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Abstract 
 

The report presents a modified preconditioned conjugate gradient (MPCG) method based on an aggregated multilevel 
preconditioning with shifts, intended for solution of large-scale natural vibration problems resulting from the FEM application. The 
application of a properly chosen shift essentially improves the capability of the preconditioning to predict low vibration modes and 
accelerates the convergence. In many cases the use of the shift allows one to avoid the convergence lock which occurs when a 
conventional preconditioned conjugate gradient method (PCG) is applied. A modified iterative algorithm has been developed because 
each modification of the shift changes spectral properties of the preconditioning and destroys previously accumulated conjugate 
directions. The efficiency of the MPCG approach is illustrated by examples. 
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1. Introduction 

The eigenvalue analysis of large-scale problems is a task of 
great importance. Usually block modifications of subspace 
iteration or Lanczos methods [11], [12] are applied in 
commercial software for this purpose. However, when the size 
of a problem is very large (200 000 - 700 000 degrees of 
freedom and more), these methods become too expensive. The 
factoring of the stiffness matrix and multiple forward-backward 
solutions require a lot of computation time and huge disk space 
storage. Multiple forward-backward resolutions during the 
eigenvalue extraction procedure are very computation-intensive 
too. In this situation the application of methods which allow one 
to avoid the expensive factoring procedure and forward-
backward substitutions is very desirable. 

Iterative methods based on a direct minimization of the 
Rayleigh quotient do not require the stiffness matrix to be 
factored. Preconditioned conjugate gradient methods for 
solution of natural vibration problems are considered in [11]. It 
is shown that the incomplete Cholesky conjugate gradient 
approach is a powerful tool for eigenvalue analysis. 

The disadvantage of the PCG method is a lock of the 
convergence in some cases [13]. 

An original approach based on coupling of the subspace 
iteration idea with the preconditioned gradient method is 
considered in [1]. An aggregation multilevel preconditioning is 
applied to accelerate the convergence. 

A multi-grid Davidson approach is presented in [5]. The 
shift technique leads to an acceleration of the convergence and 
allows one to avoid the lock of it. 

This report presents a preconditioned conjugate gradient 
method with shifts in the aggregation multilevel 
preconditioning. 

2. An aggregation multilevel preconditioning 

The application of the finite element method to a natural 
vibration problem of structural mechanics leads to the following 
algebraic generalized eigenvalue problem: 

0=ϕλ−ϕ MK                                                                          (1) 

It is well known from the theory of iterative methods that 
lower modes converge worse than higher ones. The worse the 
problem’s conditioning, the slower the convergence. The 
preconditioning B  is applied to reduce the conditioning number 
and accelerate the convergence [3], [10], [11]: 

MBCKBACA 11 ,,0 −− ===φλ−φ                                 (2) 

It is a powerful tool to fight the ill conditioning. The main 
idea of the multilevel approaches is to create a coarse level 
model which is to predict lower modes of vibration and 
accelerate the convergence [3], [10]. 

The preconditioned conjugate gradient methods based on a 
multilevel preconditioning combine the advantages of PCG 
methods with a coarse level correction. Therefore such methods 
keep a robust convergence even in ill-conditioned problems. 

The basic idea of the multilevel preconditioning for the 
PCG method used in this report is presented below. 

First, a coarse level model is created. Then, the restriction-
prolongation operators QQ ,T  are formulated to establish an 
interface between the coarse and fine level models. The 
procedure presented below is applied instead of an explicit 
solution 

kk rBz =                                                                                   (3) 

where kr  is a residual vector, k  (an iteration number) will be 
omitted. 
• Restriction of the r  vector to the coarse level: cf rr a . 

This procedure consists of transforming the fine level 
model into the coarse level: f

T
c rQr =  and TQ  is the 

restriction operator. The upper subscript T  denotes a 
transposition, lower subscripts rf ,  refer to respective fine 
and coarse level models. 

• Resolution of ccc rzK = , where cK  is the projection of 
the original stiffness matrix K  onto the coarse level ( cK is 
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already decomposed and the size of the coarse level 
problem allows the implementation of the direct methods). 

• Prolongation *
fc zz a  from the coarse level to the fine 

level. This operation consists of a reversed transformation 
from the coarse level model into the fine level: cf Qzz =*  

and Q is the prolongation operator 
• Smoothing of the vector ff zz a*  after the prolongation. 

Rapidly fluctuating residuals appear during the 
prolongation. An internal iteration procedure is applied to 
damp the residuals. 

The aggregation approach has been proposed in [1], [2]. The 
implementation of the aggregation approach presented here is 
based on element-by-element technique used to prepare the 
coarse level matrix cK  promptly. A more efficient PCG 
algorithm and element-by-element aggregation scheme [6], [7], 
[8], [9] allows us to improve the robustness of the method and 
incorporate it in the Robot Millennium commercial software 
(www.robobat.com). Now this method is incorporated in the 
SCAD software (www.scadgroup.com). 

The aggregation approach consists of an introduction of 
additional connections (rigid links) to decrease the number of 
degrees of freedom of a given design model. The coarse level 
model is derived as shown below (Fig.1). Thus, the original 
finite-element model (fine level) is transformed into a 
mechanical system (coarse level), which consists of non-
overlapped local rigid aggregates coupled by elastic 
connections. The rigid aggregates are rigid bodies due to the 
imposed rigid links. All nodes of the finite-element model 
should be included in the rigid aggregates. It is possible to treat 
a single node as a limit case of a minimal rigid aggregate. It is 
not admissible for any node to be included into 

 

 
Fig.1 First and second aggregation levels for a rectangular plate  

with the finite element mesh 4×4 

more than one aggregate. 
The first aggregation step is performed in an element-by-

element loop. We take the first finite element and couple all 
nodes belonging to it. Aggregated nodes are marked. Then we 
take the second element and couple the remaining (unmarked) 
nodes. And so on. 

The second aggregation level (and all the following) is 
performed in the same way. The aggregates from the previous 
level are considered to be generalized nodes. Each aggregate 
from the previous level which is coupled into a new aggregate 
of the current level, is marked to avoid a total coupling of the 
entire structure. 

This aggregation procedure is being applied until the size of 
the coarsest level model becomes small enough for a direct 
solution. This approach keeps the topological similarity of each 
aggregation level to the original model (fine level). 

The details are presented in [6], [7], [8], [9]. 

3. Introduction of a shift into the preconditioning 

The application of gradient methods to the problem (1) is 
based on a minimization of the Rayleigh quotient 

( )
( )kk

kk
kR

x,Mx
x,Kx

x =)(                                                                  (4) 

where kx  is an eigenvector approximation at k  iteration step. 
The line search procedure reduces the minimization of (4) to the 
following: 

kkkk gxx α−=+1                                                                       (5) 

where kk g,α  are an optimization parameter, obtained from 
minimization (4), and a gradient vector respectively. 

( )kkk
kk

k MxKx
xMx

g λ−=
),(

2                                              (6) 

The normalization 1),( =kk xMx  is applied, and (5), (6) 
become 

( )kkkk MxKxg λ−⋅= 2                                                            (7) 

kkkkkkkkk xMKIMxKxxx )](2[)(21 λ−α−=λ−α−=+         (8) 

From (7), (8) follows: 

( ) ( )( )
( )[ ] kik

kkkkk

gMKI
gxMKxMKg

λ−α−=
=α−λ−=λ−= ++

2
222 11                 (9) 

and: 

kkkk xMKIx )](2[1 λ−α−=+                                                  (10) 

kkkk gMKIg )](2[1 λ−α−=+                                                  (11) 

For the preconditioned problem (2) the expressions (10), 
(11) are: 

kkkk xMKBIx )](2[ 1
1 λ−α−= −
+                                            (12) 

kkkk gMKBIg )](2[ 1
1 λ−α−= −
+                                             (13) 
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Property 1 If MKB 1λ−→ , where 1λ  is a minimal 
eigenvalue of (1), then (12) tends to the inverse iteration 
procedure with the shift. 

Proof. Let us suggest that δ−λ=λ 1

~
, MKB λ−=

~
 and the 

iteration process converges to the first eigenpair. It is possible to 
take 1λ→λ k  for sufficiently great k . 
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Let us take 5.0=α k  and 

kk MxxMK =λ− +1)
~

(                                                              (15) 

This is a single step of a shifted inverse iteration method. It 
is well-known that the inverse iteration method with a properly 
selected shift has a cubic convergence. 

The proof of property 1 is also presented in [9]. 
Property 2 Let the preconditioning be MKB λ−=

~
 where 

δ−λ=λ 1

~
 The closer λ

~
 is to 1λ  , the faster is the convergence 

of preconditioned gradient method. 
Proof. Let the iteration process converges to the first 

eigenpair. Then for sufficiently great k  it is possible to take 
1λ→λ k  and α=α k . From (13) yields: 

( )[ ]
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                         (16) 

Let us take 5.0=α . Then 

( ) kk gMBg 1
1

−
+ δ=                                                                    (17) 

This expression  

∑
=

γ=
N

i
i

k
ik

2

vg                                                                          (18) 

is an eigenvector expansion: 

Nis iii ,...,2,1 ==− vMvB                                                     (19) 

where N  is number of equations of (1). The subscript i  starts 
from 2, because the rank of space for eigenvectors (19) is 

1−N . So, the term 1=i  is used for scaling of (18). 
 

The eigenvector orthogonality leads to: 

Nis k
ii

k
i ,...,2,1 =γδ=γ +                                                         (20) 

If MKB λ−=
~

, then expression (19) leads to this: 
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The expression (20), taking into account (22), gives this: 
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Expression (23) sets up the following important properties: 
• The closer δ  is to zero (as far as the existence of the 

inverse preconditioning matrix 1−B  allows), the faster  
components of the gradient vector descent. 

• Let us take Nλ<<λ<λ ...21 . Then 11 λ−λ≈δ+λ−λ ii , 
because it is possible to neglect the small value δ  
comparing to 1λ−λ i . Expression (23) then simplifies to 

Nii

k

i

k
i ,...,2,0

1

=γ







λ−λ

δ
≈γ                                     (24) 

So, the convergence of high modes (large numbers of i ) is 
faster than that of low modes (small numbers of i ). 

The properties 1, 2 are proved for the first eigenmode. The 
orthogonalization against already extracted modes decreases the 
dimensionality of the problem nN −  where n  is the number of 
obtained modes. So, it is possible to generalize the above stated 
consideration to the second mode, third and so on. 

Proposition: The properties 1, 2 suggest us to search the 
efficient preconditioning in the form: 

MBB λ−=
~

0                                                                         (25) 

where 0B  is the aggregation multilevel preconditioning [6], [7], 

[8], [9] and λ
~

 is a properly chosen shift. 

4. An algorithm of the modified conjugate gradient 
method (MPCG) with a shifted aggregation multilevel 
preconditioning 

The conventional algorithm of the PCG method for 
eigenvalue problem solution is presented in (11). The 
introduction of shifts into the preconditioning leads to a 
modification of this algorithm, because each shift update 
changes the spectral properties of matrices CA,  and destroys 
accumulated conjugate directions. 

The following modifications are introduced: 
• The preconditioning is taken in the form of (25) 
• The shift update K~

~
λ=λ  (

K~
λ  is an eigenvalue 

approximation at K~  iteration step) is performed if the 
convergence has not been achieved during the prescribed 
number of iterations K~ . The iterations start from the 
beginning, and the initial eigenvector approximation is 
taken as the current eigenvector — see p.9 of the algorithm 
presented below. We avoid updating the shift too often, 
because we want to make use of the advantages of the 
conjugate gradient method. On the other hand, our aim is 
to accelerate the convergence by correcting the shift if a 
slow convergence occurs. The choice of K~  depends on a 
problem and the efficiency of preconditioning. It is usually 
taken as 10020~

÷=K  for an aggregation multilevel 
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preconditioning. It turns out that after each correction the 
shift takes the value of the current eigenvalue 
approximation. 

• The shifted preconditioning is not evaluated directly. An 
implicit iterative algorithm, presented at the end of this 
paragraph, is applied instead. 

 
The algorithm of the MPCG method 

 
1. Loop over all required modes ni ,...,2,1=  

2. 1ˆ,0
~

0 ==λ x  

3. Initialize the start vector 
• Orthogonalize against previously obtained modes 

121 ,...,, −ϕϕϕ i : 
• Normalize the respective mass matrix: 

• Approximate the eigenvalue: ( )
( )00

00
0 ,

,
xMx
xKx

=λ  

• Residual vector: 
00000000 ),( zrBzMxKxgr ⇒=λ−−=−=  

• New conjugate search direction: 
( ) 0000 ,2 zxMxp −=  

• Orthogonalize 0p  against previously defined modes 

121 ,...,, −ϕϕϕ i  

4. PCG iterative loop: Kk ~,...,1,0=  
5. Line search: 

kkkk pxx α+=+1ˆ , where 
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xxM
xxKx  

6. Normalize: 
( )11

1
1 ˆ,ˆ

ˆ

++

+
+ =

kk

k
k

xMx
xx  

7. Approximate the eigenvalue: ( )
( )11

11
1 ,

,

++

++
+ =λ

kk

kk
k xMx

xKx  

8. Update the residual vector: 
11111111 ),( ++++++++ ⇒=λ−−=−= kkkkkkkk zrBzMxKxgr  

9. Check the convergence: 
)/( 111 tolif kkk ≤λ +++ Mxr  

Store 11; ++ λ=λ=ϕ kiki x  as a converged eigenpair,  

1+= ii  and go to 1 

( )Kkifelse ~
>  

Modify: ;
~

1+λ=λ k  10 += kxx , 0=k  and go to 3 

( )Kkifelse ~
≤  go to 10 

10. Search for a new conjugate direction 
111 +++ →= kkk zrBz  

( )
( )
( )kk

kk

kk pKp
pKz

xMx σ+

σ+

++

=β
,
,

,
2

1

1

11

 

( )11

1
1 ,

2ˆ
++

+
+ −β=

kk

k
kk xMx

zpp  

11. Orthogonalize 1ˆ
+kp  against previously defined modes 

121 ,...,, −ϕϕϕ i   
12. End of loop k 
13. End of loop i  
 

The MPCG algorithm presented here is a generalization of 
the PCG one from [11] (pp. 132-133) by introducing the shift 
into the preconditioning and a proper shift correction during the 
iterations. If ∞→K~ , the MPCG method tends to a usual PCG 
one. 

The implicit solution scheme is applied to avoid the direct 
re-evaluation of the shifted preconditioning: 

( ) 110

~
++ =λ− kk rzMB                                                               (26) 

• 0
1

0
1

0
10 +++ ⇒= kkk zrzB  

• 0
11;1;0 ++ ===∆ kks zz  

• loop ,...3,2,1=s  

• 1

~
+λ= kMzb  

• ∆⇒=∆ bB0  

• ∆+= ++
0

11 kk zz  

• End of loop s 
Here ∆  is a correction vector. Numerous numerical tests show 
that a single iteration loop ( 1=s ) is enough to ensure a good 
solution of (26) at the preconditioning stage. 

5. Numerical results 

5.1. Example 1 

 
Fig.2 A spatial bar. 
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Table 1: Effect of shifts on the number of iterations and computation time (Example 1). 
 

Mode # Eigenvalue λ  Number of iterations for 
shift correction over 50 
iterations ( 50~

=K ) 

Number of iterations for 
shift correction over 100 
iterations ( 100~

=K ) 

Number of iterations without 
shifts ( ∞→K~ ) 

1 9.556e+04 63 102 
2 9.556e+04 19 20 
3 1.284e+06 26 26 
4 2.449e+06 24 24 
5 2.449e+06 27 27 

Convergence has not been 
achieved even for the first 
mode. 6 700 iterations were 
done, more than 12 h of 
computation time was spent 

Total number of iterations 159 199 — 
Total solution time, s 1 457 1 674 — 

 

 
Fig.3 A finite element model of a wheel 

 
 
 
 
 

Fig. 4 A fragment of the mesh 

 
A steel prismatic bar 4.12×1.39×1.39 m consisting of two 

parts with different meshes (Fig.2) has been considered. Its 
finite element model contains 58 621 nodes, 90 000 finite 
elements and 172 980 equations. The scheme presented in Fig. 2 
has much coarser mesh than in reality because the real mesh is 
too dense to be shown clearly. The right part consists of brick 
volumetric finite elements and the left part includes 6-noded 
ones. 5 eigenpairs have been extracted. The precision is taken as 

4
22

100.1/ −×=≤λλ− tolMxMxKx . A Pentium-III PC 
(CPU Intel 866 MHz, 256 MB RAM) has been used. Three 
aggregation levels (3 870 coarsest level equations for direct 
solution) and 4 inner iterations have been involved. 
 
Table 2: Number of iterations and computation time for AMIS 
(aggregation multilevel MPCG method) and ICCF (incomplete 
Cholesky PCG method) methods 

 
Method Total number of 

iterations 
Solution time, s 

AMIS MPCG 159   1 457 
ICCF PCG 8 281 14 554 

 
The number of iterations and time of computation are 

presented in Table 1. It is clearly seen that the conventional 

PCG method has a lock of convergence at the first mode. The 
use of MPCG method allows us to overcome this difficulty due 
to properly selected shift values. 

The advantage of the aggregation multilevel modified 
preconditioned conjugate gradient method proposed here 
comparing to the conventional incomplete Cholesky 
preconditioned conjugate gradient one [9] is illustrated by data 
of Table 2. 

 

5.2. Example 2 

A finite element model of a wheel contains 96 451 nodes, 
94 032 finite elements and 285 894 equations. (Fig.3, Fig.4) 

Six eigenpairs have been extracted, 4100.1 −×=tol . Three 
aggregation levels (4 488 coarse level equations) and 4 inner 
iterations have been used. A Pentium-III computer (CPU Intel 
1000 MHz, 512 MB RAM) has been applied. 

The conventional PCG method leads to a lock of the 
convergence for the second mode. The computation was 
interrupted after over 9 hours. The MPCG method proposed 
here overcomes this difficulty (see Fig. 5, Table 3). 

This problem is very hard for a direct solver. The stiffness 
matrix has 2 794 MB nonzero entries (the nested dissection  
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Fig.5 Second mode – the usual PCG method has a lock of convergence, the MPCG method overcomes this problem 
 

 
Table 3: Effect of shifts on the number of iterations and 
computation time 
 
Mode # Eigenvalue 

λ  
Number of 
iterations 
( 150~

=K ) 

Number of 
iterations 
( ∞→K~ ) 

1 6.535e+003 88 88 
2 1.191e+004 278 2039 
3 1.191e+004 67 — 
4 2.245e+005 75 — 
5 2.807e+005 282 — 
6 2.807e+005 58 — 

848 — Total number of iterations 
Total computation time 3 h 43 m 23 s  >> 9 h 

 
reordering method has been used as preferable to the minimum 
degree algorithm [8]). The stiffness matrix factoring time of the 
multi-frontal solver exceeds 9 hours which is more than the total 
solution time of MPCG method (3 h 43 m 23 s). 

5.3. Example 3 

A soil-structure interaction problem (Fig.6) is under 
consideration. The finite element model contains 104 048 
nodes, 111 269 finite elements and 319 133 equations. A non-
uniform mesh on the soil is denser in the building foundation 
area. 

The sparse direct multi-frontal solver (the nested dissection 
reordering method) [8] requires about 1292 MB RAM only for 
allocation of the maximal front (18 403 equations) which is 
much more than the available storage on our computer (PC 
Pentium-III, CPU Intel-1000 MHz, 512 MB RAM). So the 
solution of this problem by methods based on factoring of the 

stiffness matrix (Lanczos method, subspace iteration and so on) 
requires a computer with larger RAM. 

The aggregation multilevel MPCG method presented here 
allows us to successfully solve this problem on our available 
PC. The aggregation model consists of 3 aggregation levels 
(27 140 equations for direct solution), 4 inner iterations are 
used. The required size of RAM for the allocation of the 
compressed stiffness matrix (without any zero entries) and the 
factored part of the preconditioning is 285 MB. The tolerance 
1.0×10-3 is taken, 10 eigenpairs are extracted, 60~

=K   
A comparison of the computational effort with that of the 

conventional PCG method (incomplete Cholesky factorization 
preconditioning) is presented in Table 4. 
 
Table 4: Computational effort of different iterative methods 
Example 3 
 

Method Total number of 
iterations 

Solution time, s 

AMIS MPCG 667 3 h 26 m 05 s 
ICCF PCG 6 204 5 h 20 m 06 s 

 
Table 5 illustrates the soil-structure interaction effect for 

low vibration modes. The second model is the same building 
constrained on the foundation level. 

The natural vibration modes for a soil-structure system 
differ essentially from those of a constrained structure. The 
compliance of the soil area adjoining the structure’s foundation 
leads to reduced natural vibration frequencies comparing to 
those of the constrained structure. It can be clearly seen for first 
and third modes. 

Even the general behavior of modes is essentially different 
in these two models (see Fig. 7). 
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Fig.6 An example of a soil-structure interaction 

 

6. Conclusion 

The modified preconditioned conjugate gradient method 
presented here, one based on an aggregation multilevel 
preconditioning with a shift acceleration, is a powerful tool for 
natural vibration analysis of large-scale finite-element structural 
models. 

The aggregation approach allows us to analyze a variety of 
types of structures: bars, plates, shells, solids and any 
combinations of those. Any arbitrary types of finite elements 
from finite element libraries of commercial or research software 
are available. 

The implementation of the shift results is an essential 
improvement of the preconditioning, acceleration of the 
convergence and avoidance of the convergence lock which 
often occurs with the sequential preconditioning conjugate 
gradient method. The aggregation approach together with the 
modified PCG algorithm proposed here, ensuring the proper 
choice of the shift value, allows us to keep the advantages of the 
preconditioned conjugate gradient method, accelerate the 
convergence and create a robust iterative technique. 

The numerical examples above prove the stable 
convergence and efficiency of the proposed technique. Soil-
structure interaction problems are especially hard for methods 
based on a stiffness matrix factoring. The soil brick is a part of 
the stiffness matrix poorly optimized by reordering. Therefore 
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such methods require a lot of RAM and time-intensive 
computations. A robust iterative method, such as the 

aggregation multilevel MPCG technique proposed here, allows 
one to analyze this problem using a conventional PC. 

 
 
Table 6: Comparison of natural vibration modes in soil-structure interaction problems 
 

 
Mode 1     f = 2.86 Hz 

 
 

Mode 1    f = 3.18 Hz 

 
Mode 2     f = 3.02 Hz 

 
 
 
 

Mode 2    f = 3.55 Hz 

 
Mode 3    f = 3.07 Hz 

 
 

Mode 3    f = 4.79 Hz 

 
Fig 7 First three modes. A soil-structure system — on the left; a constrained structure — on the right 
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The Robot Millennium software (www.robobat.com) has 

been used to create the models of Examples 1, 2. The SCAD 
software (www.scadgroup.com) has been used to create the 
model of Example 3. 
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