value) $3,7 \mathrm{kN} / \mathrm{m}$ with a safety factor for load equal to $q_{\mathrm{s}}{ }^{\mathrm{d}} / q_{\mathrm{s}}{ }^{\text {ch }}=$ $3,7 / 3,1=1,19355 ;$
- Load case 2 - load from the self-weight with a dead weight factor of 1,1 and a safety factor for load of 1,1.

3. The difference in the deflection of $4,62 \%$ was obtained due to the fact that the effect of shear is not taken into account in the calculation in the source.

Analysis of a Purlin for Biaxial Bending

Objective: Check the calculation of continuous purlins.
Task: Verify the correctness of the strength analysis and the calculation of the deflection of the element.

References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 86-88.

Initial data file: Example 11.SAV; report - Decor 11.doc.
Software version: DECOR 21.1.1.1, 27.05.2016.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$b \times h=15 \times 20 \mathrm{~cm} \quad$ Section sizes of the element
$l=4,2 \mathrm{~m}$ Purlin span
$\mu_{x}=\mu_{y}=1$
$q_{\mathrm{s}}^{\text {ch }}=3,0 \mathrm{kN} / \mathrm{m}$
Effective length factors
Uniformly distributed serviceability load (characteristic value)
$q_{\mathrm{s}}{ }^{\mathrm{d}}=3,5 \mathrm{kN} / \mathrm{m}$
Uniformly distributed serviceability load (design value)
$\alpha=30^{\circ}$
Material of the element:
Grade of wood:

Purlin inclination
pine
2

Operating conditions class: 1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$
Importance factor (serviceability limit state) $=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1

Service factor under short-term loads m_{n}

m_{n}	1
egnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2
Density of wood $5 \mathrm{kN} / \mathrm{m}^{3}$

Structure

Spacing of bracing in the roof plane $0,6 \mathrm{~m}$
Roof inclination 30 degrees
Section

Load case 1 - permanent

	Load type	Value		Dead weight factor
span 1, length $=4,2 \mathrm{~m}$		3,5	kN / m	
	皿			

Load case 1 - permanent
Safety factor for load: 1,16667

Load case 2 - permanent

	Load type	Value		Dead weight factor	
	$\mathbf{0}^{\downarrow}$	0,15	kN / m	1,1	

| Load case 2 - permanent |
| :---: | :---: | :---: | :---: |
| Safety factor for load: 1,1 |

	Support reactions			
	Force in support 1		Force in support 2	
	$\mathbf{k N}$	$\mathbf{k N}$		
by criterion $\mathrm{M}_{\max }$	7,697	7,697		
by criterion $\mathrm{M}_{\min }$	7,697	7,697		
by criterion $\mathrm{Q}_{\max }$	7,697	7,697		
by criterion $\mathrm{Q}_{\min }$	7,697	7,697		

Comparison of solutions:

File	Example 11.SAV	
Report file	Decor 11.doc	
Check	Strength of the member under the bending moment M_{y}	Deflection
Theory	$1,24 / 1,5=0,827$	$1,59 / 2,1=0,757$
DECOR	0,826	0,775
Deviation, $\%$	$0,115 \%$	$2,36 \%$

Comments:

1. Maximum allowable deflection for purlins is determined as $(1 / 200) l=0,005 l$ (table 16 of SNiP II-25-80, table 19 of SP 64.13330.2011).
2. Spacing of bracing in the roof plane has to be specified in DECOR. Since it is not determined in the problem, the value of $0,6 \mathrm{~m}$ is used.
3. The density of pine at the operating conditions class 1 (A2) is equal to $\rho=500 \mathrm{~kg} / \mathrm{m}^{3}=5$ $\mathrm{kN} / \mathrm{m}^{3}$ (Annex 3 of SNiP II-25-80, Annex E of SP 64.13330.2011).
4. The loads in DECOR are specified in the following way:

- Load case 1 - external load (design value) $3,5 \mathrm{kN} / \mathrm{m}$ with a safety factor for load equal to $q_{\mathrm{s}}{ }^{\mathrm{d}} / q_{\mathrm{s}}{ }^{\mathrm{ch}}=3,5 / 3,0=1,16667$;
- Load case 2 - load from the self-weight with a dead weight factor of 1,1 and a safety factor for load of 1,1 .

5. The difference in the deflection of $2,36 \%$ was obtained due to the fact that shear was not taken into account in the calculation in the theoretical source.

Check the Load-bearing Capacity of a Connection with Dowels

Objective: Check the calculation of the resistance of connections.
Task: Verify the correctness of the load-bearing capacity analysis of the bottom truss chord joint for bearing of the side and middle members and bending of the dowel.

References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 114-116.

Initial data file: Example 18.SAV; report - Decor 18.doc.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$\delta \times h=5 \times 15 \mathrm{~cm}$
$d=12 \mathrm{~mm}$
$N=30 \mathrm{kN}$
Material of the element:
Grade of wood:
Operating conditions class:
Section sizes of the chord boards and gusset plates
Diameter of bolts
Tensile force in the chord
pine
2
1 (A2 according to SNiP II-25-80).

1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2
Non-glued timber section

Connection with cylindrical dowels

Dowel type - Steel

Arrangement of dowels - in-line	Symmetric joint Number of design-glue-lines for one dowel - 2 Diameter of dowel 12 mm $\begin{aligned} & \mathrm{m}=2 \\ & \mathrm{n}=1 \\ & \mathrm{~s}_{1}=84 \mathrm{~mm} \\ & \mathrm{~s}_{2}=42 \mathrm{~mm} \\ & \mathrm{~s}_{3}=36 \mathrm{~mm} \\ & \mathrm{a}=50 \mathrm{~mm} \\ & \mathrm{c}=50 \mathrm{~mm} \end{aligned}$

Forces

$\mathrm{N}=30 \mathrm{kN}$

Comparison of solutions:

Check	Load-bearing capacity for bearing of the side member	Load-bearing capacity for bearing of the middle member	Bending of the steel dowel
Theory	$30 / 57,6=0,521$	$30 / 36=0,833$	$30 / 37,1=0,809$
DECOR	0,521	0,833	0,809
Deviation, $\%$	0%	0%	0%

Comment:

The necessary number of dowels in the given connection was determined in the theoretical solution of the problem in the source, and the joint was designed. In the result it was decided to put 6 dowels on each side of the joint and arrange them in two rows, and the distances between the dowel axes were determined: $S_{1}=8,4 \mathrm{~cm}, S_{2}=4,2 \mathrm{~cm}$ and $S_{3}=3,6 \mathrm{~cm}$. These parameters are used in DECOR for checking the connection.

Check the Load-bearing Capacity of the Bottom (Tensile) Truss Chord

Objective: Check the calculation of the resistance of connections.
Task: Verify the correctness of the load-bearing capacity analysis of the bottom truss chord joint for bearing of the side and middle members and bending of the dowel.

References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 116-118.

Initial data file: Example 19.SAV; report - Decor 19.doc.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$c \times h=10 \times 20 \mathrm{~cm} \quad$ Section sizes of the timber chord
$a \times h=5 \times 20 \mathrm{~cm} \quad$ Section sizes of steel gusset plates
$d=16 \mathrm{~mm}$
$N=80 \mathrm{kN}$
Material of the element:
Grade of wood:
Steel grade of the gusset plates:
Operating conditions class:

Diameter of bolts

Tensile force in the chord
pine
2
C235
1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2
Non-glued timber section

Connection with cylindrical dowels

Dowel type - Steel

Arrangement of dowels - in-line	Symmetric joint Number of design-glue-lines for one dowel - 2 Diameter of dowel 16 mm $\begin{aligned} & \mathrm{m}=3 \\ & \mathrm{n}=1 \\ & \mathrm{~s}_{1}=112 \mathrm{~mm} \\ & \mathrm{~s}_{2}=56 \mathrm{~mm} \\ & \mathrm{~s}_{3}=48 \mathrm{~mm} \\ & \mathrm{a}=50 \mathrm{~mm} \\ & \mathrm{c}=100 \mathrm{~mm} \end{aligned}$

Forces

$\mathrm{N}=80 \mathrm{kN}$

Comparison of solutions:

Check	Load-bearing capacity for bearing of the side member	Load-bearing capacity for bearing of the middle member	Bending of the steel dowel
Theory	$80 / 102,4=0,781$	$80 / 128=0,625$	$80 / 81,73=0,979$
DECOR	0,781	0,625	0,979
Deviation, $\%$	0%	0%	0%

Comment:

The necessary number of dowels in the given connection was determined in the theoretical solution of the problem in the source, and the joint was designed. In the result it was decided to put 6 dowels on each side of the joint and arrange them in two rows, and the distances between the dowel axes were determined: $S_{1}=11,2 \mathrm{~cm}, S_{2}=5,6 \mathrm{~cm}$ and $S_{3}=4,8 \mathrm{~cm}$. These parameters are used in DECOR for checking the connection.

Check of the Load-bearing Capacity of a Truss Support Joint

Objective: Check the calculation of the resistance of connections.
Task: Verify the correctness of the strength analysis of the truss support joint for bearing and shearing.

References: Nasonov S.B. Manual on design and analysis of building structures. - M: ASV Publishing House, 2013. - p. 107-108.

Initial data file: Example 16.SAV; report - Decor 16.doc.
Software version: DECOR 21.1.1.1, 27.05.2016.
Compliance with the codes: SNiP II-25-80, SP 64.13330.2011.

Initial data from the source:

$b \times h=15 \times 20 \mathrm{~cm}$
$h_{\mathrm{bp}}=5,5 \mathrm{~cm}$
$L_{\mathrm{ck}}=10 h_{\mathrm{bp}}=55 \mathrm{~cm}$
$\alpha=21^{\circ} 48^{\prime}$
$N=89 \mathrm{kN}$
Material of the element:
Grade of wood:
Section sizes
Depth of the notch
Length of the shearing area
Angle between the chords
Compressive force in the top chord
pine
2

Operating conditions class: 1 (A2 according to SNiP II-25-80).

DECOR initial data:

Importance factor $\gamma_{\mathrm{n}}=1$

Service factors	
Service factor for temperature and humidity operating conditions m_{B}	1
Allowance for the temperature conditions of operation m_{T}	1
Allowance for the duration of loading m_{d}	1
Service factor under short-term loads m_{n}	1
Factor that allows for the effect of impregnation with protective substances m_{a}	1

Wood species - Pine
Grade of wood - 2

Notched connection

 Section

Forces

$\mathrm{N}=89 \mathrm{kN}$
Comparison of solutions:

Check	Strength based on the bearing conditions	Strength based on the shearing londitions
Theory	$89 / 110,11=0,808$	$82,6 / 83,32=0,991$
DECOR	0,805	0,805
Deviation, $\%$	$0,46 \%$	$18,8 \%$

Comment:

The difference between the strength factor based on the shearing condition and the result of the theoretical solution of $18,8 \%$ was obtained due to the different determination of the average design shearing resistance of timber over the shearing area $R_{\mathrm{ck}}{ }^{\mathrm{cp}}$: in DECOR this factor is determined by the formula (59) according to Sec. 7.3 of SP 64.13330 .2011 (formula (54) according to Sec. 5.3 of SNiP II-25-80); and in the theoretical source $R_{\mathrm{ck}}{ }^{\text {cp }}$ is determined from the table given in it, the origin of which is not explained by the author.

MAGNUM

Calculation of the Gross Cross-Sectional Properties of a Load-Bearing Member from a C-shaped Cold-Formed Profile (Rotation of the Principal Axes of Inertia)

Task: Verify the correctness of the calculation of the gross cross-sectional properties for loadbearing members from cold-formed profiles.

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - $1^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 1.1.sav; report - Report 1.1.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$h=102 \mathrm{~mm} \quad$ Section height (along the outer edge)
$b=120 \mathrm{~mm}$
$c=26 \mathrm{~mm}$
$t=2 \mathrm{~mm}$
$r=10 \mathrm{~mm}$

Results in MAGNUM:

Section

Comparison of solutions

Geometric property	$[1]$, p. 147	MAGNUM, EN1993-1-1	$\%$
Gross cross-sectional area, cm^{2}	7,34	7,342	0,027
Moment of inertia about the $y-y$ axis, cm^{4}	139,10	139,185	0,06
Section modulus about the y-y axis, cm^{3}	140,45	140,562	0,08

Comments

The calculation of the gross cross-sectional properties in MAGNUM is performed accurately, taking into account the fillets, due to which the calculation results correspond to the exact analytical solution.

Calculation of the Gross Cross-Sectional Properties of a Load-Bearing Member from a C-shaped Cold-Formed Profile

Task: Verify the correctness of the calculation of the gross cross-sectional properties for loadbearing members from cold-formed profiles.

Source: [2] Leroy Gardner and David A. Nethercot. Designer's guide to EuroCode 3: Design of steel buildings EN 1993-1-1, -1-3 and -1-8. Second edition. ISBN 978-0-7277-4172-1. doi:
10.1680/dsb. 41721.001

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 1.2.sav; report - Report 1.2.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$h=200 \mathrm{~mm}$
$b=65 \mathrm{~mm}$
$c=15 \mathrm{~mm}$
$t=1.56 \mathrm{~mm}$
$r=1.2 \mathrm{~mm}$
Section height (along the outer edge)
Flange width (along the outer edge)
Flange bend length (along the outer edge)
Profile thickness (minus the coating thickness) Fillet radius (inner)

Results in MAGNUM:

Section

$\mathrm{h}=200 \mathrm{~mm}$
$\mathrm{b}=65 \mathrm{~mm}$
$\mathrm{s}=1,56 \mathrm{~mm}$
$\mathrm{h} 1=15 \mathrm{~mm}$
$r=1,2 \mathrm{~mm}$

Comparison of solutions

Geometric property	[2], p. 139	MAGNUM, EN1993-1-1	$\%$
Gross cross-sectional area, mm^{2}, MM 2	551.6	546.6	0,9

Comments

The calculation of the gross cross-sectional properties in MAGNUM is performed accurately, taking into account the fillets, due to which the calculation results correspond to the exact analytical solution.

Calculation of the Gross Cross-Sectional Properties of a Load-Bearing Member from a Cold-Formed Hat Channel

Task: Verify the correctness of the calculation of the gross cross-sectional properties for loadbearing members from cold-formed profiles.

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - $1^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 1.3.sav; report - Report 1.3.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$h=180 \mathrm{~mm}$ Section height (along the outer edge)
$b=175 \mathrm{~mm}$ Flange width (along the outer edge)
$c=95 \mathrm{~mm}$
$t=3 \mathrm{~mm}$
$r=3.5 \mathrm{~mm}$

Flange bend length (along the outer edge)
Profile thickness (minus the coating thickness) Fillet radius (inner)

Results in MAGNUM:

Section

Comparison of solutions

Geometric property	$[1]$, p. 170	MAGNUM, EN1993-1-1	$\%$
Gross cross-sectional area, mm^{2}	2113,2	2113,2	0
Moment of inertia about the $\mathrm{y}-\mathrm{y}$ axis, mm^{4}	$10,994 \times 10^{6}$	10997360	0,03
Moment of inertia about the z-z axis, mm^{4}	$19,231 \times 10^{6}$	19231920	0.005

Comments

The calculation of the gross cross-sectional properties in MAGNUM is performed accurately, taking into account the fillets, due to which the calculation results correspond to the exact analytical solution.

Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a C-shaped Cold-Formed Profile under Axial Compression

Task: Verify the correctness of the calculation of the effective cross-sectional properties for loadbearing members from cold-formed profiles under axial compression.

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - $1^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 2.1.sav; report - Report 2.1.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$f_{y}=355 \mathrm{~N} / \mathrm{mm}^{2}$	Yield strength
$h=102 \mathrm{~mm}$	Section height (along the outer edge)
$b=120 \mathrm{~mm}$	Flange width (along the outer edge)
$c=26 \mathrm{~mm}$	Flange bend length (along the outer edge)
$t=2 \mathrm{~mm}$	Profile thickness (minus the coating thickness)
$r=10 \mathrm{~mm}$	Fillet radius (inner)

Results in MAGNUM:

Steel: S355

Section

$\mathrm{h}=102 \mathrm{~mm}$
$\mathrm{b}=120 \mathrm{~mm}$
$\mathrm{s}=2 \mathrm{~mm}$
$\mathrm{h} 1=26 \mathrm{~mm}$
$r=10 \mathrm{~mm}$

Comparison of solutions

Geometric property	[1], p. 154	MAGNUM, EN1993-1-1	$\%$
Gross cross-sectional area, cm^{2}	4,67	4,609	1.3
Moment of inertia about the $\mathrm{y}-\mathrm{y}$ axis, cm^{4}	87,24	86,266	1.12
Moment of inertia about the z-z axis, cm^{4}	94,80	94,18	0.65

Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a Cold-Formed Hat Channel under Axial Compression

Task: Verify the correctness of the calculation of the effective cross-sectional properties for loadbearing members from cold-formed profiles under axial compression.

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - $1^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 2.2.sav; report - Report 2.2.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$$
\begin{aligned}
& f_{y}=355 \mathrm{~N} / \mathrm{mm}^{2} \\
& h=180 \mathrm{~mm} \\
& b=175 \mathrm{~mm} \\
& c=95 \mathrm{~mm} \\
& t=3 \mathrm{~mm} \\
& r=3.5 \mathrm{~mm}
\end{aligned}
$$

Yield strength
Section height (along the outer edge)
Flange width (along the outer edge)
Flange bend length (along the outer edge)
Profile thickness (minus the coating thickness)
Fillet radius (inner)

Results in MAGNUM:

Steel: S355

Section

$\begin{aligned} & \mathrm{h}=175 \mathrm{~mm} \\ & \mathrm{~b}=180 \mathrm{~mm} \\ & \mathrm{~s}=3 \mathrm{~mm} \\ & \mathrm{a}=95 \mathrm{~mm} \\ & \mathrm{r}=3,5 \mathrm{~mm} \end{aligned}$

Comparison of solutions

Geometric property	[1], p. 175	MAGNUM, EN1993-1-1	$\%$
Gross cross-sectional area, mm^{2}	1188.26	1229,7	3.37

Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a C-shaped Cold-Formed Profile under Bending

Task: Verify the correctness of the calculation of the effective cross-sectional properties for loadbearing members from cold-formed profiles under bending.

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - $1^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 3.1.sav; report - Report 3.1.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$f_{y}=355 \mathrm{~N} / \mathrm{mm}^{2}$	Yield strength
$h=102 \mathrm{~mm}$	Section height (along the outer edge)
$b=120 \mathrm{~mm}$	Flange width (along the outer edge)
$c=26 \mathrm{~mm}$	Flange bend length (along the outer edge)
$t=2 \mathrm{~mm}$	Profile thickness (minus the coating thickness)
$r=10 \mathrm{~mm}$	Fillet radius (inner)

Results in MAGNUM:

Steel: S355

Section

$\mathrm{h}=102 \mathrm{~mm}$
$b=120 \mathrm{~mm}$
$\mathrm{s}=2 \mathrm{~mm}$
$\mathrm{h} 1=26 \mathrm{~mm}$
$\mathrm{r}=10 \mathrm{~mm}$

Comparison of solutions

	$[1]$, p. 160	MAGNUM, EN1993-1-1	$\%$
Gross cross-sectional area, cm^{2}	6,86	6,602	3,76
Moment of inertia about the $y-y$ axis, cm^{4}	129,73	124,976	3,66
Section modulus about the $y-y$ axis, cm^{3}	122,49	113,842	7,06

Comments

In [1] the calculation of the effective cross-sectional properties is performed taking into account the fillets. In MAGNUM they are calculated without taking the fillets into account, which is permitted by the codes for the considered fillet radius (see Sec. 5.1(3) EN1993-1-3).

Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a Cold-Formed Hat Channel under Bending (the Flange is in Compression)

Task: Verify the correctness of the calculation of the effective cross-sectional properties for loadbearing members from cold-formed profiles under bending (the flange is in compression).

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - ${ }^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 3.2.sav; report - Report 3.2.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$f_{y}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$h=180 \mathrm{~mm}$
$b=175 \mathrm{~mm}$
$c=95 \mathrm{~mm}$
$t=3 \mathrm{~mm}$
$r=3.5 \mathrm{~mm}$

Yield strength
Section height (along the outer edge)
Flange width (along the outer edge)
Flange bend length (along the outer edge)
Profile thickness (minus the coating thickness)
Fillet radius (inner)

Results in MAGNUM:
Steel: S355
Section

Comparison of solutions

Geometric property	$[1]$, p. 177	MAGNUM, EN1993-1-1	$\%$
Cross-sectional area, cm^{2}	-	19,375	-
Moment of inertia about the y-y axis, mm^{4}	$9,73 \times 10^{6}$	$9,45217 \times 10^{6}$	2,86
Section modulus about the y-y axis, mm^{3} (maximum)	$123,11 \times 10^{3}$	$117,644 \times 103$	4,44
Section modulus about the y-y axis, mm^{3} (minimum)	$99,28 \times 10^{3}$	$94,85 \times 103$	4,46

Comments

In [1] the calculation of the effective cross-sectional properties is performed taking into account the fillets. In MAGNUM they are calculated without taking the fillets into account, which is permitted by the codes for the considered fillet radius (see Sec. 5.1(3) EN1993-1-3).

Calculation of the Effective Cross-Sectional Properties of a Load-Bearing Member from a Cold-Formed Hat Channel under Bending (the Flange is in Tension)

Task: Verify the correctness of the calculation of the effective cross-sectional properties for loadbearing members from cold-formed profiles under bending (the flange is in tension).

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - ${ }^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 3.3.sav; report - Report 3.3.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$f_{y}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$h=180 \mathrm{~mm}$
$b=175 \mathrm{~mm}$
$c=95 \mathrm{~mm}$
$t=3 \mathrm{~mm}$
$r=3.5 \mathrm{~mm}$

Yield strength
Section height (along the outer edge)
Flange width (along the outer edge)
Flange bend length (along the outer edge)
Profile thickness (minus the coating thickness)
Fillet radius (inner)

Results in MAGNUM:
Steel: S355

Section

Comparison of solutions

Geometric property	$[1]$, p. 180	MAGNUM, EN1993-1-1	$\%$
Cross-sectional area, mm^{2}	1762,29	1773,5	0,63
Moment of inertia about the y-y axis, mm^{4}	$7,98 \times 10^{6}$	$8,15496 \times 10^{6}$	2,15
Section modulus about the y-y axis, mm^{3} (maximum)	$110,09 \times 10^{3}$	$106,908 \times 10^{3}$	2,89
Section modulus about the y-y axis, mm^{3} (minimum)	$76,37 \times 10^{3}$	$78,901 \times 10^{3}$	3,21

Comments

In [1] the calculation of the effective cross-sectional properties is performed taking into account the fillets. In MAGNUM they are calculated without taking the fillets into account, which is permitted by the codes for the considered fillet radius (see Sec. 5.1(3) EN1993-1-3).

Calculation of the Load-Bearing Capacity of a Bar Structural Member from a C-shaped Cold-Formed Profile under Axial Compression

Task: Verify the correctness of the calculation of the load-bearing capacity of bar structural members from cold-formed profiles under axial compression.

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - $1^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 4.1.sav; report - Report 4.1.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$E=210000 \mathrm{~N} / \mathrm{mm}^{2}$
Elastic modulus
$v=0.3$
Poisson's ratio
$f_{y}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma_{M 0}=1$
Yield strength
$\gamma_{M 1}=1$
$h=102 \mathrm{~mm}$
$b=120 \mathrm{~mm}$
$c=26 \mathrm{~mm}$
$t=2 \mathrm{~mm}$
$r=10 \mathrm{~mm}$
$N=85.7 \mathrm{kN}$
$\ell=150 \mathrm{~cm}$

Partial safety factor
Partial safety factor
Section height (along the outer edge)
Flange width (along the outer edge)
Flange bend length (along the outer edge)
Profile thickness (minus the coating thickness)
Fillet radius (inner)
Design axial force
Effective length of the bar member

Results in MAGNUM:

Steel: S355
Importance factor 1
Effective length factor for torsional buckling:
coefficient to the geometric length $=1$

Section

Member length $1,5 \mathrm{~m}$

Effective length factor in the XOY plane - 1
$?_{?}^{?}$
Effective length factor in the XOZ plane - 1
Type of moment diagram

Height of the load application point $=0 \mathrm{~mm}$
Length between restraints out of the bending plane:
geometric length factor $=1$
Effective length factors depending on the boundary conditions of the support sections:
rotation out of the bending plane $=1$
warping = 1

	N	M_{y}	V_{z}	M_{2}	$\mathrm{~V}_{\mathrm{y}}$	T	B	T_{w}
	kN	$\mathrm{t}^{\star} \mathrm{m}$	kN	$\mathrm{t}^{\star} \mathrm{m}$	kN	$\mathrm{t}^{\star} \mathrm{m}$	$\mathrm{kN}{ }^{\star} \mathrm{m}^{2}$	$\mathrm{t}^{\star} \mathrm{m}$
1	$-85,7$	0	0	0	0	0	0	0

Comparison of solutions

Factor	$\quad[1]$, p.143 $\ldots 165$	MAGNUM, EN1993-1-1	$\%$
Strength of member	0,634	0.643	1,42
Stability under axial compression (flexural buckling about the y-y axis)	$85,7 / 156,2=0,549$	0.556	1,26
Stability under axial compression (torsional- flexural buckling)	$85,7 / 109,7=0,781$	0.791	1,26
Stability under eccentric compression	1,0	0.686	36,9

Comments

When assessing the overall stability of a bar member under eccentric compression in [1] its loadbearing capacity was calculated using a simplified approach based on the formula according to 6.2.5(2), (6.36) EN1993-1-3. In MAGNUM the overall stability of a cold-formed bar member is determined more accurately according to 6.2.5(1) EN1993-1-3.

Calculation of the Load-Bearing Capacity of a Bar Structural Member from a Cold-Formed Hat Channel under Axial Compression

Task: Verify the correctness of the calculation of the load-bearing capacity of bar structural members from cold-formed profiles under axial compression.

Source: [1] Worked examples according to EN 1993-1-3, Eurocode 3, Part 1-3 // ECCS TC7 TWG 7.5 Practical Improvement of Design Procedure. - $1^{\text {st }}$ Ed., ECCS CECM, EKS, 2008. - 235 p.

Compliance with the codes: EN 1993-1-3.

Initial data file:

Task 4.2.sav; report - Report 4.2.doc
Program version: MAGNUM 23.1.1.3, 07.02.2024

Initial data:

$E=210000 \mathrm{~N} / \mathrm{mm}^{2}$
Elastic modulus
$v=0.3$
$f_{y}=355 \mathrm{~N} / \mathrm{mm}^{2}$
$\gamma_{M 0}=1$
$\gamma_{M 1}=1$
$h=180 \mathrm{~mm}$
$b=175 \mathrm{~mm}$
$c=95 \mathrm{~mm}$
$t=3 \mathrm{~mm}$
$r=3.5 \mathrm{~mm}$
$N=214.29 \mathrm{kN}$
$\ell_{y}=316 \mathrm{~cm}$
$\ell_{z}=158 \mathrm{~cm}$

Results in MAGNUM:

Steel: S355

Importance factor 1
Effective length factor for torsional buckling:
coefficient to the geometric length $=1$

Section

$\mathrm{h}=175 \mathrm{~mm}$
$\mathrm{b}=180 \mathrm{~mm}$
$\mathrm{s}=3 \mathrm{~mm}$
$\mathrm{a}=95 \mathrm{~mm}$
$\mathrm{r}=3,5 \mathrm{~mm}$

Member length $3,16 \mathrm{~m}$
$\prod_{?}^{?}$
Effective length factor in the XOY plane-0,5
$?$
Effective length factor in the XOZ plane - 1
Type of moment diagram

Load position

Height of the load application point $=0 \mathrm{~mm}$
Length between restraints out of the bending plane:
geometric length factor $=1$
Effective length factors depending on the boundary conditions of the support sections: rotation out of the bending plane $=1$ warping $=1$

	N	M_{y}	V_{z}	M_{z}	V_{y}	T	B	T_{w}
	kN	$\mathrm{t}^{*} \mathrm{~m}$	kN	$\mathrm{t}^{*} \mathrm{~m}$	kN	$\mathrm{t}^{*} \mathrm{~m}$	$\mathrm{kN}^{*} \mathrm{~m}^{2}$	$\mathrm{t}^{*} \mathrm{~m}$
1	$-214,29$	0	0	0	0	0	0	0

Comparison of solutions

Factor	[1], p.181...184	MAGNUM, EN1993-1-1	$\%$
Strength of member	-	0,554	-
Stability under axial compression (flexural buckling about the y-y axis)	$214,29 / 385,56=0,556$	0,56	0,714
Stability under axial compression (flexural buckling about the z-z axis)	$214,29 / 421,83=0,508$	0,491	3,34
Stability under axial compression (torsional and torsional-flexural buckling)	$214,29 / 214,29=1$	1,113	11,3

Comments

When assessing the overall stability of a bar member in [1] the cross-sectional properties were calculated taking into account the fillets. In MAGNUM they are calculated without taking the fillets into account, which is permitted by the codes for the considered fillet radius (see Sec. 5.1(3) EN1993-1-3).

