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Abstract. The family of iterative methods for static and natural vibration analysis, based on preconditioned conjugate 
gradient (PCG) method with aggregation multilevel preconditioning, is considered. Both: the element-by-element 
procedure for assembling of stiffness matrix and sparse direct solver for it factoring and fast forward − backward 
substitutions ensure the high stability of methods against ill-conditioning. The generalized preconditioned conjugate 
gradient method with shifts in aggregation multilevel preconditioning is developed to overcome the lock of 
convergence, which is met when conventional PCG methods are applied for eigenvalue analysis. 
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1. Introduction 

 
This paper is devoted to application of iterative 

methods to analysis of large-scale finite element 
problems of structural mechanics. The multi-storey civil 
of industrial buildings, thin-walled structures and other 
objects give rise the poorly - conditioned finite element 
(FE) problems. Usually direct methods, based on 

TT LLLDLLU ,,  factoring, are used for such 
problems. The size of FE problem is enough big, the 
direct methods are more and more consuming time. 

The results, presented on fig. 1, illustrate the 
following: the dimension of FE model is bigger the 
iterative solution is more preferable comparing with 
direct one. The conventional skyline solver and sparse 
direct multifrontal solver MFM [6] are compared with 
aggregation multilevel iterative one AMIS [2, 3, 5]. So, 
each task possesses such a dimension when iterative 
solver requires less computational efforts than a direct 
one. 

However, the structural mechanics problems usually 
are poorly conditioned and conventional iterative solvers 
are inefficient for their analysis. 

The preconditioning is a powerful approach for 
solution of ill-conditioned problems. The preconditioned 
conjugate gradient method with aggregation multilevel 
preconditioning is presented here. 

 
Fig. 1 Computation time via number of equations for direct 

(skyline, MFM) and iterative (AMIS) solvers 
 
The idea of aggregation multilevel iterative method 

is presented in [1]. In [2, 3, 5] and in this paper we present 
the aggregation approach on the base of element-by-
element technique which is applied to assembling of 
coarse level matrix (stiffness matrix of aggregation 
model), and sparse direct technique, applying to 
factorization of this matrix. It is essential peculiarities of 
presented here aggregation multilevel method, because 
the large number of equations of coarse level model is 
kept and a good prediction of a slow converged low 
solution modes is ensured. 

The multi-storey buildings, the objective − oriented 
mesh generators, the strong requirements for accuracy of 



numerical results and other reasons lead to arising of 
large-scale finite element models. 

The family of high-performance iterative methods 
for static and natural vibration analysis of large-scale 
finite element models is presented. These methods are 
based on preconditioned conjugate gradient method with 
aggregation multilevel preconditioning, element-by-
element technique of coarse level matrix preparation and 
sparse direct technique which is applied to factoring of 
coarse level matrix and to the forward-backward 
substitutions during PCG iterations. 

 
2. An aggregation multilevel preconditioning 

 
The basic idea of the multilevel preconditioning for 

the PCG method is presented below. 
First, a coarse level model is created. Then, the 

restriction-prolongation operators QQ ,T  are formulated 
to establish an interaction between the coarse and fine 
level models. The procedure presented below is applied 
instead of an explicit solution 

kk rBz =                                                                       (1) 

where kr  is a residual vector, k  (an iteration number) 
will be omitted. 
• Restriction of the r  vector to the coarse level: 

cf rr a . This procedure consists of transforming 

the fine level model into the coarse level: f
T

c rQr =  

and TQ  is the restriction operator. The upper 
subscript T  denotes a transposition, lower subscripts 

cf ,  refer to respective fine and coarse level models. 

• Resolution of ccc rzK = , where KQQK T
c =  

( cK is already decomposed and the size of the 
coarsest level problem allows the implementation of 
the direct methods). 

• Prolongation *
fc zz a  from the coarse level to the 

fine level. This operation consists of a transformation 
from the coarse level model into the fine level: 

cf Qzz =*  and Q is the prolongation operator 

• Smoothing of the vector ff zz a*  after the 
prolongation. Rapidly fluctuating residuals appear 
during the prolongation. An internal iteration 
procedure is applied to damp the residuals. 

 
The implementation of the aggregation approach 

presented here is based on element-by-element technique 
used to prepare the coarse level matrix cK  promptly. A 
more efficient PCG algorithm and element-by-element 
aggregation scheme [2], [3], [5] allows us to improve the 
robustness of the method and incorporate it in the Robot 
Millennium commercial software (www.robobat.com). 
Now this method is incorporated in the SCAD software 
(www.scadgroup.com). 

The aggregation approach consists of an introduction of 
additional connections (rigid links) to decrease the 
number of degrees of freedom of a given design model. 
The coarse level model is derived as shown below (Fig.2). 
Thus, the original finite-element model (fine level) is 
transformed into a mechanical system (coarse level), 
which consists of non-overlapped local rigid aggregates 
coupled by elastic connections. The rigid aggregates are 
rigid bodies due to the imposed rigid links. All nodes of 
the finite-element model should be included in the rigid 
aggregates. It is possible to treat a single node as a limit 
case of a minimal rigid aggregate. It is not admissible for 
any node to be included into more than one aggregate. 

 

 
 

Fig.2 First and second aggregation levels for a rectangular plate  
with the finite element mesh 4×4 

 
The first aggregation step is performed in an element-

by-element loop. We take the first finite element and 
couple all nodes belonging to it. Aggregated nodes are 
marked. Then we take the second element and couple the 
remaining (unmarked) nodes. And so on. 

The second aggregation level (and all the following) 
is performed in the same way. The aggregates from the 
previous level are considered to be generalized nodes. 
Each aggregate from the previous level which is coupled 
into a new aggregate of the current level, is marked to 
avoid a total coupling of the entire structure. 

This aggregation procedure is being applied until the 
size of the coarsest level model becomes small enough for 
a direct solution. This approach keeps the topological 
similarity of each aggregation level to the original model 
(fine level). 

The details are presented in [2], [3], [5]. 
 



3. The static analysis 
 
The several large-scale problems are considered. 

The skyline solver, incomplete Cholesky factorization 
solver ICCG, sparse direct multifrontal solver MFM [6] 
and aggregation multilevel iterative solver AMIS are 
compared. The skyline and ICCG solvers are widely used 
in commercial finite element programs, and therefore we 
account such methods as traditional ones. 

 
3.1. Example 1 (multi-storey building — 544 410 
equations) 

 

 
Fig. 3 Multi-storey building — 544 410 equations 

 
The non-uniform mesh on slabs and the strong 

difference of stiffness between several parts of structure 
cause the ill-conditioning. The computation time for 
several methods and number of iterations for iterative 
solvers is shown in Tab. 1. 

The precision of iterative methods is taken as 

toltol <−∧<−
∞∞

bKxbbKxb // 22                 (2) 

where 310−=tol . Such a precision is a quite enough 
for engineering purposes. The Pentium III computer 
(CPU Intel 1000 MHz, 512 MB RAM) has been used for 
all methods. 

 

 
Table 1. Performance of presented methods. 
 
Method Computation time Number of 

iterations 
Skyline 23 h 30 m — 
ICCG 2 h 59 m 6 815 
MFM 36 m — 
AMIS 17 m 70 

 
The presented here AMIS method allows to reduce 

the computation time almost in 2 times comparing with 
even sparse direct multifrontal solver. 

The comparison of convergence for AMIS and ICCG 
methods is presented on Fig. 4. 

 

 
Fig. 4 Convergence of AMIS and ICCG methods 

 
The large number of iterations for ICCG method 

evidences that this problem is poorly conditioned. 
 
3.2. Example 2 (multi-storey building — 1 171 104 

equations) 
 

 
Fig. 5 Multi – storey building — 1 171 104 equations 

 



Three load cases (right-hand sides) is considered. 
The Pentium-IV computer (CPU Intel 2.8 GHz, RAM 
1024 MB) has been used. 

The computation time for several methods and 
number of iterations for iterative solvers is shown in Tab. 
2. The number of iterations for each load case is 
separated by slash. 

 
Table 2. Performance of presented methods. 
 

Method Computation 
time 

Number of iterations 

Skyline ~ 48 h — 
ICCG 1 h 24 m 2507 / 1926 / 2506 
MFM 2 h 19 m — 
AMIS 20 m 45 / 45 / 42 
 
The convergence of iterations for AMIS and ICCG 

methods for first load case is shown on Fig. 6. 
 

 
Fig. 6 Convergence of AMIS and ICCG methods 

 
The skyline solver requires 21 606 MB memory on 

hard disk for allocation of factorized stiffness matrix. It is 
impossible to store such a large matrix to disk for our 
computer. Therefore we can only estimate the 
computation time for skyline solver. 

The multifrontal sparse direct solver MFM requires 
3 246 MB HDD memory due to drastic decreasing of 
nonzero entries in factorized stiffness matrix. 

The AMIS solver occurs most preferable and allows 
us to reduce essentially the analysis time. 

 
4. Natural vibrations analysis. 

 
The generalized conjugate gradient method with 

shifted aggregation multilevel preconditioning [3, 5] is 
applied to analysis of large-scale natural vibrations finite 
element problems. This method combines the advantages 
of PCG approach for generalized eigenvalue solution and 
shift technique which allows us to accelerate the 
convergence and avoid the lock of it when close 
eigenvalues are met. 

We compare the performance of MPCG_AMIS 
(modified preconditioned conjugate gradient method with 

aggregation multilevel preconditioning) with ones of 
conventional PCG_ICCG method (preconditioned 
conjugate gradient method with incomplete Cholesky 
factorization preconditioning without shifts) and block 
Lanczos method [4], based on sparse direct multifrontal 
solver [6]. 

 
4.1 Example 1 (multi-storey building — 544 410 
equations) 

 
The computation model is shown on Fig. 3. The five 

eigenpairs are extracted. The precision of computations 
for iterative methods is defined as following: 

tolerr
ii

iii <
−

=
2

2

Mx
MxKx

λ

λ
                                              (3) 

where 310−=tol , MK,  — stiffness and mass 
matrices, { }ii x,λ  — eigenpair for i-th mode. The 
Pentium III computer (CPU 1266 MHz, 512 MB RAM) 
has been used.  

The computation time for several methods and 
number of iterations for iterative solvers is shown in Tab. 
3. 

 
Table 3. Performance of presented methods. 
 
Method Computation 

time 
Number of 
iterations 

 

Nonzero 

entries, MB 
Lanczos 
(Skyline) >> 23 h — 29 166 

PCG_ICCG — > 13 000 — 
Block 

Lanczos 
(MFM) 

37 m 25 s  763 

MPCG_AMIS 33 m 52 s 242 — 
 
The Lanczos method, based on skyline solver, is 

fault due to large size of nonzero entries for factorized 
stiffness matrix. The PCG_ICCG method exhibits the 
lock of convergence for second mode. The block Lanczos 
method [4], based on sparse direct multifrontal solver, and 
presented MPCG_AMIS method allows us to obtain the 
efficient solution of this problem. 
 
4.2. Example 2 (multi-storey building — 1 171 104 
equations) 
 

The computation model is shown on Fig. 5. The five 
eigenpairs is extracted. The precision of computations for 
iterative methods (see (3)) is taken as 310−=tol . The 
computation time for several methods and number of 
iterations for iterative solvers is shown in Tab. 4. The 
Pentium IV computer (CPU 2.8 GHz, 1024 MB RAM) 
has been used. 



 
Table 4. Performance of presented methods. 
 
Method Computation 

time 
Number of 
iterations 

 

Nonzero 

entries, MB 
PCG_ICCG Lock of convergence on first 

mode 
— 

Block 
Lanczos 
(MFM) 

4 h 01 m  3 246 

MPCG_AMIS 49 m 422 — 
 
The conventional PCG_ICCG method is fault due to 

lock of convergence on the first mode. The 
MPCG_AMIS method allows us to reduce the analysis 
time comparing with block Lanczos method [4] in 4 
times. The convergence of iterations for each mode is 
presented on Fig.7. 

 

 
 

Fig. 7 Convergence of modes for MPCG_AMIS method 
 

6. Summary 
 
The family of iterative methods, presented here, is 

based on preconditioned conjugate gradient approach with 
aggregation multilevel preconditioning, exhibits a high 
performance and robust convergence. The element-by-
element technique of coarse stiffness matrix preparation 
and sparse direct approach for its factoring allows us to 
keep a large size of aggregation model (till 200 000 
equations for direct solution on PC computers). It ensures 
the high stability against ill-conditioning and robust 
convergence. 

The generalized preconditioned conjugate gradient 
method with shifts in aggregation multilevel 
preconditioning allows us to overcome the lock of 
convergence, which is met for conventional PCG methods 
for eigenproblem solution. 

These methods are possible to be applied to analysis 
of large-scale poorly-conditioned finite element models of 
structural mechanics, particularly, to FEM models of 
multi-storey buildings. 
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