Structure 1

SCAD

Пользовательские расширения

Содержание

1.	Ввел	цение	2
2.		цее описание	
		Пользовательский интерфейс	
		Файлы и папки	
	2.3.	Типографские соглашения	
	2.4.	Программная реализация	
3.		ташение по именам и вызовам функций	
4.		граммные интерфейсы	
	-	Engine	
4	4.2.	Settings	7
4	4.3.	View	8
	4.4.	Model	8
	4.5.	Editor	29
4	4.6.	Result	
5.	Доп	олнение 1	46
6.	Доп	олнение 2	47
7.	Доп	олнение 3	48
8.	Доп	олнение 4	49
9.	Доп	олнение 5	49
10	. Лопо	олнение 6	50

1. Введение

SCAD++ предоставляет возможность наращивания функциональности посредством написания пользовательских расширений. В качестве механизма взаимодействия между пользовательскими расширениями и **SCAD++** используется реализация JScript в рамках Windows Script.

Данный документ описывает способ создания пользовательских расширений, а также программные интерфейсы и функции **SCAD**++ доступные разработчику пользовательских расширений.

2. Общее описание

2.1. Пользовательский интерфейс

Опция отображения или сокрытия панели инструментов управления пользовательскими расширениями находится в меню Вид ->Панели инструментов ->Расширения.

Панели инструментов и наборы расширений настраиваются раздельно для режима задания исходных данных и режима анализа результатов.

Кнопка («Обновить») инициирует процесс синхронизации соответствующей панели инструментов с диском. Функция предназначена для использования в ситуациях, когда меняется список пользовательских расширений или реализация пользовательских расширений во время работы **SCAD++**. Примеры: во время работы **SCAD++** были установлены новые расширения сторонних разработчиков или в процессе разработки расширения была изменена его реализация. В таких случаях нет необходимости перезапускать **SCAD++**, достаточно активировать операцию «Обновить».

Прочие кнопки активируют исполнение соответствующих пользовательских расширений.

2.2. Файлы и папки

% ALLUSERSPROFILE%\SCAD Soft\Plugins\PreProcessor: корневая папка, содержащая все пользовательские расширения для режима задания исходных данных.

% ALLUSERSPROFILE% \SCAD Soft\Plugins\PostProcessor: корневая папка, содержащая все пользовательские расширения для режима анализа результатов.

Каждое пользовательское расширение представляется на диске в виде отдельной папки, структура которой описана ниже:

- LANG_ID: необязательная папка (используется, если в настройках **SCAD**++ выбран соответствующий язык, например 1049 русский, 1033 английский и т.д., в соответствии с таблицей Microsoft Locale ID Values)
 - Plugin.cfg: необязательный файл; зависимое от языка описание пользовательского расширения.
- Plugin.cfg: обязательный файл; независимое от языка описание пользовательского расширения.
- Plugin.js: обязательный файл; исполняемый код пользовательского расширения.
- Parameters.cfg: служебный файл.

Значения из файла Plugin.cfg зависимого от языка имеют более высокий приоритет, чем значения из файла независимого от языка.

Файл Plugin.cfg: текстовый, следующего формата:

[Plugin]

Name = Имя пользовательского расширения

Picture = PictureFileNameRelativeToPluginDirectory

PictureFileNameRelativeToPluginDirectory: относительный путь к файлу, содержащему изображение, которое будет отображаться в панели инструментов. Поддерживаемые форматы: BMP, GIF, ICO, JPEG, PNG. Рекомендуемый размер: 24x24.

2.3. Типографские соглашения

При описании функций используются следующие типографские соглашения:

- Для типов объектов используется следующий стиль Object Type.
- Для имен функций используется следующий стиль **Function**.
- Необязательные параметры функций обозначаются так *Italic*.
- Обязательные поля в объектах/интерфейсах обозначаются так **Bold**.
- Параметры функций, которые являются объектами или интерфейсами обозначаются так Underline.

2.4. Программная реализация

При активации пользовательского расширения **SCAD++** действует по нижеописанному алгоритму

- 1. Происходит анализ файла Plugin.js и определяется наличие следующих точек входа (функций): **Plugin_ActivateUI**, **Plugin_Execute**, **Plugin_Cancel**.
- 2. Если обнаружена функция Plugin_ActivateUI

- а. Происходи вызов этой функции, в качестве параметра она получает интерфейс Engine.
- b. Начинается цикл ожидания, который может быть закончен по одному из следующих событий:
 - i. Прерывание пользователем (кнопка Отмена в **SCAD++**). (В этом случае происходит вызов функции **Plugin_Cancel**, если она наличествует в файле Plugin.js и, через 2 секунды, прерывание работы расширения)
 - іі. Вызов метода **Cancel** интерфейса **Engine**.(В этом случае расширение заканчивает работу)
 - ііі. Вызов метода **Execute** интерфейса Engine.(В этом случае происходит переход к пункту 3)
- 3. Если обнаружена функция **Plugin_Execute**, то происходит вызов этой функции, в качестве параметра она получает интерфейс **Engine**.

Важное замечание: если пользовательское расширение было активировано при помощи команды «Повторить» («Redo») шаг 2 не выполняется.

Предполагается, что в функции **Plugin_ActivateUI** (если она существует) сосредоточено все интерактивное взаимодействие пользовательского расширения и пользователя программы.

Все данные, которые ввел пользователь в процессе такого взаимодействия, должны быть сохранены посредством методов **SetParameter** и **SavePermanentParameters** интерфейса **Engine**.

Функция **Plugin_Execute** должна получить данные, сохраненные на предыдущем шаге, посредством метода **GetParameter** интерфейса **Engine**.

Функция **Plugin_Execute** должна обеспечивать повторяемость (многократный вызов этой функции при неизменности исходных данных должен обеспечивать неизменность результата).

3. Соглашение по именам и вызовам функций

Нумерация ведется с 1.

Все величины задаются в системе СИ (за исключением углов, для которых следует использовать градусы), если иное не указано явно.

Все функции возвращают строку с описанием в случае ошибки или **null** в случае успеха, если иное не указано явно.

Если функция получает объект/интерфейс в качестве аргумента, то она использует или заполняет только те поля, которые перечислены в описании этой функции. Прочие поля игнорируются.

Если объект/интерфейс не содержит необязательное поле при получении данных, такое поле не заполняется.

Если объект/интерфейс содержит необязательное поле со значением **undefined** при установке данных, такое поле игнорируется.

При передаче массивов данных из **SCAD++** в пользовательское расширение всегда используется тип **VBArray**.

При передаче массивов данных из пользовательского расширения в **SCAD++** допускается использовать типы **VBArray** и **Array**.

Стандартные имена полей объектов/интерфейсов:

- Text: имя объекта.
- QuantityNode: количество номеров узлов в массиве ListNode.
- ListNode: массив номеров узлов.
- QuantityElem: количество номеров элементов в массиве ListElem.
- ListElem: массив номеров элементов.
- QuantityData: количество элементов в массиве ListData.
- ListData: массив данных (вещественные числа, если иное не указано явно).

Рассмотрим пример описания функции с использованием перечисленных выше соглашений. В подобном стиле ниже описаны функции, доступные разработчикам пользовательских расширений.

SomeFunction (NumObject, Object, OptionalArgument)

NumObject: номер объекта.

Object

- Text
- OptionalObjectProperty1: описание свойства
- MandatoryObjectProperty1: описание свойства
- ListElem
- OptionalObjectProperty2: описание свойства

OptionalArgument: описание аргумента

Расшифровка:

NumObject: обязательный аргумент функции.

Object: это объект, обязательный аргумент функции.

Text, OptionalObjectProperty1, **MandatoryObjectProperty1**, ListElem, OptionalObjectProperty2: свойства объекта, с которыми работает функция.

При этом свойства Text, OptionalObjectProperty1, ListElem, OptionalObjectProperty2 являются необязательными (в случае их отсутствия функция не будет с ними работать).

Свойство MandatoryObjectProperty1 является обязательным (в случае его отсутствия произойдет ошибка).

Описание свойств Text и ListElem не приводится, поскольку эти свойства являются стандартными (см. выше).

OptionalArgument: необязательный аргумент функции.

Возвращаемое значение не описано, следовательно, в случае успеха функция вернет **null**, а в случае ошибки — вернет строку с описанием этой ошибки.

4. Программные интерфейсы

4.1. Engine

Передается в качестве аргумента в любую точку входа (функцию) пользовательского расширения.

GetSettings ()

Возвращаемое значение: объект типа Settings.

GetView ()

Возвращаемое значение: объект типа View.

GetModel ()

Возвращаемое значение: объект типа Model.

GetEditor ()

Возвращаемое значение: Если вызов произведен в контексте вызова **Plugin_Execute** для режима задания исходных данных, то объект типа **Editor**, иначе – **null**.

GetResult ()

Возвращаемое значение: Если вызов произведен в контексте выполнения **Plugin_Execute** для режима анализа результатов, то объект типа **Result**, иначе – **null**.

GetPluginRootDirectory ()

Возвращаемое значение: полный путь к папке расширения, например C:\ProgramData\SCAD Soft\Plugins\PreProcessor\PluginName\.

GetPluginLocalizedDirectory ()

Возвращаемое значение: полный путь к зависимой от языка папке расширения, например C:\ProgramData\SCAD Soft\Plugins\PreProcessor\PluginName\1049\.

SetParameter (paramName, paramValue, paramPermanent)

Вызов допустим только до входа в контекст **Plugin_Execute**.

paramName: имя параметра.

paramValue: значение параметра или null.

paramPermanent: если true, то параметр будет сохранен на диске при вызове функции SavePermanentParameters и его значение может быть повторно использовано при следующей активации расширения.

GetParameter (paramName, defaultValue)

paramName: имя параметра.

defaultValue: значение параметра по умолчанию.

Возвращаемое значение: Если параметр был задан — заданное значение, в противном случае — defaultValue (Если параметр defaultValue не задан, то **null**).

SavePermanentParameters ()

Сохраняет на диске параметры, которые были назначены функцией **SetParameter**, с аргументом *paramPermanent* равным **true**.

Возвращаемое значение: отсутствует.

SetProgress (progress, total)

Передает в **SCAD**++ информацию о ходе выполнения, влияет на прогресс-индикатор в диалоге Выполнение...

progress: количество уже исполненных шагов.

total: общее количество шагов.

Возвращаемое значение: отсутствует.

Execute ()

Вызов допустим только до входа в контекст Plugin_Execute.

Прекращает цикл ожидания, приводит к вызову Plugin_Execute.

Возвращаемое значение: отсутствует.

Cancel (reason)

Прекращает выполнение расширения.

reason: Причина остановки, будет отображена в соответствующем окне в **SCAD++**.

Возвращаемое значение: отсутствует.

4.2. Settings

Доступ к объекту можно получить при помощи метода GetSettings (), объекта Engine.

GetUnit (unitName, Unit)

Возвращает актуальные настройки единиц измерения.

unitName: имя идентификатора единиц измерения (см. ниже).

Unit

- Precision: количество знаков после разделителя.
- IsShowExp: если **true**, то включена экспоненциальная запись.
- ZeroLimit: значения, абсолютные величины которых меньше чем ZeroLimit следует показывать в виде 0.
- UserFriendlyName: название (например: Линейные перемещения, Силы и т.д.).
- UnitsName: строковое представление (например: $T*_M/_M^2$, м, Γu и т.д.).
- Factor: коэффициент пересчета из отображаемых величин в базовые величины (во внутреннее представление **SCAD**++).

Допустимые имена идентификаторов единиц измерения исходных данных: theLinearSizes, theSectionSizes, theSquares, theVolumes, theAngles, theTemperatures, theMasses, theForces, theMoments, thePresures, theUnitWeight, theStress, theDistributedForces, theDistributedMoments, theAreaDistributedMoments, theBendingRigid, theTimes, theSpeeds, theAccelerations, theFrequencies, theCoefficients, theOther.

Допустимые имена идентификаторов единиц измерения результатов: theResultLinearDisplacements, theResultAngleDisplacements, theResultStress, theResultForces, theResultDistributedForces, theResultMoments, theResultDistributedMoments, theResultEnergy, theResultDistributedEnergy, theResultArmSquare.

Допустимые имена идентификаторов единиц измерения для экспорта: the Export Linear, the Export Section Sizes, the Export Forces.

4.3. View

Доступ к объекту можно получить при помощи метода GetView (), объекта Engine.

GetSelection (selection)

Возвращает информацию об объектах, выбранных пользователем, на момент вызова функции.

selection:

- ListNode
- ListElem
- CurrentLoading: номер загружения для режима задания исходных данных (или 0)
- CurrentAction: номер воздействия для режима анализа результатов (или -0)
- CurrentFixedStep: номер шага для режима анализа результатов (или -0)
- CurrentRHS: номер правой части для режима анализа результатов (или 0)

Возвращаемое значение: отсутствует.

4.4. Model

Доступ к объекту можно получить при помощи метода **GetModel** (), объекта Engine.

Объект предоставляет набор методов обеспечивающих доступ к исходным данным модели **SCAD**++.

Методы объекта Model обеспечивают исключительно чтение данных.

GetInfo (Info)

Info

- FileName: имя файла проекта.
- Name: имя проекта.
- Сотрапу: название компании.
- Customer: наименование заказчика.
- Object: наименование объекта.
- Executor: наименование исполнителя.

GetQuantityNode ()

Возвращаемое значение: общее количество узлов, включая удаленные.

GetNode (NumNode, Node)

NumNode: номер узла.

Node

- Text
- X
- y
- z
- Flag: битовая маска флагов узла (возможные значения флагов: 0x80 удаленный узел).

GetQuantityElem ()

Возвращаемое значение: общее количество элементов, включая удаленные.

GetElem (NumElem, Elem)

NumElem: номер элемента.

Elem

- Text
- QuantityNode
- ListNode
- TypeElem
- Flag: битовая маска флагов элемента (возможные значения флагов: 0x80 yдаленный элемент).
- TypeRigid: номер типа жесткости (см. функции **GetQuantityRigid**, **GetRigid**) или 0. если жесткость не назначена.
- NumInsert: номер типа жестких вставок (см. функции **GetQuantityInsert**, **GetInsert**) или 0, если жесткие вставки не назначены.
- NumSysCoord: номер системы координат элементов (см. функции **GetQuantitySystemCoordElem**, **GetSystemCoordElem**) или 0, если система координат элементов не назначена.
- NumSysCoordEffors: номер системы координат элементов для вычисления напряжений в пластинах и объемных элементах (см. функции GetQuantitySystemCoordEfforts, GetSystemCoordEfforts) или 0, если система координат элементов для вычисления напряжений в пластинах и объемных элементах не назначена.
- NumBed: номер типа упругого основания (см. функции **GetQuantityBed**, **GetBed**) или 0, если тип упругого основания не назначен.

GetQuantityGroupElem ()

Возвращаемое значение: общее количество групп элементов (подразумеваются группы общего назначения; группы конструктивных элементов сюда не входят).

GetGroupElem (NumGroupElem, GroupElem)

NumGroupElem: номер группы элементов.

GroupElem

- Text
- QuantityElem
- ListElem

GetQuantityGroupNode ()

Возвращаемое значение: общее количество групп узлов.

GetGroupNode (NumGroupNode, GroupNode)

NumGroupNode: номер группы узлов.

GroupNode

- Text
- QuantityNode
- ListNode

GetQuantityBlock ()

Возвращаемое значение: общее количество блоков (Форум).

GetBlock (NumBlock, Block)

NumBlock: номер блока.

Block

- Text
- Color: цвет блока, в виде числа (RGB).
- QuantityElem
- ListElem

GetBound (NumNode)

NumNode: номер узла.

Возвращаемое значение: битовая маска направлений связей наложенных в узле.

GetQuantityDOFUnion ()

Возвращаемое значение: общее количество групп объединений перемещений.

GetDOFUnion (NumDOFUnion, DOFUnion)

NumDOFUnion: номер группы объединения перемещений.

DOFUnion

- Text
- Mask: битовая маска направлений объединения перемещений.
- QuantityNode
- ListNode

GetQuantityInsert ()

Возвращаемое значение: общее количество различных типов жестких вставок.

GetInsert (NumInsert, Insert)

NumInsert: номер типа жестких вставок.

Insert

- Text
- Туре: 0 в локальной системе координат элемента, 3 в глобальной системе координат.
- GroupElem: 1 стержни, 2 пластины.
- QuantityData
- ListData: для стержней $(X_1, Y_1, Z_1, X_2, Y_2, Z_2)$, где X_1, Y_1, Z_1 смещения в первом узле, X_2, Y_2, Z_2 смещения во втором узле; для пластин (ΔZ) смещение срединной плоскости.
- QuantityElem
- ListElem

GetQuantityBed ()

Возвращаемое значение: общее количество типов упругого основания.

GetBed (NumBed, <u>Bed</u>)

NumBed: номер типа упругого основания.

Bed

- Text
- Туре: тип упругого основания; 73 изотропное, 79 ортотропное, 65 анизотропное.
- GroupElem
- QuantityData
- ListData: для пластин, в зависимости от типа материала для изотропного (C_1, C_2) , для ортотропного (C_1, C_{2X}, C_{2Y}) , для анизотропного $(C_1, C_{2X}, C_{2Y}, C_{XY})$; для стержней $(Y_1C_1, Y_1C_2, Y_1h, Z_1C_1, Z_1C_2, Z_1b)$.
- QuantityElem
- ListElem

GetQuantitySystemCoordElem ()

Возвращаемое значение: общее количество систем координат элементов.

GetSystemCoordElem (NumSystemCoordElem, SystemCoordElem)

NumSystemCoordElem: номер системы координат элементов.

SystemCoordElem

Text

- Type: см. *Дополнение 2*.
- GroupElem: 1- стержни, 2 пластины, 3 объемные, 4 специальные, 5 осесимметричные.
- QuantityData
- ListData: см. Дополнение 2.
- QuantityElem
- ListElem

GetQuantitySystemCoordEfforts ()

Возвращаемое значение: общее количество типов систем координат элементов для вычисления напряжений в пластинах и объемных элементах.

GetSystemCoordEfforts (NumSystemCoordEfforts, SystemCoordEfforts)

NumSystemCoordEfforts: номер типа системы координат элементов для вычисления напряжений в пластинах и объемных элементах.

SystemCoordEfforts

- Text
- Туре: возможные значения 16, 17 из Дополнение 2.
- GroupElem
- QuantityData
- ListData: в зависимости от Туре, см. Дополнение 2.
- QuantityElem
- ListElem

GetJoint (NumElem, NumNodeElem, Joint)

Получение информации о шарнирах в узле элемента.

NumElem: номер элемента.

NumNodeElem: номер узла в элементе ([1, 2]).

Joint

- Mask: битовая маска направлений шарнира.
- Place: положение шарнира (1 в узле; 0 у перехода к гибкой части)
- ListData: 6-ть чисел с упругими характеристиками шарниров по соответствующим направлениям

GetQuantityRigid ()

Возвращаемое значение: общее количество типов жесткостей.

GetRigid (NumRigid, Rigid)

NumRigid: номер типа жесткости.

Rigid

- Text
- QuantityIdent: общее количество характеристик описывающих тип жесткости
- QuantityElem
- ListElem
- Description: полное описание типа жесткости (см. документ *Жесткостные характеристики*, главы *Язык архивации данных* общей документации), например: "S0 3.24711e+010 0.4 0.411 NU 0.2 RO 24525".

GetRigidIdent (NumRigid, NumIdent, <u>Ident</u>)

Детальное описание возможных значений находится в документе *Жесткостные* характеристики, главы Язык архивации данных общей документации.

NumRigid: номер типа жесткости.

NumIdent: номер характеристики описывающей тип жесткости.

Ident

- Text: имя объекта соответствует идентификатору характеристики.
- Type
- ListParam: массив параметров характеристики (Важно: может быть неоднородным, содержать числа, строки и т.д.).

GetQuantityLoading()

Возвращаемое значение: общее количество загружений линейной задачи.

GetLoading (NumLoading, Loading)

NumLoading: номер загружения линейной задачи.

Loading

- Text
- QuantityForceNode: количество нагрузок на узлы.
- QuantityForceElem: количество нагрузок на элементы.

GetLoadingMass (NumLoading, Mass)

Информация о преобразовании статических загружений в массы.

NumLoading: номер загружения.

Mass

- QuantityData
- ListData массив коэффициентов для всех статических загружений, нагрузки которых преобразуются в массы.

GetLoadingForceNode (NumLoading, NumForceNode, ForceNode)

NumLoading: номер загружения.

NumForceNode: номер нагрузки на узлы.

ForceNode

- Qw: вид нагрузки (см. документ *Величины нагрузок* главы *Язык архивации данных*, общей документации).
- Qn: направление (см. *Дополнение 1*).
- QuantityData
- ListData: (см. главу Библиотека конечных элементов общей документации).
- QuantityNode
- ListNode

GetLoadingForceElem (NumLoading, NumForceElem, ForceElem)

NumLoading: номер загружения.

NumForceElem: номер нагрузки на элементы.

ForceElem

- Qw: вид нагрузки (см. документ *Величины нагрузок* главы *Язык архивации данных*, общей документации).
- Qn: направление (см. Дополнение 1).
- QuantityData
- ListData: (см. главу Библиотека конечных элементов общей документации).
- QuantityElem
- ListElem

GetQuantityCombination ()

Возвращаемое значение: общее количество комбинаций загружений.

GetCombination (NumCombination, Combination)

NumCombination: номер комбинации загружений.

Combination

- QuantityData
- ListData: коэффициенты загружений и предыдущих комбинаций.

RsuGetIgnoreCombinations ()

Возвращаемое значение: **true** - если комбинации не учитываются в РСУ, **false** - если комбинации учитываются в РСУ.

GetQuantityRsuStr ()

Возвращаемое значение: общее количество строк РСУ.

GetRsuStr (NumRsuStr, RsuStr)

NumRsuStr: номер строки РСУ.

RsuStr

• QuantityUnions: количество загружений и комбинаций действующих одновременно с загружением или комбинацией с номером NumRsuStr.

- ListUnions: массив номеров загружений и комбинаций действующих одновременно с загружением или комбинацией с номером NumRsuStr.
- ListUnionFlags: массив признаков включения загружений и комбинаций действующих одновременно с загружением или комбинацией с номером NumRsuStr в комбинацию (Если, соответствующий, флаг 0, то загружение обязательно присутствует в комбинации, в противном случае может отсутствовать)
- QuantityExclusions: количество загружений и комбинаций взаимоисключаемых с загружением или комбинацией с номером NumRsuStr.
- ListExclusions: массив номеров загружений и комбинаций взаимоисключаемых с загружением или комбинацией с номером NumRsuStr.
- QuantityRealtions: количество загружений и комбинаций, без которых загружение или комбинация с номером NumRsuStr не могут быть включены в комбинацию.
- ListRealtions- массив номеров загружений и комбинаций, без которых загружение или комбинация с номером NumRsuStr не могут быть включены в комбинацию.
- TypeLoad: тип загружения.
- ModeLoad: вид загружения.
- Sign: знакопеременность.
- Стапе: номер крана.
- CraneRegime: группа режимов работы крана, 1-8.
- NoActive: признак активности загружения.
- CoeffSafetyFactor: коэффициент надежности по нагрузке.
- LongTimeLoadComponent: доля длительной составляющей.
- ListCoeff: коэффициенты РСУ (16 коэффициентов).

GetQuantityUnificationRsu ()

Возвращаемое значение: общее количество групп унификаций РСУ.

GetUnificationRsu (NumUnificationRsu, <u>UnificationRsu</u>)

NumUnificationRsu: номер группы унификации РСУ.

UnificationRsu

- Text
- Туре: тип унификации; 1 по одному сечению, 2 по соответствующим сечениям, 3 с учетом симметрии сечений.
- QuantityElem
- ListElem

GetQuantityArmElemRod ()

Возвращаемое значение: общее количество типов заданного армирования стержней.

GetArmElemRod (NumArmElemRod, <u>ArmElemRod</u>)

NumArmElemRod: номер типа заданного армирования стержней.

ArmElemRod

- Text
- QuantityArmElemRodPart: количество участков армирования
- QuantityElem
- ListElem

GetArmElemRodPart (NumArmElemRod, NumArmElemRodPart, <u>ArmElemRodPart</u>)

NumArmElemRod: номер типа заданного армирования стержней.

NumArmElemRodPart: номер участка армирования.

<u>ArmElemRodPart</u>

- PartNo: номер участка.
- L_percent: длина участка в процентах от длины стержня.
- IsS1D2: S1 имеет два различных диаметра.
- IsS2D2: S2 имеет два различных диаметра.
- IsSw: есть поперечная арматура.
- IsS34: есть арматура S3, S4.
- dS1L1_1: первый диаметр S1 (в мм).
- nS1L1_1: количество стержней S1.
- dS2L1_1: первый диаметр S2 (в мм).
- nS2L1_1: количество стержней S2.
- dS1L1_2: второй диаметр S1 (в мм).
- nS1L1_2: количество стержней S1 второго диаметра.
- dS2L1_2: второй диаметр S2 (в мм).
- nS2L1_2: количество стержней S2 второго диаметра.
- dS3L1_1: диаметр S3 (в мм).
- nS3L1_1: количество стержней S3.
- dS4L1_1: диаметр S4 (в мм).
- nS4L1_1: количество стержней S4.
- dSw: диаметр поперечной арматуры в плоскости Z (в мм).
- nSw: количество стержней (срезов) поперечной арматуры в плоскости Z.
- StepSw: шаг поперечной арматуры в плоскости Z.
- dSw2: диаметр поперечной арматуры в плоскости Y (в мм).
- nSw2: количество стержней (срезов) поперечной арматуры в плоскости Y.

- StepSw2: шаг поперечной арматуры в плоскости Y.
- IsS1L2: S1 имеет два ряда.
- IsS2L2: S2 имеет два ряда.
- DeltaS1: расстояние между рядами S1.
- DeltaS2: расстояние между рядами S2.
- dS1L2: диаметр S1 второго ряда (в мм).
- nS1L2: количество стержней S1 второго ряда.
- dS2L2: диаметр S2 второго ряда (в мм).
- nS2L2: количество стержней S2 второго ряда.

GetQuantityArmElemPlate ()

Возвращаемое значение: общее количество групп заданного армирования пластин.

GetArmElemPlate (NumArmElemPlate, <u>ArmElemPlate</u>)

NumArmElemPlate: номер группы заданного армирования пластин.

ArmElemPlate

- Text
- QuantityElem
- ListElem
- dS1: диаметр продольной арматуры S1 (в мм).
- StepS1: шаг продольной арматуры S1.
- dS2: диаметр продольной арматуры S2 (в мм).
- StepS2: шаг продольной арматуры S2.
- dS3: диаметр продольной арматуры S3 (в мм).
- StepS3: шаг продольной арматуры S3.
- dS4: диаметр продольной арматуры S4 (в мм).
- StepS4: шаг продольной арматуры S4.
- dW: диаметр поперечной арматуры (в мм).
- StepWx: шаг поперечной арматуры по оси X.
- StepWy: шаг поперечной арматуры по оси Y.
- NoUp: верхней арматуры нет.
- NoDown: нижней арматуры нет.
- NoTrans: поперечной арматуры нет.

GetQuantitySteelElem ()

Возвращаемое значение: общее количество групп стальных конструктивных элементов.

GetSteelElem(NumSteelElem, SteelElem)

NumSteelElem: номер группы стальных конструктивных элементов.

SteelElem

- Text
- QuantityElem
- ListElem
- SteelMark: марка стали
- IsGroup: 0 конструктивный элемент 1 группа элементов
- ContructionТуре: тип конструкции: 0 элемент общего вида, 1 стойка, 2 балка, // 3 элемент пояса фермы, 4 элемент решетки фермы, 5 опорный раскос фермы, 6 опорная стойка фермы
- IndexSchema: Номер схемы вариации (нумерация от 0)
- bSnip: TRUE коэффициенты расчетной длины взять по СНиП
- bNoPlastic: сечение работает только упруго
- Ry: расчетное сопротивление R_{v} , если не задана марка стали
- m_GammaN: коэффициент надежности по ответственности (первое предельное состояние)
- Koef_usl_rab: коэффициент условий работы
- Koef RasLen XoZ: коэффициент расчетной длины в плоскости XoZ
- Koef RasLen YoZ: коэффициент расчетной длины в плоскости YoZ
- Lim gibkA: предельная гибкость при сжатия
- Lim gibkB: предельная гибкость при растяжения
- StepOutPlane linear: шаг раскрепления из плоскости (линейные размеры)
- Lim_gibkA_Angle: предельная гибкость для сжатия
- Lim gibkB Angle: предельная гибкость для растяжения
- CalcLength X0Z: расчетная длина в плоскости XoZ (линейные размеры)
- CalcLength Y0Z: расчетная длина плоскости YoZ (линейные размеры)
- m_GammaN2: коэффициент надежности по ответственности (второе предельное состояние)- пока для стали не нужно
- m_GammaN_A: коэффициент надежности по ответственности (аварийное состояние)
- DisplacementCheck[10]: признак использования ограничения по перемещениям
- DisplacementLimit_L[10]: ограничение по перемещениям относительно длины элемента
- IsCorrosion: наличие коррозии
- HasStiff: наличие ребер жесткости
- TrussElem FullEffortsMode: режим полного набора усилий для элемента фермы

- IsTrueBeamMode: признак разреной балки (не холодногнутое сечение СП)
- SteelDesignType: 0 undefined, 1 стальное сечение, 2 холодногнутое сечение
- SteelSeismicCoef[2]: сейсмические коэффициенты (SteelSeismicCoef[0] Расчет на прочность при сейсмике; SteelSeismicCoef[1] Расчет на устойчивость при сейсмике)
- SlaveGroup: дополнительная группа
- Corrosion: толщина слоя коррозии
- DisplacementLimit_Abs[10]: абсолютное ограничение по перемещениям (линейные размеры)
- SteelMarkUser: имя стали (для заданного пользователем R_{ν})
- SpecialSteelCoef: Коэффициент при особых (не сейсмических) воздействиях
- SpecialLargeSpanCoef: Коэффициент понижающий расчетное сопротивление
- StepOutPlane_ratio: коэффициент расстояния между раскреплениями к геометрической длине (устойчивость плоской формы изгиба)
- EC CoeffTorsionBuckling: коэффициент (устойчивость крутильной формы)
- EC_LengthTorsionBuckling: расчетная длина (устойчивость крутильной формы)
- DeflectSNIPCheck[6]: признак использования ограничения по прогибу
- DeflectSNIPLimit L[6]: // ограничение по прогибу относительно длины элемента
- DeflectSNIPLimit Abs[6]: абсолютное ограничение по прогибу (линейные размеры)
- DisplacementSNIPCheckEx[2]: признак использования ограничения по перемещениям
- DisplacementExSNIPLimit_L[2]: ограничение по перемещениям относительно длины элемента
- DisplacementExSNIPLimit_Abs[2]: абсолютное ограничение по перемещениям (линейные размеры)
- DeflectECCheck[6]: признак использования ограничения по прогибу
- DeflectECLimit L[6]: ограничение по прогибу относительно длины элемента
- DeflectECLimit Abs[6]: абсолютное ограничение по прогибу (линейные размеры)
- bPostbuckling: 1 (работа с гибкой стенкой не допускается)
- CoefFibMode: тип эпюры для ϕ_6 см. таблицу ниже
- StiffStep: шаг ребер
- check_Rod_SelectHeight_NotGreatThan: 1- учитывать ограничения по высоте (не более чем)
- value_Rod_SelectHeight NotGreatThan: ограничение по высоте (не более чем)
- check_Rod_SelectHeight_NotLessThan: 1- учитывать ограничения по высоте (не менее чем)
- value Rod SelectHeight NotLessThan: ограничение по высоте (не менее чем)

- check_Rod_SelectWidth_NotGreatThan: 1- учитывать ограничения по ширине (не более чем)
- value_Rod_SelectWidth_NotGreatThan: ограничение по ширине (не более чем)
- check_Rod_SelectWidth_NotLessThan: 1- учитывать ограничения по ширине (не менее чем)
- value Rod SelectWidth NotLessThan: ограничение по ширине (не менее чем)
- check_Rod_SelectReducedThickness_NotLessThan: подбирать сечения с приведенной толщиной не менее
- value_Rod_SelectReducedThickness_NotLessThan: ограничение сечения с приведенной толщиной не менее
- Use bRatio New: всегда 1 (использовать новую схему задания коэффициентов)
- EC_EffType_TorsionBuckling: 0 задан EC_CoeffTorsionBuckling, 1 задан EC_LengthTorsionBuckling
- EffType_XoZ: 0 задан Koef_RasLen_XoZ, 1 задан CalcLength_X0Z
- EffType_YoZ: 0 задан Koef_RasLen_YoZ, 1 задан CalcLength_Y0Z
- CriticalMoment_za: данные критического момента (EN или холодногнутые профили) положение точки приложения нагрузки
- CriticalMoment_MomentRatio: данные критического момента (EN или холодногнутые профили) соотношение концевых моментов
- CriticalMoment_MomentType: данные критического момента (EN или холодногнутые профили) тип эпюры моментов
- CriticalMoment_LoadType: данные критического момента (EN или холодногнутые профили) расположение нагрузки
- StepOutPlane type: 0 задан StepOutPlane ratio, 1 задан StepOutPlane linear
- CriticalMoment_k: Коэффициент расчетной длины, зависящие от условий закреплений опорных сечений (поворот из плоскости изгиба)
- CriticalMoment_kw: Коэффициент расчетной длины, зависящие от условий закреплений опорных сечений (депланация)
- SteelIsRollForming: роликовое профилирование листового металла (холодногнутые профили по EN)
- SteelThinNoTorsion: 1 закреплено от кручения (только для холодногнутых)
- SteelThinNoWarping: 1 не депланирует (только для холодногнутых)
- Lattice_UseUserDefined: решетка задана пользователем (сквозные сечения)
- Lattice_type: тип решетки Default = 0, 1 на планках (СНиП, EN), 2 раскосная решетка (СНиП, EN), 3 треугольная решетка с распорками (СНиП, EN), 4 крестовая решетка с распорками (СНиП), 5 крестовая решетка (СНиП), 6-треугольная решетка (EN) см. таблицу ниже
- Lattice s: шаг решетки, применимо к типу решеток: 1,2,3,4,5,6
- Lattice b: ширина планки, применимо к типу решетки: 1

- Lattice t0: толщина планки, применимо к типу решетки: 1
- Lattice Ad: площадь раскосов, применимо к типу решеток: 2,3,4,5,6
- Lattice Av: площадь стоек, применимо к типу решеток: 2,3,4,6
- Lattice_PostsProfileBaseName : имя базы профиля стоек решетки
- Lattice PostsProfileSectionIndex : номер раздела профиля стоек решетки
- Lattice_PostsStrIndex: номер профиля стоек решетки
- Lattice_StrutsProfileBaseName : имя базы профиля раскосов решетки
- Lattice_StrutsProfileSectionIndex: номер раздела профиля раскосов решетки
- Lattice StrutsStrIndex : номер профиля раскосов решетки

Параметр SteelMark зависит от выбранных норм проектирования. Допустимы следующие значения: "C235", "C245", "C255", "C275", "C275", "C285", "C345K", "C345K", "C375", "C390", "C390K", "C440", "C590", "C590K", "20". При использовании ДБН В.2.6-163:2010 и ДБН В.2.6-198:2014 дополнительно можно использовать "C355". Отметим, что следует использовать символы "С" и "К" латинского алфавита. Если строка SteelMark является пустой, то будет использовано значение расчетного сопротивления, заданное параметром Ry.

Для учета ограничений по прогибам и перемещениям следует задавать следующие данные

	Признак учета ограничений	Относительное ограничение (в долях длины)	Абсолютное ограничение
	При рас	счетах по Eurocode	
Горизонтальный прогиб от характеристических комбинаций	DeflectECCheck[0]	DeflectECLimit_L[0]	DeflectECLimit_Abs[0]
Горизонтальный прогиб от квазипостоянных комбинаций	DeflectECCheck[1]	DeflectECLimit_L[1]	DeflectECLimit_Abs[1]
Горизонтальный прогиб от частых комбинаций	DeflectECCheck[2]	DeflectECLimit_L[2]	DeflectECLimit_Abs[2]
Вертикальный прогиб от характеристических комбинаций	DeflectECCheck[3]	DeflectECLimit_L[3]	DeflectECLimit_Abs[3]
Вертикальный прогиб от квазипостоянных комбинаций	DeflectECCheck[4]	DeflectECLimit_L[4]	DeflectECLimit_Abs[4]
Вертикальный прогиб от частых комбинаций	DeflectECCheck[5]	DeflectECLimit_L[5]	DeflectECLimit_Abs[5]
Горизонтальные перемещения от характеристических комбинаций	DisplacementCheck[0]	DisplacementLimit_L[0]	DisplacementLimit_Abs[0]
Горизонтальные перемещения от квазипостоянных комбинаций	DisplacementCheck[1]	DisplacementLimit_L[1]	DisplacementLimit_Abs[1]
Горизонтальные перемещения от частых комбинаций	DisplacementCheck[2]	DisplacementLimit_L[2]	DisplacementLimit_Abs[2]
Вертикальные перемещения от характеристических комбинаций	DisplacementCheck[3]	DisplacementLimit_L[3]	DisplacementLimit_Abs[3]
Вертикальные перемещения от квазипостоянных комбинаций	DisplacementCheck[4]	DisplacementLimit_L[4]	DisplacementLimit_Abs[4]
Вертикальные перемещения	DisplacementCheck[5]	DisplacementLimit_L[5]	DisplacementLimit_Abs[5]

	Признак учета ограничений	Относительное ограничение (в долях длины)	Абсолютное ограничение
от частых комбинаций			
	При расчетах	по СниП, СП, ДБН	
Горизонтальный прогиб от всех нагрузок	DeflectSNIPCheck[0]	DeflectSNIPLimit_L[0]	DeflectSNIPLimit_Abs[0]
Горизонтальный прогиб от постоянных и длительных нагрузок	DeflectSNIPCheck[4]	DeflectSNIPLimit_L[4]	DeflectSNIPLimit_Abs[4]
Горизонтальный прогиб от временных нагрузок	DeflectSNIPCheck[1]	DeflectSNIPLimit_L[1]	DeflectSNIPLimit_Abs[1]
Вертикальный прогиб от всех нагрузок	DeflectSNIPCheck[2]	DeflectSNIPLimit_L[2]	DeflectSNIPLimit_Abs[2]
Вертикальный прогиб от постоянных и длительных нагрузок	DeflectSNIPCheck[5]	DeflectSNIPLimit_L[5]	DeflectSNIPLimit_Abs[5]
Вертикальный прогиб от временных нагрузок	DeflectSNIPCheck[3]	DeflectSNIPLimit_L[3]	DeflectSNIPLimit_Abs[3]
Вертикальные перемещения от всех нагрузок	DisplacementCheck[8]	DisplacementLimit_L[8]	DisplacementLimit_Abs[8]
Вертикальные перемещения от постоянных и длительных нагрузок	DisplacementCheck[7]	DisplacementLimit_L[7]	DisplacementLimit_Abs[7]
Вертикальные перемещения от временных нагрузок	DisplacementCheck[9]	DisplacementLimit_L[9]	DisplacementLimit_Abs[9]
Горизонтальные перемещения от всех нагрузок	DisplacementCheck[6]	DisplacementLimit_L[6]	DisplacementLimit_Abs[6]
Горизонтальные перемещения от постоянных и длительных нагрузок	DisplacementSNIPCheckEx[0]	DisplacementExSNIPLimit_L[0]	DisplacementExSNIPLimit_Abs[0]
Горизонтальные перемещения от временных нагрузок	DisplacementSNIPCheckEx[1]	DisplacementExSNIPLimit_L[1]	DisplacementExSNIPLimit_Abs[1]

Типы решеток:

	•	
1	на планках	
2	раскосная решетка	MM
3	треугольная решетка с распорками	
4	крестовая решетка с распорками	

5	крестовая решетка	
6	треугольная решетка	

Типы эпюры для ϕ_6

Номер типа	Количество закреплений сжатого пояса в пролете	Вид нагрузки в пролете	Эпюра М	Пояс, к которому приложена нагрузка
1	Без закреплений	Сосредоточенная		Сжатый
2	Без закреплений	Сосредоточенная		Растянутый
3	Без закреплений	Равномерно распределенная		Сжатый
4	Без закреплений	Равномерно распределенная		Растянутый
5	Два и более, делящие пролет на равные части	Любая		Любой
6	Одно в середине	Сосредоточенная в середине		Любой
7	Одно в середине	Сосредоточенная в четверти		Сжатый
8	Одно в середине	Сосредоточенная в четверти		Растянутый
9	Одно в середине	Равномерно распределенная		Сжатый
10	Одно в середине	Равномерно распределенная		Растянутый
11	Без закреплений	Сосредоточенная на конце консоли		Сжатый
12	Без закреплений	Сосредоточенная на конце консоли		Растянутый
13	Без закреплений	Равномерно распределенная		Растянутый

Get Quantity Unification Steel ()

Возвращаемое значение: общее количество групп унификаций стальных конструктивных элементов.

GetQuantityConcreteElem()

Возвращаемое значение: общее количество групп железобетонных конструктивных элементов.

GetConcreteElem(NumConcreteElem, ConcreteElem)

NumConcreteElem: номер группы железобетонных конструктивных элементов.

ConcreteElem

- Text
- QuantityElem
- ListElem
- IsPlate: 1 группа пластинчатых элементов, 0 группа стержневых элементов (работает только для чтения, при назначении игнорируется)
- Modul: номер модуля: 103 оболочки, 104 балки-стенки, 105 пластины, 107 изгибаемые стержни, 108 сжато-изогнутые(растянутые) стержни
- Туре: статически определимые (1) или неопределимые (0)
- CrackResisting: Данные по трещиностойкости 0 нет, 1 есть
- MinArmatur: Данные по минимальной арматуре. 0 нет, 1 есть
- YesExpert: peзepв
- NbCalc: // используется только при расчетах по СП 52-101-03. Если это поле равно 1, то для внецентренно сжатых элементов при расчете значения продольной силы Nb по п.3.52 Пособия к СП 52-101-2003 учитывается площадь сечения арматуры
- OldCode: резерв
- Range[4]: расстояния до центра тяжести арматур (Range[0]= a_1 , Range[1]= a_2 для стержней и пластин; Range[2]= a_3 , Range[3]= a_4 для пластин). Задается в см.
- EffectiveLength[2]: расчетные длины в плоскостях X₁OZ₁, X₁OY₁ (см. EffType)
- FactorEffectiveLength[2]: коэффициенты расчетных длин в плоскостях X₁OZ₁, X₁OY₁ (см. EffType)
- Displacement[2]: случайные эксцентриситеты по осям Z_1 , Y_1 . Задается в см.
- SeismFactor[2]: // коэффициенты учета сейсмического воздействия (нормальных сечений, наклонных сечений)
- m_GammaN: коэффициент надежности по ответственности (первое предельное состояние)
- m_GammaN2: коэффициент надежности по ответственности (второе предельное состояние)
- ТуреВетоп: вид бетона. 0 тяжелый бетон, 1 мелкозернистый A, 2 мелкозернистый Б, 3 мелкозернистый B, 4 легкий
- ConditionsHardening: условия твердения твердения (1 Естественное, 2 В пропарочных камерах, 3 Автоклавная обработка)
- Filler: заполнитель легкого бетона

- Stiffener: 1 ребро плиты (используется только для стержневых конструктивных элементов)
- ClassBeton: класс бетона
- SortBeton: марка бетона по средней плотности
- FactorHardening: коэффициент условий твердения
- FactorForce: коэффициент учета нагрузок длительного действия γ_{b2} (при расчетах по СНиП), γ_{b1} (при расчетах по СП)
- FactorTotal: результирующий коэффициент условий работы бетона (при расчетах по СНиП)
- ClassArmAlong: класс продольной арматуры
- ClassArmAcross: класс поперечной арматуры
- FactorWorkAlong: коэффициент условий работы продольной арматуры
- FactorWorkAcross: коэффициент условий работы поперечной арматуры
- MaxDiam: максимальный диаметр углового стержня в миллиметрах (при подборе)
- MaxProcent: максимальный процент армирования (при подборе)
- MaxKolUg: резерв
- Category: категория трещиностойкости (1 отсутствие трещин или 3 ограниченная ширина раскрытия трещин)
- ConditionsOperation: условия эксплуатации
- RegimeBeton: режим влажности бетона
- Dampness: влажность воздуха окружающей среды (1 40-75%, 2 менее 40%, 3 более 75%)
- YesSeicmRSU: Учитывать РСУ с сейсмикой // учитывать сейсмику для второго предельного состояния (сейсмический СНиП п.2-17, СП п.5-17)
- Stress: напряженное состояние: одноосное 0, косой изгиб 1
- IsUserArm: 1 учитывать заданное армирование при подбора арматуры в пластинах
- DiamRod[2]: при подборе по трещиностойкости диаметры стержней продольной и поперечной арматур (в миллиметрах)
- WidthCrack[2]: максимально допустимая ширина непродолжительного и продолжительного раскрытия трещин (в миллиметрах)
- Interval: резерв
- bFibModel: резерв
- IsContrElem: признак конструктивного элемента
- IsMinArmPercent: учитывать минимальный процент армирования при подборе
- ArbatVersion: всегда задавать значение 3
- Tr2003: При расчетах по СП: требования к ширине раскрытия трещин выбираются: из условия сохранности арматуры 0, из условия ограничения проницаемости конструкций 1

- SlaveGroup: 1 дополнительная группа, 0 основная группа
- Gb_Damage: коэффициент учета характера разрушения γ_{b2} (при расчетах по СП)
- Gb_VertPos: коэффициент учета вертикального положения при бетонировании γ_{b3} (при расчетах по СП)
- Gb_Freezing: коэффициент учета замораживания/оттаивания и отрицательных температур γ_{b5} (при расчетах по СП 63.13330.2012) или γ_{b4} (при расчетах по СП 52-101-03)
- DisplacementCheck[10]: признаки использования ограничения по прогибам и перемещениям
- DisplacementLimit_L[10]: ограничения по прогибам и перемещениям в долях длины элемента
- DisplacementLimit_Abs[10]: абсолютные ограничения по прогибам и перемещениям
- m_GammaN_A: Коэффициент надежности по ответственности (аварийное состояние)
- m_SpecialConcreteCoef: коэфициент условий работы бетона при особых (не сейсмических) воздействиях
- m_SpecialArmCoef: коэфициент условий работы арматуры при особых (не сейсмических) воздействиях
- m_SpecialLargeSpanCoef: Коэффициент понижающий расчетное сопротивление
- DeflectSNIPCheck[6]: признак использования ограничения по прогибу (см. ниже)
- DeflectSNIPLimit_L[6]: ограничение по прогибу относительно длины элемента (см. ниже)
- DeflectSNIPLimit Abs[6]: абсолютное ограничение по прогибу (см. ниже)
- DisplacementSNIPCheckEx[2]: признак использования ограничения по прогибу (см. ниже)
- DisplacementExSNIPLimit_L[2]: ограничение по перемещениям относительно длины элемента (см. ниже)
- DisplacementExSNIPLimit_Abs[2]: абсолютное ограничение по перемещениям (см. ниже)
- DeflectECCheck[6]: признак использования ограничения по прогибу (EC)
- DeflectECLimit_L[6]: ограничение по прогибу относительно длины элемента (Eurocode) (см. ниже)
- DeflectECLimit_Abs[6]: абсолютное ограничение по прогибу (Eurocode) (см. ниже)
- Seismic_Compressed_Zone: Коэффициент снижения граничной относительной высоты сжатой зоны (для пластинчатых элеметов)
- Use YesLengthOfFactor New: всегда 1
- BYTE check_ApplyECMinAcross: устанавливать минимальную поперечную арматуру (см. п. 6.2.1(4) EN 1992-1-1)
- check Rod IgnoreECTorsion: не учитывать кручение (см. п. 6.3.1(2) EN 1992-1-1)

- check_Plate_106: bспользовать формулу (8.106) СП 63.13330
- check_Plate_SkipAcrossArm: не учитывать поперечную арматуру при малой интенсивности поперечного армирования
- check_Rod_IncreaseAlongArm: увеличивать продольную арматуру при реализации п. 8.1.34 СП 63.13330
- EffType[2]: признак расчетная/коэффициент, 1 длина, 0 коэффициент ([0] X_1OZ_1 , [1] - X_1OY_1)
- EC_Gc_adjust: коэффициент понижающий/повышающий коэффициент условий работы бетона (приложение A EN 1992-1-1)
- EC AgeDays: возраст бетона в днях
- EC Cement: тип цемента
- EC_CreepAgeDays: возраст (дни)
- EC_Temp_during_AgeDays: разность температур (EN 1992-1-1 B.10)
- EC_Temp_QntDays: количество суток, когда температура EC_Temp_during_AgeDays преобладает (EN 1992-1-1 B.10)
- EC_TrVlagBetPercent: относительная влажность %
- check_SP_Phi_n_LowerBoundTension: учитывать ограничение по нижней границе коэффициента φ_n при растяжении
- SP_Phi_n_LowerBoundTension: нижняя граница коэффициента φ_n при растяжении
- check_SP_Phi_n_LowerBoundCompression: учитывать ограничение по нижней границе коэффициента φ_n при сжатии
- SP Phi n LowerBoundCompression: нижняя граница коэффициента ф, при сжатии
- check_SP_Phi_n_UpperBoundCompression: учитывать ограничение по верхней границе коэффициента φ_n при сжатии
- SP Phi n UpperBoundCompression: верхняя граница коэффициента ф, при сжатии
- check_EC_Increase_Seismic_Shear_Combinations: увеличивать расчетные поперечные силы для сейсмических комбинаций п. 5.4.2.4 (7) EN 1998
- check_EC_Normalized_Axial_Seismic_Load: для сейсмических комбинаций вычислять фактор по нормализованной осевой силе п. 5.4.3.4.1(2) EN 1998
- check SP Slenderness: учитывать ограничение по предельной гибкости
- SP Slenderness: ограничение по предельной гибкости

Поле ClassBeton зависит от выбранных норм проектирования. Допустимы следующие значения:

Нормы	
СНиП	"B7,5", "B10", "B12,5", "B15", "B20", "B25", "B30", "B35", "B40", "B45", "B50", "B55", "B60"
СП 52-101-03	"B10", "B15", "B20", "B25", "B30", "B35", "B40", "B45", "B50", "B55", "B60"

СП 63.13330	"B10", "B12,5", "B15", "B20", "B25", "B30", "B35", "B40", "B45", "B50", "B55", "B60", "B70", "B80", "B90", "B100"		
Следует использовать символ "В" латинского алфавита.			

При расчетах по СП поле *ConditionsHardening* следует задавать равным 1. При расчетах по СНиП: 1 - Естественное, 2 - В пропарочных камерах, 3 - Автоклавная обработка.

При расчетах по СНи Π поле *Dampness* следует устанавливать равным 1. При расчетах по С Π : 1 - 40-75%, 2 - менее 40%, 3 - более 75%.

При расчетах по СП поле *RegimBeton* следует устанавливать равным 1. При расчетах по СНиП: 1- Естественная влажность, 2- Водонасыщение и высушивание, 3- Водонасыщенное состояние.

При расчетах по СП поле *ConditionsOperation* следует устанавливать равным 1. При расчетах по СНиП: 1 - В помещении, 2 - На открытом воздухе или в грунте, 3 - Грунт. Переменный уровень вод.

Поле *ClassArm* зависит от выбранных норм проектирования. В зависимости от класса арматуры программа допускает использовать соответствующие наборы диаметров арматуры (см. таблицу ниже).

Нормы	Классы арматуры	Допустимые диаметры арматуры		
	"A-I"	6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A-II"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A-III"	6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A-IV"	10, 12, 14, 16, 18, 20, 22		
СНиП	"A-V"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32		
	"A-VI"	10, 12, 14, 16, 18, 20, 22		
	"Bp-I"	3, 4, 5		
	"A400C"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A500C"	3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A240"	6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A300"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40, 45, 50, 55, 60, 70, 80		
СП 52-101-03	"A400"	6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A500"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"B500"	3, 4, 5, 6, 7, 8, 10, 12		
	"A240"	6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A400"	6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A500"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
СП 63.13330	"A600"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"A600C"	10, 12, 14, 16, 18, 20, 22, 25, 28, 32, 36, 40		
	"B500"	3, 4, 5, 6, 8, 9, 10, 12, 14		
	"Bp500"	3, 4, 5		
Следует использовать символы "А", "В", "С" и "р" латинского алфавита.				

Для учета ограничений по прогибам и перемещениям следует задавать следующие данные

	Признак учета ограничений	Относительное ограничение (в долях длины)	Абсолютное ограничение		
При расчетах no Eurocode					
Горизонтальный прогиб от	DeflectECCheck[0]	DeflectECLimit_L[0]	DeflectECLimit_Abs[0]		

характеристических комбинаций			
	DeflectECC!1-[1]	DeflectECL :: L113	DeflectECL !!4 A1 F13
Горизонтальный прогиб от квазипостоянных комбинаций	DeflectECCheck[1]	DeflectECLimit_L[1]	DeflectECLimit_Abs[1]
Горизонтальный прогиб от частых комбинаций	DeflectECCheck[2]	DeflectECLimit_L[2]	DeflectECLimit_Abs[2]
Вертикальный прогиб от характеристических комбинаций	DeflectECCheck[3]	DeflectECLimit_L[3]	DeflectECLimit_Abs[3]
Вертикальный прогиб от квазипостоянных комбинаций	DeflectECCheck[4]	DeflectECLimit_L[4]	DeflectECLimit_Abs[4]
Вертикальный прогиб от частых комбинаций	DeflectECCheck[5]	DeflectECLimit_L[5]	DeflectECLimit_Abs[5]
Горизонтальные перемещения от характеристических комбинаций	DisplacementCheck[0]	DisplacementLimit_L[0]	DisplacementLimit_Abs[0]
Горизонтальные перемещения от квазипостоянных комбинаций	DisplacementCheck[1]	DisplacementLimit_L[1]	DisplacementLimit_Abs[1]
Горизонтальные перемещения от частых комбинаций	DisplacementCheck[2]	DisplacementLimit_L[2]	DisplacementLimit_Abs[2]
Вертикальные перемещения от характеристических комбинаций	DisplacementCheck[3]	DisplacementLimit_L[3]	DisplacementLimit_Abs[3]
Вертикальные перемещения от квазипостоянных комбинаций	DisplacementCheck[4]	DisplacementLimit_L[4]	DisplacementLimit_Abs[4]
Вертикальные перемещения от частых комбинаций	DisplacementCheck[5]	DisplacementLimit_L[5]	DisplacementLimit_Abs[5]
	При расчетах по Сн	иП, СП, ДБН	
Горизонтальный прогиб от всех нагрузок	DeflectSNIPCheck[0]	DeflectSNIPLimit_L[0]	DeflectSNIPLimit_Abs[0]
Горизонтальный прогиб от постоянных и длительных нагрузок	DeflectSNIPCheck[4]	DeflectSNIPLimit_L[4]	DeflectSNIPLimit_Abs[4]
Горизонтальный прогиб от временных нагрузок	DeflectSNIPCheck[1]	DeflectSNIPLimit_L[1]	DeflectSNIPLimit_Abs[1]
Вертикальный прогиб от всех нагрузок	DeflectSNIPCheck[2]	DeflectSNIPLimit_L[2]	DeflectSNIPLimit_Abs[2]
Вертикальный прогиб от постоянных и длительных нагрузок	DeflectSNIPCheck[5]	DeflectSNIPLimit_L[5]	DeflectSNIPLimit_Abs[5]
Вертикальный прогиб от временных нагрузок	DeflectSNIPCheck[3]	DeflectSNIPLimit_L[3]	DeflectSNIPLimit_Abs[3]
Вертикальные перемещения от всех нагрузок	DisplacementCheck[8]	DisplacementLimit_L[8]	DisplacementLimit_Abs[8]
Вертикальные перемещения от постоянных и длительных нагрузок	DisplacementCheck[7]	DisplacementLimit_L[7]	DisplacementLimit_Abs[7]
Вертикальные перемещения от временных нагрузок	DisplacementCheck[9]	DisplacementLimit_L[9]	DisplacementLimit_Abs[9]
Горизонтальные перемещения от всех нагрузок	DisplacementCheck[6]	DisplacementLimit_L[6]	DisplacementLimit_Abs[6]
Горизонтальные перемещения от постоянных и длительных нагрузок	DisplacementSNIPCheckEx[0]	DisplacementExSNIPLimit_L[0]	DisplacementExSNIPLimit_ Abs[0]
Горизонтальные перемещения от временных нагрузок	DisplacementSNIPCheckEx[1]	DisplacementExSNIPLimit_L[1]	DisplacementExSNIPLimit_ Abs[1]

4.5. Editor

Доступ к объекту можно получить при помощи метода GetEditor (), объекта Engine.

Объект предоставляет набор методов обеспечивающих изменение исходных данным модели **SCAD**++.

Методы объекта Editor обеспечивают исключительно добавление и изменение данных.

SetInfo (Info)

Info

• Name: имя проекта.

• Сотрану: название компании.

• Customer: наименование заказчика.

• Object: наименование объекта.

• Executor: наименование исполнителя.

NodeAdd (QuantityNode)

QuantityNode: количество добавляемых узлов.

Возвращаемое значение: номер первого из добавленных узлов.

NodeUpdate (NumNode, Node)

NumNode: номер узла.

Node

Text

• X

y

• z

NodeDelete (NumNode)

NumNode: номер узла.

NodeUnDelete (NumNode)

Восстанавливает ранее удаленный узел.

NumNode: номер узла.

ElemAdd (QuantityElem)

QuantityElem: количество добавляемых элементов.

Возвращаемое значение: номер первого из добавленных элементов.

ElemUpdate (NumElem, <u>Elem</u>)

NumElem: номер элемента.

Elem

Text

ListNode

TypeElem

TypeRigid

NumInsert

- NumSysCoord
- NumSysCoordEffors
- NumBed

Детальное описание возможных значений полей <u>Elem</u> приведено в описании функции **GetElem** объекта <u>Model</u>.

ElemDelete (NumElem, bDeleteNode)

NumElem: номер элемента.

bDeleteNode: если **true**, то удаляются все узлы элемента, при условии, что они не принадлежат другим, неудаленным, элементам.

ElemUnDelete (NumElem)

Восстанавливает ранее удаленный элемент.

NumElem: номер элемента.

GroupElemAdd ()

Добавляет группу элементов (подразумевается группа общего назначения).

Возвращаемое значение: номер добавленной группы элементов.

GroupElemUpdate (NumGroupElem, GroupElem)

NumGroupElem: номер группы элементов.

GroupElem

- Text
- ListElem

GroupElemDelete (NumGroupElem)

Удаляет группу элементов (подразумевается группа общего назначения).

Элементы, входящие в группу, не удаляются.

NumGroupElem: номер группы элементов.

GroupNodeAdd ()

Добавляет группу узлов.

Возвращаемое значение: номер добавленной группы узлов.

GroupNodeUpdate (NumGroupNode, <u>GroupNode</u>)

NumGroupNode: номер группы узлов.

GroupNode

- Text
- ListNode

GroupNodeDelete (NumGroupNode);

Удаляет группу узлов.

Узлы, входящие в группу, не удаляются.

NumGroupNode: номер группы элементов.

BlockAdd ()

Добавляет блок (Форум).

Возвращаемое значение: номер добавленного блока.

BlockUpdate (NumBlock, Block);

NumBlock: номер блока.

Block

- Text
- Color: цвет блока, в виде числа (RGB).
- ListElem

BlockDelete (NumBlock)

Удаляет блок.

Элементы, входящие в блок, не удаляются.

NumBlock: номер блока.

SetBound (Bound, bReplace)

Устанавливает связи в узлах.

Bound

- Mask: маска направлений связей в узлах.
- **ListNode**: список узлов на которые налагаются связи.

bReplace: если true, то связи в узлах заменяются на новые, если false, то новые связи добавляются к уже существующим.

DOFUnionAdd (DOFUnion);

Добавляет группу объединений перемещений.

DOFUnion

- Text
- Mask: битовая маска направлений объединения перемещений.
- ListNode

Возвращаемое значение: номер добавленной группы.

DOFUnionDelete (NumDOFUnion)

Удаляет группу объединений перемещений.

NumDOFUnion: номер группы объединений перемещений.

InsertAdd (Insert)

Добавляет новый тип жестких вставок.

Insert

- Text
- **Type**: 0, 3.
- **GroupElem**: 1, 2.
- ListData
- ListElem

InsertDelete (NumInsert)

NumInsert: номер типа жестких вставок.

BedAdd (Bed)

Добавляет новый тип упругого основания.

Bed

- Text
- Type
- **GroupElem**: 1, 2.
- ListData
- ListElem

BedDelete (NumBed)

Удаляет тип упругого основания.

NumBed: номер типа упругого основания.

BedCompress ()

Сжатие коэффициентов постели.

SystemCoordElemAdd (SystemCoordElem)

Добавляет новую систему координат элементов.

SystemCoordElem

- Text
- Type
- GroupElem
- ListData
- ListElem

SystemCoordElemDelete (NumSystemCoordElem)

Удаляет систему координат элементов.

NumSystemCoordElem: номер системы координат элементов.

SystemCoordEffortsAdd (SystemCoordEfforts)

Добавляет новую систему координат элементов для вычисления напряжений в пластинах и объемных элементах.

SystemCoordEfforts

- Text
- Type
- GroupElem
- ListData
- ListElem

SystemCoordEffortsDelete (NumSystemCoordEfforts)

Удаляет систему координат элементов для вычисления напряжений в пластинах и объемных элементах.

NumSystemCoordEfforts: номер системы координат элементов для вычисления напряжений в пластинах и объемных элементах.

JointSet (NumElem, NumNodeElem, <u>Joint</u>)

Устанавливает информацию о шарнирах в узле элемента.

NumElem: номер элемента.

NumNodeElem: номер узла в элементе ([1, 2]).

Joint

- Mask: маска шарнира.
- **Place**: положение шарнира (1 в узле; 0 у перехода к гибкой части)
- ListData: 6-ть чисел с упругими характеристиками шарниров по соответствующим направлениям

JointDelete (NumElem, NumNodeElem)

Удаляет информацию о шарнирах в узле элемента.

NumElem: номер элемента.

NumNodeElem: номер узла в элементе ([1, 2]).

RigidAdd (Rigid)

Добавляет новый тип жесткости.

Rigid

- Text
- ListElem
- **Description**: полное описание типа жесткости (см. документ *Жесткостные* характеристики, главы Язык архивации данных общей документации), например: "S0 3.24711e+010 0.4 0.411 NU 0.2 RO 24525".

RigidUpdate (NumRigid, Rigid)

NumRigid: номер типа жесткости.

Rigid

- Text
- ListElem
- **Description**: полное описание типа жесткости (см. документ *Жесткостные* характеристики, главы Язык архивации данных общей документации), например: "S0 3.24711e+010 0.4 0.411 NU 0.2 RO 24525".

RigidCompress ()

Сжатие жесткостей.

LoadingAdd (QuantityLoading)

QuantityLoading: количество добавляемых загружений.

Возвращаемое значение: номер первого из добавленных загружений.

LoadingClear (NumLoading)

Удаление всех характеристик и нагрузок загружения.

NumLoading: номер загружения.

LoadingClearAll ()

Удаление всех загружений.

LoadingSetDescription (NumLoading, Description)

Устанавливает характеристики загружения.

NumLoading: номер загружения.

Description: характеристики загружения (см. главу Язык архивации данных общей документации).

LoadingSetMass (NumLoading, Mass)

Устанавливает преобразование статических загружений в массы.

NumLoading: номер загружения.

Mass

• **ListData** – массив коэффициентов для всех статических загружений, нагрузки которых преобразуются в массы.

LoadingSetWeight (NumLoading, bReplace, bInsert, Weight)

Задает собственный вес.

NumLoading: номер загружения.

bReplace: если **true**, то предварительно удаляются все нагрузки от собственного веса для загружения с номером NumLoading.

bInsert: если **true**, то собственный вес назначается, в том числе, на жесткие вставки.

Weight:

- W: коэффициент учета собственного веса.
- ListElem

LoadingForceNodeAdd (NumLoading, ForceNode)

NumLoading: номер загружения.

ForceNode

- **Qw**: вид нагрузки (см. документ *Величины нагрузок* главы *Язык архивации данных*, общей документации).
- Qn: направление (см. *Дополнение 1*).
- ListData: (см. главу Библиотека конечных элементов общей документации).
- ListNode

LoadingForceNodeDelete (NumLoading, ForceNode)

NumLoading: номер загружения.

ForceNode

ListNode

LoadingForceElemAdd (NumLoading, ForceElem)

NumLoading: номер загружения.

ForceElem

- **Qw**: вид нагрузки (см. документ *Величины нагрузок* главы *Язык архивации данных*, общей документации).
- Qn: направление (см. *Дополнение 1*).
- ListData: (см. главу Библиотека конечных элементов общей документации).
- ListElem

LoadingForceElemDelete (NumLoading, ForceElem)

NumLoading: номер загружения.

ForceElem

• ListElem

CombinationAdd (Combination)

Добавляет новую комбинацию загружений.

Combination

• **ListData**: коэффициенты загружений и предыдущих комбинаций.

CombinationClearAll ()

Удаляет все комбинации загружений.

RsuSet ()

Добавление или удаление строк расчетных сочетаний усилий по умолчанию в соответствии с числом загружений/комбинаций загружений.

RsuClearAll ()

Удаление ранее введенных данных о РСУ.

RsuSetIgnoreCombinations (bIgnore)

bIgnore: если **true**, то комбинации загружений будут учитываться в РСУ.

RsuSetStr (NumRsuStr, RsuStr)

NumRsuStr: номер строки РСУ.

RsuStr

- ListUnions: массив номеров загружений и комбинаций действующих одновременно с загружением или комбинацией с номером NumRsuStr.
- ListUnionFlags: массив признаков включения загружений и комбинаций действующих одновременно с загружением или комбинацией с номером NumRsuStr в комбинацию (Если, соответствующий, флаг 0, то загружение обязательно присутствует в комбинации, в противном случае может отсутствовать)
- ListExclusions: массив номеров загружений и комбинаций взаимоисключаемых с загружением или комбинацией с номером NumRsuStr.
- ListRealtions- массив номеров загружений и комбинаций, без которых загружение или комбинация с номером NumRsuStr не могут быть включены в комбинацию.
- TypeLoad: тип загружения.
- ModeLoad: вид загружения.
- Sign: знакопеременность.
- Стапе: номер крана.
- CraneRegime: группа режимов работы крана, 1-8.
- NoActive: признак активности загружения.
- CoeffSafetyFactor: коэффициент надежности по нагрузке.
- LongTimeLoadComponent: доля длительной составляющей.
- ListCoeff: коэффициенты РСУ (16 коэффициентов).

UnificationRsuAdd (<u>UnificationRsu</u>)

UnificationRsu

- Text
- Туре: тип унификации.
- ListElem

UnificationRsuDelete (NumUnificationRsu)

NumUnificationRsu: номер группы унификации РСУ.

ArmElemRodAdd (ArmElemRod)

Добавляет новый тип заданного армирования стержней.

ArmElemRod

- Text
- ListElem

ArmElemRodPartAdd (NumArmElemRod, ArmElemRodPart)

Добавляет новый участок армирования, для типа заданного армирования стержней с номером NumArmElemRod.

NumArmElemRod: номер типа заданного армирования стержней.

<u>ArmElemRodPart</u>: см. описание функции **GetArmElemRodPart** из раздела описывающего объект <u>Model</u>.

ArmElemRodDelete (NumArmElemRod)

NumArmElemRod: номер типа заданного армирования стержней.

ArmElemPlateAdd (ArmElemPlate)

Добавляет новую группу заданного армирования пластин.

<u>ArmElemPlate</u>: см. описание функции **GetArmElemPlate** из раздела описывающего объект <u>Model</u>.

ArmElemPlateDelete (NumArmElemPlate)

NumArmElemPlate: номер группы заданного армирования пластин.

SteelElemAdd (SteelElem)

Добавляет новую группу конструктивных стальных элементов.

SteelElem: см. описание функции **GetSteelElem** из раздела описывающего объект Model.

SteelElemUpdate (NumSteelElem, SteelElem)

NumSteelElem: номер группы конструктивных стальных элементов.

SteelElem: см. описание функции GetSteelElem из раздела описывающего объект Model.

SteelElemDelete (NumSteelElem)

NumSteelElem: номер группы конструктивных стальных элементов.

SteelElemClearAll ()

Удаляет все группы конструктивных стальных элементов.

UnificationSteelDelete(NumGroupSteelUni)

NumGroupSteelUni: номер удаляемой группы унификации конструктивных элементов.

UnificationSteelAdd(SteelUnification)

Добавляет новую группу унификации стальных конструктивных элементов.

SteelUnification

Text

- Quantity: количество номеров групп стальных конструктивных элементов в массиве ListSteelGroup
- ListSteelGroup: массив номеров групп стальных конструктивных элементов, включаемых в группу унификации

ConcreteElemAdd (ConcreteElem)

Добавляет новую группу конструктивных железобетонных элементов.

<u>ConcreteElem</u>: см. описание функции **GetConcreteElem** из раздела описывающего объект <u>Model</u>.

ConcreteElemUpdate (NumConcreteElem, ConcreteElem)

NumConcreteElem: номер группы конструктивных железобетонных элементов.

<u>ConcreteElem</u>: см. описание функции **GetConcreteElem** из раздела описывающего объект <u>Model</u>.

ConcreteElemDelete (NumConcreteElem)

NumConcreteElem: номер удаляемой группы конструктивных железобетонных элементов.

ConcreteElemClearAll ()

Удаляет все группы конструктивных железобетонных элементов.

4.6. Result

Доступ к объекту можно получить при помощи метода **GetResult** (), объекта Engine.

Объект предоставляет набор методов обеспечивающих доступ к результатам расчета **SCAD**++.

Методы объекта Result обеспечивают исключительно чтение данных.

Стандартные имена аргументов и полей объектов/интерфейсов, которые применяются в этом разделе:

- DataType: тип данных, см. Дополнение 4.
- NumAction: номер воздействия.
- NumFixedStep: номер шага.
- NumRHS: номер правой части.
- NumNode: номер узла.
- NumElem: номер элемента.
- NumStr: номер строки.
- Result: Возвращаемые значения
 - o QuantityData
 - o ListData

В большинстве случаев результаты расчета (перемещения, усилия, и т.д.) зависят от воздействия на систему (например, от номера загружения, которому может соответствовать статическое загружение, динамическое воздействие, и т.д.). Исключение

составляют некоторые результаты (например, расчетные сочетания усилий) которые "аккумулируют" результаты нескольких воздействий.

Для получения детальной информации о соответствующем типе результатов следует использовать функции **GetDataTypeInfo**, **GetActionInfo**, **GetFixedStepInfo**, **GetRHSInfo** с указанием корректного DataType, возможные значения которого описаны в Дополнении 4.

В описании каждой функции обеспечивающей доступ непосредственно к данным результатов, указывается DataType, соответствующий этому типу результатов.

GetInfo (Info)

Info

- Linear: если **true** линейный расчет, если **false** нелинейный расчет.
- Modal: если **true** вычислены формы колебаний.
- Displace: если **true** вычислены перемещения.
- Efforts: если **true** вычислены усилия.
- Comb: если **true** вычислены комбинации усилий.
- Rsu: если **true** вычислены РСУ.
- Rsd: если **true** вычислены РСП.
- Rsr вычислены расчетные сочетания реакций в связях.
- RsPunch вычислены расчетные сочетания продавливания.
- QuantityFixedStep: число точек сохраненных результатов в нелинейном процессе.
- QuantityLoadDyn: число динамических загружений.

GetDataTypeInfo (DataType, <u>DataTypeInfo</u>)

<u>DataTypeInfo</u>

• QuantityAction: количество воздействий.

GetActionInfo (DataType, NumAction, ActionInfo)

ActionInfo

- TypeAction: тип воздействия.
- QuantityFixedStep: количество шагов.
- QuantityNode: количество узлов.
- QuantityElem: количество элементов.

$GetFixedStepInfo\ (DataType,\ NumAction,\ NumFixedStep,\ \underline{FixedStepInfo})$

FixedStepInfo

- QuantityRHS: количество правых частей.
- ListComb: список коэффициентов загружений.

GetRHSInfo (DataType, NumAction, NumFixedStep, NumRHS, <u>RHSInfo</u>) RHSInfo

- Text
- TypeEnvelope: см. Дополнение 3.
- NumSchemUnite: номер задачи вариации.
- NumLoadSchemUnite: номер загружения в задаче вариации.
- NumStep: номер шага для нелинейного процесса.
- Value: в зависимости от **DataType** собственные значения, момент времени при прямом интегрировании, коэффициент потери устойчивости
- ProcMassX: для формы колебаний процент масс по направлению X
- ProcMass Y: для формы колебаний процент масс по направлению Y
- ProcMassZ: для формы колебаний процент масс по направлению Z

GetMass (NumAction, NumFixedStep, NumNode, Result)

Сформированные узловые массы для динамического загружения (DataType: 21).

GetMode (NumAction, NumFixedStep, NumRHS, NumNode, <u>Result</u>)

Формы колебаний (DataType: 13).

GetDisplace (NumAction, NumFixedStep, NumRHS, NumNode, <u>Result</u>)

Перемещения (DataType: 11).

GetCombDisplace (NumAction, NumFixedStep, NumNode, Result)

Перемещения для комбинаций загружений (DataType: 12).

GetReactions (NumAction, NumFixedStep, NumRHS, NumNode, Result)

Реакции в связях (DataType: 35).

GetCombReactions (NumAction, NumFixedStep, NumNode, Result)

Реакции в связях от комбинаций загружений (DataType: 36).

GetReactionsFragment (NumAction, NumFixedStep, NumRHS, NumNode, Result)

Реакции от фрагмента схемы (DataType: 33).

GetCombReactionsFragment (NumAction, NumFixedStep, NumNode, Result)

Реакции от фрагмента схемы для комбинаций загружений (DataType: 34).

GetStabilMode (NumAction, NumFixedStep, NumRHS, NumNode, Result)

Формы потери устойчивости (DataType: 14).

GetCombStabilMode (NumAction, NumFixedStep, NumNode, Result)

Формы потери устойчивости от комбинаций загружений (DataType: 15).

GetEfforts (NumAction, NumFixedStep, NumRHS, NumElem, Efforts)

Напряжения/усилия (DataType: 11).

Efforts

- QuantityUs: количество элементов в массиве ListUs
- ListUs: массив типов напряжений/усилий вычисленных для элемента с номером NumElem (см. Дополнение 6).
- QuantityData
- ListData: для каждой точки выдачи напряжений/усилий значения в порядке, определяемом массивом ListUs.

GetCombEfforts (NumAction, NumFixedStep, NumElem, CombEfforts)

Напряжения/усилия от комбинаций загружений (DataType: 12).

CombEfforts: см. описание Efforts, функции GetEfforts.

GetRsuQuantityElem ()

Возвращаемое значение: общее количество элементов, для которых могли быть вычислены РСУ.

GetRsuInfo (NumElem, RsuInfo)

RsuInfo

- QuantityRsuStr: количество вычисленных строк РСУ для элемента с номером NumElem
- QuantityUs: количество элементов в массиве ListUs
- ListUs: массив типов усилий вычисленных для элемента с номером NumElem (см. *Дополнение 6*)

GetRsuStr (NumElem, NumStr, RsuStr)

RsuStr

- NumPoint: номер узла в элементе или номер сечения элемента
- GroupRsu: см. Дополнение 5.
- NumCrit: номер критерия
- Seism: признак наличия сейсмической нагрузки (true/false).
- Spec: признак наличия специально несейсмической нагрузки (true/false).
- Crane: признак наличия кранов (true/false).
- Transport: признак наличия транспортных нагрузок (true/false).
- QuantityNumLoad: количество загружений, вошедших в строку РСУ
- ListNumLoad: массив номеров загружений, вошедших в строку РСУ
- QuantityCoef: количество коэффициентов для загружений, вошедших в строку РСУ
- ListCoef: массив коэффициентов для загружений, вошедших в строку РСУ

- QuantityData
- ListData

GetRsdQuantityNode ()

Возвращаемое значение: общее количество узлов, для которых могли быть вычислены РСП.

GetRsdInfo (NumNode, RsdInfo)

RsdInfo

• QuantityRsdStr: количество вычисленных строк РСП для узла с номером NumNode

GetRsdStr (NumNode, NumStr, <u>RsdStr</u>)

RsdStr

- GroupRsd: см. Дополнение 5.
- NumCrit: номер критерия
- Seism: признак наличия сейсмической нагрузки (true/false).
- Spec: признак наличия специально несейсмической нагрузки (true/false).
- Crane: признак наличия кранов (true/false).
- Transport: признак наличия транспортных нагрузок (true/false).
- QuantityNumLoad: количество загружений, вошедших в строку РСП
- ListNumLoad: массив номеров загружений, вошедших в строку РСП
- QuantityCoef: количество коэффициентов для загружений, вошедших в строку РСП
- ListCoef: массив коэффициентов для загружений, вошедших в строку РСП
- QuantityData
- ListData

GetRsrQuantityNode ()

Возвращаемое значение: общее количество узлов, для которых могли быть вычислены расчетные сочетания реакций в связях.

GetRsrInfo (NumNode, RsrInfo)

RsrInfo

• QuantityRsrStr: количество вычисленных строк PCP для узла с номером NumNode

GetRsrStr (NumNode, NumStr, RsrStr)

RsrStr

- GroupRsr: см. Дополнение 5.
- NumCrit: номер критерия
- Seism: признак наличия сейсмической нагрузки (true/false).
- Spec: признак наличия специально несейсмической нагрузки (true/false).

- Crane: признак наличия кранов (true/false).
- Transport: признак наличия транспортных нагрузок (true/false).
- QuantityNumLoad: количество загружений, вошедших в строку PCP
- ListNumLoad: массив номеров загружений, вошедших в строку PCP
- QuantityCoef: количество коэффициентов для загружений, вошедших в строку PCP
- ListCoef: массив коэффициентов для загружений, вошедших в строку PCP
- QuantityData
- ListData

GetRsPunchQuantityNode ()

Возвращаемое значение: общее количество узлов, для которых могли быть вычислены расчетные сочетания продавливания.

GetRsPunchInfo (NumNode, <u>RsPunchInfo</u>)

RsPunchInfo

• QuantityRsPunchStr: количество вычисленных строк расчетных сочетаний продавливания для узла с номером NumNode

GetRsPunchStr (NumNode, NumStr, RsPunchStr)

RsPunchStr

- GroupRsPunch: см. Дополнение 5.
- NumCrit: номер критерия
- Seism: признак наличия сейсмической нагрузки (true/false).
- Spec: признак наличия специально несейсмической нагрузки (true/false).
- Crane: признак наличия кранов (true/false).
- Transport: признак наличия транспортных нагрузок (true/false).
- QuantityData
- ListData

GetRCQuantityElem()

Возвращаемое значение: общее количество элементов.

GetRCInfo(NumElem, RCInfoDisp)

Получение информации о результатах экспертизы железобетонного элемента

RCInfoDisp

• QuantityRCFactors: количество факторов вычисленных при экспертизе железобетонного элемента

GetRCFactors(NumElem, NumFactor, FactorsInfoDisp)

Получение информации о конкретном факторе экспертизы железобетонного элемента NumFactor: номер фактора.

FactorsInfoDisp

- FactorStringData: имя фактора
- FactorValueData: значение фактора
- FactorFormulaData: формула РСУ при которой вычислен фактор

GetSteelQuantityElem()

Возвращаемое значение: общее количество элементов.

GetSteelInfo(NumElem, <u>InfoDisp</u>)

Получение информации о результатах экспертизы стального элемента

InfoDisp

• QuantitySteelFactors: количество факторов вычисленных при экспертизе стального элемента

GetSteelFactors(NumElem, NumFactor, FactorsInfoDisp)

Получение информации о конкретном факторе экспертизы стального элемента

NumFactor: номер фактора.

<u>FactorsInfoDisp</u>

- FactorStringData: имя фактора
- FactorValueData: значение фактора
- FactorFormulaData: формула РСУ при которой вычислен фактор

GetRCFitRodQuantityElem()

Возвращаемое значение: общее количество элементов.

GetRCFitRodInfo(NumElem, InfoDisp)

Получение результатов подбора арматуры в стержневом элементе

InfoDisp

• QuantityRCFitResults: количество вычисленных результатов (количество сечений).

GetRCFitRodResult(NumElem, NumSec, ResultDisp)

NumSec: номер сечения элемента.

- AS1: площадь армирования S₁
- AS2: площадь армирования S₂
- AS3: площадь армирования S₃
- AS4: площадь армирования S₄
- IWx: погонная площадь поперечного армирования W_x
- IWy: погонная площадь поперечного армирования W_v

ResultDisp

GetRCFitPlateQuantityElem()

Возвращаемое значение: общее количество элементов.

GetRCFitPlateInfo(NumElem, InfoDisp)

Получение результатов подбора арматуры в пластинчатом элементе InfoDisp

• QuantityRCFitResults: количество вычисленных результатов

GetRCFitPlateResult(NumElem, ResultDisp)

ResultDisp

- AS1: интенсивность армирования S_1 (нижняя по X)
- AS2: интенсивность армирования S₂ (верхняя по X)
- AS3: интенсивность армирования S₃ (нижняя по Y)
- AS4: интенсивность армирования S₄ (верхняя по Y)
- AWx: погонная площадь поперечного армирования W_x
- AWy: погонная площадь поперечного армирования W_{ν}

5. Дополнение 1

Возможные значения направлений:

1	X
2	Y
3	Z
4	UX
5	UY
6	UZ
7	AX
8	AY
9	AZ
10	ВХ (R – для осесимметричных задач)
11	BY
12	BZ
13	CX
14	CY
15	CZ

6. Дополнение 2

Системы координат элементов.

Тип	Описание	Данные
1	угол в градусах	(angle)
2	угол в радианах (angle	
3	координаты точки. Принимается за ось Y1 проекция на ортогональную оси X1 плоскость вектора, проведенного из первого узла элемента в заданную точку. (X, Y,	
4	направление вектора, проекция которого на ортогональную оси X1 плоскость принимается за ось Y1.	(X, Y, Z)
5	координаты точки. Принимается за ось Z1 проекция на ортогональную оси X1 плоскость вектора, проведенного из первого узла элемента в заданную точку.	(X, Y, Z)
6	направление вектора, проекция которого на ортогональную оси X1 плоскость принимается за ось Z1.	(X, Y, Z)
7	координаты точки. Принимается за конструктивную ось Y2 проекция на ортогональную оси X1 плоскость вектора, проведенного из первого узла элемента в заданную точку.	(X, Y, Z)
8	направление вектора, проекция которого на ортогональную оси X1 плоскость принимается за конструктивную ось Y2.	(X, Y, Z)
9	координаты точки. Принимается за конструктивную ось Z2 проекция на ортогональную оси X1 плоскость вектора, проведенного из первого узла элемента в заданную точку.	(X, Y, Z)
10	направление вектора, проекция которого на ортогональную оси X1 плоскость принимается за конструктивную ось Z2.	(X, Y, Z)
16	направление вектора в глобальной системе координат, проекция которого на плоскость элемента принимается за ось X1.	(X, Y, Z)
17	координаты точки. Принимается за ось X1 проекция на плоскость элемента вектора, проведенного из первого узла элемента в заданную точку.	(X, Y, Z)
18	координаты точки. Принимается за ось X1 проекция на плоскость элемента вектора, проведенного из центра элемента в заданную точку.	(X, Y, Z)
19	направление вектора в глобальной системе координат, проекция которого на плоскость элемента принимается за ось Y1.	(X, Y, Z)
20	координаты точки. Принимается за ось Y1 проекция на плоскость элемента вектора, проведенного из первого узла элемента в заданную точку.	(X, Y, Z)
21	координаты точки. Принимается за ось X1 проекция на плоскость элемента вектора, проведенного из центра элемента в заданную точку.	(X, Y, Z)

Тип	Описание	Данные
32	направления осей X1, Y1. Если заданы неортогональные векторы, то направление оси Y1 корректируется в заданной плоскости.	(Xx, Yx, Zx, Xy, Yy, Zy)
33	направления осей X1, Z1. Если заданы неортогональные векторы, то направление оси Z1 корректируется в заданной плоскости.	(Xx, Yx, Zx, Xz, Yz, Zz)
34	направления осей Y1, Z1. Если заданы неортогональные векторы, то направление оси Z1 корректируется в заданной плоскости. (Xy, Y	
35	углы Эйлера в градусах	(α, β, γ)
36	углы Эйлера в радианах	(α, β, γ)
37	цилиндр. Задаются две точки на оси Z1.	$(X_1, Y_1, Z_1, X_2, Y_2, Z_2)$
38	цилиндр. Задаются координаты точки на оси цилиндра и направление оси Z1.	$(X, Y, Z, \Delta X, \Delta Y, \Delta Z)$
39	сфера. Задаются координаты точки центра сферы и точка, на которая позволяет ориентировать ось Y1 в плоскости X1Y1.	(X, Y, Z, Xy, Yy, Zy)
40	сфера. Задаются координаты точки центра сферы и направление которая позволяет ориентировать ось Y1 в плоскости X1Y1.	(X, Y, Z, Xy, Yy, Zy)

7. Дополнение 3

Типы информации.

Тип	Описание		
0	Статика		
1	Интегрирование по времени		
2	Статическая составляющая ветровой нагрузки (только для нелинейности и монтажа)		
3	нелинейность/монтаж + статическая составляющая ветровой нагрузки		
4	Базовое загружение монтажа + статическая составляющая ветровой нагрузки		
5	Массы		
11	Формы колебаний		
12	Формы потери устойчивости		
13	Действительная часть гармонического воздействия		
14	Комплексная часть гармонического воздействия		
15	Направление X при шестикомпонентном воздействии		
16	Направление Ү при шестикомпонентном воздействии		
17	Направление Z при шестикомпонентном воздействии		
18	Направление U_X при шестикомпонентном воздействии		
19	Направление U _Y при шестикомпонентном воздействии		

Тип	Описание		
20	Направление U _Z при шестикомпонентном воздействии		
21	Динамическая огибающая (сумма квадратов или по нормам) результатов, полученных по формам колебаний		
22	Динамическая огибающая от действительной и комплексной части гармонического воздействия		
31	Статическая + динамическая огибающая		
32	Нелинейность + динамическая огибающая		
34	Статическая + динамическая огибающая гармонического воздействия		
35	Нелинейность + динамическая огибающая гармонического воздействия		
37	Базовое загружение монтажа + динамическая огибающая		
39	Базовое загружение монтажа + динамическая огибающая гармонического воздействия		
41	Нелинейность + интегрирование по времени		
42	Базовое загружение монтажа + интегрирование по времени		

8. Дополнение 4

Типы данных.

Тип	Описание
11	Перемещения и соответствующие им напряжения/усилия
12	Перемещения и соответствующие им напряжения/усилия от комбинаций загружений
13	Формы колебаний
14	Формы потери устойчивости
15	Формы потери устойчивости от комбинаций загружений
21	Сформированные узловые массы для динамического загружения
33	Реакции от фрагмента схемы
34	Реакции от фрагмента схемы для комбинаций загружений
35	Реакции в связях
36	Реакции в связях от комбинаций загружений

9. Дополнение 5

Виды групп.

Тип	Описание
0	Расчетная

Тип	Описание
1	Расчетная длительная
2	Нормативная
3	Нормативная длительная

10. Дополнение 6

Типы усилий/напряжений.

Тип	Обозначение	Описание
0	N	Продольная сила
1	M _K	Крутящий момент, вращение относительно продольной оси X_1 стержня
4	M _Y	Изгибающий момент, вращение относительно оси Y_1 ; вызывает растяжение-сжатие нижних и верхних волокон по высоте сечения (по направлению оси Z_1)
5	Qz	Перерезывающая сила в направлении оси Z_1 по высоте сечения и соответствующая моменту M_Y
6	M _Z	Изгибающий момент, вращение относительно оси Z_1 ; вызывает сжатие-растяжение правых и левых волокон сечения по ширине сечения (по направлению оси Y_1)
7	Q _Y	Перерезывающая сила в направлении оси Y_1 по ширине сечения и соответствующая моменту M_Z
8	$N_X(\sigma_x)$	Нормальное напряжение, действующее вдоль оси X_1
9	$N_{Y}(\sigma_{y})$	Нормальное напряжение, действующее вдоль оси Y ₁
10	$N_Z(\sigma_z)$	Нормальное напряжение, действующее вдоль оси \mathbb{Z}_1
11	$T_{XY}(au_{xy})$	Сдвигающее напряжение в направлениях, противоположных осям X_1 и Y_1
12	$T_{XZ}(au_{xy})$	Сдвигающее напряжение в направлениях, противоположных осям X_1 и Z_1
13	$T_{YZ}(au_{yz})$	Сдвигающее напряжение в направлениях, противоположных осям Y_1 и Z_1
14	$M_{\rm X}$	Момент, действующий на сечение, ортогональное оси X_1
15	M_{Y}	Момент, действующий на сечение, ортогональное оси Y ₁
16	M_{XY}	Крутящий момент (действующий в сечении, ортогональном оси X_1).
17	Qx	Перерезывающая сила в сечении, ортогональном оси X_1
18	Q _Y	Перерезывающая сила в сечении, ортогональном оси Y ₁
20	R_{Z}	Реактивный отпор грунта при расчете плит и оболочек на упругом основании
21	R_X	реактивный отпор упругого основания по направлению ОХ

Тип	Обозначение	Описание
		оболочки/балки-стенки
22	R _Y	реактивный отпор упругого основания по направлению ОY оболочки/балки-стенки
23	r _x	Реактивный отпор упругого основания по направлению X при задании коэффициента постели C_X
25	WG	Прогиб в слое многослойного элемента
26	R _X	Реакция вдоль оси X_1 (специальные элементы)
27	R _Y	Реакция вдоль оси Y ₁ (специальные элементы)
28	R_Z	Реакция вдоль оси Z_1 (специальные элементы)
29	R_{UX}	Реакция вокруг оси X_1 (специальные элементы)
30	R_{UY}	Реакция вокруг оси Y ₁ (специальные элементы)
31	R_{UZ}	Реакция вокруг оси \mathbb{Z}_1 (специальные элементы)
32	R _{AX}	Реакция вдоль оси X_1 (специальные элементы)
33	R _{AY}	Реакция вдоль оси Y ₁ (специальные элементы)
34	R_{AZ}	Реакция вдоль оси Z_1 (специальные элементы)
35	R _{BX}	Реакция вдоль оси X_1 (специальные элементы)
36	R _{BY}	Реакция вдоль оси Y ₁ (специальные элементы)
37	R_{BZ}	Реакция вдоль оси Z_1 (специальные элементы)
38	R_{CX}	Реакция вдоль оси X_1 (специальные элементы)
39	R _{CY}	Реакция вдоль оси Y ₁ (специальные элементы)
40	R_{CZ}	Реакция вдоль оси Z_1 (специальные элементы)
47	NX_UP	Напряжение σ_x на верхней поверхности пластины
48	NX_DOWN	Напряжение σ_x на нижней поверхности пластины
49	NY_UP	Напряжение σ _у на верхней поверхности пластины
50	NY_DOWN	Напряжение σ _у на нижней поверхности пластины
51	NXY_UP	Напряжение σ_{xy} на верхней поверхности пластины
52	NXY_DOWN	Напряжение σ_{xy} на нижней поверхности пластины
53	SNX	Интергральное напряжение σ_x в многослойном элементе
54	SNY	Интергральное напряжение σ_y в многослойном элементе
56	STXY	Интергральное напряжение σ_{xy} в многослойном элементе
59	r _y	Реактивный отпор упругого основания по направлению Y при задании коэффициента постели C_{1Y}
60	r _z	Реактивный отпор упругого основания по направлению Z при задании коэффициента постели C_{1Z}