
CMM-2003 – Computer Methods in Mechanics June 3-6, 2003, Gliwice, Poland

A sparse direct multifrontal solver in SCAD software

Sergiy Yu. Fialko, Edward Z.Kriksunov and Viktor S.Karpilovskyy
Software company SCAD Soft

13, Chokolovsky bld., room 508
Kiev, 252680 GSP, Ukraine

e-mail: fialko@erriu.ukrtel.net

Abstract

A sparse direct multi-frontal method (MFM) for solving large-scale finite element linear algebraic equations is presented. Both the
minimum degree algorithm (MDA) and the nested dissection method (NDM) are applied to obtain a proper ordering of equations for
reduction of fill-ins during the factorization. An automatic selection of a more efficient reordering method is based on a fast symbolic
factorization. This method allows to essentially reduce the computing time comparing to the prevailing skyline solver based on a
reverse Cuthill-McKee algorithm (RCM). The efficiency of the proposed approach is illustrated by numerous large-scale finite
element models of real buildings. This method is implemented in the SCAD commercial software (http://www.scadgroup.com/eng/).

Keywords: sparse, multi-frontal, ordering, frontal tree

1. Introduction

Sparse direct methods [4] make a powerful tool for solution
of large-scale finite element problems, especially when ill-
conditioned problems need to be solved. In such case iterative
methods show a slow convergence. An efficient direct method
based on sparse reordering MDA (minimum degrees algorithm)
or NDM (nested dissection method) approaches and the multi-
frontal technique is presented here. The principal effort of the
authors is aimed at a reduction of fillings in the course of the
Gauss elimination procedure [4]. The attention is focused on the
proposed solver implementations with commonly popular PCs
to extend the capabilities of analysing real large-scale
engineering problems and to reduce the cost of the finite
element analysis.

A properly chosen reordering method ensures the reduction
of fillings during Gauss elimination or Choletsky factorization.
The more fillings are reduced, the less the computational effort.
The reverse Cuthill-McKee algorithm (RCM) is a prevailing
reordering method which has been implemented in commercial
finite element software until recently. The development of fast
problem-oriented graphic pre-processors and automatic mesh
generators causes the dimensions of finite element (FE) models
to grow. For example, the usual size of SCAD client FE
problems is about 90 000 - 300 000 degrees of freedom for
today. Such large-scale problems require the implementation of
advanced solution techniques because skyline solvers are still
too much time-consuming.

An alternative approach is to use sparse direct solvers which
appear to be more efficient even than the profile reduction
techniques based on Sloan or spectral reordering methods [3].

The multi-frontal solution technique [1],[2],[3],[5] proves to
be convenient for implementing in commercial and research FE
software.

2. Sparse multifrontal method MFM

The MFM method is based on a combination of advantages
of sparse ordering methods – the minimum degree algorithm

MDA and the nested dissection method NDM [4] with the
frontal [9] and multi-frontal techniques.

Key features of the proposed method follow:
• The solution of a FEM equation system consists of node-

by-node elimination of equations referred to a particular
node (a nodal equation set). So, the elimination process
includes a number of steps equal to the number of nodes in
the finite element model. Constrained degrees of freedom
do not contribute their corresponding equations to the
nodal equation set.

• The term “elimination of node” means the elimination of a
nodal equation set.

• As opposed to the element reordering in conventional
frontal or multi-frontal solution techniques, the proposed
method uses a nodal reordering. It allows us to apply well-
known reordering algorithms, like the minimum degrees
algorithm or nested dissection method [4].

• A fast symbolic factorization [4] is applied to choose a
proper reordering method for a problem: MDA or NDM.

• A front is a C++ class object which encapsulates all data
related to a particular node of a FE model. The number of
fronts is the same as the number of nodes and the number
of elimination steps. Each front contains the elimination
node number, the list of frontal nodes, the list of previous
fronts (that is, the number of fronts which comprise the
given front) and the list of assembled finite elements.

• A Process Descriptor data structure is created to establish
the sequence of FE assembling according to the specified
node reordering, sequences of fronts, lists of nodes and
equations for each front.

• The set of fronts makes a frontal tree. The elimination
process is a movement along the frontal tree.

• The current front is a start one if it has no predecessors
(previous fronts). It is a nodal front if it has more than one
predecessor, and it is a successive one if it has only one
predecessor.

mailto:fialko@erriu.ukrtel.net

Fig.1 Quadratic plate with mesh 2x2

Fig. 2 Structure of levels for frontal tree

• Moreover, each front contains a pointer to a frontal matrix

– a dense matrix consisting of both fully assembled
equations referred to the current node being eliminated,
and partially assembled equations related to other nodes of
the current front. The equations correspond to eliminated
unknowns and are stored on disk, and the remaining
equations create an incomplete front. If the size of
incomplete fronts exceeds the capacity of the core
memory, those are saved to disk.

• The frontal tree is reordered to reduce the space required
by the incomplete frontal matrices.

• A successive front inherits the frontal matrix of its
previous incomplete front by accepting its pointer (it is a
very fast operation). Then the stiffness finite element
matrices corresponding to FE added at this solution step,
are added to the incomplete frontal matrix, and unknowns
for fully assembled equations are eliminated.

• The frontal matrix of the nodal front is assembled from the
frontal matrix of the previous fronts and element matrices
of finite elements which are added at this step.

• The frontal matrix of the start front is assembled only from
element matrices of corresponding finite elements.

Let us consider a simple example – a square plate with a
mesh 2x2 (Fig. 1) which is to illustrate the basic concepts of the
proposed method.

The minimum degrees algorithm produces the following
order of nodes to be eliminated: 1,3,7,9,2,6,8,4,5 .

Then, we define a sequence of the finite element
assembling. The node is fully assembled if all finite elements
that contain are assembled. The nodal equation set for a fully
assembled node is ready to be eliminated because the
continuation of the assembly does not change these equations.
Table 1 is filled to obtain the sequence of the finite element
assembly according to the specified nodal reordering. Each
finite element can be assembled only once. Therefore, each
assembled finite element is greyed to avoid multiple
assembling. So, the greyed element numbers present the finite
element assembling sequence where we move from the top to
the bottom of table. It means that the global stiffness matrix is
assembled in the following order:

∑
=

=
eN

e
eNewNo

1
][KK (1)

Table 1: Sequence of the finite element assembling

Number of
eliminated node

List of FE required to
assemble a nodal
equation set

1 1
3 2
7 3
9 4
2 1,2
6 2,4
8 3,4
4 1,3
5 1,2,3,4

Table 2. Process Descriptor data structure

Elimination
step

Eliminated
node

List of
frontal
nodes

List of
previous
fronts

List of
assembling

FE
1 1 1,2,4,5 ----- 1
2 3 3,6,5,2 ----- 2
3 7 7,4,5,8 ----- 3
4 9 9,8,5,6 ----- 4
5 2 2,4,5,6 1,2 ----
6 6 6,8,5,4 5,4 ----
7 8 8,5,4 6,3 ----
8 4 4,5 7 ----
9 5 5 8 ----

 2

where is an element’s stiffness matrix and

 is a permutation vector that defines

the required order of finite element assembling, is the
number of finite elements.

][eNewNoK
ee 2,1],[= eNNewNo ,...,

eN

The Process Descriptor data structure contains general
information about the assembling/elimination process and is
presented in Table 2. The elimination of node #1 requires the
finite element #1 to be assembled (see Table 1). Finite
element #1 imports nodes #1,2,3,4. Node #1 is fully assembled
and all nodal unknowns are eliminated. The transformed rows
of the frontal matrix corresponding to the nodal matrix of node
#1, make a part of the upper matrix factor and are saved to disk.
The equation sets for nodes #2,4,5 constitute the incomplete
front.

The elimination of nodes #3,7,9 is performed similarly
because their corresponding fronts 2,3,4 are start ones and do
not require the assembling of previous fronts.

The elimination of node #2 requires the assembling of
incomplete fronts 1,2 which are taken from core (if the
incomplete front is located in the core memory) or from disk (if
the incomplete front has been saved to disk). The nodes
eliminated at the previous steps are not included in the frontal
node list of the current front, because corresponding unknowns
are eliminated already and appropriate parts of the frontal
matrices are saved to disk. As soon as the incomplete front is
taken to the assembly, the corresponding part of the core
memory gets freed. Thus the size of the core memory remains
relatively small even for large-scale problems. The current
solver version provides a virtualisation if there is not enough
core memory. The elimination of nodes #6,8,4,5 is performed
exactly as that of node #2.

The structure of levels of the frontal tree (Fig. 3) is based on
the Process Descriptor data structure and is created in the
following way: we take the last front #9 (elimination step 9) and
place it at the top (level 1) of the structure of levels. The front
#8 is a predecessor for front #9 (see Table 2), so we place it at
level 2. Front #7 is a predecessor for front #8 - place it at the
level 3. Fronts #9,8 are successive ones. Front #7 is a nodal one,
because it has two predecessors - fronts #6, 3 which form level
4. Front #3 is a start one, but front #6 is nodal. And so on, until
all fronts are exhausted.

The assembling/eliminating process can be presented as a
movement along the structure of levels of the frontal tree from
its bottom to its top. The unknowns of a front from level can
be eliminated only after the elimination of all unknowns of
previous fronts from level k which are predecessors of the
front from level .

k

1+
k

The reordering of fronts is performed to reduce the space
occupied by incomplete fronts. The figures in circles denote the
original front numbers and the figures placed to the right are the
reordered front numbers.

The objective of this paper is to present an efficient solution
method for usual (sequential) computations that involves a
reduction of fillings due to the use of a proper reordering
method. However, this algorithm also enables splitting the
Gauss elimination procedure because of parallel branches in the
frontal tree, which can be useful for parallel computing.

The Gauss elimination process is performed step-by-step
according to the sequences of reordered nodes. Each front is
considered to be an object containing a frontal matrix. The

memory allocation and assembling of frontal matrix are
performed for start and nodal fronts.

The list of local-global equation numbers
List(local_eqn_number) = global_eqn_number establishes a
connection between the equation numbers in the frontal matrix
(local equation numbers) with equation numbers in the global
stiffness matrix K and is based on the list of frontal nodes (see
Process Descriptor data structure - Table 2). Constrained
degrees of freedom do not contribute any equations to the
frontal matrix.

Next, unknowns for fully assembled equations
corresponding to an eliminated node at the current step (see
Table 2) are eliminated, and the remaining part of the frontal
matrix is still an incomplete front. The transformed rows of the
frontal matrix corresponding to eliminated unknowns, are saved
to disk. The incomplete fronts are saved to disk if the capacity
of the core memory is exceeded.

If a successive front is met, the memory is not allocated
because such front accepts a pointer to the frontal matrix from
its predecessor, the previous front. Corresponding finite element
matrices (see Table 2) are added if necessary. Then the
elimination of unknowns is performed for the node that must be
eliminated.

The Gauss elimination procedure is performed in the dense
frontal matrix. Fully assembled equations may be located in any
arbitrary rows. It introduces additional complications to the
Gauss elimination algorithm. The following example – a square
symmetric matrix 4x4 – demonstrates this. The initial matrix is
shown below:





















44434241

34333231

24232221

14131211

aaaa
aaaa
aaaa
aaaa

 (2)

Let the equation 2 be fully assembled and eliminated. The

second row is placed in a buffer for the factored part of the
matrix and will be saved to disk after the current elimination
step. The diagonal element is a pivot entry. The matrix is
divided into three sectors:

22a
BA ,C, :

=
















−−−−−−

C

BA

#
###

#





















−−−−−−−−−−−

44

3433

141311

24232221

#
#

####
#

a
aa

aaa

aaaa
 (3)

where Aa ∈11 , a Ba ∈1413 , and . Here

only the top triangle part of the matrix is presented because it’s
symmetric. The row located in the buffer is shown under the
matrix.

C
a
aa

∈








44

3433

The elimination in sector A is performed in a regular way:

2122121111ˆ aaaaa ⋅−= (4)

The resulting value a is placed in position of . 11ˆ 11a

 3

The elimination in sector B occurs as follows:

2422121414

2322121313

ˆ
ˆ

aaaaa
aaaaa
⋅−=

⋅−=
 (5)

The resulting values a are shifted by one position to

the left.
1413 ˆ,ˆ a

In the sector : C

2422424444

2422323434

2322323333

ˆ
ˆ
ˆ

aaaaa
aaaaa
aaaaa

⋅−=

⋅−=

⋅−=

 (6)

The resulting values are shifted by one position
to the left and one position to the top. The final results are:

443433 ˆ,ˆ,ˆ aaa





















−−−−−−−−−−−

#
#ˆ
#ˆˆ
#ˆˆˆ

44

3433

141311

24232221

a
aa
aaa

aaaa
 (7)

The top row – a part of the factored matrix - should be

saved to disk, and the remaining part of the matrix contains an
incomplete front, so it is kept in the core memory as long as the
next needed steps are assembled.

Fig. 3 A reactor unit of a nuclear power plant

3. Numerical results

A few typical examples of SCAD usages are presented to
illustrate the capabilities of the method.

3.1. A reactor unit of a nuclear power plant

The finite element model contains 53 946 nodes, 40 264
spatial finite elements and 160 929 equations (Fig.3). A
comparison of the performance of different solvers is
presented in Table 3.

Designations: skyline is a direct solver with the profile
storage approach [4] and the reverse Cuthill-McKee (RCM)
reordering method; MFM (MDA) is a multi-frontal solver
with minimum degrees algorithm [4] reordering, and AMIS
is a fast aggregation multilevel iterative solver [6], [7], [8]. It
is a preconditioned conjugate gradient method with
aggregation multilevel preconditioning. The tolerance

040.1 −= etol has been accepted for the AMIS iterative
solver. It means that the solution error is

 4

Fig.4 A finite element model of a church

Table 3: Comparison of efficiency of different solvers (the
reactor block)

Solver Computation time
(Computer: Pentium
III, Intel 1000 MHz
processor, 512 MB
RAM)

Size of nonzero
entries in the
factored stiffness
matrix (only for
direct solvers),
MB

Skyline 9 h 30 min 04 s 3 552
MFM (MDA) 1 h 33 min 03 s 955
AMIS 20 min 29 s ---------

tol≤−= bKxbr / where is the solution vector

and the right side vector (r.h.s.v.) respectively. This problem
contains 3 r. s. v. The solution time of the direct methods

depends on the number of r. s. v. very little (at least for a
small number of r. s. v.). On the other hand, the iterative
solver runs every time from the beginning of each load case.
Therefore the solution time of the iterative solver depends on
the number of r .s. v. essentially.

bx,

The proposed multi-frontal method reduces the
computation time about 6 times comparing to the
conventional skyline solver. The AMIS solver seems
preferable for this model that contains spatial finite elements.

3.2. Finite element model of a church

The model contains 52 752 nodes, 55 602 finite elements and
316 509 equations (Fig. 4). A single r .s. v. is considered. A
comparison of the performance of different solvers is
presented in Table 4.

 5

Fig.5 A finite element model of a multi-storey building

Table 4: Comparison of efficiency of different solvers (a
finite element model of a church)

Solver Computation time
(Computer: Pentium
III, Intel 1000 MHz
processor, 512 MB
RAM)

Size of nonzero
entries in the
factored
stiffness matrix
(only for direct
solvers), MB

Skyline >> 25 h 8 896
MFM (MDA) 43 min 45 s 720
AMIS 59 min 14 s --------

The tolerance has been accepted for the

AMIS iterative solver. When the runtime of the skyline
solver with RCM reordering method exceeded 25 hours, still
less than one third of the stiffness matrix had been factored,
so the job was cancelled.

040.1 −= etol

The multi-frontal solver has proved to be most efficient
of the methods considered. The aggregation multilevel
iterative solver requires a bit more time than the multi-frontal
solver.

3.3. Finite element model of a multi-storey building

The model contains 91 089 nodes, 96 656 finite elements
and 544 410 equations. Four r. s. v. are considered. A

comparison of the performance of different solvers is
presented in Table 5.

Table 5: Comparison of efficiency of different solvers (a
multi-storey building)

Solver Computation time
(Computer: Pentium
III, Intel 600 MHz
processor, 512 MB
RAM)

Size of nonzero
entries in the
factored
stiffness matrix
(only for direct
solvers), MB

Skyline 23 h 30 min 5 830
MFM (MDA) 35 min 22 s 763
AMIS 1 h 02 min 30 s --------

The tolerance 040.1 −= etol has been accepted for the

AMIS iterative solver. The runtime of the skyline solver with
the RCM reordering method is about 24 hours.

The multi-frontal solver has proved to be most efficient
of the methods considered. It reduces the computation time
about 40 times comparing to the skyline solver. The
aggregation multilevel iterative solver requires a bit more
time than the multi-frontal solver. It should be noted that the
extraction of one r. s. v. plus the preparation of
preconditioning takes about 20 min.

 6

The advantage of the multi-frontal solver for this problem
is due to the fact its solution time depends little on the

number of r. s. v. while the iterative solver starts iterations
from the beginning for each r. s. v.

Fig.6 A finite element model of Byelorussia National Library in Minsk

3.4. Finite element model of a multi-storey building of
Byelorussia National Library in Minsk

The model contains 34945 nodes, 46186 finite elements
and 207 978 equations. A comparison of the performance of
different solvers with it is presented in Table 6.

The tolerance tol has been accepted for the
AMIS iterative solver.

040.1 −= e

The multi-frontal solver reduces the computation time 30
times comparing to the skyline solver. The aggregation
multilevel iterative solver AMIS (4 r. s. v.) requires only 37
min to produce the solution with a practical accuracy.

Table 5: Comparison of efficiency for different solvers
(Byelorussia National Library in Minsk)

Solver Computation time
(Computer: Pentium
III, Intel 1000 MHz
processor, 512 MB
RAM)

Size of nonzero
entries in the
factored
stiffness matrix
(only for direct
solvers), MB

Skyline 48 h 12 min 36 s 10 514
MFM (MDA) 1 h 35 min 32 s 806
AMIS 36 min 59 s ----------

4. Conclusion

The proposed multi-frontal solver implemented in the
SCAD software has proved to be a robust and fast method for

 7

solving a variety of types of structural mechanics problems
from actual civil engineering practice. For many large-scale
problems it is competitive even with the aggregation
multilevel iterative solver [6], [7], [8], especially when there
are extensive right sides or ill-conditioned matrices.

References

[1]. Duff I.S., Reid J.K., The multifrontal solution of
indefinite sparse symmetric linear equations, ACM
Trans. Math. Software, 9, pp. 302-325, 1973.

[2]. Duff, I.S., Parallel implementation of multifrontal
scheme, Parallel Comput., 3, pp. 193-204, 1986.

[3]. Duff, I.S., Reid, J.K., Scott, J.A., The use of profile
reduction algorithms with a frontal code, Int. J. Numer.
Meth. Eng., 28, pp. 2555-2568, 1989.

[4]. George, A., Liu, J., Computer solution of large sparse
positive definite systems. Prentice-Hall, Inc., 1981.

[5]. Gend, P., Oden, J.T., R.A van der Geijn., A parallel
multifrontal algorithm and its implementation, Comput.
Methods Appl. Mech. Engrg., 149, pp. 289-301, 1997.

[6]. Fialko, S.Yu., The high-performance aggregation
element-by-element iterative solver for the large-scale
complex shell structural problems, Archives of Civil
Eng., XLV, 2, pp. 193-207, 1999.

[7]. Fialko, S., High-performance aggregation element-by-
element Ritz-gradient method for structure dynamic
response analysis, CAMES, 7, pp. 537-550, 2000.

[8]. Fialko, S.Yu., High-performance iterative and sparse
direct solvers in Robot software for static and dynamic
analysis of large-scale structures. Proceedings of the
second European conference on computational
mechanics, Poland, June 26-29, 2001, 18 p.

[9]. Irons, B., A frontal solution program for finite element
analysis, Int. J. Numer. Meth. Engrg., 2, pp. 5-32, 1970.

 8

