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Abstract 

A powerful eigenvalue extraction method for natural vibration analysis of large-scale structures is presented. This method is based on 
a block Lanczos algorithm with shift implementation [4] and has four modes of operation: modal mode, interval mode, seismic mode 
and verification mode. The modal mode is developed to extract the first n required eigenpairs. The interval mode means the 
extracting of all eigenpairs whose frequencies fall into an interval ],[ ba . The seismic mode is intended for extracting eigenpairs 
while ensuring that a required sum of modal masses be provided for all seismic input directions. The verification mode is used to 
detect hard-to-find errors of a finite element model, such as a local and global dimensional instability, lack of supports and so on. The 
shift technique is applied to split the frequency interval into small subintervals and restricts the growth of the computation effort for 
large-scale dynamic problems. The sparse direct solver, based on multifrontal technique, is used to factor the stiffness matrix. It 
provides not only a faster factoring procedure, but fast forward-back substitutions during repeated Lanczos steps. The performance of 
this method is compared here with that of different solvers. Its robustness and efficiency is confirmed by numerous examples. 
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1. Introduction 

Recently, large-scale problems with large number of 
eigenpairs arise more and more often. Therefore it requires 
robust and fast methods for eigenvalue analysis to be developed.  

The great number of eigenpairs is needed often for seismic 
analysis when a lot of low vibration modes are local and/or do 
not make a representative contribution to the seismic response 
of a structure in question. It is very difficult to ensure the 
sufficient percentage of the sum of modal masses [1], [3], [9] 
along all or some principal seismic directions. 

The conventional procedure of extracting low vibration 
modes (a modal mode) consists of following: the user assigns 
the number of desired modes, runs the analysis and checks the 
sum of modal masses in each direction. If the sum of modal 
masses is insufficient, the user increases the required number of 
modes and runs the calculation again. And so on. For “hard” 
problems this procedure is usually repeated multiple times. It is 
not an efficient way to solve seismic problems. The seismic 
mode (regime) of a block Lanczos method proposed here is 
based on shift implementation and a posteriori bounding of 
residual [2], [4], and it allows us to obtain all modes, provide 
the required sum of modal masses during one run of algorithm 
and avoid time-consuming attempts which are typical for 
conventional approaches.       

The design of nuclear power plants and other industrial 
buildings often requires to extract all natural vibration 
frequencies belonging to a given frequency interval ],[ ba . The 
interval mode of the proposed block Lanczos method, based on 
Sturm check sequences and a shift technique, implements this 
approach. 

A considerable effort and design time are spent to detect 
errors in large-scale finite element models, like local and global 
dimensional instability, lack of supports and so on. The 
verification mode proposed here, one based on a shift technique, 

helps detect these hard-to-find errors. This approach has proved 
to be better than an analysis based on singularities detected 
during the matrix factoring. 

Numerical examples presented here illustrate the 
capabilities of the proposed method.  

2. Block Lanczos method with spectral transformations 

The Lanczos method [5], [6], [7] is recognized as a most 
powerful tool for extraction of large number of eigenpairs in 
large-scale problems of structural mechanics. The stability of its 
computational process is ensured by a selective or/and partial 
re-orthogonalization [5], [6], [7]. The experience of authors [3] 
indicates that the selective re-orthogonalization based on 
Paige’s theorem, is efficient only for relatively short Lanczos 
processes when the number of generated Lanczos vectors is not 
too great. For long Lanczos processes the selective re-
orthogonalization fails to succeed. On the contrary, the partial 
reorthogonalization [7], [8] keeps Lanczos vectors highly 
orthogonal and ensures a highly stable computation even for 
long Lanczos processes which generate 300-700 and more 
Lanczos vectors. Therefore we employ the block version of 
partial re-orthogonalization [4]. 

Conventional algorithms of Lanczos method possess the 
following disadvantage when the large-scale problems 
containing 60 000 - 500 000 and more equations are to be 
solved: at each step of Lanczos vector generation it is necessary 
to make the forward-back substitutions only for a single right- 
side vector (r. s. v.). Due to this a lot of computation time is 
spent for input-output (I/O) operations because the upper part of 
the factored matrix U , where  LUK =  and K  is a stiffness 
matrix, must be read twice block-by-block from a secondary 
storage (disk) per each Lanczos vector. 
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Fig.1 Typical distribution of eigenvalues, Ritz approximations and coarse approximations. • - eigenpairs; ο - Ritz pairs; � - coarse 

approximations 
 

The second problem is related to a drastic increase of 
amount of operations when the dimension of Krylov subspace 
(number of generated Lanczos vectors) is big enough (usually 
exceeds ~100). 

The block version of Lanczos algorithm is intended to 
reduce the I/O effort.  

Spectral transformations are implemented to split the long 
Lanczos process into a few relatively short ones. It reduces 
essentially the computation time when a large number of 
eigenpairs (100 - 1000 and more) are required. 

The original natural vibration problem is as follows: 
 

0=ϕλ−ϕ MK                                                                          (1)    
 

where K  is a positive definite symmetrical stiffness matrix and 
M  is a positive definite or semi-definite lumped or consistent 
mass matrix, ϕλ,  is an eigenpair. 

The idea of the shifted block Lanczos algorithm [4] is 
adopted as a basis for the algorithm presented here, although 
many details have been modified and adjusted to peculiarities of 
structural mechanics problems. 

The basic algorithm of the block Lanczos method with 
spectral transformations is presented below. 
1. arl =σ=λ=λ , where rl λλ ,  are left and right 

boundaries of the trust interval, a  is the leftmost boundary 
of the interval ],[ ba , σ  is a shift value. The trust interval 
contains only converged Ritz pairs (we refer to them as 
eigenpairs) and does not have any missed ones, that is, all 
eigenpairs from trust interval ],[ rl λλ  are thought to have 
been extracted. Set the block size p  (usually 3=p ) and 

1=in . 
2. External loop: continue solution till all required eigenpairs 

are extracted with a given accuracy.  
3. Set the start block { } 0,,,, 00

2
0
10 == pqqqQ  and 

{ }00
2

0
11 ,...,, prrrR = , where all vectors in block 1R  are 

linearly independent. Then: 111 RBQ = , where 1B  is an 

upper triangle matrix pp×  and IMQQ =11
T . It is a 

matrix form of the block Gram-Schmidt orthogonalization 
algorithm, which in this article differs from that presented  
in [4]. The size of blocks RQ,  is pN ×  where N  is the 
number of equations of (1). 

4. If 1>in  , modify λ∆+λ=σ l , where the choice of λ∆  is 
based on estimation of Ritz pairs (see below). If 0≠σ , 
perform the factoring of σσσ =σ−= ULMKK . 

5. Internal loop: ,...,2,1=j   
6. Calculate: 
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7. 111 +++ = jjj RBQ , where IMQQ =++ 11 j
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8. Update the block triangle matrix 
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9. Solve the reduced eigenvalue problem 
  

jjjj SΘST =                                                                     (4) 

 
10. Compute the precision of Ritz pairs using a posteriori 

boundary of residual [2],[4]: 
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where { } jj

j
j

jj
j SQyyyY == ,...,, 21 . The Ritz pair is taken 

as converged, if ( ) tol
j
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≤ν−λ  and 

iλ  is an exact eigenvalue, j
iv  is an approximation at the 

Lanczos step j , tol  is an adopted tolerance (usually    
1.0×10-4  ÷ 1.0×10-8 . We provide the following 
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classification: if ( ) tol
j
i

j
i ≤

θ

β
2 then it is a converged 

eigenpair; if ( )
2

2 100.1 −×≤
θ

β
<

j
i

j
itol  then it is a Ritz pair; if 

( )
2

2 100.1 −×>
θ

β
j
i

j
i  then it is a coarse approximation (see 

Fig.1). 
 
11. Break the internal iteration loop at j , if: 

• ( ) ( )NLjin ≥∧=1 , where 200150−≅NL  is the 
maximal number of Lanczos vectors 

• ( ) ( )[ ]def
in
c nZnin −σ≥∧> )(1 , where in

cn  is the number 
of converged modes at the given step in  of the 
external loop, defn is the number of eigenpairs already 

found, ( )σZ  is the number of negative signs detected 
on the diagonal of σU . 
These conditions being satisfied ensures that the 
skipped eigenpairs do not fall into the interval [ ]σλ ,l . 
If the internal loop is interrupted, go to step 14.   

12. If the orthogonality between Lanczos vectors is less than 
required, perform a partial re-orthogonalization according 
with [4] – corrected matrices 111 ,, +++ jjj BRQ  are the result 
of it.  

13. ++j , go to  5 
14. Evaluate the eigenvectors for all eigenvalues enclosed in 

the interval [ ]λλ
~

,l  (see Fig.1), where λ
~

 is a largest 
eigenvalue from the continuous part of the spectrum. In the 
seismic mode, calculate the sum of modal masses in each 
principal direction [1], [9]. 

15. Evaluate a new approximation of λ∆  so that the number 
of converged eigenvalues, Ritz and coarse approximations, 
located to the right of λ

~
, be equal to the expected number 

of eigenpairs which we want to obtain from the next trust 
subinterval (see Fig.1). Usually this value is adopted to be 
15-20 that corresponds to about 100-150 maximal number 
of Lanczos vectors. Evaluate rλ  and put rl λ=λ  to the 
next shift interval. 

16. In the modal, interval and verification modes: if 
reqdef nn ≥ , where reqn  is the required number of 

eigenpairs enclosed in the interval [ ]ba,  and defn  is the 
number of eigenpairs obtained and enclosed in the interval 
[ ]ra λ, , break the external loop and go to step 17. In the 
seismic mode: break the external loop and go to step 17, if 
the sum of modal masses for all converged modes reaches 
the accepted values (default: 

∑∑ ∑ === %75%,90 zyx mmm ). Otherwise (no 

finish criterion is satisfied), ++in  and go to step 2.  
17. Evaluate the precision for each eigenpair: 

2

2

1

i

iii

iprec
y

MyKy −λ−
=  , defni ,...,2,1=                           (6) 

 

This algorithm ensures that the skipped eigenpairs do not 
fall into the interval [ ]lasta σ,  where lastσ  is the last shift value. 

The algorithm presented above implements the modal and 
interval modes. In addition, when the interval mode is used, we 
define the number of eigenvalues enclosed in the given interval 
[ ]ba, :  

( ) ( )aZbZndef =σ−=σ=                                                       (7) 
 

The initial shift value is taken as a=σ . 
In the seismic mode the computation stops as soon as the 

required sum of modal masses is reached.  
In the verification mode, a small negative shift is 

implemented to avoid a singularity caused by potential errors in 
the computation model.  

3. Numerical results 

3.1. The modal mode 

The modal mode of the proposed method is illustrated by 
the following example. The model of a multi-storey building 
contains 19 409 nodes, 19 456 finite elements and 115 362 
equations (see Fig. 2). 

The comparison of computation time vs. the number of 
required modes (modal mode) for different methods is presented 
in Table 1. The subspace iteration (SI), block subspace iteration 
(BSI), a conventional Lanczos method (LM) and the block 
Lanczos method with spectral transformations (BLST) proposed 
here are presented. A Pentium-III computer (Intel-1000MHz 
processor, 512 MB RAM) is used. The precision of all obtained 
eigenpairs estimated by (6) is not worse than 1.0×10-04 . 

The block subspace iteration method has been developed 
according to [9] and is presented in [3]. The conventional 
Lanczos method has been developed according to [5], [7] and is 
presented in [3]. This example illustrates a typical performance 
of these methods. It can be clearly seen that the BSI method is 
preferable to SI. If the factored stiffness matrix can fit in RAM, 
then the Lanczos method is essentially faster than BSI. The 
more the number of required modes, the bigger the advantage of 
the Lanczos method. 

Otherwise, if the size of the factored stiffness matrix is too 
big for it to be allocated in RAM, while the number of required 
modes is not so big (about 10 - 50), the BSI method usually 
happens to be more efficient than that of Lanczos due to 
blocking of I/O operations during forward-back substitutions 
(see examples from [3]). 

The BLST method is essentially faster than other considered 
methods, especially when the number of required modes is 
large. The size of Krylov subspace (number of Lanczos vectors) 
remains relatively small during spectral transformations. An 
appropriately chosen shift divides the required interval into a 
sequence of non-overlapped trust subintervals. We pass from a 
preceding subinterval to the following one till the required 
number of modes are converged or the proper sum of modal 
masses is achieved. The required interval is a trust interval too, 
because it is a sum of adjacent non-overlapped trust 
subintervals. Inasmuch as each modification of shift leads to the 
factoring of matrix MKK σ−=σ , the fast multi-frontal solver 
with sparse reordering plays an important role. 

The last row of Table 1 illustrates great capabilities of the 
BLST method presented here. 
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Table 1: Comparison of computation time for different methods. A multi-storey building (Fig.2) 
 

Number of 
required modes 

Subspace iterations Block subspace 
iterations [3] 

Lanczos method [3] Block Lanczos method with 
spectral transformations 

25 2 h 28 min 31s 1 h 49 min 38 s 54 min 24 s 38 min 14 s 
50 5 h 18 min 33 s 3 h 06 min 16 s 1 h 22 min 37 s 55 min 56 s 

100 — — 2 h 22 min 14 s 1 h 52 min 14 s 
1 000 — — — 11 h 25 min 02 s 

 
Fig. 2 A multi-storey building 
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Fig. 3 An industrial building. The frequency band of equipment is 8 to 20 Hz. 

3.2. The interval mode 

The example shown in Fig. 3 illustrates the interval mode of 
the block Lanczos method with spectral transformations. 

This model contains 10 439 nodes, 11 431 finite elements 
and 60 760 equations. The frequency band of equipment is 8 to 
20 Hz.  

First of all, the proposed algorithm evaluates the number of 
eigenpairs enclosed in the interval [8, 20] Hz by (7). The first 
Sturm sequence check (SSCH) is performed for the shift 
corresponding to the top boundary of the frequency (20 Hz). 
The second SSCH is performed for the bottom boundary (8 Hz). 
The required number of eigenpairs is 97. 

Three subintervals are required to extract 97 eigenpairs. The 
first subinterval is [8, 13.837] Hz ( 8=σ  Hz, 46 eigenpairs have 
converged), the second one is [13.837, 18.578] Hz ( 343.16=σ  
Hz, 41 eigenmodes have converged) and the third one is 
[18.578, 22.624] Hz ( 807.20=σ  Hz, 39 eigenpairs have 
converged). In fact, the algorithm evaluates 126 eigenpairs from 
the interval [8, 22.624] Hz that is wider than required because 
the left boundary of each trust subinterval must match the right 
boundary of its preceding subinterval. Otherwise, the continuity 
of the spectrum is not safely guaranteed. 

Four factorings of matrix MKK σ−=σ  are required. 

The precision of the extracted eigenpairs estimated by (6) is 
not worse than  080.1 −e . It is a very high accuracy, and we 
believe that the proposed method has given nearly exact 
eigenpairs of the presented finite-element model.  

The computation time is 45 min 45 s on a Pentium-III 
computer (Intel-1000 MHz processor, 512 MB RAM). 

3.3. The seismic mode  

Big difficulties often arise in the seismic analysis when a lot 
of eigenpairs are required to achieve a good sum of modal 
masses. The following examples illustrate this problem (see 
Tables 2,3) and capabilities of the proposed method. 

 
Table 2: Sum of modal masses versus number of extracted 
eigenmodes. The model of church (Fig.4) 
 

Number of 
modes 

∑ Xm ,% ∑ Ym ,% ∑ Zm ,% 

10 50.0    51.9    0.0 
50 58.2    77.3    5.1 
100 68.4    84.5    13.9 
300 95.4    95.2    74.3 
638 97.9    97.3    90.0 
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Table 3: Sum of modal masses vs. number of extracted 
eigenmodes. A multi-storey building (Fig.5) 
 

Number of 
modes 

∑ Xm ,% ∑ Ym ,% ∑ Zm ,% 

10 79.6    80.7    7.5 
50 83.5    84.5    47.6 
100 84.9    88.5    63.8 
300 91.6    92.3    82.1 
924 94.8    95.6    90.0 

 

The required sum of modal masses is taken as 90% in each 
principal direction (in compliance with UBC-97, PS-92 and 
Eurocode-8 seismic codes). 

The Church problem requires 638 eigenmodes to satisfy the 
seismic codes mentioned above. The second problem (a multi-
storey building) requires 924 eigenmodes. In fact, 1051 
eigenpairs have been extracted for the second problem and 20 
trust subintervals have been created. The precision of 
eigenvectors is not worse than 080.1 −e . The computation time 
is 13 h 52 min on a Pentium-III computer (Intel-1000MHz 
processor, 512 MB RAM). 

 
 

Fig. 4 The model of a church (4 525 nodes, 6 520 finite elements, 27 138 equations) 
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Fig. 5 A multi-storey building (20 285 nodes, 29 932 finite elements, 119 874 equations) 

 

3.4. The verification mode 

This mode of the method allows us to detect hard-to-find errors 
of computational models like local or global dimensional 
instability, lack of supports and so on. 

A small negative shift is implemented to avoid the 
singularity caused by potential errors in computation model. An 
example taken from real engineering practice is presented in 
Fig. 6. First frequencies are shown in Table 4. 

The modes 1-6 have nearly zero frequencies. This indicates 
a dimensional instability. Indeed, the analysis of eigenmodes 
detects an unconstrained part in the structure which has six 
modes of free rigid body motion. The first mode is presented in 
Fig. 7. 

 
 

 
Table 4: Low frequencies of a multi-storey building 
 

Number Frequency, Hz Comments 
1 -8.228e-006 
2 -2.104e-006 
3  2.62e-006 
4  3.172e-006 
5  4.257e-006 
6  5.623e-006 

Free rigid body motion of 
unconstrained part of structure. 
Mode 1 is presented in Fig. 7 

7  0.5181       
8  0.6726       
9  0.986       
10  1.042    

The bottoms of columns are not 
constrained - see Fig. 8 
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Fig. 6. A multi-storey building (24 434 nodes, 26 273 finite elements, 127 165 equations) 
 

The multi-frontal solver informs us of such instability which 
leads to very small pivots during the Gauss elimination. But the 
modes of instability (mechanism modes) have been detected 
only in the verification mode of the BLST method. Moreover, 
the verification mode allows us to detect unconstrained bottoms 
of columns too (Fig. 8).    
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Fig.7 An unconstrained part of structure is detected 

 
 

Fig.8 Unconstrained bottoms of columns are detected 
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