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Abstract 
 

A sparse direct multi-frontal method (MFM) for solving large-scale finite element linear algebraic equations is presented. Both the 
minimum degree algorithm (MDA) and the nested dissection method (NDM) are applied to obtain a proper ordering of equations for 
reduction of fill-ins during the factorization. An automatic selection of a more efficient reordering method is based on a fast symbolic 
factorization. This method allows to essentially reduce the computing time comparing to the prevailing skyline solver based on a 
reverse Cuthill-McKee algorithm (RCM). The efficiency of the proposed approach is illustrated by numerous large-scale finite 
element models of real buildings. This method is implemented in the SCAD commercial software (http://www.scadgroup.com/eng/). 
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1. Introduction 

Sparse direct methods [4] make a powerful tool for solution 
of large-scale finite element problems, especially when ill-
conditioned problems need to be solved. In such case iterative 
methods show a slow convergence. An efficient direct method 
based on sparse reordering MDA (minimum degrees algorithm) 
or NDM (nested dissection method) approaches and the multi-
frontal technique is presented here. The principal effort of the 
authors is aimed at a reduction of fillings in the course of the 
Gauss elimination procedure [4]. The attention is focused on the 
proposed solver implementations with commonly popular PCs 
to extend the capabilities of analysing real large-scale 
engineering problems and to reduce the cost of the finite 
element analysis. 

A properly chosen reordering method ensures the reduction 
of fillings during Gauss elimination or Choletsky factorization. 
The more fillings are reduced, the less the computational effort. 
The reverse Cuthill-McKee algorithm (RCM) is a prevailing 
reordering method which has been implemented in commercial 
finite element software until recently. The development of fast 
problem-oriented graphic pre-processors and automatic mesh 
generators causes the dimensions of finite element (FE) models 
to grow. For example, the usual size of SCAD client FE 
problems is about 90 000 - 300 000 degrees of freedom for 
today. Such large-scale problems require the implementation of 
advanced solution techniques because skyline solvers are still 
too much time-consuming.  

An alternative approach is to use sparse direct solvers which 
appear to be more efficient even than the profile reduction 
techniques based on Sloan or spectral reordering methods [ 3]. 

The multi-frontal solution technique [1],[2],[3],[5] proves to 
be convenient for implementing in commercial and research FE 
software. 

2. Sparse multifrontal method MFM 

The MFM method is based on a combination of advantages 
of sparse ordering methods – the minimum degree algorithm 

MDA and the nested dissection method NDM [4] with the 
frontal [9] and multi-frontal techniques. 

Key features of the proposed method follow: 
• The solution of a FEM equation system consists of node-

by-node elimination of equations referred to a particular 
node (a nodal equation set). So, the elimination process 
includes a number of steps equal to the number of nodes in 
the finite element model. Constrained degrees of freedom 
do not contribute their corresponding equations to the 
nodal equation set. 

• The term “elimination of node” means the elimination of a 
nodal equation set. 

• As opposed to the element reordering in conventional 
frontal or multi-frontal solution techniques, the proposed 
method uses a nodal reordering. It allows us to apply well-
known reordering algorithms, like the minimum degrees 
algorithm or nested dissection method [4]. 

• A fast symbolic factorization [4] is applied to choose a 
proper reordering method for a problem: MDA or NDM. 

• A front is a C++ class object which encapsulates all data 
related to a particular node of a FE model. The number of 
fronts is the same as the number of nodes and the number 
of elimination steps. Each front contains the elimination 
node number, the list of frontal nodes, the list of previous 
fronts (that is, the number of fronts which comprise the 
given front) and the list of assembled finite elements. 

• A Process Descriptor data structure is created to establish 
the sequence of FE assembling according to the specified 
node reordering, sequences of fronts, lists of nodes and 
equations for each front. 

• The set of fronts makes a frontal tree. The elimination 
process is a movement along the frontal tree. 

• The current front is a start one if it has no predecessors 
(previous fronts). It is a nodal front if it has more than one 
predecessor, and it is a successive one if it has only one 
predecessor.
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Fig.1 Quadratic plate with mesh 2x2 
 

Fig. 2 Structure of levels for frontal tree 

 
• Moreover, each front contains a pointer to a frontal matrix 

– a dense matrix consisting of both fully assembled 
equations referred to the current node being eliminated, 
and partially assembled equations related to other nodes of 
the current front. The equations correspond to eliminated 
unknowns and are stored on disk, and the remaining 
equations create an incomplete front. If the size of 
incomplete fronts exceeds the capacity of the core 
memory, those are saved to disk. 

• The frontal tree is reordered to reduce the space required 
by the incomplete frontal matrices. 

• A successive front inherits the frontal matrix of its 
previous incomplete front by accepting its pointer (it is a 
very fast operation). Then the stiffness finite element 
matrices corresponding to FE added at this solution step, 
are added to the incomplete frontal matrix, and unknowns 
for fully assembled equations are eliminated. 

• The frontal matrix of the nodal front is assembled from the 
frontal matrix of the previous fronts and element matrices 
of finite elements which are added at this step. 

• The frontal matrix of the start front is assembled only from 
element matrices of corresponding finite elements. 

 

Let us consider a simple example – a square plate with a 
mesh 2x2 (Fig. 1) which is to illustrate the basic concepts of the 
proposed method. 

The minimum degrees algorithm produces the following 
order of nodes to be eliminated: 1,3,7,9,2,6,8,4,5 . 

Then, we define a sequence of the finite element 
assembling. The node is fully assembled if all finite elements 
that contain are assembled. The nodal equation set for a fully 
assembled node is ready to be eliminated because the 
continuation of the assembly does not change these equations. 
Table 1 is filled to obtain the sequence of the finite element 
assembly according to the specified nodal reordering. Each 
finite element can be assembled only once. Therefore, each 
assembled finite element is greyed to avoid multiple 
assembling. So, the greyed element numbers present the finite 
element assembling sequence where we move from the top to 
the bottom of table. It means that the global stiffness matrix is 
assembled in the following order: 
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Table 1: Sequence of the finite element assembling 
 

Number of 
eliminated node 

List of FE required to 
assemble a nodal 
equation set 

1 1 
3 2 
7 3 
9 4 
2 1,2 
6 2,4 
8 3,4 
4 1,3 
5 1,2,3,4  

Table 2. Process Descriptor data structure 
 

Elimination 
step 

Eliminated 
node 

List of 
frontal 
nodes 

List of 
previous 
fronts 

List of 
assembling 

FE 
1 1 1,2,4,5 ----- 1 
2 3 3,6,5,2 ----- 2 
3 7 7,4,5,8 ----- 3 
4 9 9,8,5,6 ----- 4 
5 2 2,4,5,6 1,2 ---- 
6 6 6,8,5,4 5,4 ---- 
7 8 8,5,4 6,3 ---- 
8 4 4,5 7 ---- 
9 5 5 8 ----  
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where  is an element’s stiffness matrix and 

 is a permutation vector that defines 

the required order of finite element assembling,  is the 
number of finite elements. 

][eNewNoK
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The Process Descriptor data structure contains general 
information about the assembling/elimination process and is 
presented in Table 2. The elimination of node #1 requires the 
finite element #1 to be assembled (see Table 1). Finite 
element #1 imports nodes #1,2,3,4. Node #1 is fully assembled 
and all nodal unknowns are eliminated. The transformed rows 
of the frontal matrix corresponding to the nodal matrix of node 
#1, make a part of the upper matrix factor and are saved to disk. 
The equation sets for nodes #2,4,5 constitute the incomplete 
front. 

The elimination of nodes #3,7,9 is performed similarly 
because their corresponding fronts 2,3,4 are start ones and do 
not require the assembling of previous fronts. 

The elimination of node #2 requires the assembling of 
incomplete fronts 1,2 which are taken from core (if the 
incomplete front is located in the core memory) or from disk (if 
the incomplete front has been saved to disk). The nodes 
eliminated at the previous steps are not included in the frontal 
node list of the current front, because corresponding unknowns 
are eliminated already and appropriate parts of the frontal 
matrices are saved to disk. As soon as the incomplete front is 
taken to the assembly, the corresponding part of the core 
memory gets freed. Thus the size of the core memory remains 
relatively small even for large-scale problems. The current 
solver version provides a virtualisation if there is not enough 
core memory. The elimination of nodes #6,8,4,5 is performed 
exactly as that of node #2. 

The structure of levels of the frontal tree (Fig. 3) is based on 
the Process Descriptor data structure and is created in the 
following way: we take the last front #9 (elimination step 9) and 
place it at the top (level 1) of the structure of levels. The front 
#8 is a predecessor for front #9 (see Table 2), so we place it at 
level 2. Front #7 is a predecessor for front #8 - place it at the 
level 3. Fronts #9,8 are successive ones. Front #7 is a nodal one, 
because it has two predecessors - fronts #6, 3 which form level 
4. Front #3 is a start one, but front #6 is nodal. And so on, until 
all fronts are exhausted. 

The assembling/eliminating process can be presented as a 
movement along the structure of levels of the frontal tree from 
its bottom to its top. The unknowns of a front from level  can 
be eliminated only after the elimination of all unknowns of 
previous fronts from level k  which are predecessors of the 
front from level . 

k

1+
k

The reordering of fronts is performed to reduce the space 
occupied by incomplete fronts. The figures in circles denote the 
original front numbers and the figures placed to the right are the 
reordered front numbers. 

The objective of this paper is to present an efficient solution 
method for usual (sequential) computations that involves a 
reduction of fillings due to the use of a proper reordering 
method. However, this algorithm also enables splitting the 
Gauss elimination procedure because of parallel branches in the 
frontal tree, which can be useful for parallel computing. 

The Gauss elimination process is performed step-by-step 
according to the sequences of reordered nodes. Each front is 
considered to be an object containing a frontal matrix. The 

memory allocation and assembling of frontal matrix are 
performed for start and nodal fronts. 

The list of local-global equation numbers 
List(local_eqn_number) = global_eqn_number establishes a 
connection between the equation numbers in the frontal matrix 
(local equation numbers) with equation numbers in the global 
stiffness matrix K  and is based on the list of frontal nodes (see 
Process Descriptor data structure - Table 2). Constrained 
degrees of freedom do not contribute any equations to the 
frontal matrix. 

Next, unknowns for fully assembled equations 
corresponding to an eliminated node at the current step (see 
Table 2) are eliminated, and the remaining part of the frontal 
matrix is still an incomplete front. The transformed rows of  the 
frontal matrix corresponding to eliminated unknowns, are saved 
to disk. The incomplete fronts are saved to disk if the capacity 
of the core memory is exceeded. 

If a successive front is met, the memory is not allocated 
because such front accepts a pointer to the frontal matrix from 
its predecessor, the previous front. Corresponding finite element 
matrices (see Table 2) are added if necessary. Then the 
elimination of unknowns is performed for the node that must be 
eliminated. 

The Gauss elimination procedure is performed in the dense 
frontal matrix. Fully assembled equations may be located in any 
arbitrary rows. It introduces additional complications to the 
Gauss elimination algorithm. The following example – a square 
symmetric matrix 4x4 – demonstrates this. The initial matrix is 
shown below: 
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Let the equation 2 be fully assembled and eliminated. The 

second row is placed in a buffer for the factored part of the 
matrix and will be saved to disk after the current elimination 
step. The diagonal element  is a pivot entry. The matrix is 
divided into three sectors:  

22a
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where Aa ∈11 , a Ba ∈1413 ,  and . Here 

only the top triangle part of the matrix is presented because it’s 
symmetric. The row located in the buffer is shown under the 
matrix. 

C
a
aa

∈

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





44

3433

The elimination in sector A  is performed in a regular way: 
 

2122121111ˆ aaaaa ⋅−=                                                              (4) 
 
The resulting value a  is placed in position of .  11ˆ 11a
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The elimination in sector B  occurs as follows: 
 

2422121414

2322121313

ˆ
ˆ
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                                                            (5) 

 
The resulting values a  are shifted by one position to 

the left. 
1413 ˆ,ˆ a

In the sector : C
 

2422424444

2422323434

2322323333

ˆ
ˆ
ˆ
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                                                           (6) 

 

The resulting values  are shifted by one position 
to the left and one position to the top. The final results are: 

443433 ˆ,ˆ,ˆ aaa
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The top row – a part of the factored matrix - should be 

saved to disk, and the remaining part of the matrix contains an 
incomplete front, so it is kept in the core memory as long as the 
next needed steps are assembled.

 
 

Fig. 3 A reactor unit of a nuclear power plant 
 

3. Numerical results 

A few typical examples of SCAD usages are presented to 
illustrate the capabilities of the method. 

3.1. A reactor unit of a nuclear power plant 

The finite element model contains 53 946 nodes, 40 264 
spatial finite elements and 160 929 equations (Fig.3). A 
comparison of the performance of different solvers is 
presented in Table 3. 

Designations: skyline is a direct solver with the profile 
storage approach [4] and the reverse Cuthill-McKee (RCM) 
reordering method; MFM (MDA) is a multi-frontal solver 
with minimum degrees algorithm [4] reordering, and AMIS  
is a fast aggregation multilevel iterative solver [6], [7], [8]. It 
is a preconditioned conjugate gradient method with 
aggregation multilevel preconditioning. The tolerance 

040.1 −= etol  has been accepted for the AMIS iterative 
solver. It means that the solution error is 
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Fig.4 A finite element model of a church 

 
Table 3: Comparison of efficiency of different solvers (the 
reactor block) 
 

Solver Computation time 
(Computer: Pentium 
III, Intel 1000 MHz 
processor, 512 MB 
RAM) 

Size of nonzero 
entries in the 
factored stiffness 
matrix (only for 
direct solvers), 
MB 

Skyline 9 h 30 min 04 s 3 552 
MFM (MDA) 1 h 33 min 03 s    955 
AMIS       20 min 29 s --------- 

 
tol≤−= bKxbr /  where  is the solution vector 

and the right side vector (r.h.s.v.) respectively. This problem 
contains 3 r. s. v. The solution time of the direct methods 

depends on the number of r. s. v. very little (at least for a 
small number of r. s. v.). On the other hand, the iterative 
solver runs every time from the beginning of each load case. 
Therefore the solution time of the iterative solver depends on 
the number of r .s. v. essentially. 

bx,

The proposed multi-frontal method reduces the 
computation time about 6 times comparing to the 
conventional skyline solver. The AMIS solver seems 
preferable for this model that contains spatial finite elements. 

3.2. Finite element model of a church  

The model contains 52 752 nodes, 55 602 finite elements and 
316 509 equations (Fig. 4). A single r .s. v. is considered. A 
comparison of the performance of different solvers is 
presented in Table 4. 
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Fig.5 A finite element model of a multi-storey building 

 
Table 4: Comparison of efficiency of different solvers (a 
finite element model of a church) 
 

Solver Computation time 
(Computer: Pentium 
III, Intel 1000 MHz 
processor, 512 MB 
RAM) 

Size of nonzero 
entries in the 
factored 
stiffness matrix 
(only for direct 
solvers), MB 

Skyline >> 25 h  8 896 
MFM (MDA) 43 min 45 s    720  
AMIS 59 min 14 s -------- 

 
The tolerance  has been accepted for the 

AMIS iterative solver. When the runtime of the skyline 
solver with RCM reordering method exceeded 25 hours, still 
less than one third of the stiffness matrix had been factored, 
so the job was cancelled. 

040.1 −= etol

The multi-frontal solver has proved to be most efficient 
of the methods considered. The aggregation multilevel 
iterative solver requires a bit more time than the multi-frontal 
solver. 

 

3.3. Finite element model of a multi-storey building 

The model contains 91 089 nodes, 96 656 finite elements 
and 544 410 equations. Four r. s. v. are considered. A 

comparison of the performance of different solvers is 
presented in Table 5. 
 
Table 5: Comparison of efficiency of different solvers (a 
multi-storey building) 
 

Solver Computation time 
(Computer: Pentium 
III, Intel 600 MHz 
processor, 512 MB 
RAM) 

Size of nonzero 
entries in the 
factored 
stiffness matrix 
(only for direct 
solvers), MB 

Skyline 23 h 30 min   5 830 
MFM (MDA)         35 min 22 s      763  
AMIS   1 h 02 min 30 s -------- 

 
The tolerance 040.1 −= etol  has been accepted for the 

AMIS iterative solver. The runtime of the skyline solver with 
the RCM reordering method is about 24 hours. 

The multi-frontal solver has proved to be most efficient 
of the methods considered. It reduces the computation time 
about 40 times comparing to the skyline solver. The 
aggregation multilevel iterative solver requires a bit more 
time than the multi-frontal solver. It should be noted that the 
extraction of one r. s. v. plus the preparation of  
preconditioning takes about 20 min. 
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The advantage of the multi-frontal solver for this problem 
is due to the fact its solution time depends little on the 

number of r. s. v. while the iterative solver starts iterations 
from the beginning for each r. s. v. 
 

 
Fig.6 A finite element model of Byelorussia National Library in Minsk 

 

3.4. Finite element model of a multi-storey building of 
Byelorussia National Library in Minsk 

The model contains 34945 nodes, 46186 finite elements 
and 207 978 equations. A comparison of the performance of 
different solvers with it is presented in Table 6. 

The tolerance tol  has been accepted for the 
AMIS iterative solver.  

040.1 −= e

The multi-frontal solver reduces the computation time 30 
times comparing to the skyline solver. The aggregation 
multilevel iterative solver AMIS (4 r. s. v.) requires only 37 
min to produce the solution with a practical accuracy. 

 
 
 
 
 
 
 

Table 5: Comparison of efficiency for different solvers 
(Byelorussia National Library in Minsk) 
 

Solver Computation time 
(Computer: Pentium 
III, Intel 1000 MHz 
processor, 512 MB 
RAM) 

Size of nonzero 
entries in the 
factored 
stiffness matrix 
(only for direct 
solvers), MB 

Skyline 48 h 12 min 36 s 10 514 
MFM (MDA)   1 h 35 min 32 s      806 
AMIS         36 min 59 s ---------- 

 

4. Conclusion 

The proposed multi-frontal solver implemented in the 
SCAD software has proved to be a robust and fast method for 
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solving a variety of types of structural mechanics problems 
from actual civil engineering practice. For many large-scale 
problems it is competitive even with the aggregation 
multilevel iterative solver [6], [7], [8], especially when there 
are extensive right sides or ill-conditioned matrices. 
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