

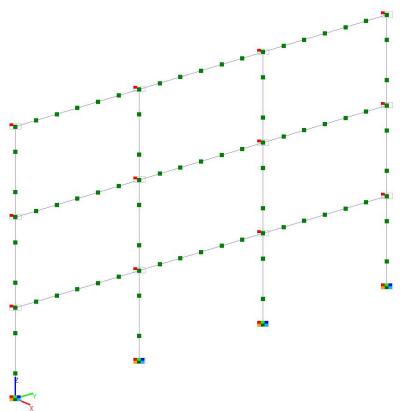
«Методы моделирования и анализа НДС узлов стальных конструкций в SCAD 21.1.9.3 с учетом конструктивной и физической нелинейности»

Участники:

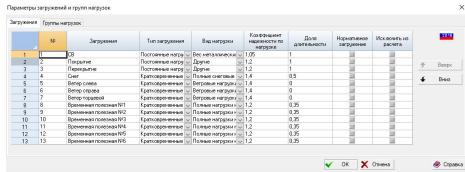
Чащин Алексей Александрович Жаворонков Роман Андреевич Ефимов Иван Сергеевич Научный руководитель: Вольф Ярослав Владимирович

Цели и задачи исследования

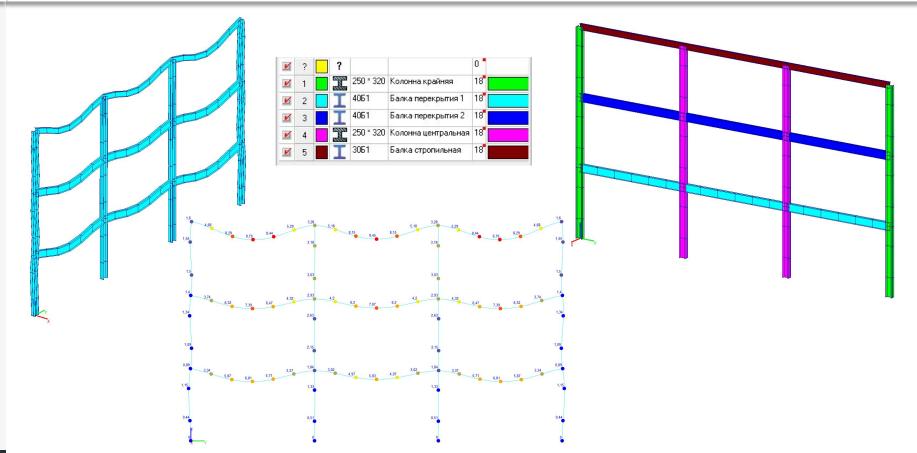
Цель:


Исследование напряженно-деформированного состояния узлов металлических конструкций в условиях воздействия статических нагрузок, путем создания и расчета моделей узлов в программном комплексе SCAD 21.1.9.3

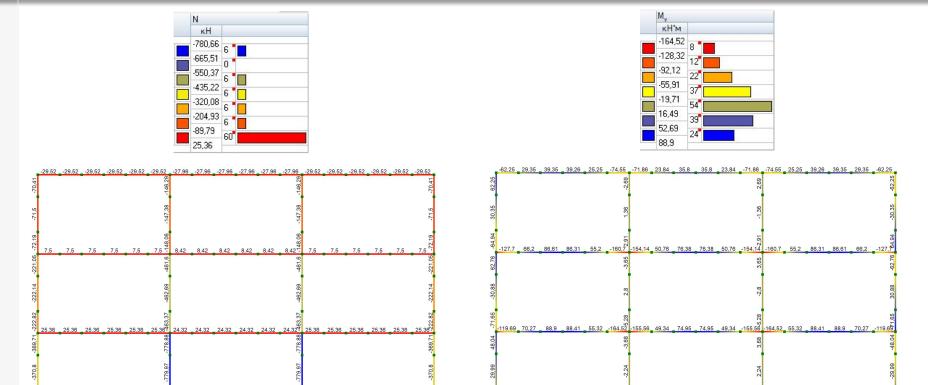
Задачи исследования:


- 1. Обзор теоретических положений по расчету узлов и их особенностей, решение задач расчета узлов аналитическими методами.
- 2. Расчет методом конечных элементов и исследования напряженнодеформированного состояния с помощью программного комплекса SCAD Office в упруго-линейной постановке.
- 3. Расчет методом конечных элементов и исследования напряженнодеформированного состояния с помощью программного комплекса SCAD Office в нелинейной постановке с учетом физической нелинейности.

Граничные условия


Нагрузки:

- Жесткое сопряжение балок с колоннами
- Раскрепление рамы от перемещения в плоскости XoZ
- В плоскости рамы жесткая заделка колонн в основание



Граничные условия подбор сечений



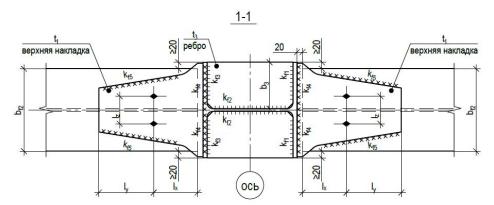
Действующие усилия

Конструктивные особенности узла

Инженерный расчет узла

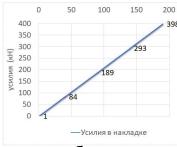
Расчётные формулы

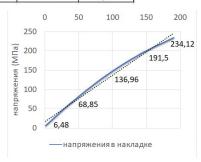
1. Толщины накладок и ребер $(t_1 = t_2 = t_3)$ принять не менее 0,7 толщины наибольшего из значений t_{f1} и t_{f2}


$$t_1 = t_2 = t_3 \ge 0.7 \cdot maxt_{f1}(t_{f2}) \tag{x}$$

2. Усилия в накладке t₁ (t₂) (знак + или - принять с учетом наихудшего загружения в накладке)

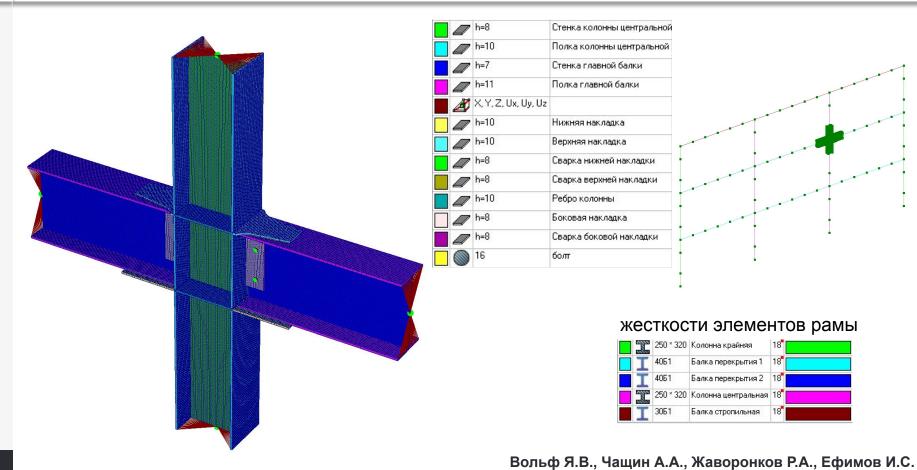
$$N_{t1(t2)} = \frac{M}{h_2 + t_{f2}} \pm \frac{N}{2} \tag{x}$$


Нормальное напряжение в накладке t₁ (t₂)


$$\sigma = \frac{N_{t1(t2)} \cdot \gamma_n}{b_{t1(t2)} \cdot t_1(t_2)} \le R_y \cdot \gamma_c \tag{x}$$

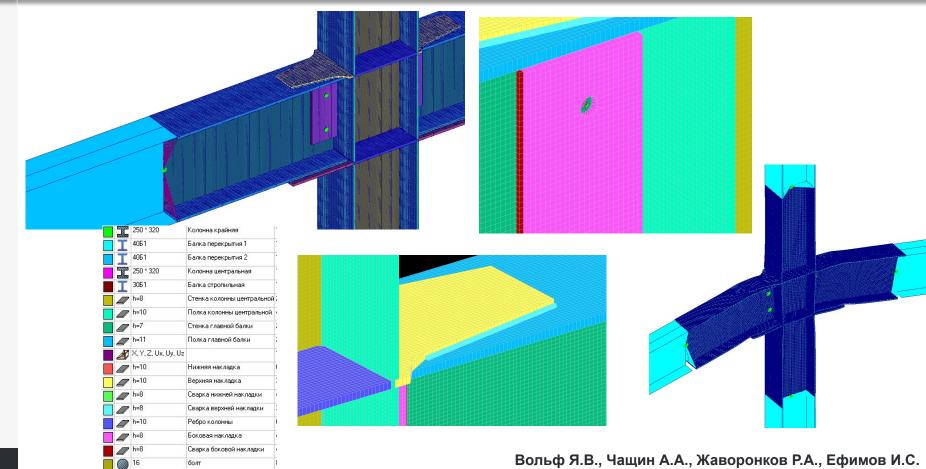
Нормальные напряжения в накладке

расстояние от начала накладки	Усилие в накладке	σ (Мпа)
190 MM	398	234,12
140 MM	293	191,50
90 MM	189	136,96
40 mm	84	68,85
1 MM	1	6,48

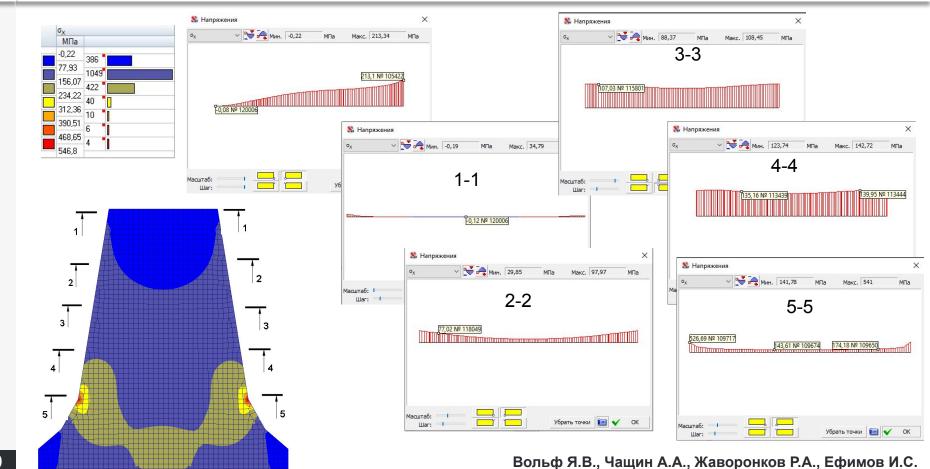


усилия в балке в зависимости от расстояния от оси

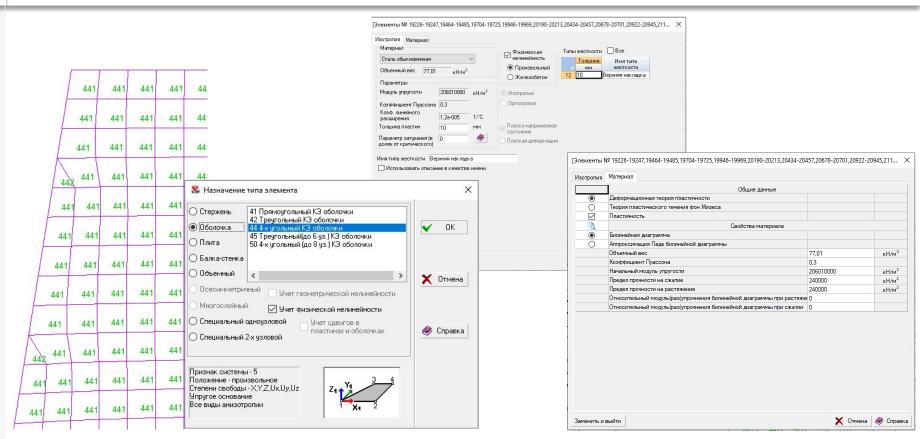
Расстояние	N	My	Mz	Mk	Qz	Qy
ММ	кН	кН*м	кН*м	кН*м	кН	кН
0	7,5	-160,7	0,	0,	159,17	0,
100	7,5	-145,04	0,	0,	154,05	0,
150	7,5	-137,46	0,	0,	151,49	0,
200	7,5	-129,89	0,	0,	148,93	0,
250	7,5	-122,57	0,	0,	146,37	0,
300	7,5	-115,25	0,	0,	143,81	0,
350	7,5	-108,19	0,	0,	141,25	0,
400	7,5	-101,13	0,	0,	138,68	0,



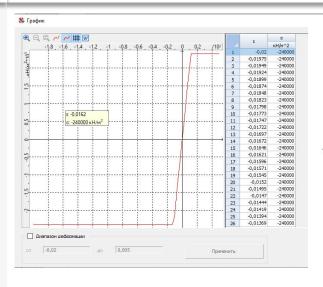
Моделирование узла МКЭ в программе SCAD Office



Моделирование узла МКЭ в программе SCAD Office



Нормальные напряжение в упруго-линейном расчете



Задание граничных условий для нелинейного расчета

Задание истории загружения

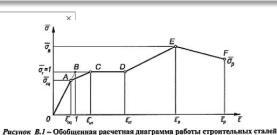
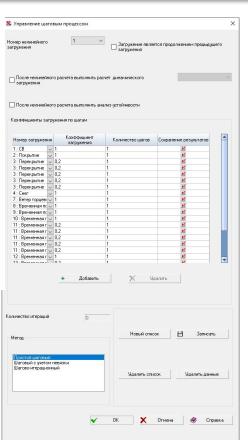
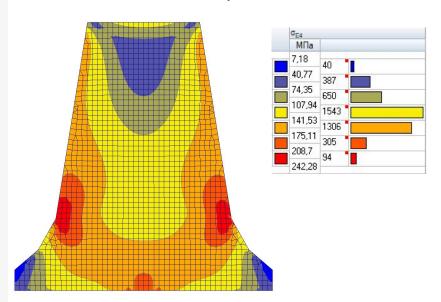
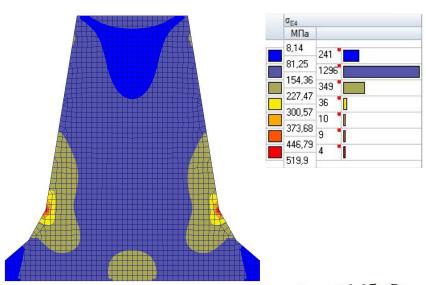



Таблица В.9 – Характеристики сталей для обобщенной расчетной диаграммы работы (см. рисунок В.1)

Trans.com		C	Стали	1000	
Параметр диаграммы	C245, C255	C345, C345K, C355, C355-1, C355П	C390, C390-1	C440	C550, C590
$\overline{\varepsilon_{nq}}$	0,8	0,8	0,9	0,9	0,9
$\overline{\sigma_{nu}}$	0,8	0,8	0,9	0,9	0,9
E _{HT}	1,7	1,7	1,7	1,7	1,7
$\overline{\sigma_{\scriptscriptstyle T}}$	1	1	1	1	1
₹ _{KT}	14,0	16,0	17,0	17,0	18, 0
Ē,	141,6	88,3	67,1	49,6	26,2
$\bar{\sigma}_{\rm a}$	1,653	1,415	1,345	1,33	1,16
$\bar{\mathcal{E}_{p}}$	251	153	115	87,2	51,1
$\overline{\sigma_{n}}$	1,35	1,26	1,23	1,20	1,10

При моделировании нелинейной работы стали для расчетов по первой группе предельных состояний следует использовать расчетную диаграмму работы сталей в обобщенных параметрах $\bar{\sigma} = \frac{\sigma}{R_{yn}}$ и $\bar{\varepsilon} = \frac{\varepsilon E}{R_{yn}} = \frac{\varepsilon}{\varepsilon_{yn}}$, представленную на рисунке B.1 (приложение B). Значение соответствующих координат характерных точек диаграммы следует принимать по таблице B.9. Расчеты выполняют по одному из трех вариантов кривой: OBD, OACD, OACDEF в зависимости от класса элементов конструкций (4.2.7).


Нормальные напряжение в нелинейной расчете

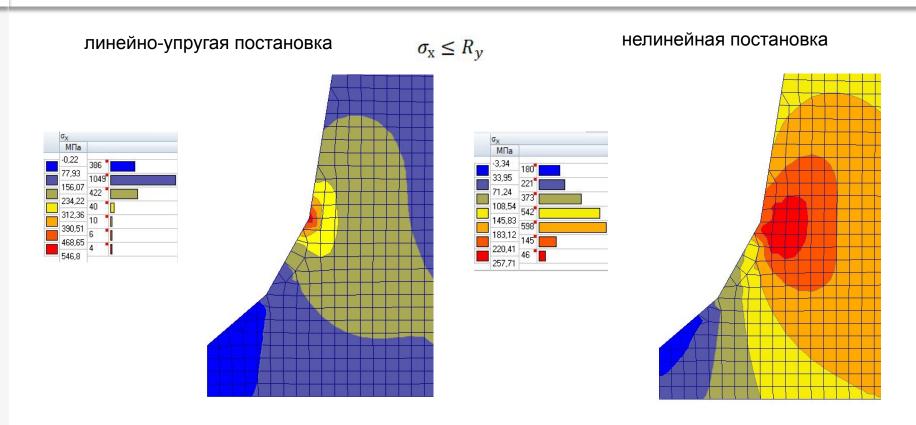


Эквивалентные напряжения

Нелинейный расчет

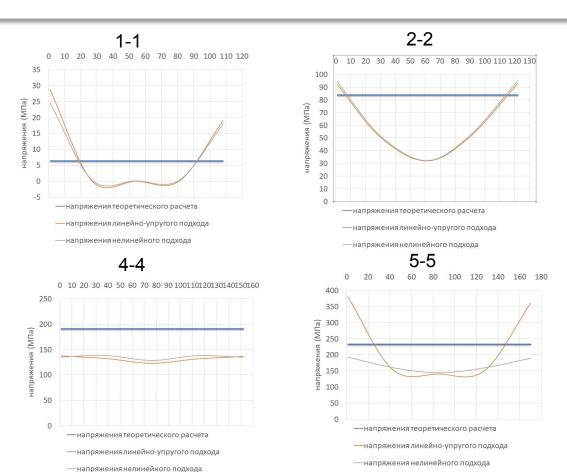
Линейный расчет

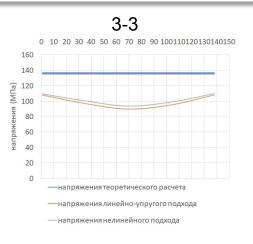
 $\sigma_{\text{9KB}} \leq 1,15 \cdot R_y$


Сравнение элементов узловых соединений ведется по 4 энергетической теории Губера-Хенки-Мизиса –сравнение эквивалентных напряжений.

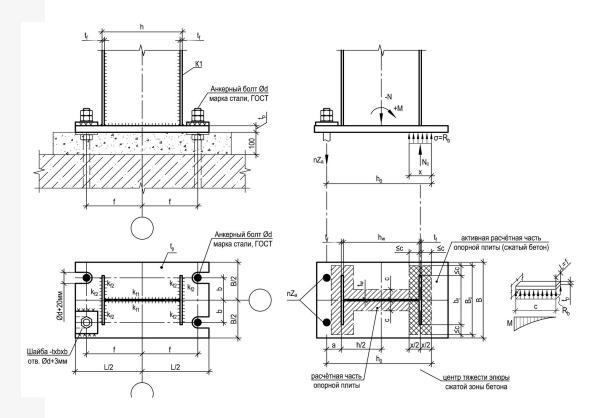
Группа конструкций по приложению В СП 16.1	3330	2 ~	C245
Толщина проката	Ву МПа		Ru M∏a
от 2 до 20 мм	240		360
св. 20 до 30 мм	230		360

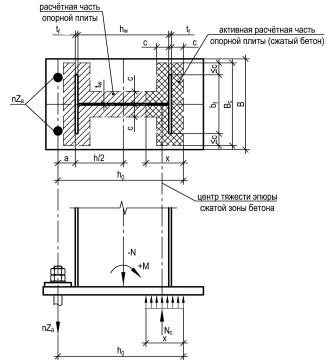
Вольф Я.В., Чащин А.А., Жаворонков Р.А., Ефимов И.С.

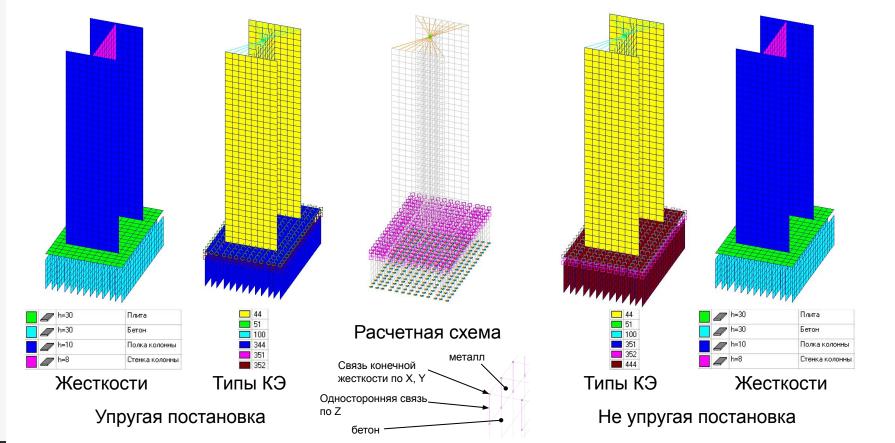



Сравнение результатов по нормальным напряжений

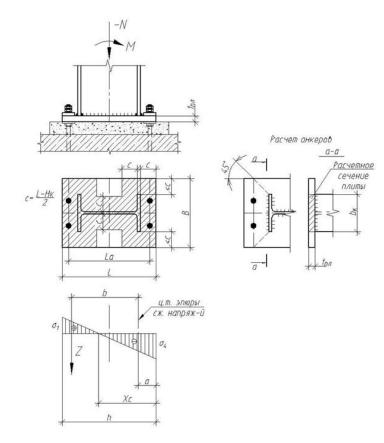

Сравнение результатов по нормальным напряжений




Сравнение результатов

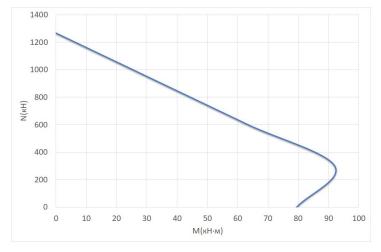

Теоретическое описание физической нелинейности железобетона:

Исходные данные для расчета баз колонн (геометрия):


Вольф Я.В., Чащин А.А., Жаворонков Р.А., Ефимов И.С.

Исходные данные для расчета баз колонн:

Характеристики базы


Теоретическое описание физической нелинейности железобетона:

Сбор нагрузок на фундамент от рамы

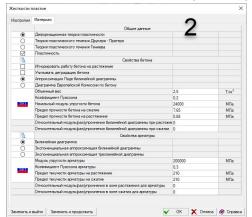
			N	Mk	My	Qz	Mz	Qy
	Nmax	+My	-374,60	0,00	61,18	-40,82	0,00	0,00
E1	Millax	-My	-328,07	0,00	-17,14	4,63	0,00	0,00
Б1к		+My	-217,10	0,00	54,55	-33,85	0,00	0,00
Nmin	INMIN	-My	(4)	-	23		-	1021
			N	Mk	My	Qz	Mz	Qy
	Nmax	+My	-757,82	0,00	37,36	-18,69	0,00	0,00
F1-	INIIIdX	-My	-753,13	0,00	-32,44	15,44	0,00	0,00
Б1с	Mania	+My	. 22	- 2		200		720
	Nmin	-My			-	6-0	- 5	-

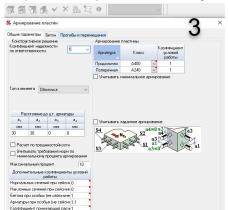
Расчетные сочетания усилий и усилия возникающие в элементах

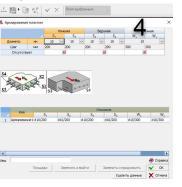
	Mk	My	Qz	Mz	Qy	Формула	σ1	σ4	σ в плите	Усилие на анке	σ в плите от ан	σ св швов
-1268,5			0				-0,690	-0,690	27,83	0,0	0,0	9,9
-900		35,02784	7				-0,289	-0,690	27,83	0,0	0,0	9,5
-600		63,54472	2				0,037	-0,690	27,83	1,1	0,3	9,1
-300		92,06159	7				0,364	-0,690	27,83	60,6	16,2	8,8
0		79,42252	6				0,454	-0,454	18,33	101,5	27,1	5,6
-374,6		0 61,1	8 -40,8	2	0	0	0,146	-0,554	22,34	15,8	4,2	7,2
-328,07		0 -17,1	4 4,6	3	0	0	-0,080	-0,277	11,15	0,0	0,0	3,8
-217,1		0 54,5	5 -33,8	5	0	0	0,194	-0,430	17,35	29,6	7,9	5,5
-757,82		0 37,3	6 -18,6	9	0	0	-0,198	-0,626	25,25	0,0	0,0	8,5
-753,13		0 -32,4	4 15,4	4	0	0	-0,224	-0,595	24,01	0,0	0,0	8,2

Зеленым цветом выделено расчетное сочетание усилия наиболее неблагоприятное для работы жесткого узла стальной колонны.

Несущая способность базы фланцевого типа

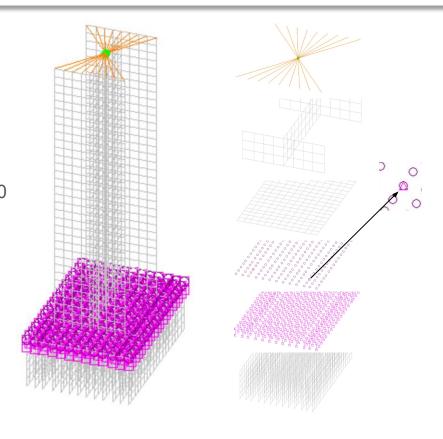

Назначение параметров физической нелинейности железобетонных конструкций в Scad Office 21.1.9.3:


№ № № № № № № № № № Воем выбранным


Назначение элементов для учета геометрической нелинейности

Назначение элементов для учета физической нелинейности

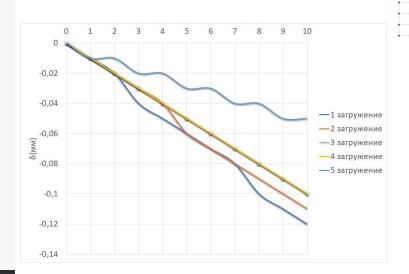
- (1.) Назначение конечных элементов физнелинейного расчета;
- (2.) Задание жесткостных характеристик физнелинейности;
- Назначение группы армирования конструкций;
- 4. Задание схемы армирования железобетонных групп армирования;
- 5. Назначение дополнительных исходных данных физнелинейного расчета (количество слоёв, фактор триангуляции);
- (6.) Назначение параметров шагового процессора;
- 7. Назначение параметров процессора РСУ для учета физической нелинейности.

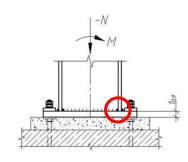


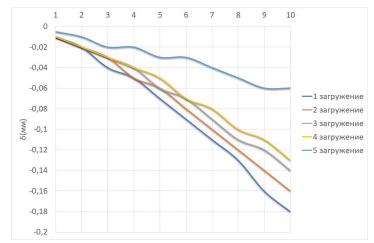
Вольф Я.В., Чащин А.А., Жаворонков Р.А., Ефимов И.С.

Допущения, принятые в рамках расчета:

- 1. Конечное отклонение краевых ячеек от квадратной формы и размера 30x30
- 2. Шаг итераций нелинейного процессора 10%
- 3. Железобетонные конструкции фундамента базы ограничены размерами опорной плиты и 5 конечными элементами размерами 30х30 по высоте
- 4. Анкерные болты смоделированы односторонними одноузловыми связями
- 5. Сдвиговые жесткости смоделированы связями конечной жесткости



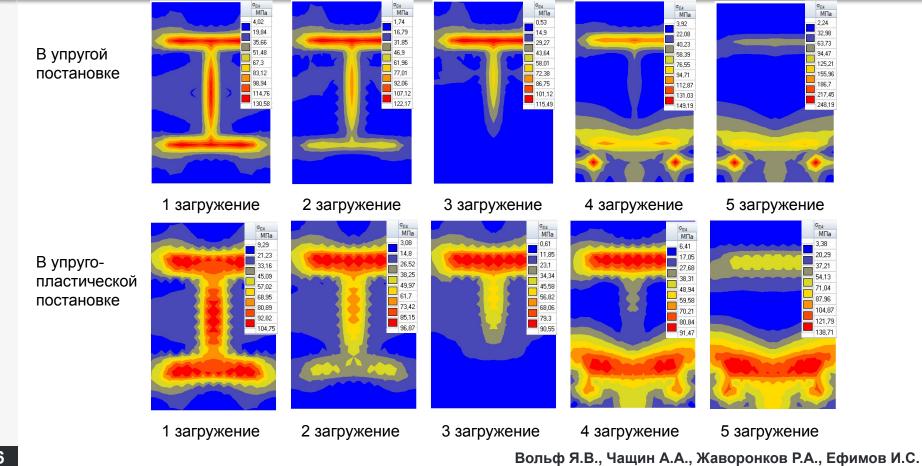

Деформации при расчете базы фланцевого типа в прижимаемом узле базы:


В упругой постановке

	N(kH)	M(ĸH·m)
1 загружение	1268,5	0
2 загружение	900	35,03
3 загружение	600	63,54
4 загружение	300	92,06
5 загружение	0	79,42

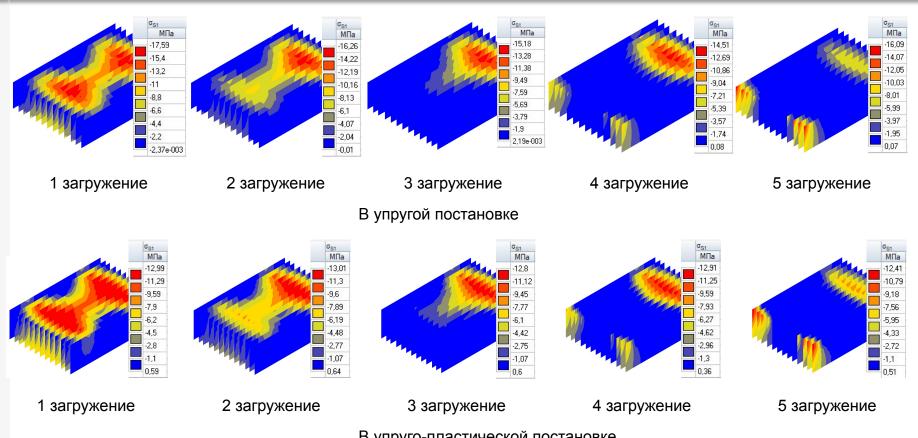
В пластической постановке

Вольф Я.В., Чащин А.А., Жаворонков Р.А., Ефимов И.С.


Деформации при расчете базы фланцевого типа в отрываемом узле базы:

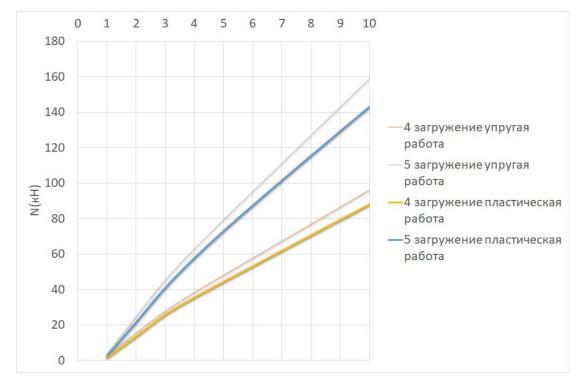
В упругой постановке В пластической постановке N(kH) M(kH·M) 1 загружение 1268,5 2 загружение 900 35,03 3 загружение 600 63,54 4 загружение 300 92,06 5 загружение 79,42 0,25 0,3 0,25 0,2 0,2 0,15 0,15 0,1 —1 загружение 0,1 —1 загружение (WW) 0,05 —2 загружение (ww) 0,05 —2 загружение --- 3 загружение —3 загружение —4 загружение —4 загружение —5 загружение —5 загружение -0,05 -0,05 -0,1 -0,1 -0,15 -0,15 -0,2

Вольф Я.В., Чащин А.А., Жаворонков Р.А., Ефимов И.С.



Напряжения в опорной пластине базы фланцевого типа:

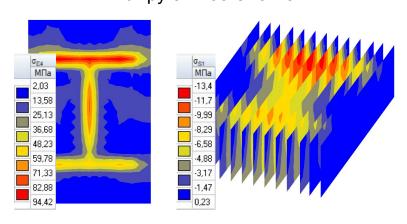
Напряжения в бетоне базы фланцевого типа:



В упруго-пластической постановке

Вольф Я.В., Чащин А.А., Жаворонков Р.А., Ефимов И.С.

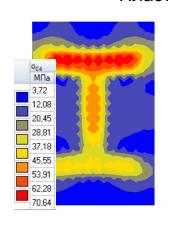
Усилия в анкерных болтах при расчете базы фланцевого типа:

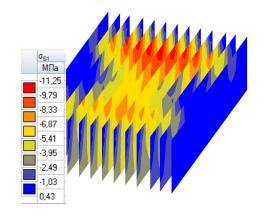

	N(kH)	M(kH·m)
1 загружение	1268,5	0
2 загружение	900	35,03
3 загружение	600	63,54
4 загружение	300	92,06
5 загружение	0	79,42

Усилия в анкерных болтах

Усилия в элементах базы колонны от реальных воздействий на раму:

Упругая постановка

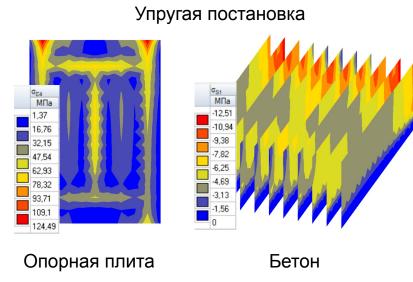



Опорная плита

Бетон

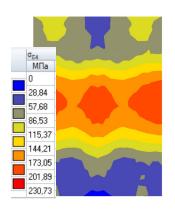
Усилия в элементах на последнем шаге реальной задачи. Усилия в анкерах нулевые

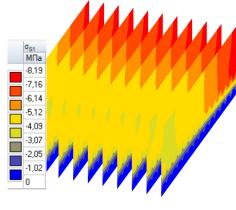
Пластическая постановка


Опорная плита

Бетон

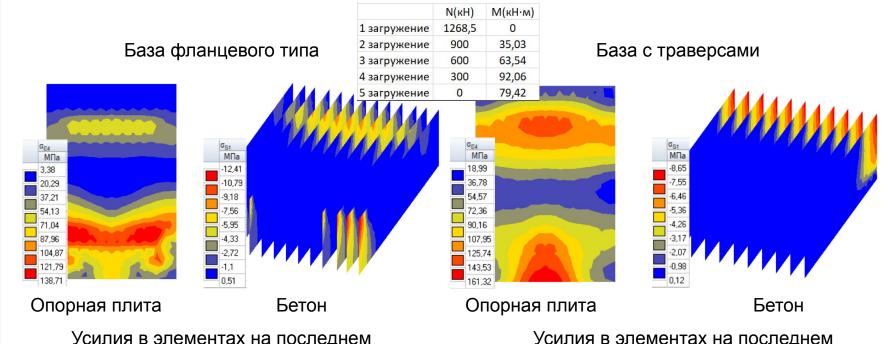
Усилия в элементах на последнем шаге реальной задачи. Усилия в анкерах нулевые




Усилия в элементах базы колонны от реальных воздействий на раму:

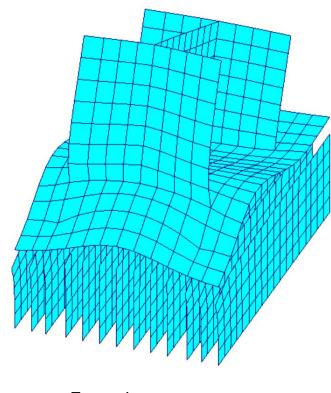
Усилия в элементах на последнем шаге реальной задачи. Усилия в анкерах нулевые

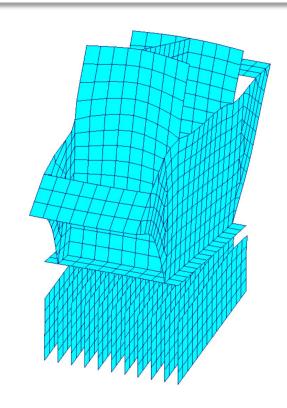
Пластическая постановка


Опорная плита

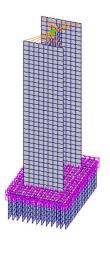
Бетон

Усилия в элементах на последнем шаге реальной задачи. Усилия в анкерах нулевые

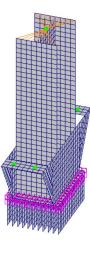

Усилия в элементах базы колонны от теоретических максимальных нагрузок:


Усилия в элементах на последнем шаге теоретической задачи. Усилие в анкере 143,05 кН Усилия в элементах на последнем шаге теоретической задачи. Усилие в анкере 157,74 кН

Общая деформируемость баз:


Базы фланцевого типа

Базы с траверсами



Усилия в элементах разных типов баз колонны от реальных воздействий на раму:

1 тип

	1 тип	2 тип
	138,71	161,32
σ1max (МПа) в бетоне	12,41	8,65
N (кН) болта	143,05	157,74
δ (мм) в плите	0,33901	0,35935

2 тип

Выводы по работе

- 1. Нелинейная постановка снижает напряжения в местах концентрации.
- 2. По эквивалентным напряжениям нелинейная постановка дает снижение напряжений в элементах..
- 3. Изученность расчета узловых соединений находится на начальном этапе, освещение данного вопроса практически не удовлетворяет потребностям инженерной практики
- 4. Фланцевую базу использовать более целесообразно чем базу с траверсами. При одинаковой несущей способности узлов фланцевая база обладает меньшей деформативностью.
- 5. Расчет узлов в физически нелинейной постановке позволяют учесть перераспределение напряжения и получить более реалистичную картину распределения внутренних усилий.

«Методы моделирования и анализа НДС узлов стальных конструкций в SCAD 21.1.9.3 с учетом конструктивной и физической нелинейности»

Чащин Алексей Александрович

Жаворонков Роман Андреевич

Ефимов Иван Сергеевич

Научный руководитель: Вольф Ярослав Владимирович

СПАСИБО ЗА ВНИМАНИЕ!