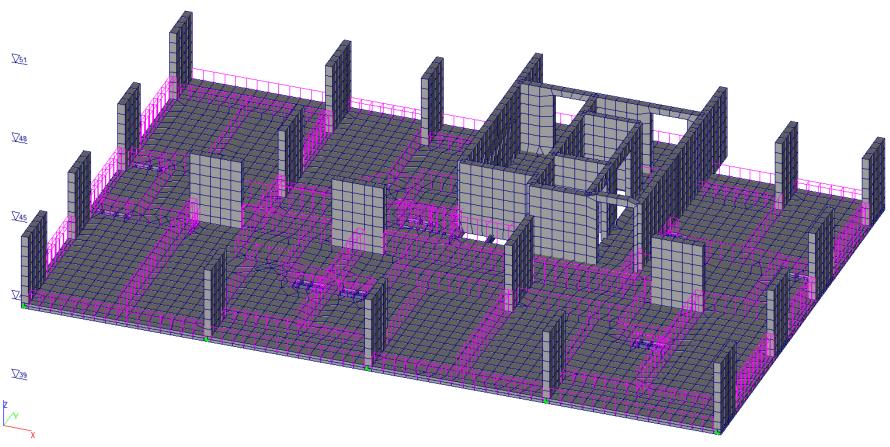
«Расчет и проектирование конструкций в среде SCAD Office 21» Москва, 17-18 апреля 2018 года

Выбор расчетной динамической модели многоэтажного здания при расчёте на пульсационную составляющую ветровой нагрузки

А.А. Семенов, И.А. Порываев, П.В. Блохин Уфимский государственный нефтяной технический университет


Общие положения

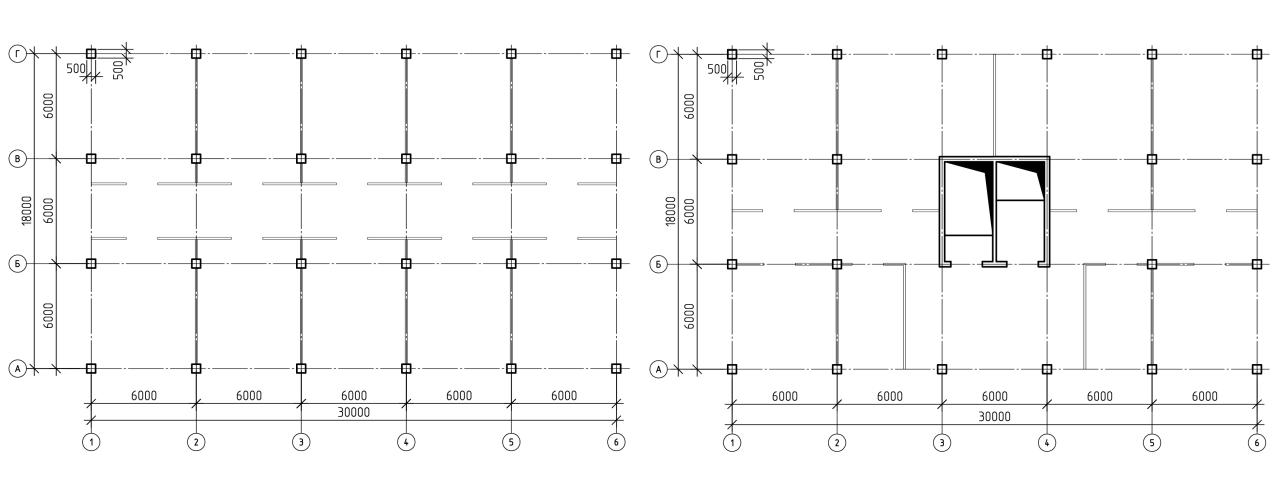
- Выбор расчетной схемы (модели) является наиболее ответственным этапом расчета зданий и сооружений
- Традиционно при составлении расчетной схемы подробно описываются основные несущие элементы объекта и отбрасываются «второстепенные» элементы (ограждающие конструкции, перегородки, технологическое оборудование и т.д.)
- Достаточно часто при расчете на статические и динамические нагрузки используется одна и та же базовая модель, а инерционные характеристики системы получают путем преобразования статических нагрузок в массы, которые приводятся к узлам базовой расчетной схемы (при использовании МКЭ)

Общие положения

- Действующие нормы требуют учитывать пульсационную составляющую ветровой нагрузки для любых зданий
- Тенденция к увеличению высоты городской застройки делает процедуру выбора расчетной динамической модели еще более ответственной
- Учет податливости основания?
- Влияние «второстепенных» элементов на динамическое поведение системы?

Общие положения

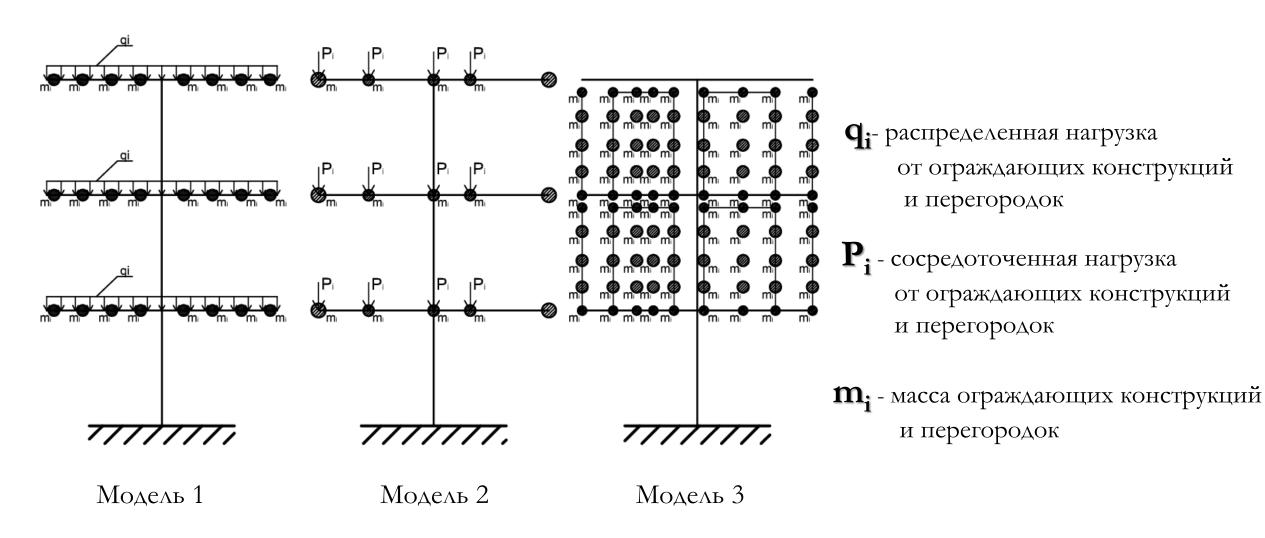
Расчетная схема монолитного многоэтажного здания с отображением нагрузок от перегородок и ограждений

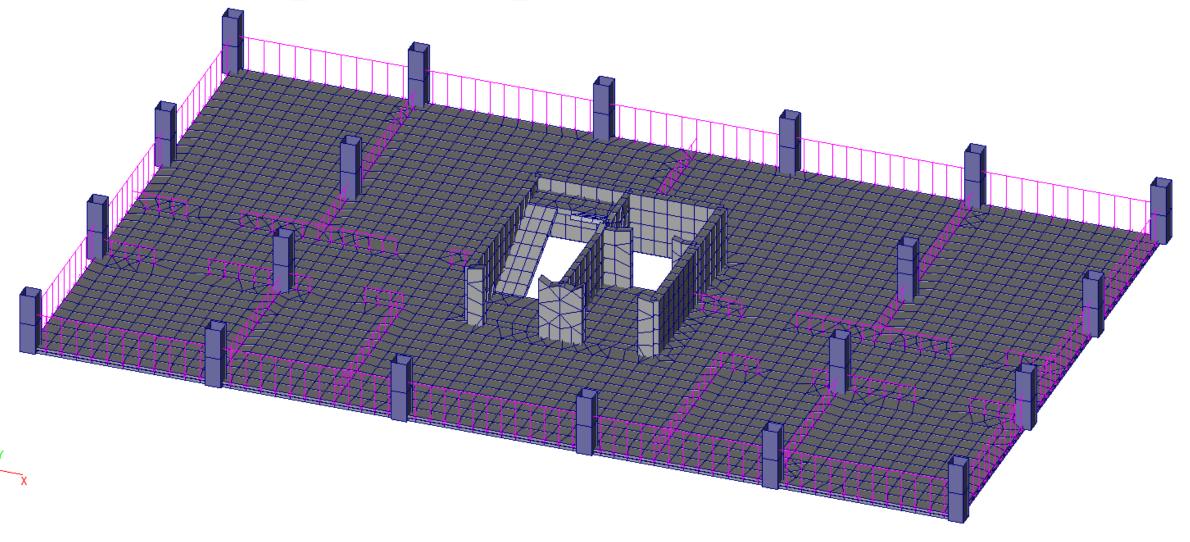

Цель работы

Оценка влияния степени детализации расчетной модели многоэтажного монолитного здания на результаты расчета при действии пульсационной составляющей ветровой нагрузки

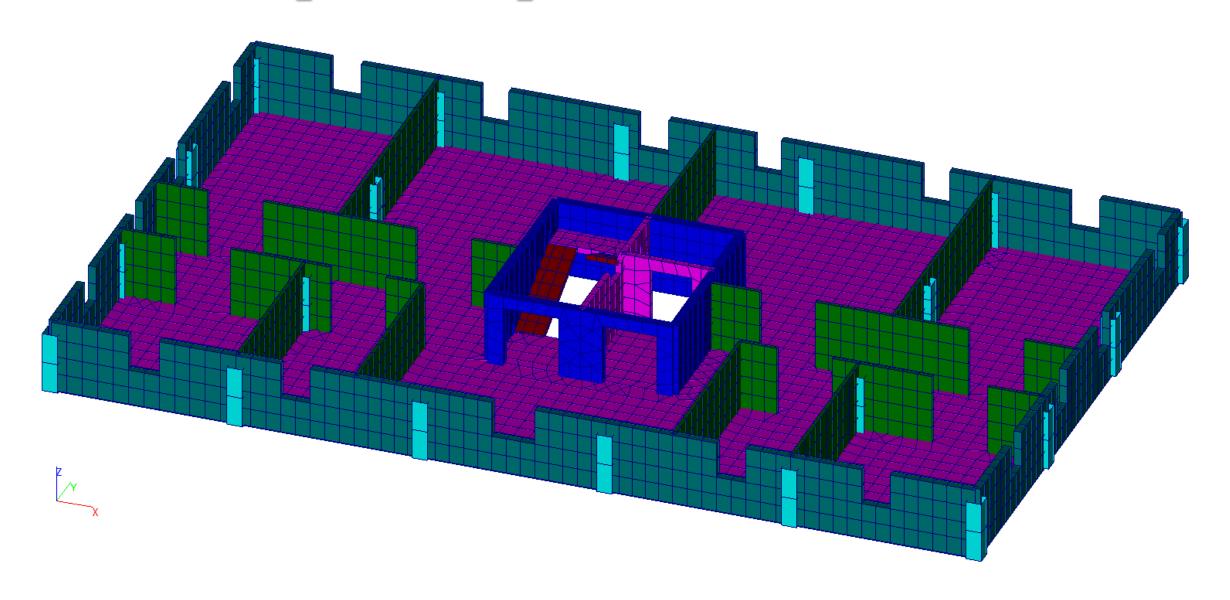
- > Влияние характерного размера конечных элементов
- **В**лияние «второстепенных элементов»

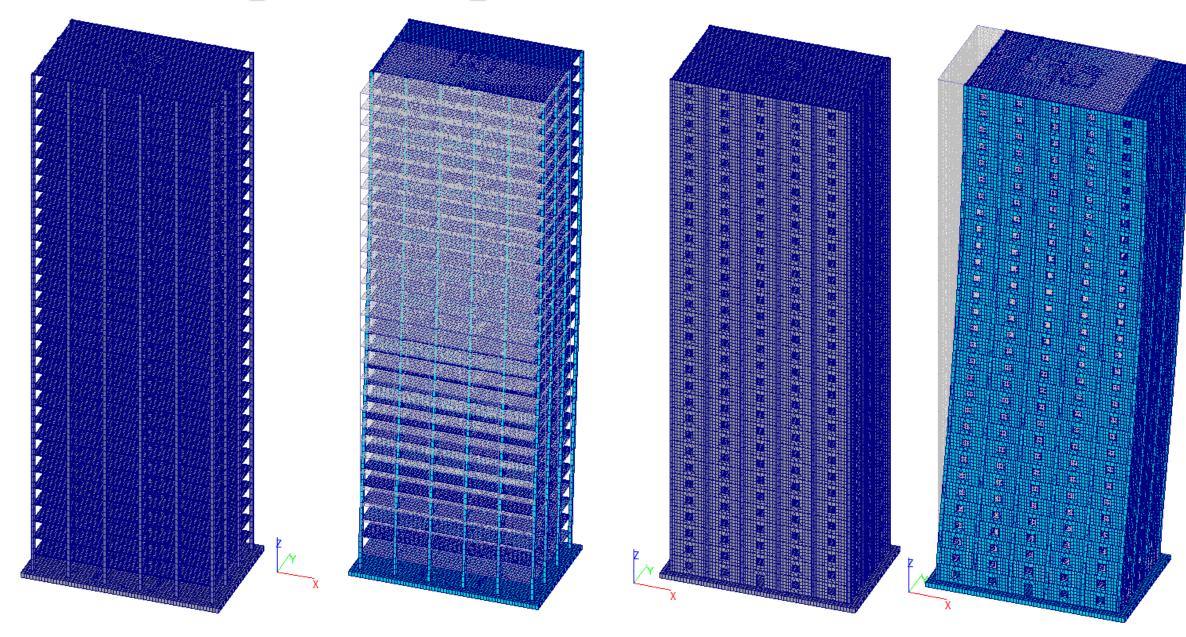
Тестовые задачи


30-ти этажное здание; высота 90 м.; размеры в плане 30х18 м; II ветровой район, тип местности В


Варианты расчетных моделей

- ▶ Модель 1 содержит все несущие элементы (плиты, колонны, ядра жесткости); перегородки и ограждающие конструкции заданы в виде равномерно распределенных по площади перекрытия нагрузок
- ▶ Модель 2 содержит все несущие элементы (плиты, колонны, ядра жесткости); перегородки и ограждающие конструкции заданы в виде равномерно распределенных погонных нагрузок в соответствии со схемой их расположения
- Модель 3 несущие и ограждающие конструкции включены в расчетную схему


Принципиальные схемы рассматриваемых моделей


Варианты расчетной модели

Варианты расчетной модели

Варианты расчетной модели

Средняя составляющая ветровой нагрузки

$$w_m = w_0 k(z_e)c,$$

- 11.1.5 Эквивалентная высота z_e определяется следующим образом.
- 1 Для башенных сооружений, мачт, труб, решетчатых конструкций и т.п. сооружений $z_e = z$.
 - 2 Для зданий:
 - а) при $h \leq d \rightarrow z_e = h$;
 - б) при $d < h \le 2d$: для $z \ge h - d \to z_e = h$; для $0 < z < h - d \to z_e = d$;
 - в) при h > 2d; для $z \ge h - d \to z_e = h$; для $d < z < h - d \to z_e = z$;

для $0 < z \le d \rightarrow z_e = d$.

Здесь z — высота от поверхности земли;

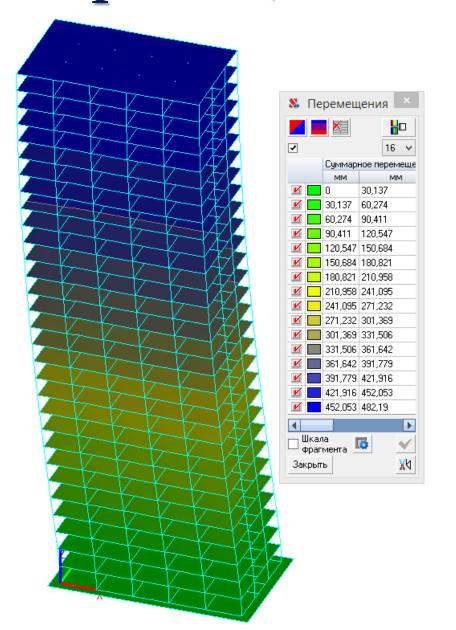
- d размер здания (без учета его стилобатной части) в направлении, перпендикулярном расчетному направлению ветра (поперечный размер);
 - h высота здания.

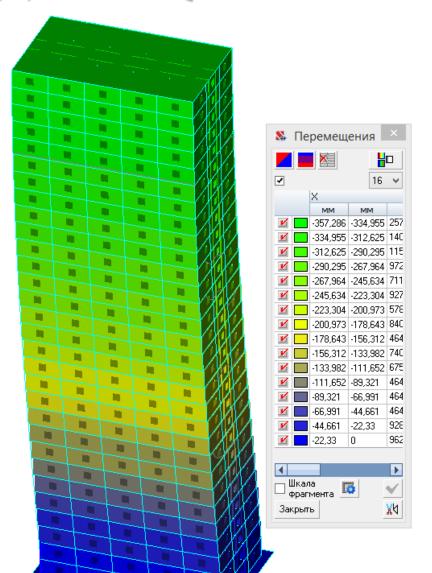
Вес несущих и ненесущих элементов Тестовая задача 1 Тестовая задача 2

Модальный анализ Тестовая задача 1 Тестовая задача 2

Номер формы	Собственное	Часто	ты	Период	Модальные массы (%)			
	значение	рад/сек	Гц	сек	X	Υ	Z	
1	1,6	0,625	0,099	10,056	0,617	77,9	(
2	1,578	0,634	0,101	9,912	77,788	0,605	(
3	1,545	0,647	0,103	9,705	0,581	0,01	(
4	0,523	1,912	0,304	3,285	0,122	9,826	(
5	0,517	1,934	0,308	3,249	9,354	0,126	(
6	0,504	1,983	0,316	3,169	0,049	0	(
7	0,3	3,333	0,531	1,885	0,923	2,562	(
8	0,299	3,342	0,532	1,88	2,531	0,931	(
9	0,29	3,443	0,548	1,825	0,012	0	(
10	0,206	4,845	0,771	1,297	0,742	1,144		

Номер формы	Собственное	Част	оты	Период	Модальные массы (%)			
	значение	рад/сек	Гц	сек	X	Υ	Z	
1	1,348	0,742	0,118	8,468	78,266	0,286	0	
2	1,318	0,759	0,121	8,28	0,283	77,505	0	
3	1,228	0,814	0,13	7,717	0,085	0,036	0	
4	0,443	2,256	0,359	2,785	9,475	0,021	0	
5	0,43	2,324	0,37	2,704	0,019	10,266	0	
6	0,405	2,467	0,393	2,547	0,011	0	0	
7	0,258	3,877	0,617	1,621	3,388	0	0	
8	0,246	4,059	0,646	1,548	0	3,453	0	
9	0,238	4,207	0,67	1,493	0	0	0	
10	0,179	5,579	0,888	1,126	1,812	0	0	

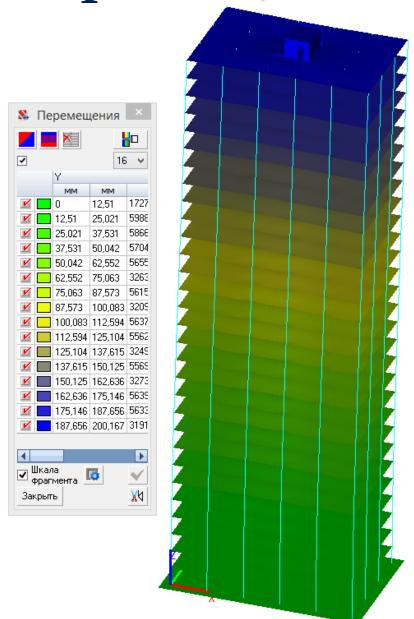

Номер формы	Собственное	Част	оты	Период	Модальные массы (%)		
	значение	рад/сек	Гц	сек	X	Υ	Z
1	0,775	1,29	0,205	4,87	0,031	65,058	0
2	0,755	1,325	0,211	4,741	64,105	0,03	0
3	0,501	1,995	0,318	3,149	1,964	0	0
4	0,193	5,18	0,824	1,213	10,148	0	0
5	0,167	5,984	0,952	1,05	0	17,393	0
6	0,149	6,721	1,07	0,935	6,754	0	0
7	0,107	9,318	1,483	0,674	2,258	0	0
8	0,077	13,065	2,079	0,481	0,013	0	0
9	0,068	14,809	2,357	0,424	0,086	6,399	0,031
10	0,067	15,012	2,389	0,419	5,305	0,103	0
Сумма модальных масс						88,983	0,031

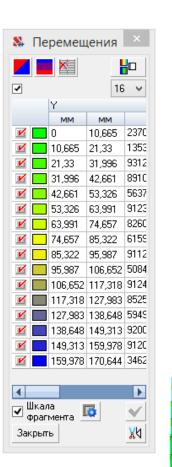

Номер формы	Собственное	Част	оты	Период	Модаль	ные мас	сы (%)
	значение	рад/сек	Гц	сек	X	Υ	Z
1	0,716	1,397	0,222	4,496	0,123	65,07	0
2	0,704	1,42	0,226	4,426	64,035	0,123	0
3	0,477	2,095	0,333	2,999	2,065	0	0
4	0,184	5,428	0,864	1,158	10,232	0	0
5	0,161	6,226	0,991	1,009	0	16,801	0
6	0,144	6,968	1,109	0,902	6,163	0	0
7	0,102	9,763	1,554	0,644	2,188	0	0
8	0,073	13,642	2,171	0,461	0,059	0	0
9	0,066	15,096	2,403	0,416	0,086	6,213	0,015
10	0,065	15,298	2,435	0,411	5,16	0,105	0
	Сумма модальных масс						

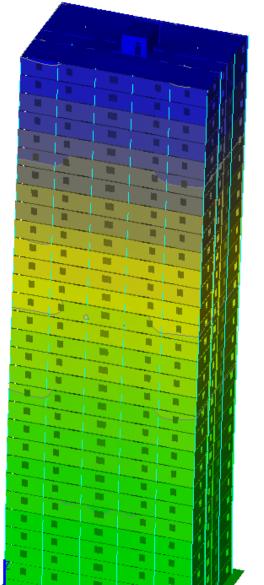
Частоты в модели № 3 на 15 - 20 % выше

Частоты в модели № 3 на 4 – 8 % выше

Перемещения моделей (тестовая задача 1)


Количество учитываемых форм колебаний снизилось с 15 до 12 Снижение максимальных перемещений до 30 %

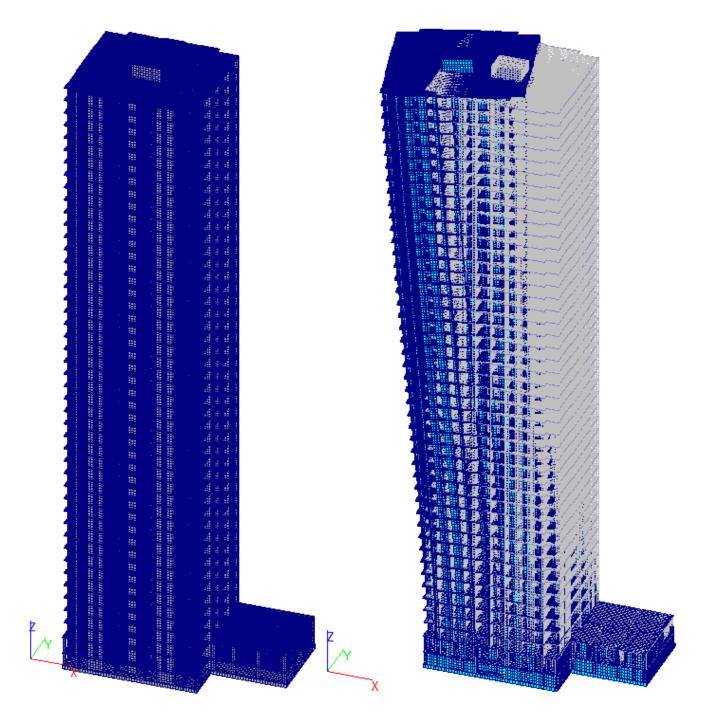

Усилия в колоннах (тестовая задача 1) Модель 2 Модель 3


Загружение	Продольное усилие, кН
Собств. вес несущих и ограждающих конструкций	6641
Полезная нагрузка на перекрытия	1130
Ветровая	2361

Загружение	Продольное усилие, кН
Собств. вес несущих и ограждающих конструкций	6720
Полезная нагрузка на перекрытия	1147
Ветровая	2350

Перемещения моделей (тестовая задача 2)

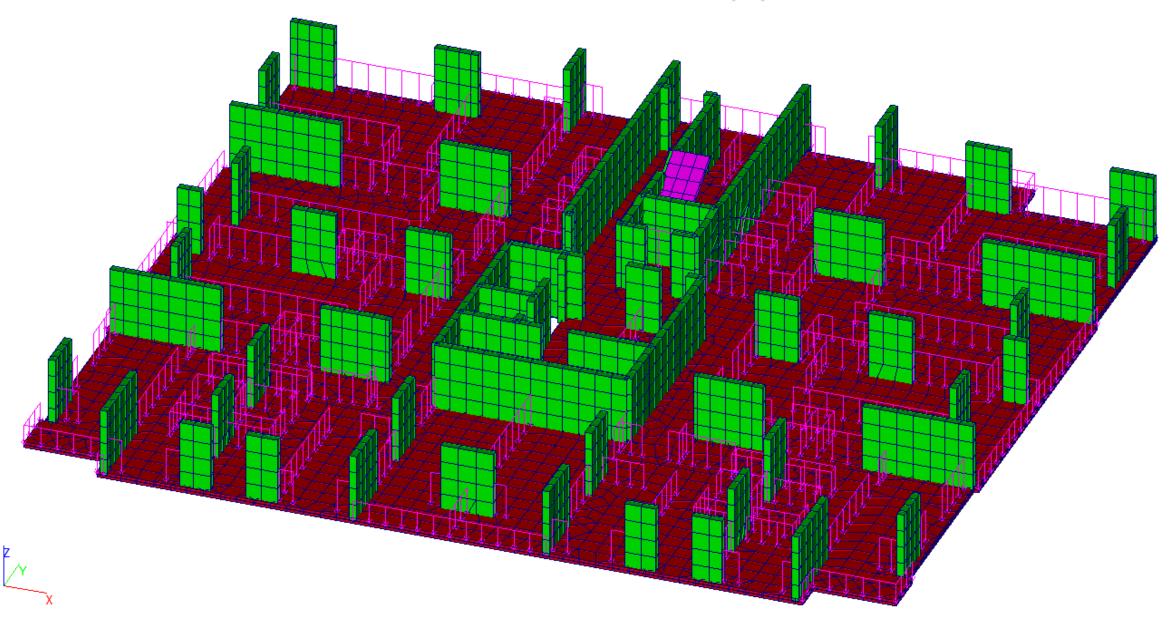
Количество учитываемых форм колебаний снизилось с 6 до 5 Снижение максимальных перемещений до 15 %

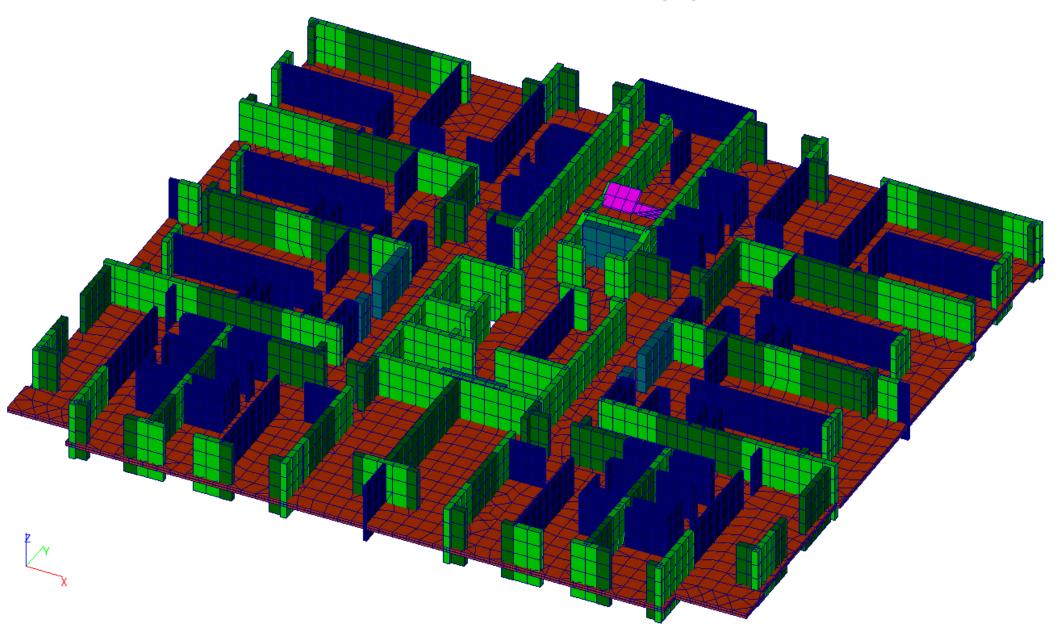

Усилия в колоннах (тестовая задача 2) Модель 2 Модель 3

Загружение	Продольное усилие, кН
Собств. вес несущих и ограждающих конструкций	5347
Полезная нагрузка на перекрытия	805
Ветровая	1154

Загружение	Продольное усилие, кН
Собств. вес несущих и ограждающих конструкций	5226
Полезная нагрузка на перекрытия	834
Ветровая	1020

Высотное здание


45-ти этажное здание; высота 145 м.; высота этажей — 3,9 и 3 м размеры в плане 29х27 м; II ветровой район, тип местности В


Высотное здание

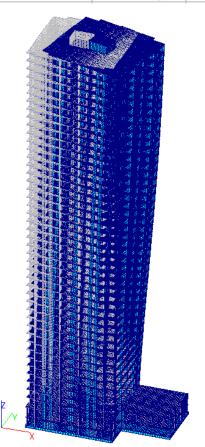
Монолитный железобетонный каркас с несущими стенами ядер жесткости и пилонами Ограждающие конструкции - керамический кирпич толщиной 250 мм и витражное остекление Перегородки – керамический кирпич (120; 250; 380 мм)

Расчетные модели

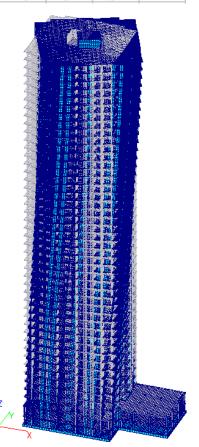
Расчетные модели

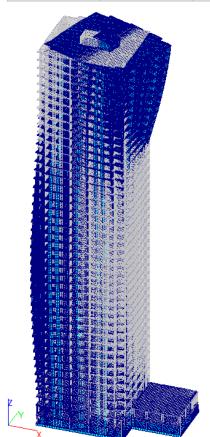
Доля отдельных загружений

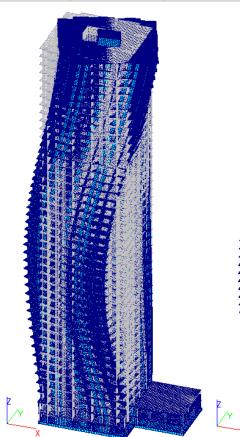
■ Собств вес Перегор. и огражд Полезная Полы

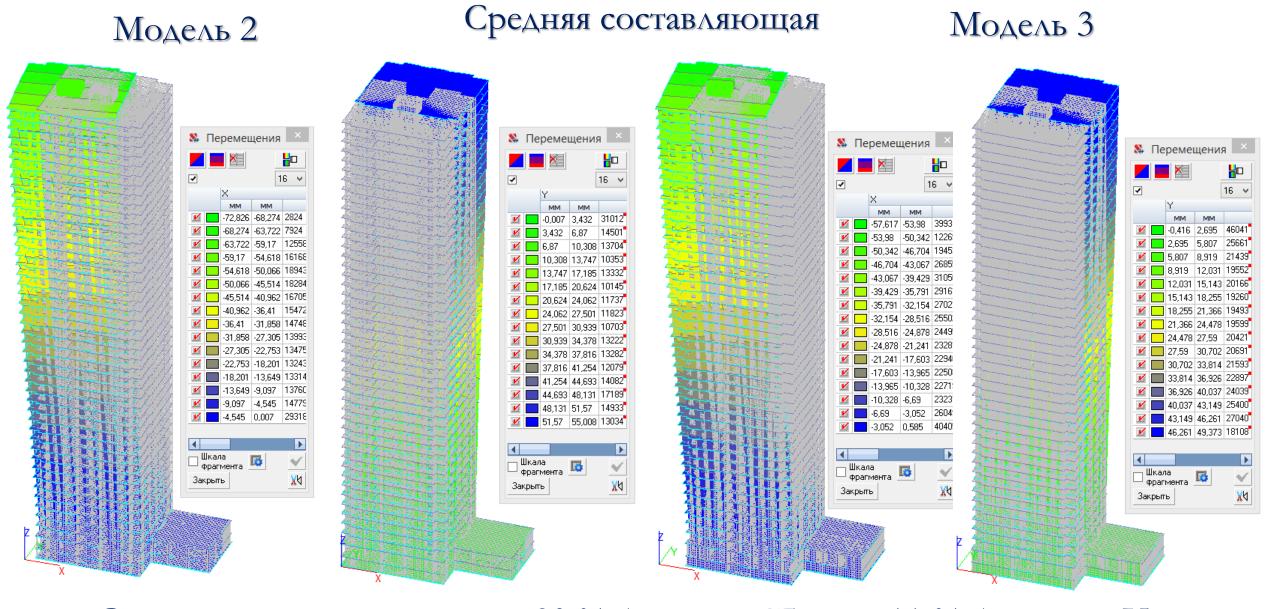

Модальный анализ

Модель 2


Haven denui	Собственное	Част	оты	Период	Модаль	ные мас	сы (%)	
Номер формы	значение	рад/сек Гц		сек	X	Υ	Z	
1	0,812	1,231	0,196	5,103	60,784	0,423	0	
2	0,7	1,428	0,227	4,401	0,204	67,17	0	
3	0,645	1,55	0,247	4,054	9,044	0,17	0	
4	0,245	4,085	0,65	1,538	8,968	0,029	0	
5	0,195	5,132	0,817	1,224	5,081	0,052	0	
6	0,186	5,372	0,855	1,17	0,077	14,924	0	


Модель 3


Номо	Номер формы Собственное значение		Частоты			Период	Модальные массы (%)			
ПОМЕ			рад/сек		Гц	сек	X	Υ	Z	
	1,389			0,221	4,523	60,153	0,334	0		
	Повышение		1,511	0,241	4,157	0,613	66,43	0		
			1,695	0,27	3,706	8,493	0,466	0		
u:	частот на 6-11 %		4,632	0,737	1,356	8,822	0,037	0		
			5,561	0,885	1,13	5,574	1,849	0		
6		0,1/5		5,709	0,909	1,1	0,534	13,404	0	



Перемещения моделей

Снижение перемещений на 20 % (ветер по Х) и на 11 % (ветер по Y)

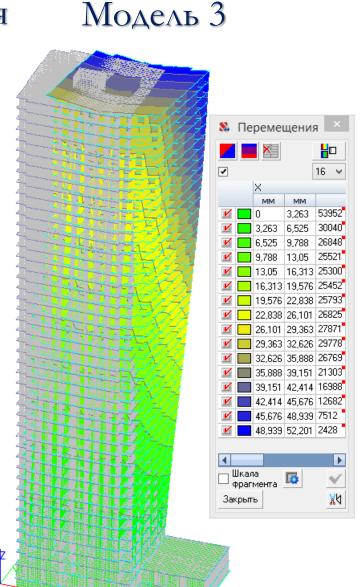
Перемещения моделей

Модель 2

🎎 Перемещения

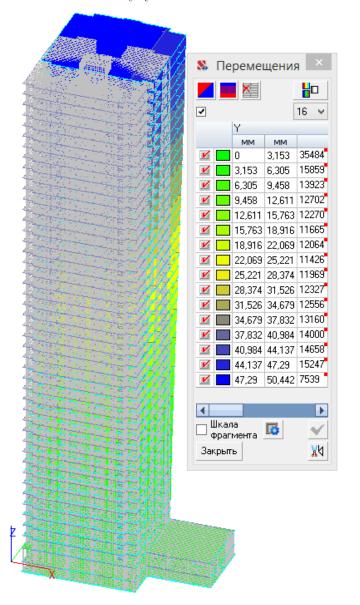
4,238 8,476 17569 8,476 12,715 15834

12.715 16.953 15213


21,191 | 25,429 | 15406

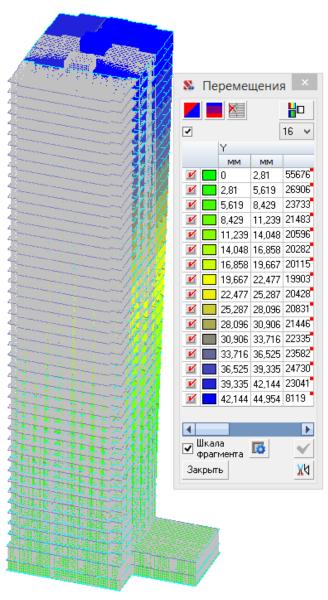
63,574 67,812 1880

Закрыты


Пульсационная составляющая Вдоль оси X

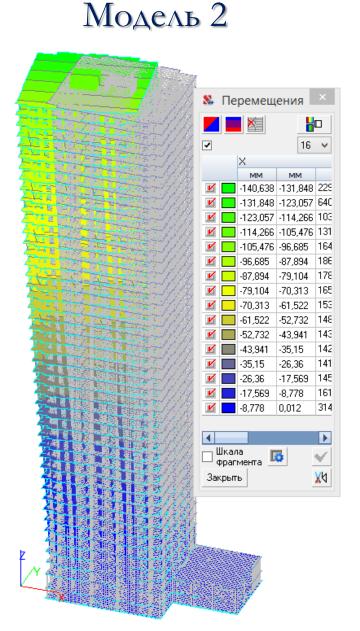
Учитывается 6 форм собственных колебаний Снижение максимальных перемещений на 20 %

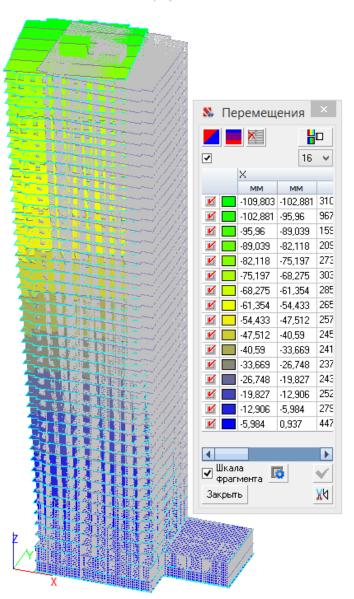
Перемещения моделей


Модель 2

Пульсационная составляющая Вдоль оси Y

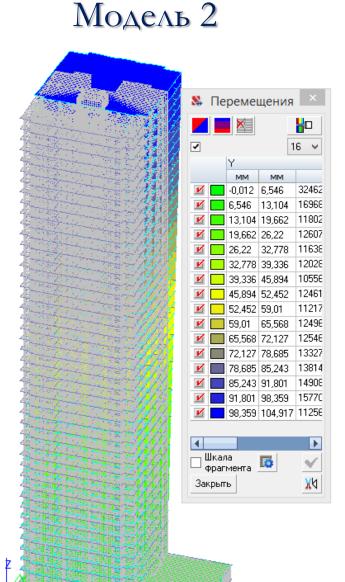
Учитывается 6 форм собственных колебаний Снижение максимальных перемещений на 10 %

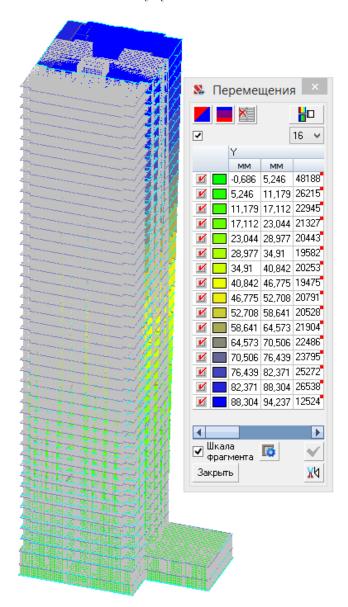

Модель 3


Перемещения моделей Суммарная нагрузка

Вдоль оси Х

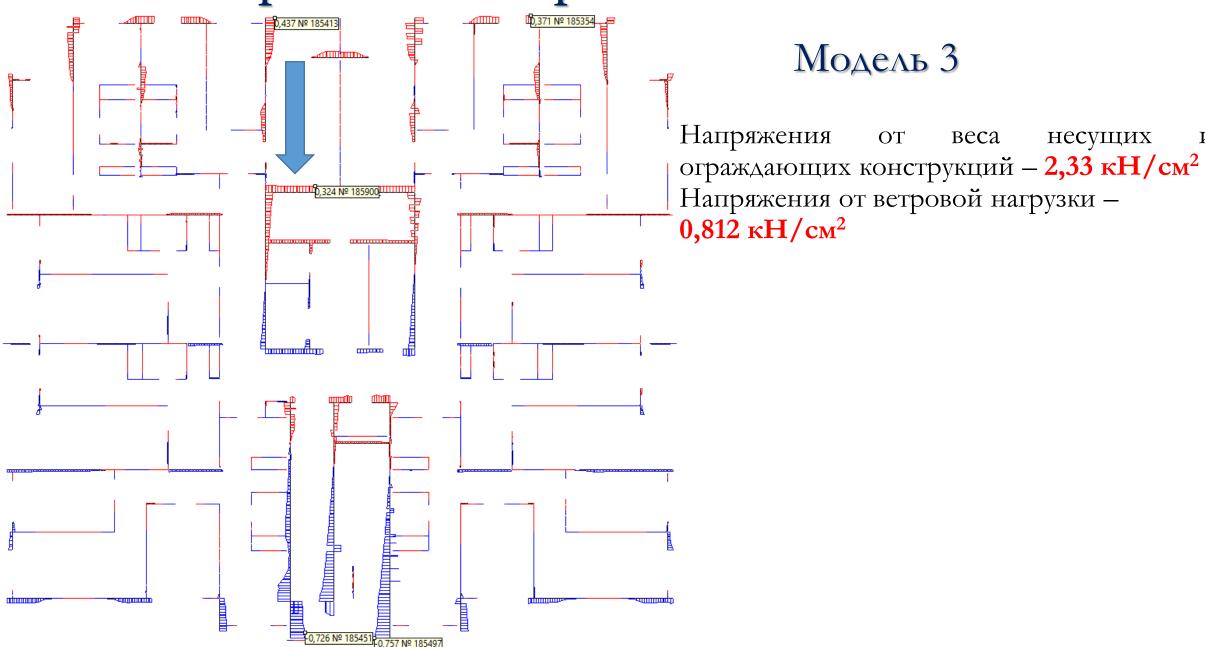
Модель 3

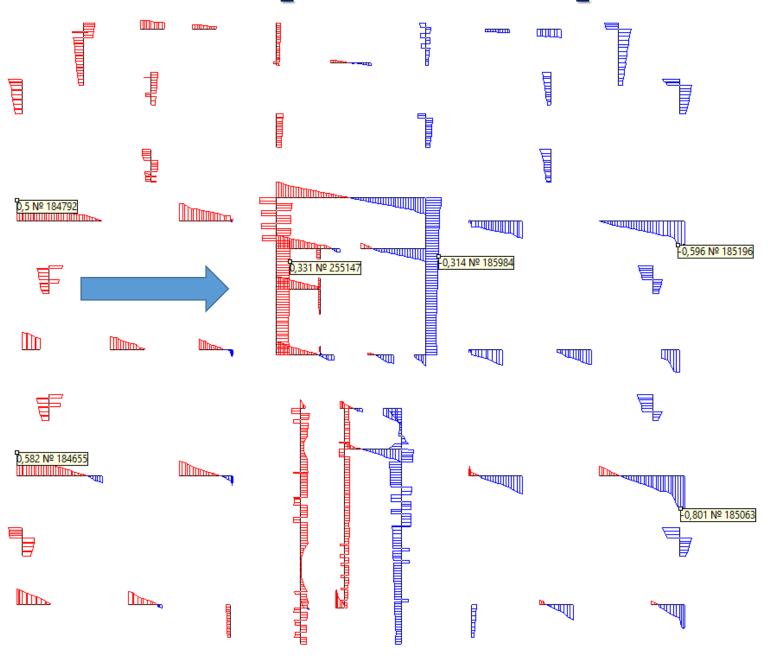

Снижение максимальных перемещений на 20 %


Перемещения моделей Суммарная нагрузка

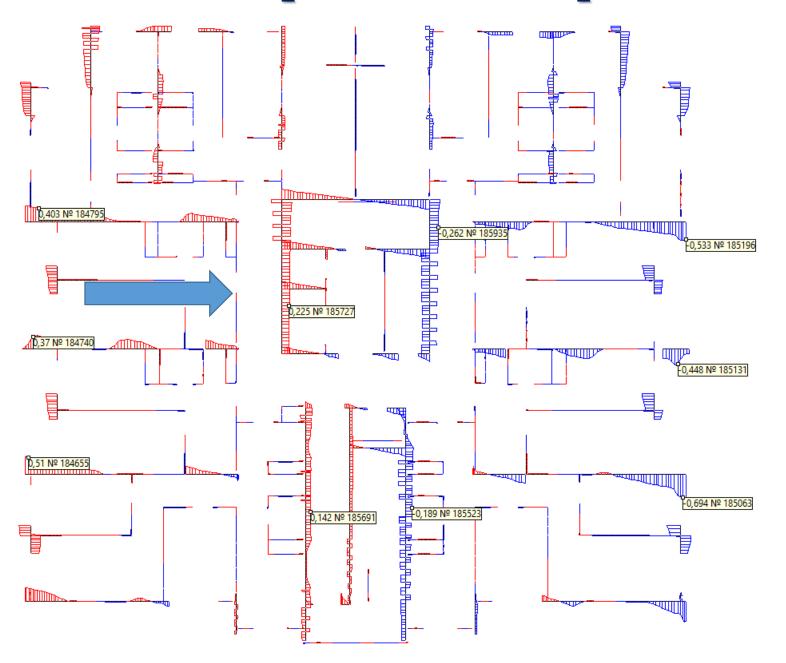
Вдоль оси Ү

Модель 3


Снижение максимальных перемещений на 10 %



Модель 2


Напряжения от веса несущих и ограждающих конструкций — $2,4 \text{ кH/cm}^2$ Напряжения от ветровой нагрузки — $0,89 \text{ кH/cm}^2$

Модель 2

Напряжения от веса несущих и ограждающих конструкций — 2,4 кH/см²
Напряжения от ветровой нагрузки — 1,09 кH/см²

Модель 3

Напряжения от веса несущих и ограждающих конструкций — $2,33 \text{ кH/cm}^2$ Напряжения от ветровой нагрузки — $0,945 \text{ кH/cm}^2$

Некоторые выводы

- Решение тестовых задач с различным характерным размером конечных элементов (от 0,8 до 0,2 м) не показало значимых отличий в результатах модального анализа (при частотах и формах, учитываемых при действии ветровых пульсаций)
- Результаты расчета моделей (частоты и формы колебаний; перемещения/усилия при действии ветровой нагрузки) с различным характером приложения нагрузок от веса ограждающих конструкций и перегородок (распределенная по всей площади перекрытий; в соответствии со схемой расположения) отличаются не более чем на 2 %
- Включение ограждающих конструкций и перегородок в расчетную модель приводит к повышению собственных частот колебаний системы (в рассмотренных задачах на 5 20 %)
- Перемещения и усилия от действия ветровой нагрузки (как средней так и пульсационной составляющих) в элементах расчетной схемы с ограждающими конструкциями и перегородками ниже (для рассмотренных моделей на 5 20 %) чем в элементах стандартной расчетной схемы. Величина снижения перемещений и усилий индивидуальна для каждого объекта и зависит от конструктивного решения ненесущих элементов (материал, схема расположения, доля массы перегородок в суммарной массе объекта)
- Трудоемкость создания детальной расчетной модели, а также время расчета, существенно возрастают по сравнении с традиционной схемой
- Остается открытым вопрос моделирования взаимодействия несущих элементов многоэтажного здания с ненесущими

«Расчет и проектирование конструкций в среде SCAD Office 21» Москва, 17-18 апреля 2018 года

Спасибо за внимание!

A.A. Семенов asfugntu@yandex.ru

И.А. Порываев iporivaev@gmail.com

Уфимский государственный нефтяной технический университет

«Расчет и проектирование конструкций в среде SCAD Office 21» Москва, 17-18 апреля 2018 года

Спасибо за внимание!

A.A. Семенов asfugntu@yandex.ru

И.А. Порываев iporivaev@gmail.com

Уфимский государственный нефтяной технический университет