Четырехузловой оболочечный конечный элемент для анализа несущей способности элементов железобетонных конструкций

С. Ю. Фиалко

Технический университет «Краковская Политехника» sergiy.fialko@gmail.com

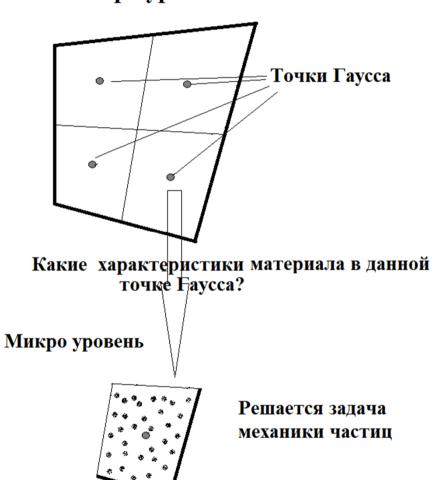
План

- Введение
- Разрешающие соотношения для бетона
- Разрешающие соотношения для арматуры
- Сравнение полученных результатов с результатами других авторов
- Циклическое нагружение
- Заключение

Введение

- Современные исследования поведения ЖБ конструкций в основном направлены на численное моделирование образования и раскрытия трещин в бетоне под действием монотонно возрастающих нагрузок. В последние годы получили развитие двухуровневые модели, причем на макро уровне используется тот или иной вариант метода конечных элементов, опирающегося на основополагающие соотношения механики сплошной среды, а на микро уровне применяются соотношения механики частиц.
- При этом арматура обычно моделируется отдельными стержневыми элементами, что накладывает жесткие ограничения на размеры и форму конечных элементов, моделирующих бетон, а также порождает большое количество КЭ.

Пример: конечный элемент плоского напряженного состояния



- Достоинством таких подходов является высокая точность и достоверность результатов при сравнении с физическими экспериментами, если в расчетную модель заложить характеристики бетона, соответствующие данному физическому образцу.
- Недостатками являются сложность и громоздкость расчетной модели, а также неопределенность структуры частиц на микро уровне, влияющая на результат решения.

• В результате в литературе имеются отдельные решения как правило для типично академических задач: изгибаемых балок, узлов сопряжения колонн и ригелей прямоугольного поперечного сечения и балок-стенок.

- Однако современное проектирование выдвигает требования к анализу более сложных фрагментов расчетных моделей в реальное для проектировщика время, причем основным рабочим инструментом является настольный компьютер либо недорогая рабочая станция.
- В связи с этим в данной работе предлагается оболочечный конечный элемент, моделирующий работу фундаментных ЖБ плит, плит перекрытий, пилонов, стен и простенков, а также элементов конструкций, состоящих из перечисленных выше фрагментов.

Бетон

- Используется теория оболочек средней толщины Мидлина

 Рейсснера и соотношения деформационной теории
 пластичности с учетом деградации в растянутой зоне.
- Деформации и углы поворота считаются малыми.
- Отсутствие проскальзывания между бетоном и арматурой.
- Тензор напряжений:

$$T_{\sigma} = \begin{pmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & 0 \end{pmatrix} \qquad \sigma = \frac{1}{3} (\sigma_{x} + \sigma_{y} + \sigma_{z}) = \frac{1}{3} (\sigma_{x} + \sigma_{y})$$

Приведенные напряжения:

$$\sigma_i = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2)}$$

• Тензор деформаций:

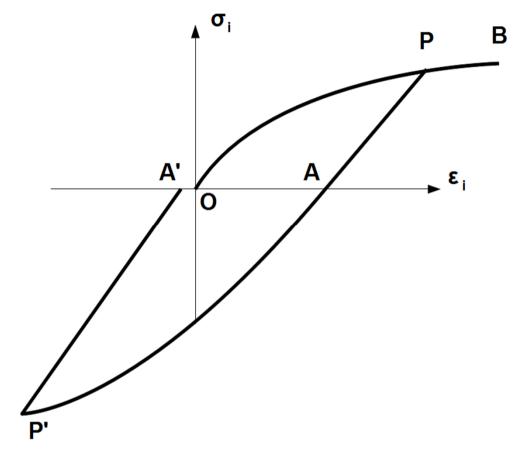
$$T_{\varepsilon} = \begin{pmatrix} \varepsilon_{x} & \frac{1}{2} \gamma_{xy} & \frac{1}{2} \gamma_{xz} \\ \frac{1}{2} \gamma_{yx} & \varepsilon_{y} & \frac{1}{2} \gamma_{yz} \\ \frac{1}{2} \gamma_{zx} & \frac{1}{2} \gamma_{zy} & \varepsilon_{z} \end{pmatrix} \qquad \sigma_{z} = 0 = \frac{E}{1 + \nu} \left(\varepsilon_{z} + \frac{\nu}{1 - 2\nu} \theta \right), \quad \theta = \varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z}$$

$$\varepsilon_{z} = -\frac{\nu}{1 - \nu} \left(\varepsilon_{x} + \varepsilon_{y} \right)$$

Приведенные деформации:

$$\varepsilon_{i} = \frac{2}{\sqrt{3}} \sqrt{\frac{1 - v + v^{2}}{3(1 - v)^{2}} \left(\varepsilon_{x}^{2} + \varepsilon_{y}^{2}\right) - \frac{1 - 4v + v^{2}}{3(1 - v)^{2}}} \varepsilon_{x} \varepsilon_{y} + \frac{1}{4} \left(\gamma_{xy}^{2} + \gamma_{xz}^{2} + \gamma_{yz}^{2}\right)$$

• Диаграмма $\sigma_i - \epsilon_i$ (бетон):



ОРВ – активное нагружение (растяжение)

РА – разгрузка

АР' – активное нагружение после разгрузки (сжатие)

Р'А' – разгрузка

• Активное нагружение (бетон):

$$\begin{cases} \vec{\sigma} = D(\varepsilon_i)(\vec{\varepsilon} - \vec{\varepsilon}_A) \\ \vec{\tau} = D_{sh}(\varepsilon_i)(\vec{\gamma} - \vec{\gamma}_A) \end{cases}$$

$$D(\varepsilon_i) = \frac{\sigma_i}{3\varepsilon_i^{sh}} \begin{pmatrix} \frac{2}{1-\nu} & \frac{2\nu}{1-\nu} & 0\\ \frac{2\nu}{1-\nu} & \frac{2}{1-\nu} & 0\\ 0 & 0 & 1 \end{pmatrix}, \quad D_{sh}(\varepsilon_i) = \frac{\sigma_i}{3\varepsilon_i^{sh}} \begin{pmatrix} k & 0\\ 0 & k \end{pmatrix},$$

$$\vec{\sigma} = \begin{pmatrix} \sigma_x \\ \sigma_y \\ \tau_{xy} \end{pmatrix}, \quad \vec{\epsilon} = \begin{pmatrix} \epsilon_x \\ \epsilon_y \\ \gamma_{xy} \end{pmatrix}, \quad \vec{\tau} = \begin{pmatrix} \tau_{xz} \\ \tau_{yz} \end{pmatrix}, \quad \vec{\gamma} = \begin{pmatrix} \gamma_{xz} \\ \gamma_{yz} \end{pmatrix},$$

$$\vec{\epsilon}_A = \begin{pmatrix} \epsilon_x^A \\ \epsilon_y^A \\ \gamma_{xy}^A \end{pmatrix}, \quad \vec{\gamma}_A = \begin{pmatrix} \gamma_{xz}^A \\ \gamma_{yz}^A \end{pmatrix}$$

• Приведенная деформация:

$$\varepsilon_{i}^{sh} = \frac{2}{\sqrt{3}} \sqrt{\frac{1 - v + v^{2}}{3(1 - v)^{2}}} \left(\overline{\varepsilon}_{x}^{2} + \overline{\varepsilon}_{y}^{2} \right) - \frac{1 - 4v + v^{2}}{3(1 - v)^{2}} \overline{\varepsilon}_{x} \overline{\varepsilon}_{y} + \frac{1}{4} \left(\overline{\gamma}_{xy}^{2} + \overline{\gamma}_{xz}^{2} + \overline{\gamma}_{yz}^{2} \right),$$

$$\overline{\varepsilon}_{x} = \varepsilon_{x} - \varepsilon_{x}^{A}, \quad \overline{\varepsilon}_{y} = \varepsilon_{y} - \varepsilon_{y}^{A}, \quad \overline{\gamma}_{xy} = \gamma_{xy} - \gamma_{xy}^{A}, \quad \overline{\gamma}_{xz} = \gamma_{xz} - \gamma_{xz}^{A},$$

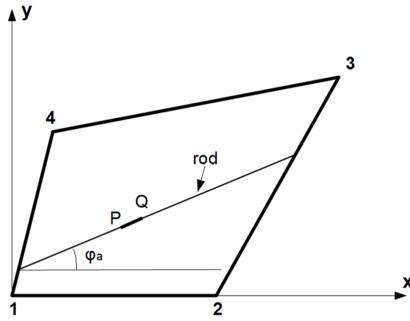
$$\overline{\gamma}_{yz} = \gamma_{yz} - \gamma_{yz}^{A}$$

• Разгрузка (бетон):

$$\begin{cases} \vec{\sigma} = \vec{\sigma}_{un} + D_{el}\vec{\epsilon} \\ \vec{\tau} = \vec{\tau}_{un} + D_{el}^{sh}\vec{\gamma} \end{cases}, \quad \vec{\sigma}_{un} = \begin{pmatrix} \sigma_x^P - \frac{E}{1 - v^2} \left(\epsilon_x^P + v \epsilon_y^P \right) \\ \sigma_y^P - \frac{E}{1 - v^2} \left(\epsilon_y^P + v \epsilon_x^P \right) \\ \tau_{xy}^P - G \gamma_{xy}^P \end{pmatrix}, \quad \vec{\tau}_{un} = \begin{pmatrix} \tau_{xz}^P - G \gamma_{xz}^P \\ \tau_{yz}^P - G \gamma_{yz}^P \end{pmatrix}$$

$$D_{el} = \begin{pmatrix} \frac{E}{1 - v^2} & \frac{vE}{1 - v^2} & 0\\ \frac{vE}{1 - v^2} & \frac{E}{1 - v^2} & 0\\ 0 & 0 & G \end{pmatrix}, \quad D_{el}^{sh} = \begin{pmatrix} kG & 0\\ 0 & kG \end{pmatrix}, \quad G = \frac{E}{2(1 + v)}, \quad k = \frac{5}{6}$$

Арматура.

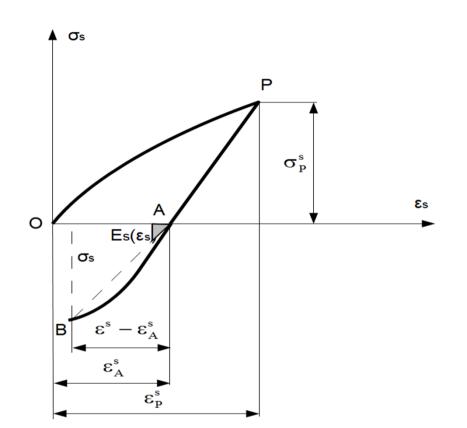


Предполагаем, что арматурные стержни работают только на растяжение-сжатие.

$$\mathbf{\varepsilon}_{s} = \mathbf{\varepsilon}_{x} \cos^{2} \mathbf{\phi}_{a} + \mathbf{\varepsilon}_{y} \sin^{2} \mathbf{\phi}_{a}$$

• Поскольку при реальном армировании и густоте сетки на каждый конечный элемент приходится большое к-во стержней, а функции формы обладают медленной изменяемостью в переделах КЭ, мы заменяем дискретные стержни равномерно «размазанным» «арматурным слоем». Математически это выражается в замене конечных сумм интегралом по площади КЭ.

Активное нагружение:



$$E_c = \frac{\sigma_s}{\varepsilon_s}, \quad E_s = \frac{\partial \sigma_s}{\partial \varepsilon_s}$$

$$\sigma_{s} = E_{c} \left(\varepsilon_{s} - \varepsilon_{A}^{s} \right) = \frac{\sigma_{s}}{\left| \varepsilon_{s} - \varepsilon_{A}^{s} \right|} \left(\varepsilon_{s} - \varepsilon_{A}^{s} \right) =$$

$$= E_{s} \left(\varepsilon_{s} \right) \cdot \left(\varepsilon_{s} - \varepsilon_{A}^{s} \right)$$

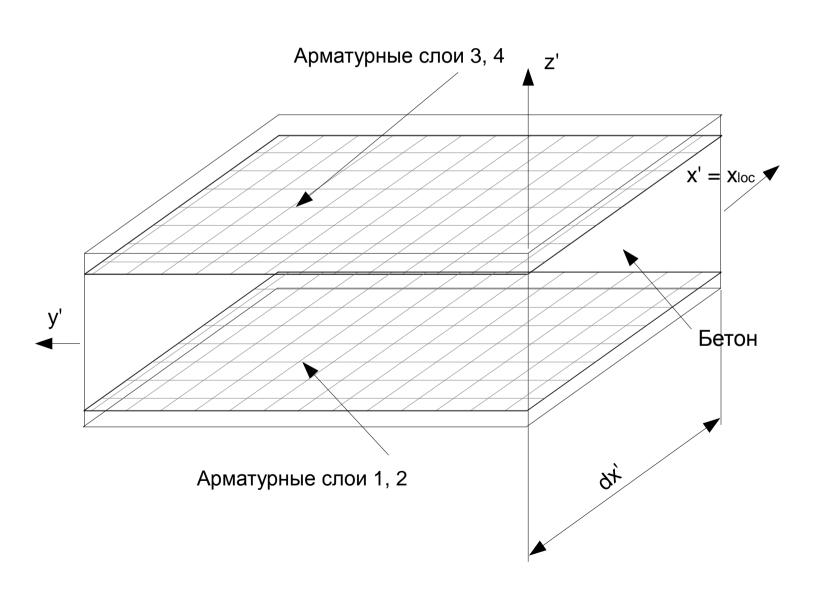
Разгрузка:

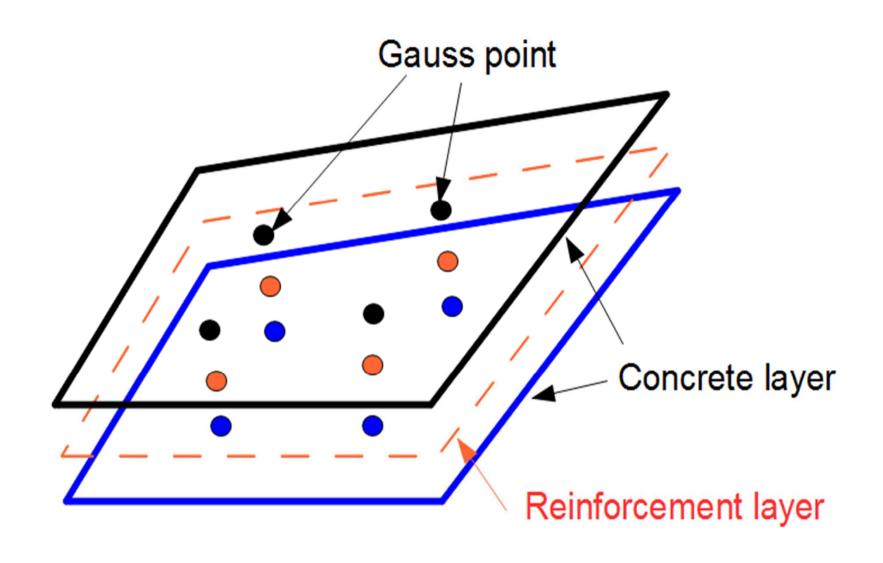
$$\sigma_{s} = \sigma_{P}^{s} - E_{s} (\varepsilon_{P}^{s} - \varepsilon_{s}) = \sigma_{P}^{s} - E_{s} \varepsilon_{P}^{s} + E_{s} \varepsilon_{s} =$$

$$= \sigma_{un}^{s} + E_{s} \varepsilon_{s}, \quad \sigma_{un}^{s} = \sigma_{P}^{s} - E_{s} \varepsilon_{P}^{s}$$

- При вычислении интегралов по толщине оболочки применяется метод трапеций. В результате оболочка по толщине разбивается на слои.
- Интегралы по площади КЭ вычисляются с помощью квадратурных формул Гаусса-Лежандра. Используется изопараметрическое преобразование.
- Физико-механические характеристики бетона и арматуры для текущего этапа нагружения определяются в каждой точке Гаусса для каждого слоя бетона и арматурных слоев.

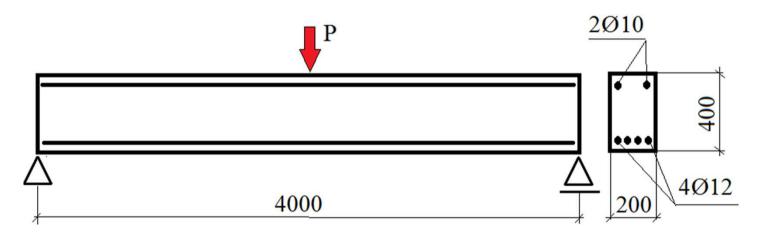
Каждый арматурный слой представляет арматуру данного направления





Пример 1. Балка прямоугольного сечения под действием сосредоточенной силы посреди пролета.

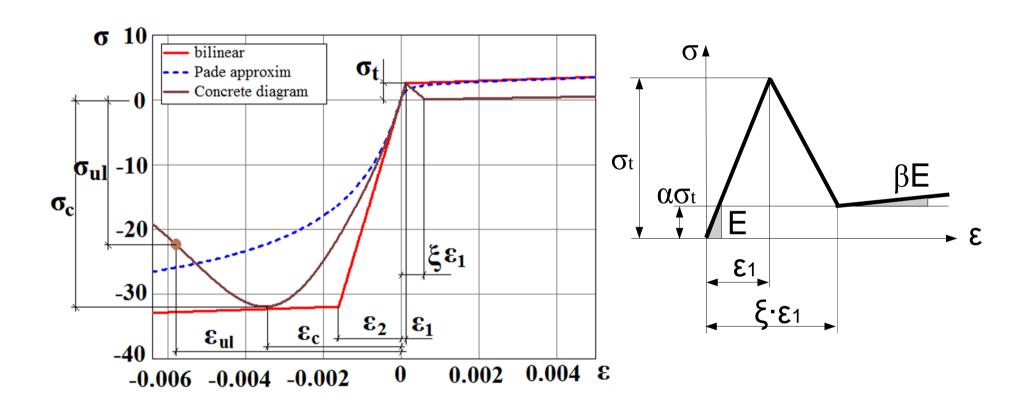
Rabczuk T., Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. // International journal of fracture, 137, pp. 19 – 49, 2006.



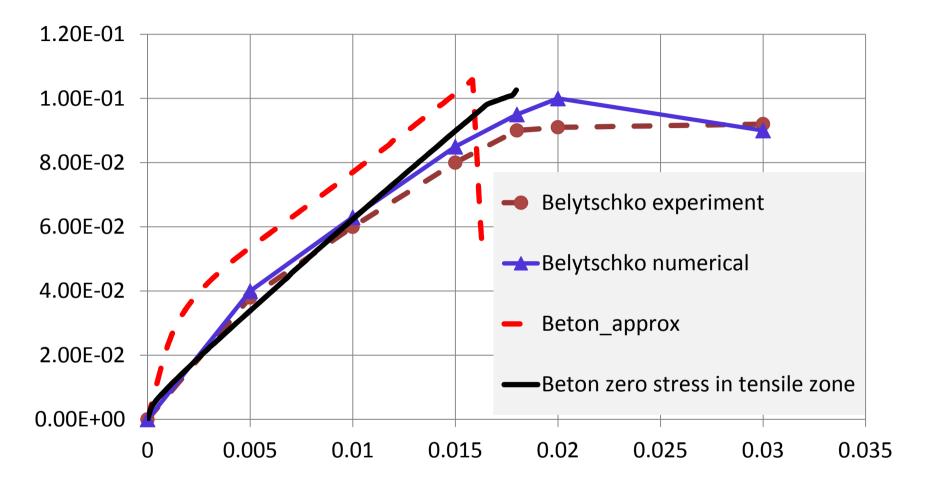
Бетон: E = 28 000 MPa, σ_c = 32 MPa, σ_{ul} = 0.85 σ_c , σ_t = 2.5 MPa, ν = 0.22, ε_c = 0.0035, ε_{ul} = 1.41 ε_c

Арматура: $E_s = 200 \ 000 \ MPa$, $\sigma_y^s = 587 \ MPa$.

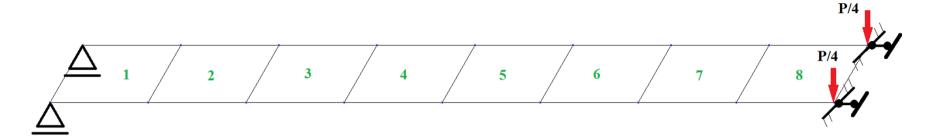
Диаграмма σ – ε для бетона.



Нагрузка - прогиб



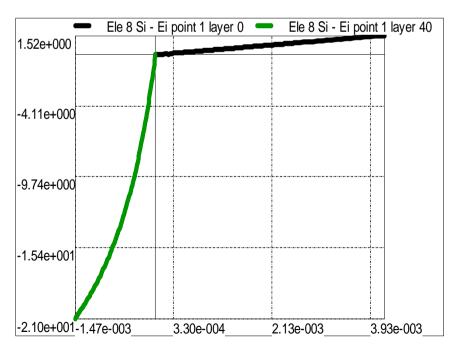
Beton_approx. : σ_t = 2.5 MPa, ξ = 20, α = 0.02, β = 0.005 Beton zero stress in tensile zone: σ_t = 0.025 MPa, ξ = 2, α = 2, β = 0.005

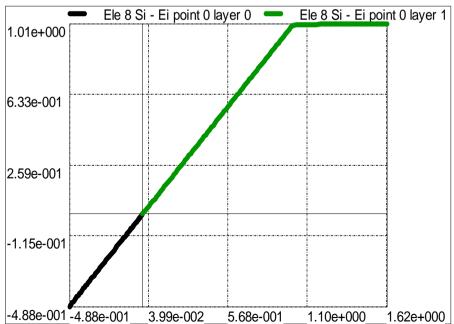


Concrete: zero stresses in tensile zone.

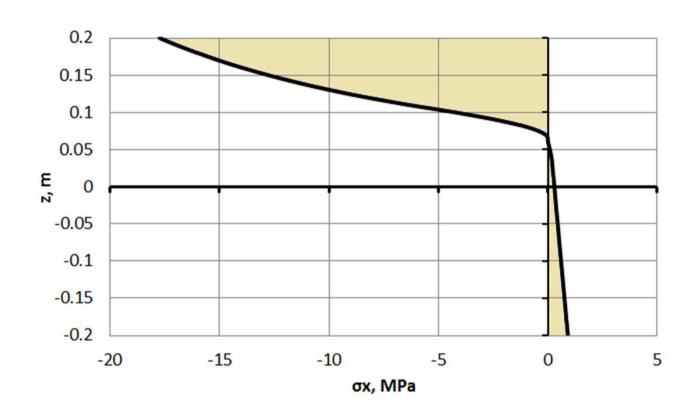
Диаграмма $\sigma_i - \epsilon_i$ для наиболее растянутого и наиболее сжатого слоев бетона, элемент №8

Диаграмма σ − ε для растянутой и сжатой арматуры, элемент №8

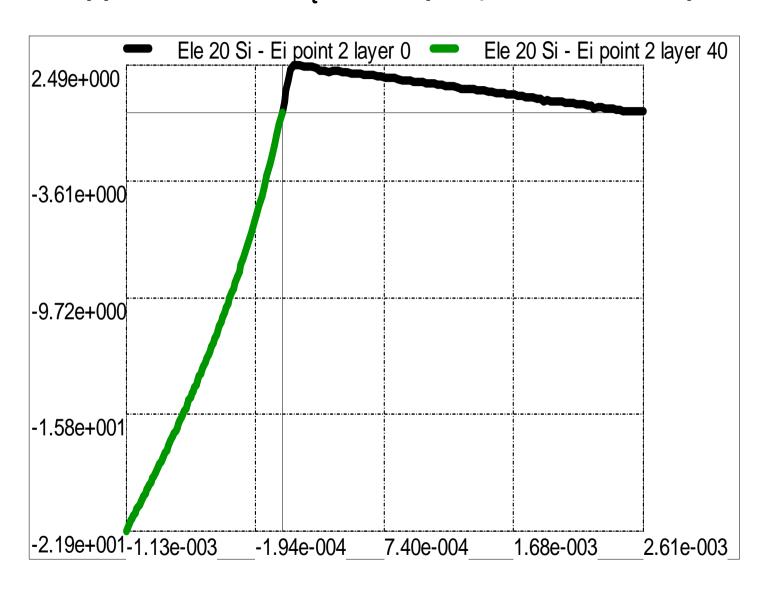




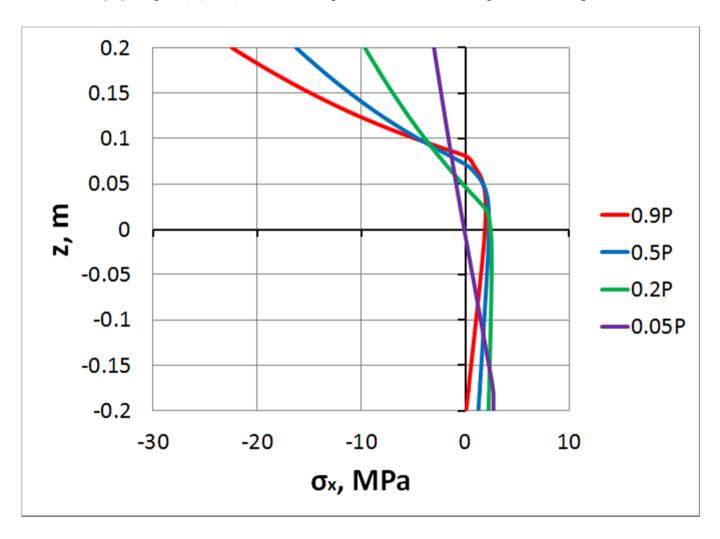
Распределение напряжений σ_x в бетоне по высоте сечения. Элемент №8, P = 0.95P_{max}



Concrete approximations: σ_t = 2.5 Mpa, ξ = 20, α = 0.02, β = 0.005

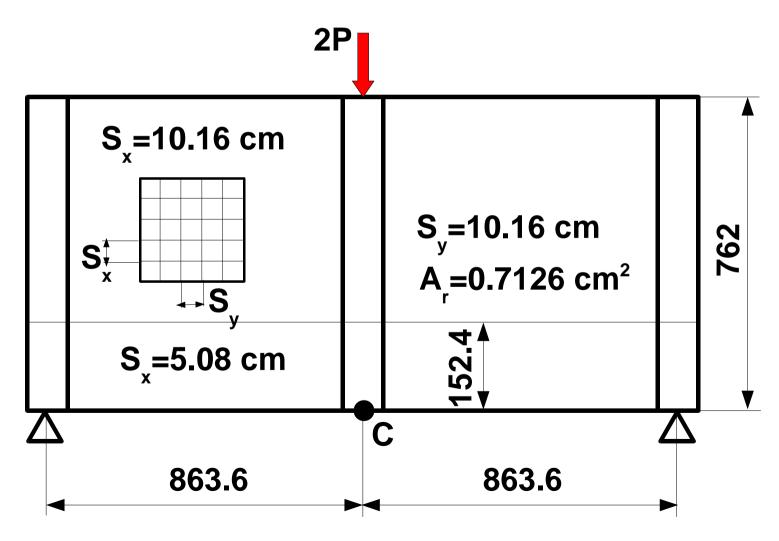


Concrete approximations: σ_t = 2.5 Mpa, ξ = 20, α = 0.02, β = 0.005 Напряжения в бетоне при различных уровнях нагружения. Элемент № 8. Деградация напряжений в растянутой зоне.



Пример 2. Балка-стенка.

Podleś K., Szarliński A., Truty A. Analiza konstrukcji 2D z betonu w stanach granicznych dla procesów doraźnych i długotrwałych. // Metody Numeryczne w Projektowaniu i Analizie Konstrukcji Hydrotechnicznych, XIII Konferencja Naukowa – Korbielów, 2001, pp. 1 – 10.



КЭ модель

Бетон:

E = 20 000 MPa,

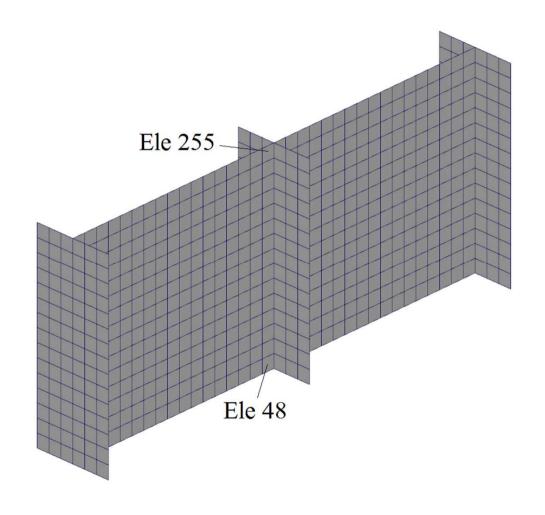
 $\sigma_{\rm c}$ = 26.8 MPa, $\sigma_{\rm ul}$ = 0.85 $\sigma_{\rm c}$,

 $\sigma_{\rm t}$ = 3.65 MPa, v = 0.167,

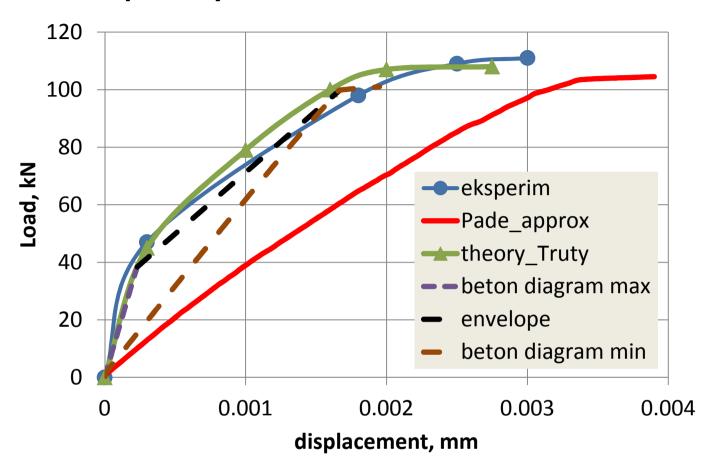
 $\varepsilon_{\rm c}$ = 0.0035, $\varepsilon_{\rm ul}$ = 1.41 $\varepsilon_{\rm c}$

Арматура: $E_s = 200 000 MPa$,

 $\sigma_{v}^{s} = 353 \text{ MPa}$.



Прогиб узла 2 в зависимости от силы Р

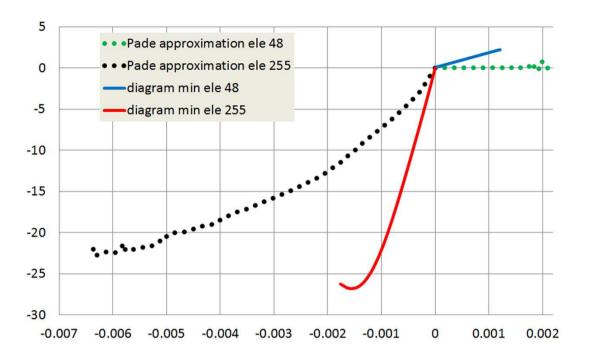


theory_Truty – упруго-пластическая модель (теория пласт. течения) с деградацией.

Pade_approx: $ε_1 = 1.825 \cdot 10^{-6}$, $σ_t = 0.00365$ MPa, $ε_2 = 0.00134$, $σ_c = 26.8$ Mpa

beton_diagram_min: σ_t = 0.00365 Mpa, ξ = 2, α = 2, β = 0.07

Beton_diagram_max: $\sigma_t = 3.65$ Mpa, $\xi = 4$, $\alpha = 0.01$, $\beta = 0.005$



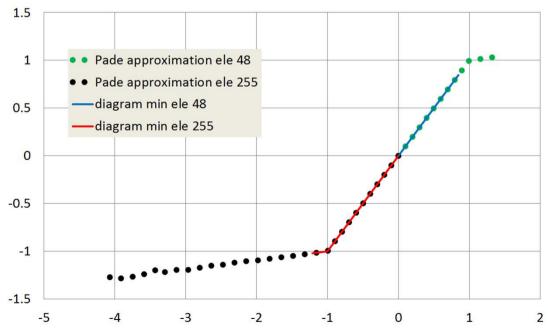


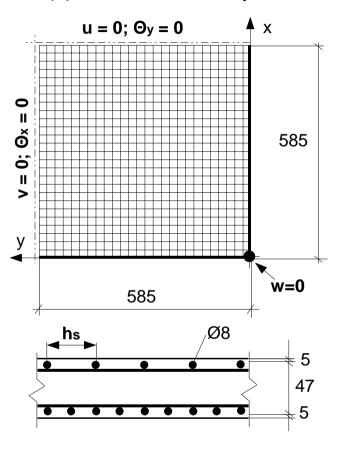
Диаграмма $\sigma_i - \epsilon_i$ для бетона. Элементы 48 (растяжение) и 255 (сжатие)

- Pade approximation течет арматура растянутой и сжатой зон.
- Diagram min в сжатой зоне арматура течет, бетон разрушается.

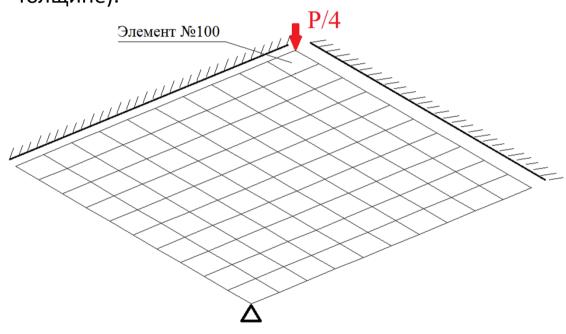
Диаграмма σ – ε для арматуры. Элементы 48 (растяжение) и 255 (сжатие)

Пример 3. Изгиб квадратной плиты.

Клованич С.Ф. Метод конечных элементов в нелинейных задачах инженерной механики. «Запорожье», 2009.

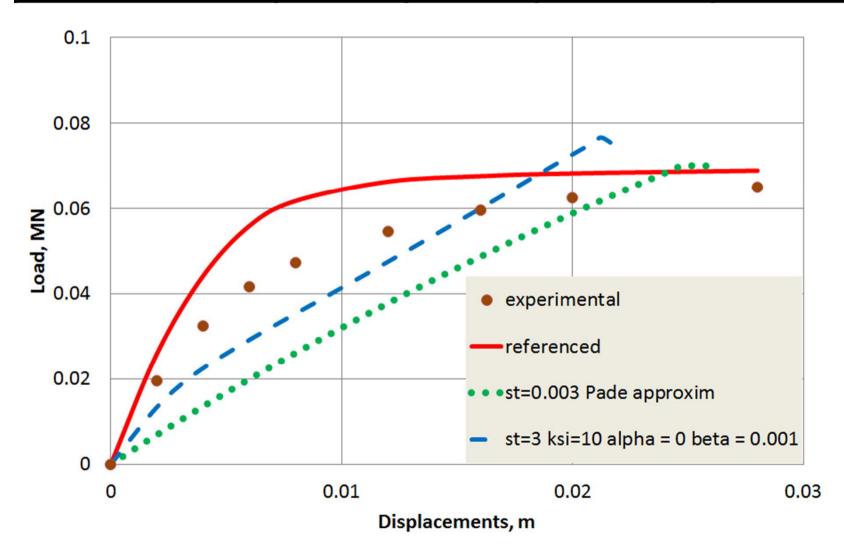


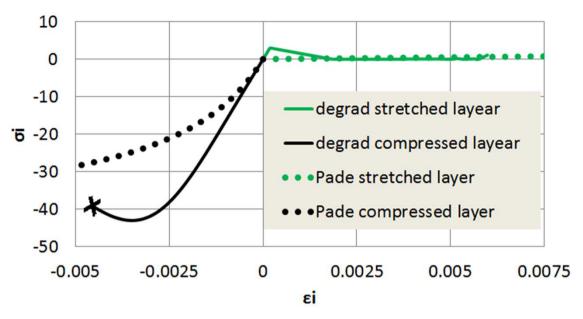
(Деформ. теория пластичн., слоистый трехмерный КЭ при линейном распределении дефомаций по толщине).

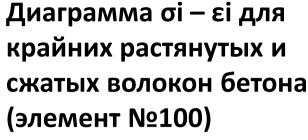


Бетон	E, Mpa	σ _t , Mpa	σ _c , Mpa	V	$\boldsymbol{\epsilon_1}$	ε _c
	16400	3	43	0.2	0.000183	0.0035

Арматура	Es, Mpa	σу, Мра	A, m ²	hs, m
Верхняя арматура	190 000	400	5.026·10-5	0.054
Нижняя арматура	190 000	400	5.026·10 ⁻⁵	0.027

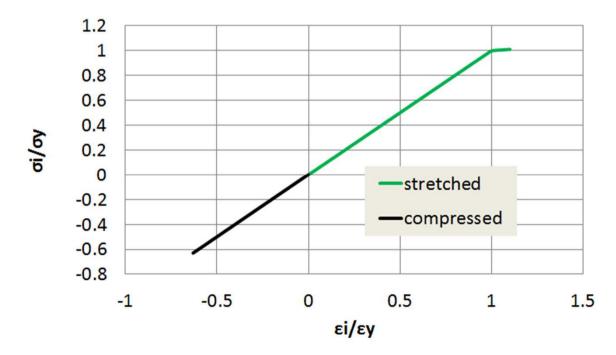




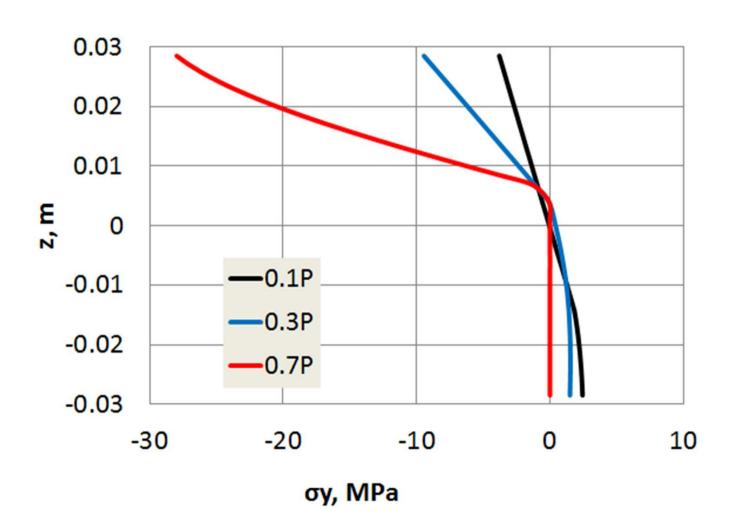


Бетон сжатой зоны разрушается (σt=3, ε=10), а арматура растянутой зоны течет.

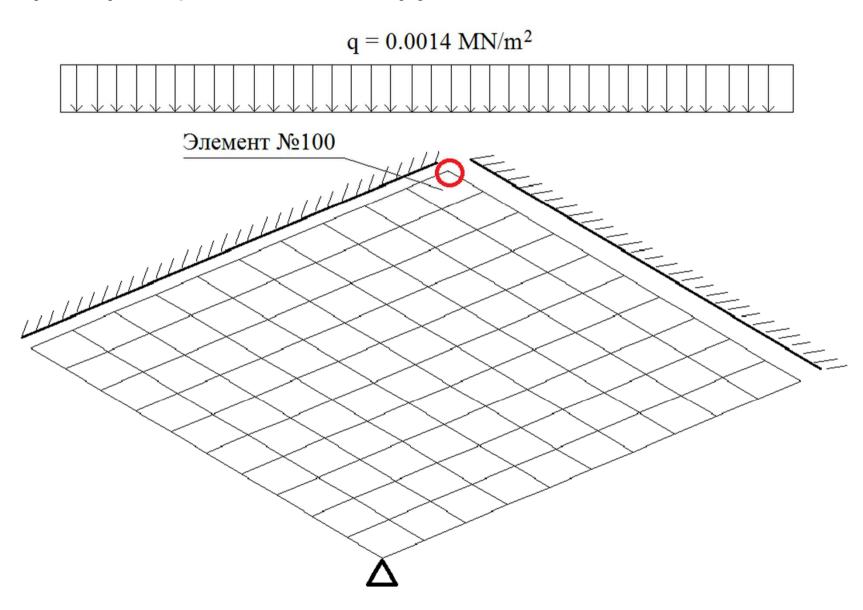
Диаграмма σі/σ_У — εі/є_У для растянутой и сжатой арматуры в направлении ОУ (элемент №100). Арматура в направлении ОХ работает в упругой области.



Распределение напряжений в бетоне по высоте сечения при различных уровнях нагружения. Элемент №100. $\sigma t = 3$ MPa, $\xi = 10$, $\alpha = 0$, $\beta = 0.001$.



Пример 3. Циклическое нагружение.



Нагрузка – прогиб в центре пластины

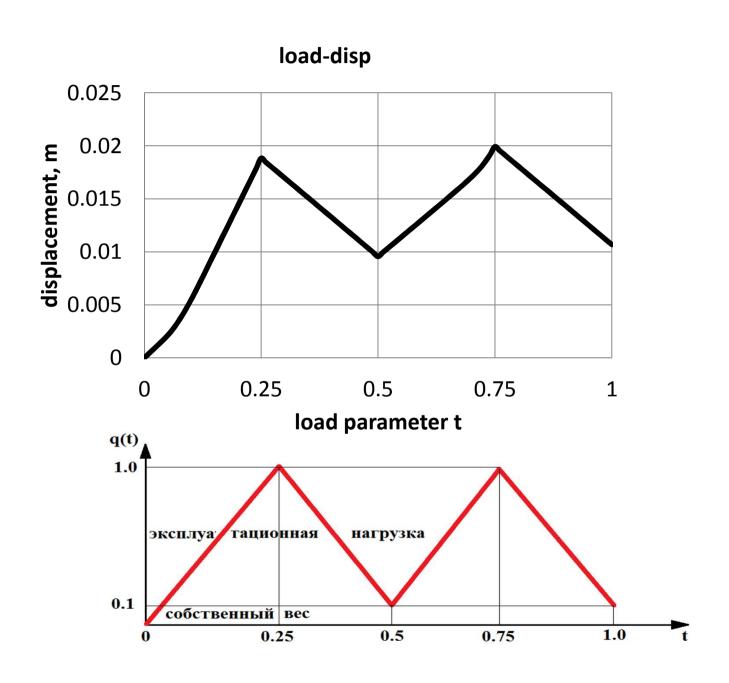
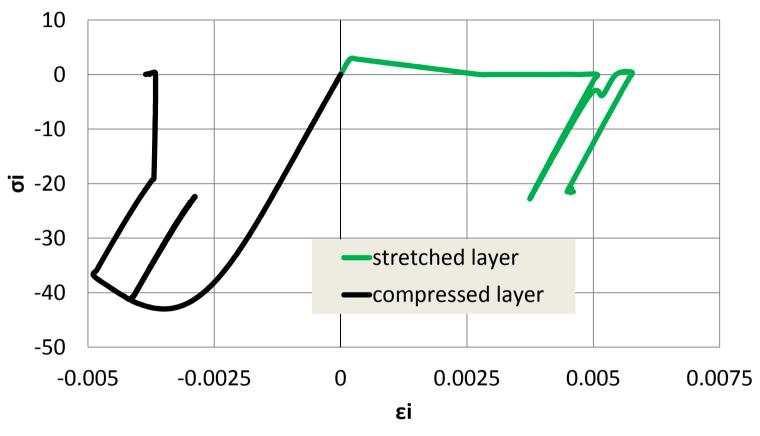
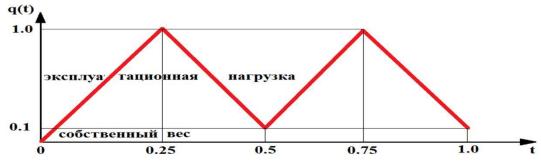


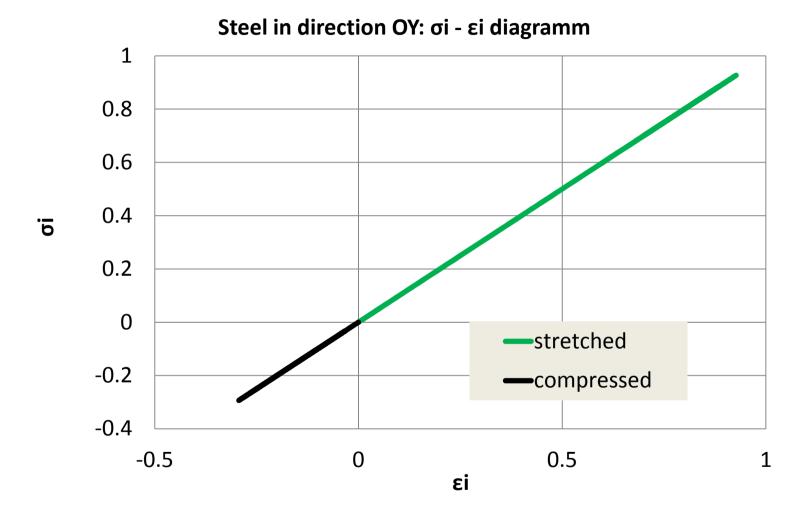
Диаграмма σі – εі для бетона. Элемент 100. Наиболее растянутое и наиболее сжатое волокно.



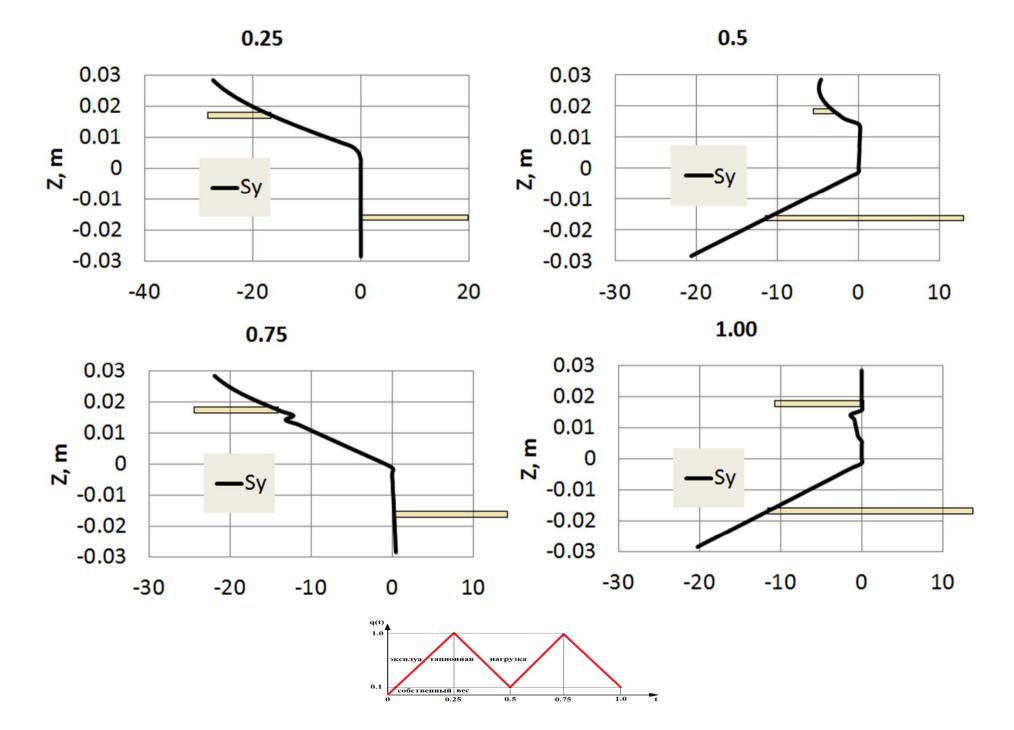


Арматура работает в упругой области.

Диаграмма σі – εі для бетона. Элемент 100. Наиболее растянутое и наиболее сжатое волокно.



Арматура работает в упругой области.



Заключение

• Методы расчета железобетонных конструкций, построенные на определении внутренних усилий на основе линейного расчета и дальнейшем подборе арматуры по существующим нормах проектирования, не позволяют анализировать явления, протекающие в бетоне и арматуре. При таком подходе физическое содержание процесса деформирования существенно искажается, что в ряде случаев может привести к серьезным проблемам.

Заключение

- В процессе итераций метода Ньютона Рафсона механизм учета разгрузки позволяет сохранить сходимость на почти горизонтальных и ниспадающих участках диаграммы σ_i ε_i. При отключении разгрузки (нелинейная упругость) удавалось получить сходимость только при достаточно большом (не менее 10%) упрочнении как бетона, так и арматуры.
- Кроме того, учет разгрузки позволяет адекватно описать физическое поведение материала, особенно при циклическом нагружении.
- Поведение арматуры с достаточной точностью описывается деформационной теорией пластичности при билинейной диаграмме σ – ε.

БЛАГОДАРЮ ЗА ВНИМАНИЕ!