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I n t r o d u c t i o n  
 

 This document contains verification examples, which are used to assess the reliability of the results 

obtained in SCAD. In the verification examples the numerical results obtained in SCAD are compared with 

known theoretical solutions (exact and approximate) in the fields of statics, dynamics and stability of 

structures, as well as with experimental data and numerical results obtained with the help of other 

independent software. 

 All verification examples are provided with exhaustive initial data with design models, necessary 

explanations and descriptions of finite element models, as well as the references to publications which are 

the sources of the adopted target solutions (theoretical and experimental). There are analytical formulas for 

the calculation of the results based on the theoretical solutions for most verification examples. Results of 

the calculation in SCAD are given in tabular and graphical form. 

 The differences between the results obtained in SCAD and the target results (theoretical and 

experimental) are given as relative deviations in %, primarily for the extreme values (maximum and 

minimum) of the target solution, as well as for values that have a significant contribution to the stress-strain 

state of the structure, which, for example, can be estimated as the ratio of the considered value to the 

maximum extreme value according to a certain strength theory. The calculation of deviations was not 

performed in the areas of close proximity to zero solutions and to solutions with singularities, as well as in 

the areas where there is a distortion of solutions by the accepted boundary conditions. 
  

 

 



V e r i f i c a t i o n  E x a m p l e s        V e r i f i c a t i o n  M a t r i x  

V e r i f i c a t i o n  M a t r i x  9 

S C A D .  V E R I F I C A T I O N  M A T R I X  

 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Linear Statics 

1.  SSLL09 
Plane Truss Subjected to 

a Concentrated Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 
Displacements 0.00 

Forces 0.00 

2.  SSLL11 

Plane Hinged Bar System 

Subjected to a 

Concentrated Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 Displacements 0.00 

3.  SSLL12 

Plane Truss Subjected to 

Force, Thermal and 

Kinematic Actions   

Concentrated 

static load, initial 

displacement, 

thermal action 

Based on the 

analytical 

solution 

1 

Displacements 0.02 

Forces 0.00 

4.  T1 

Plane Hinged Bar System 

with Elements of Different 

Material Subjected to 

Temperature Variation 

Thermal action 

Based on the 

analytical 

solution 

1 Forces 0.00 

5.  T2 

Plane Hinged Bar System 

with Elements of the Same 

Material Subjected to 

Temperature Variation 

Thermal action 

Based on the 

analytical 

solution 

1 Stresses 0.00 

6.  CS01 

Spatial Hinged Bar 

System Subjected to a 

Concentrated Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

4 Forces 0.00 

7.  4.1 

Cantilever Beam 

Subjected to a 

Concentrated Load 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 

Displacements 0.00 

Forces 0.00 

8.  CS06 

Cantilever Beam 

Subjected to a 

Concentrated Shear Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 Displacements 0.00 

30 Displacements 0.07 

9.  4.9 

Vertical Cantilever Bar of 

Square Cross-Section with 

Longitudinal and 

Transverse Concentrated 

Loads at Its Free End 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 
Displacements 0.00 

Stresses 0.00 

50 
Displacements 0.12 

Stresses 1.67 

37 
Displacements 0.06 

Stresses 1.29 

10.  4.3 

Simply Supported Beam 

Subjected to a 

Concentrated Force and 

Uniformly Distributed 

Pressure 

Concentrated 

and distributed 

static loads 

Based on the 

analytical 

solution 

2 

Displacements 0.00 

Forces 0.00 

11.  4.5 

Three-Step Simply 

Supported Beam 

Subjected to 

Concentrated Forces  

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Displacements 0.00 

12.  4.4 

Doubly Clamped Beam 

Subjected to a Uniformly 

Distributed Load 

Distributed 

static load 

Based on the 

analytical 

solution 

2 

Displacements 0.00 

Forces 0.00 

13.  SSLL01 

Doubly Clamped Beam 

Subjected to a Uniformly 

Distributed Load, 

Concentrated 

Concentrated 

and distributed 

static loads 

Based on the 

analytical 

solution 

10 Displacements 0.05 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Longitudinal and Shear 

Forces and a Bending 

Moment Forces 0.00 

14.  SSLL03 

Two-Span Simply 

Supported Beam with an 

Intermediate Compliant 

Support Subjected to 

Concentrated Shear 

Forces Applied in the 

Middle of the Spans 

Concentrated 

static load 

Based on the 

analytical 

solution 

10, 51 

Displacements 0.00 

Forces 0.00 

15.  SSLL15 

Beam on the Elastic 

Horizontal Subgrade 

Subjected to 

Concentrated Vertical 

Forces 

Concentrated 

static load 

Based on the 

analytical 

solution 

3 
Displacements 0.06 

Forces 0.00 

3, 51 
Displacements 1.63 

Forces 0.28 

16.  SSLL16 

Simply Supported Beam 

on the Elastic Horizontal 

Subgrade Subjected to a 

Vertical Uniformly 

Distributed Load, 

Concentrated Vertical 

Force and Bending 

Moment 

Concentrated 

and distributed 

static loads 

Based on the 

analytical 

solution 

3 

Displacements 0.00 

Forces 0.00 

3, 51 

Displacements 0.00 

Forces 0.08 

17.  CS09 

Doubly Clamped Beam 

Subjected to the 

Transverse Displacement 

of One of its Ends 

Initial 

displacement 

Based on the 

analytical 

solution 

2 Forces 0.00 

18.  B1 

Plane System of Two 

Coaxial Bars Subjected to 

Temperature Variation 

Thermal action 

Based on the 

analytical 

solution 

2 Stresses 0.00 

19.  4.8 

Stress Strain State of a 

Simply Supported Beam 

Subjected to 

Longitudinal-Transverse 

Bending 

Concentrated 

static load 

Based on the 

analytical 

solution 

2, 51 
Displacements 0.11 

Forces 0.03 

2, 51 
Displacements 0.07 

Forces 0.01 

20.  SSLL10 

System of Cross Bars 

Subjected to a Distributed 

Load and a Concentrated 

Force in Their Plane  

Concentrated 

and distributed 

static loads 

Based on the 

analytical 

solution 

10 

Displacements 0.12 

Forces 0.12 

21.  SSLL05 

Cantilever Frame 

Subjected to a 

Concentrated Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 
Displacements 0.02 

Forces 0.00 

22.  SSLL14 

Single-Span Simply 

Supported Plane Frame 

with a Dual-Pitched 

Girder Subjected to a 

Vertical Uniformly 

Distributed Load, 

Concentrated 

and distributed 

static loads 

Based on the 

analytical 

solution 

2 Displacements 0.10 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Concentrated Vertical 

and Horizontal Forces 

and a Bending Moment   
Forces 0.00 

23. a SSLL04 

Spatial Bar System with 

Elastic Constraints 

Subjected to a 

Concentrated Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

10, 51 

Displacements 0.01 

Forces 0.01 

24.  4.7 

Ring Subjected to a 

Distributed Load Acting 

in Its Plane 

Distributed 

static load 

Based on the 

analytical 

solution 

10 

Displacements 0.00 

Forces 0.86 

25.  SSLL08 

Simply Supported 

Semicircular Arch of 

Constant Cross-Section 
Subjected to a 

Concentrated Force 

Acting in Its Plane 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 Displacements 0.05 

26.  4.6 

Strain State of a Split 

Circular Ring Subjected 

to Two Mutually 

Perpendicular Forces Px 

and Py, Acting in the 

Plane of the Ring 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Displacements 0.00 

27.  4.38 

Cantilever Curved Beam 

with a Transverse 

Concentrated Force at Its 

Free End 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Displacements 0.03 

50 Displacements 0.03 

37 Displacements 0.03 

28.  SSLL06 

Cantilever Circular Bar of 

Constant Cross-Section 

with Concentrated Forces 

and a Moment Acting in 

Its Plane at Its Free End 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 Displacements 0.07 

29.  SSLL07 

Cantilever Circular Bar of 

Constant Cross-Section 

with a Concentrated 

Force out of Its Plane at 

Its Free End 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 

Displacements 0.07 

Forces 0.18 

30.  SSLL13 

Single-Span Beam with a 

Prestressed Tie Subjected 

to a Uniformly 

Distributed Load 

Distributed 

static load, 

prestressing 

Based on the 

analytical 

solution 

1, 2 

Displacements 0.00 

Forces 0.00/ 

31.  
Influen

ce Line 

Two-Span Single-Storey 

Frame Subjected to a 

Constant Transverse Unit 

Force Moving Along the 

Girder Spans with a Small 

Speed. Plotting of 

Influence Lines of 

Internal Forces in the 

Frame Sections 

Concentrated 

static load 

Based on the 

analytical 

solution 

2 Forces 0.69 

32.  

KSLS0

1 

 

Bending of a Rectangular 

Deep Beam Rigidly 

Suspended along the Sides 

Subjected to a Uniformly 

Distributed Load Applied 

to Its Upper Side 

Static load 

distributed along 

the line 

Based on the 

analytical 

solution 

21 Displacements 4.56 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

33.  4.29 

Pure Bending of a Square 

Plate in the Plane Stress 

State Clamped on One 

Side and Simply 

Supported in the Center 

of the Opposite Side 

Concentrated 

static load 

Based on the 

analytical 

solution 

30, 2 Stresses 1.69 

30, 100 Stresses 1.69 

34.  4.22 

Compression and Bending 

of a Symmetric Wedge by 

Concentrated Forces 

Applied to Its Vertex 

(Michell’s Problem) 

Concentrated 

static load 

Based on the 

analytical 

solution 

50, 100 Stresses 0.16 

35.  4.23 

Bending of a Symmetric 

Wedge by a Concentrated 

Moment Applied to Its 

Vertex (Inglis Problem) 

Concentrated 

static load 

Based on the 

analytical 

solution 

50, 100 Stresses 2.21 

36.  4.24 

Bending of a Symmetric 

Wedge by a Uniformly 

Distributed Load Applied 

to the Surface of One of 

the Faces of the Wedge 

(Levi Problem) 

Static load 

distributed along 

the line 

Based on the 

analytical 

solution 

50 Stresses 0.89 

37.  4.25 

Triangular Dam 

Subjected to Its Self-

Weight and Hydrostatic 

Pressure 

Distributed 

surface static 

load and static 

load distributed 

along the line 

Based on the 

analytical 

solution 

30, 25 Stresses 1.70 

38.  4.26 

Plane Subjected to a 

Concentrated Moment 

and a Concentrated Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

30, 100 Stresses 6.60 

39.  4.21 

Bending of a Curved 

Beam of a Narrow 

Rectangular Cross-

Section by a Force 

Applied to Its Free End 

(Golovin’s Problem) 

Concentrated 

static load 

Based on the 

analytical 

solution 

50, 100 Stresses 1.67 

40.  4.27 

Unilateral Tension of a 

Plate with a Small 

Circular Hole (Kirsch 

Problem) 

Static load 

distributed along 

the line 

Based on the 

analytical 

solution 

30, 25 Stresses 5.15 

30, 25 Stresses 1.17 

41.  4.14 

Stress-Strain State of a 

Simply Supported 

Circular Plate Subjected 

to a Uniformly 

Distributed Transverse 

Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

50, 45 

Displacements 0.46 

Forces 2.70 

42.  4.15 

Stress-Strain State of a 

Clamped Circular Plate 

Subjected to a Uniformly 

Distributed Transverse 

Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

50, 45 

Displacements 0.59 

Forces 6.48 

43.  4.16 

Stress-Strain State of a 

Simply Supported 

Annular Plate Subjected 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

50 Displacements 0.78 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

to a Uniformly 

Distributed Transverse 

Load 
Forces 1.72 

44.  SSLS01 

Rectangular Narrow 

Cantilever Plate 

Subjected to a Uniformly 

Distributed Transverse 

Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

11 Displacements 0.00 

45.  SSLS27 

Torsion of a Rectangular 

Narrow Cantilever Plate 

by a Pair of Concentrated 

Forces 

Concentrated 

static load 

Based on the 

analytical 

solution 

11 Displacements 0.20 

46.  4.17 

Square Plate Simply 

Supported along the 

Perimeter Subjected to a 

Uniformly Distributed 

Load  

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

20 

Displacements 0.09 

Forces 0.09 

47.  SSLS24 

Rectangular Plate Simply 

Supported along the 

Perimeter Subjected to a 

Uniformly Distributed 

Transverse Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

20 
Displacements 0.38 

Forces 1.57 

20 
Displacements 0.18 

Forces 0.60 

20 
Displacements 0.00 

Forces 0.64 

48.  SSLS26 

Rectangular Plate Simply 

Supported at Three 

Vertices Subjected to a 

Concentrated Force and 

Concentrated Moments 

out of Its Plane 

Concentrated 

static load 

Based on the 

analytical 

solution 

20 Displacements 0.00 

49.  4.19 

Stress-Strain State of a 

Clamped Hexagonal Plate 

Subjected to a Uniformly 

Distributed Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

44, 42 

Displacements 0.77 

Forces 0.69 

50.  4.20 

Clamped Rectangular 

Plate of Constant 

Thickness Subjected to 

Thermal Loading 

Temperature 

gradient across 

the thickness 

Based on the 

analytical 

solution 

41 

Displacements ─ 

Forces 0.00 

Stresses 0.00 

51.  RMP 

Simply Supported Thick 

Square Plate Subjected to 

a Uniformly Distributed 

Transverse Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

150 Displacements 0.07 

150 Displacements 0.00 

150 Displacements 0.00 

52.  4.34 

Two-Ribbed Beam 

Subjected to Uniformly 

Distributed Loads 

Applied in the Plane of the 

Ribs 

Static load 

distributed along 

the line 

Based on the 

analytical 

solution 

27 Stresses 0.92 

53.  4.35 

Curved Hollow Section 

Beam of a Bridge 

Superstructure Subjected 

to a Concentrated Force 

Concentrated 

static load 

Based on the 

experiment 
150 

Displacements 9.9 

Stresses 10,9 

54.  4.31 
Cylindrical Shell with 

Simply Supported Edges 

Distributed 

surface static 

Based on the 

analytical 
44 Displacements 0.19 



V e r i f i c a t i o n  E x a m p l e s            V e r i f i c a t i o n  M a t r i x  

14  V e r i f i c a t i o n  M a t r i x  

 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Subjected to Uniform 

Internal Pressure 

load solution 
Forces 0.83 

55.  4.32 

Cylindrical Vertical Tank 

with a Wall of Constant 

Thickness with a Flat 

Bottom Subjected to 

Internal Fluid Pressure 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

44 

Displacements 1.47 

Forces 5.73 

56.  4.33 

Cylindrical Shell with 

Free Edges at a 

Temperature Gradient 

across the Thickness (in 

the Radial Direction) 

Temperature 

gradient across 

the thickness 

Based on the 

analytical 

solution 

44 

Displacements 6.67 

Stresses 1.04 

57.  4.36a 

Thick Square Slab Simply 

Supported along the Sides 

Subjected to a Transverse 

Load Distributed over the 

Upper Face According to 

the Cosine Law 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

36 

Displacements 0.3 

Stresses 1.65 

58.  4.37 

Thick Circular Slab 

Clamped along the Side 

Surface Subjected to a 

Load Uniformly 

Distributed over the 

Upper Face 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

35, 37 

Displacements 7.59 

Stresses 9.12 

59.  
SSLV0

1 

Cylindrical Body Free 

from Restraints Subjected 

to a Longitudinal Load 

Uniformly Distributed 

over the Edges 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

61 Displacements 0.00 

60.  

Flate_p

late_Ci

rcular_

column.

spr 

Square Panel of a Flat 

Slab Rigidly Connected to 

a Column of a Circular 

Cross-Section Subjected 

to a Uniformly 

Distributed Transverse 

Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

15, 20, 100 Stresses 2.3 

61.  

Flate_p

late_Sq

uare_co

lumn.sp

r 

Square Panel of a Flat 

Slab Rigidly Connected to 

a Column of a Square 

Cross-Section Subjected 

to a Uniformly 

Distributed Transverse 

Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

20, 100 Stresses 9.45 

62.  
Lave.sp

r 

Elastic Half-Space 

Subjected to a Transverse 

Load Uniformly 

Distributed over a 

Rectangular Surface. 

Love’s Problem. 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

37 

Displacements 3.2 

Stresses 7.75 

Linear Dynamics 

1.  5.11 

Plane Truss Subjected to 

Instantaneous Pulses 

Concentrated in Non-

Supporting Nodes of the 

Bottom Chord 

Concentrated 

dynamic load 

 

Based on the 

analytical 

solution 

 

1 

 

Natural 

frequencies 
5.10 

Displacements 2.46 

2.  5.1 

Natural Oscillations of a 

Spatial Pipeline Clamped 

at the Edges (Hougaard’s 

Problem) 

Modal analysis 

Based on the 

analytical 

solution 

5 
Natural 

frequencies 
8.26 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

3.  
5.12_Su

dd_L 

Simply Supported 

Weightless Beam with 

Two Concentrated Masses 

and Transverse Sudden 

Constant Load Applied to 

One of Them 

Concentrated 

dynamic load 

 

Based on the 

analytical 

solution 

 

2 

 

Natural 

frequencies 
0.00 

Displacements 0.09 

Forces 0.91 

4.  
5.12_H

arm_L 

Simply Supported 

Weightless Beam with 

Two Concentrated Masses 

and Transverse Harmonic 

Exciting Force Applied to 

One of Them 

Concentrated 

dynamic load 

 

Based on the 

analytical 

solution 

 

2 

 

Natural 

frequencies 
0.00 

Displacements 6.16 

5.  

Test 

5.12 

Harm 

L 

Damp 

Simply Supported 

Weightless Beam with 

Two Concentrated Masses 

and Transverse Harmonic 

Exciting Force Applied to 

One of Them Taking into 

Account the Energy 

Dissipation due to 

Internal Friction 

Concentrated 

dynamic load 

 

Based on the 

analytical 

solution 

 

2 

 

Natural 

frequencies 
0.00 

Displacements 6.39 

6.  
Test 

5.13 

Simply Supported Beam 

with a Distributed Mass 

Subjected to a Transverse 

Harmonic Exciting Force 

Applied in the Middle of 

the Span 

Concentrated 

dynamic load 

 

Based on the 

analytical 

solution 

 

3 

 

Natural 

frequencies 
0.73 

Displacements 3.68 

7.  

Test 

DIN B 

ML 

Simply Supported Beam 

with a Distributed Mass 

Subjected to a Constant 

Shear Force Moving along 

the Span of the Beam at a 

Constant Speed 

Concentrated 

dynamic load 

 

Based on the 

analytical 

solution 

 

3 

 

Natural 

frequencies 
0.73 

Displacements 0.18 

8.  

Test 

DIN B 

IL 

Simply Supported Beam 

with a Distributed Mass 

Subjected to a Uniformly 

Distributed Instantaneous 

Pulse (Impact of a Beam 

with Immovable 

Supports) 

Distributed 

dynamic load 

 

Based on the 

analytical 

solution 

 

3 

 

Natural 

frequencies 
0.73 

Displacements 0.36 

Forces 14.06 

9.  

Test 

DIN B 

SL 

Simply Supported Beam 

with a Distributed Mass 

Subjected to a Kinematic 

Excitation of Supports 

(Seismic Action) 

Dynamic 

displacement 

Based on the 

analytical 

solution 

 

3 

 

Natural 

frequencies 
0.05 

Displacements 0.80 

Forces 0.73 

10.  5.14 

Cantilever Weightless 

Column with a 

Concentrated Mass at the 

Free End Subjected to a 

Horizontal Kinematic 

Dynamic 

displacement 

Based on the 

analytical 

solution 

 

5 
Natural 

frequencies 
0.00 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Displacement of a Support 

(Seismogram Based 

Analysis) 

Displacements 0.39 

11.  5.7 

Natural Oscillations of a 

Simply Supported 

Circular Plate 

Modal analysis 

Based on the 

analytical 

solution 

20, 15 
Natural 

frequencies 
1.57 

12.  5.6 
Natural Oscillations of a 

Clamped Circular Plate 
Modal analysis 

Based on the 

analytical 

solution 

20, 15 
Natural 

frequencies 
1.89 

13.  5.5 
Natural Oscillations of a 

Square Cantilever Plate 
Modal analysis 

Based on the 

analytical 

solution 

20 
Natural 

frequencies 
1.62 

14.  5.2 

Natural Oscillations of a 

Simply Supported Square 

Plate 

Modal analysis 

Based on the 

analytical 

solution 

20 
Natural 

frequencies 
0.82 

15.  5.3 

Natural Oscillations of a 

Simply Supported 

Rectangular Plate 

Modal analysis 

Based on the 

analytical 

solution 

20 
Natural 

frequencies 
0.50 

16.  5.4 
Natural Oscillations of a 

Clamped Square Plate 
Modal analysis 

Based on the 

analytical 

solution 

20 
Natural 

frequencies 
0.81 

17.  
Test 5.8 

S 

Natural Oscillations of a 

Simply Supported 

Circular Cylindrical Shell  

Modal analysis 

Based on the 

analytical 

solution 

50 
Natural 

frequencies 
0.86 

18.  
Test 5.8 

C 

Natural Oscillations of a 

Clamped Circular 

Cylindrical Shell 

Modal analysis 

Based on the 

analytical 

solution 

50 
Natural 

frequencies 
2.38 

19.  Test 5.9 

Natural Oscillations of a 

Cantilever Open 

Cylindrical Shell 

Modal analysis 
Based on the 

experiment 
50 

Natural 

frequencies 
5.02 

20.  
DI_F.S

PR 

Plane Frame Subjected to 

a Uniformly Distributed 

Instantaneous Pulse 

Pulse 

Based on the 

analytical 

solution 

2 

Natural 

frequencies 
0.00 

Displacements 0.00 

Forces 1.25 

21.  
LinSpe

ctral 

Seismic Response of a 

Beam according to the 

Linear Spectral Theory 

Dynamic 

displacement 

Based on the 

analytical 

solution 

3 

Natural 

frequencies 
0,06 

Displacements 1.75 

Stresses 1.85 

22.  

Non-uniform Damping. 

Return to the Static 

Equilibrium Position 

    
 

23.  Non-uniform Damping      

Linear Stability 

1.  CB01 

Stability of a Simply 

Supported Beam 

Subjected to a 

Concentrated 

Longitudinal Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 Critical force 0.00 

2.  CB02 

Stability of a Clamped 

Beam Subjected to a 

Concentrated 

Longitudinal Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

10 Critical force 0.00 

3.  

Leg of 

varying 

section 

Stability of a Cantilever 

Column with a Step 

Change in Cross-Section 

Subjected to Longitudinal 

Compressive Forces 

Applied to the 

Intermediate and End 

Sections 

Concentrated 

static load 

Based on the 

analytical 

solution 

2 

Critical force 0.00 

Unsupported 

length of 

columns 

0.00 

150 

Critical force 2.93 

Unsupported 

length of 

columns 

— 

4.  
Frame 

5a1 

Stability of the System of 

Three Equally Loaded 

Concentrated 

static load 

Based on the 

analytical 
2, 100 Critical force 0.01 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Columns of Different 

Rigidity Hingedly 

Interconnected by Girders 

solution Unsupported 

length of 

columns 

0.00 

5.  
Frame 

5a2 

Stability of the System of 

Three Differently Loaded 

Columns of the Same 

Rigidity Hingedly 

Interconnected by Girders 

Concentrated 

static load 

Based on the 

analytical 

solution 

2, 100 

Critical force 0.00 

Unsupported 

length of 

columns 

0.00 

6.  
Frame 

5б 

Stability of the System of 

Three Differently Loaded 

Columns of Different 

Rigidity Interconnected 

by Girders Infinitely 

Rigid in Bending 

Concentrated 

static load 

Based on the 

analytical 

solution 

2, 100 

Critical force 0.00 

Unsupported 

length of 

columns 

0.00 

7.  

Frame 

leg 

hard 

Stability of the Frame of 

Two Simply Supported 

Equally Loaded Rigid 

Columns Rigidly 

Interconnected by a 

Girder 

Concentrated 

static load 

Based on the 

analytical 

solution 

2, 100 Critical force 0.00 

8.  6.1 

Stability of a Three-Span 

Two-Storey Frame 

Subjected to 

Concentrated 

Longitudinal Forces 

Applied to the Columns in 

the Joints with Girders 

Concentrated 

static load 

Based on the 

analytical 

solution 

2, 100 Critical force 0.00 

9.  
Arch 

hinged 

Stability of a Circular 

Two-Hinged Arch of a 

Constant Cross-Section 

Subjected to Hydrostatic 

Pressure 

Distributed 

static load 

Based on the 

analytical 

solution 

2 Critical load 0.23 

10.  6.2 

Stability of In-Plane 

Bending of a Cantilever 

Strip of a Rectangular 

Cross-Section by a Shear 

force Applied at the Free 

End 

Concentrated 

static load 

Based on the 

analytical 

solution 

150 Critical force 4.50 

11.  
Stabilit

y Bar 1 

Stability of a Cantilever 

Beam of a Square Cross-

Section Subjected to a 

Concentrated 

Longitudinal Compressive 

Force Centrally Applied 

at the Free End (Central 

Compression) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 0.01 

150 Critical force 0.48 

37 Critical force 0.58 

12.  
Stabilit

y Bar 2 

Stability of a Cantilever 

Beam of a Square Cross-

Section Subjected to a 

Concentrated Transverse 

Bending Force Centrally 

Applied at the Free End 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 0.76 

150 Critical force 2.28 

37 Critical force 0.31 

13.  
Stabilit

y Bar 3 

Stability of a Cantilever 

Beam of a Square Cross-

Section Subjected to a 

Concentrated 

static load 

Based on the 

analytical 

solution 

5, 100 Critical force 0.64 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Concentrated Transverse 

Bending Force Applied to 

the Upper Edges of the 

Free End 
150 Critical force 1.80 

37 Critical force 4.26 

14.  
Stabilit

y Bar 4 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in and 

out of the Bending Plane 

Subjected to 

Concentrated Bending 

Moments Applied at the 

Ends and Equal in Value 

(Pure Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 0.59 

150, 5 Critical force 1.28 

15.  
Stabilit

y Bar 5 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in the 

Bending Plane and 

Clamped out of the 

Bending Plane Subjected 

to Concentrated Bending 

Moments Applied at the 

Ends and Equal in Value 

(Pure Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 0.64 

150, 5 Critical force 5.36 

16.  
Stabilit

y Bar 6 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in and 

out of the Bending Plane 

Subjected to 

Concentrated 

Longitudinal Bending 

Forces Applied to the 

Upper Edges of the Ends 

and Equal in Value 

(Longitudinal Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5, 100 Critical force 0.01 

150, 5 Critical force 0.48 

17.  
Stabilit

y Bar 7 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in the 

Bending Plane and 

Clamped out of the 

Bending Plane Subjected 

to Concentrated 

Longitudinal Bending 

Forces Applied to the 

Upper Edges of the Ends 

and Equal in Value 

(Longitudinal Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5, 100 Critical force 0.02 

150, 5 Critical force 8.18 

18.  
Stabilit

y Bar 8 

Stability of a Cantilever 

Beam of a Square Cross-

Section Subjected to a 

Load Uniformly 

Distributed along Its 

Longitudinal Axis 

Distributed 

static load 

Based on the 

analytical 

solution 

5 Critical load 0.45 

150 Critical load 3.30 

37 Critical load 5.73 

19.  
Stabilit

y Bar 9 

Stability of a Cantilever 

Beam of a Square Cross-

Section Subjected to a 

Load Uniformly 

Distributed along the 

Longitudinal Axis of Its 

Upper Face 

Distributed 

static load 

Based on the 

analytical 

solution 

5, 100 Critical load 0.20 

150 Critical load 1.71 

37 Critical load 3.67 
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20.  

Stabilit

y Bar 

10 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in and 

out of the Bending Plane 

Subjected to a 

Concentrated Transverse 

Bending Force Applied in 

the Middle of the Span at 

the Level of the 

Longitudinal Axis 

(Transverse Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 0.52 

150, 5 Critical force 2.91 

21.  

Stabilit

y Bar 

11 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in and 

out of the Bending Plane 

Subjected to a 

Concentrated Transverse 

Bending Force Applied in 

the Middle of the Span at 

the Level of the 

Longitudinal Axis of the 

Upper Face (Transverse 

Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5, 100 Critical force 1.21 

150, 5 Critical force 4.03 

22.  

Stabilit

y Bar 

12 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in the 

Bending Plane and 

Clamped out of the 

Bending Plane Subjected 

to a Concentrated 

Transverse Bending Force 

Applied in the Middle of 

the Span at the Level of 

the Longitudinal Axis 

(Transverse Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 3.19 

150, 5 Critical force 9.42 

23.  

Stabilit

y Bar 

13 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in and 

out of the Bending Plane 

Subjected to a Transverse 

Load Uniformly 

Distributed along Its 

Longitudinal Axis 

Distributed 

static load 

Based on the 

analytical 

solution 

5 Critical load 0.53 

150, 5 Critical load 2.44 

24.  

Stabilit

y Bar 

14 

Stability of a Beam of a 

Square Cross-Section 

Simply Supported in the 

Bending Plane and 

Clamped out of the 

Bending Plane Subjected 

to a Transverse Load 

Uniformly Distributed 

along Its Longitudinal 

Axis 

Distributed 

static load 

Based on the 

analytical 

solution 

5 Critical load 2.27 

150, 5 Critical load 7.25 

25.  

Stabilit

y 

Flanged 

Beam 1 

Stability of an I-beam 

Simply Supported in and 

out of the Bending Plane 

Subjected to 

Concentrated Bending 

Moments Applied at the 

Ends and Equal in Value 

(Pure Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 1.19 

150 Critical force 3.52 
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26.  

Stabilit

y 

Flanged 

Beam 2 

Stability of an I-beam 

Simply Supported in and 

out of the Bending Plane 

Subjected to a 

Concentrated Transverse 

Bending Force Applied in 

the Middle of the Span at 

the Level of the 

Longitudinal Axis 

(Transverse Bending) 

Concentrated 

static load 

Based on the 

analytical 

solution 

5 Critical force 1.38 

150 Critical force 1.65 

27.  

Stabilit

y 

Flanged 

Beam 3 

Stability of an I-beam 

Simply Supported in and 

out of the Bending Plane 

Subjected to a Transverse 

Load Uniformly 

Distributed along Its 

Longitudinal Axis 

Distributed 

static load 

Based on the 

analytical 

solution 

5 Critical load 1.21 

150 Critical load 0.98 

28.  

Stabilit

y 

Flanged 

Beam 4 

Stability of an I-beam 

Simply Supported in and 

out of the Bending Plane 

Subjected to a Load 

Uniformly Distributed 

along the Longitudinal 

Axis of Its Upper Flange 

Distributed 

static load 

Based on the 

analytical 

solution 

5 Critical load 1.54 

150 Critical load 1.87 

29.  6.6 

Stability of a Simply 

Supported Rectangular 

Plate Uniformly 

Compressed in One 

Direction 

Static load 

distributed along 

the line 

Based on the 

analytical 

solution 

44 

Critical 

stresses 

1.95 

50 0.00 

30.  6.7 

Stability of a Simply 

Supported Square Plate 

Uniformly Compressed in 

One Direction 

Static load 

distributed along 

the line 

Based on the 

analytical 

solution 

44 
Critical 

stresses 

1.26 

50 0.00 

31.  6.8 

Stability of a Simply 

Supported Square Plate 

Uniformly Compressed in 

One Direction under 

Kinematic Action 

Initial 

displacement 

Based on the 

analytical 

solution 

44 

Critical 

stresses 

1.27 

50 0.00 

32.  6.9 

Stability of a Rectangular 

Simply Supported Plate 

under Pure Shear  

Static load 

distributed along 

the line 

Based on the 

analytical 

solution 

44 
Critical 

stresses 

3.26 

50 0.05 

33.  
6.10 a 

model 1 

Stability of a Rectangular 

Simply Supported Plate 

with Longitudinal 

Stiffeners Uniformly 

Compressed in the 

Longitudinal Direction 

(Model 1) 

Distributed 

along the line 

and 

concentrated 

static loads 

Based on the 

analytical 

solution 

50, 5 
Critical 

stresses 
0.10 

34.  
6.10 a 

model 2 

Stability of a Rectangular 

Simply Supported Plate 

with Longitudinal 

Stiffeners Uniformly 

Compressed in the 

Longitudinal Direction 

(Model 2) 

Static loads 

distributed along 

the line 

Based on the 

analytical 

solution 

50 
Critical 

stresses 
2.55 
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35.  6.10 b  

Stability of a Rectangular 

Simply Supported 

Orthotropic Plate 

Uniformly Compressed in 

One Direction 

Static loads 

distributed along 

the line 

Based on the 

analytical 

solution 

50 
Critical 

stresses 
0.03 

36.  6.11 S 

Stability of a Cylindrical 

Thin-Walled Shell with 

Simply Supported Edges 

Subjected to Uniform 

External Pressure 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

50 
Critical 

pressure 
1.94 

Nonlinear Statics 

1.  
Contact 

1 

Three-Span Beam with 

One Clamped End and 

Three Rigid One-Sided 

Supports Subjected to 

Concentrated Forces 

above Them 

Concentrated 

static load 

Based on the 

analytical 

solution 

2, 352 

Displacements 0.00 

Forces 1.67 

2.  
Contact 

2 

Rigid Body Restrained by 

Five Springs of the Same 

Rigidity Working Only in 

Tension Subjected to a 

Concentrated Force 

Concentrated 

static load 

Based on the 

analytical 

solution 

100, 352 Forces 0.07 

3.  
Tunnel 

lining 

Circular Tunnel Lining 

Subjected to the Given 

Active Vertical and 

Horizontal Earth Pressure  

and Passive Lateral Earth 

Pressure in the Contact 

Area 

Concentrated 

static load 

Based on the 

analytical 

solution 

5, 352 Forces 0.01 

4.  
Contact 

3 

Contact with Detachment 

for a Layer and Subgrade 

with a Concentrated 

Shear force Applied to the 

Layer 

Concentrated 

static load 

Based on the 

analytical 

solution 

30, 352 
Size of the 

contact area 
3.77 

5.  

NL 

CANA

T 

Flexible Thread with 

Supports in One Level 

Subjected to a Uniformly 

Distributed Transverse 

Load 

Distributed 

static load 

Based on the 

analytical 

solution 

302 

Displacements 0.02 

Forces 0.34 

6.  Ring 

Flexible Ring Subjected to 

Two Mutually Balanced 

Radially Compressive 

Forces 

Concentrated 

static load for a 

non-inflectional 

elastic curve 

Based on the 

analytical 

solution 

310 

Displacements 3.29 

Forces 0.05 

7.  NEL 

Flexible Long 

Rectangular Plate Simply 

Supported along the 

Longitudinal Edges 

Subjected to a Uniformly 

Distributed Transverse 

Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

341 

Displacements 0.06 

Stresses 4.26 

8.  7.6 

Flexible Square Plate 

Simply Supported along 

the Perimeter Subjected 

to a Uniformly 

Distributed Transverse 

Load 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

344 

Displacements 1.87 

Stresses 1.80 

9.  7.7 

Simply Supported 

Flexible Circular Plate 

Subjected to a Uniformly 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

342, 344 Displacements 1.14 



V e r i f i c a t i o n  E x a m p l e s            V e r i f i c a t i o n  M a t r i x  

22  V e r i f i c a t i o n  M a t r i x  

 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Distributed Transverse 

Load  Stresses 1.67 

10.  Mast 

Double-Guyed Mast 

Subjected to Static Loads 

and Prestressing Forces 

Concentrated 

and distributed 

static loads 

Based on the 

analytical 

solution 

5, 308 Forces 0.23 

11.  

Plate-

membr

ane 4 

Square Membrane with a 

Compliant Contour  

Distributed 

surface static 

load 

Experimental 

data 
341 Displacements 5.84 

Pathological Tests 

1.  

Patch 

test 

Consta

nt 

stress 

Shell 

Rectangular Plate under 

the Constant Stresses on 

the Midsurface 

Initial 

displacement 

Based on the 

analytical 

solution 

42 Stresses 0.00 

44 Stresses 0.00 

45 Stresses 0.00 

50 Stresses 0.00 

2.  

Patch 

test 

Consta

nt 

curvatu

re Shell 

Rectangular Plate with 

Constant Curvature 

Initial 

displacement 

Based on the 

analytical 

solution 

42 Stresses 0.00 

44 Stresses 0.00 

45 Stresses 0.00 

50 Stresses 0.00 

3.  

Patch 

test 

Consta

nt 

stress 

Solid 

Cube under the Constant 

Stresses throughout the 

Volume 

Initial 

displacement 

Based on the 

analytical 

solution 

32 Stresses 0.00 

34 Stresses 0.00 

36 Stresses 0.00 

37 Stresses 0.00 

4.  

Straigh

t 

cantilev

er 

beam 

Rectilinear Cantilever 

Beam with Concentrated 

Longitudinal and Shear 

Forces and a Torque at Its 

Free End 

Concentrated 

static load 

Based on the 

analytical 

solution 

42 

regular 

mesh 

Displacements 96.85 

42 

trapezoida

l mesh 

Displacements 98.52 

42 

parallelog

ram mesh 

Displacements 97.78 

142 

regular 

mesh 

Displacements 96.85 

142 

trapezoida

l mesh 

Displacements 98.52 

142 

parallelog

ram mesh 

Displacements 97.78 

44 

regular 

mesh 

Displacements 90.65 

44 

trapezoida

l mesh 

Displacements 97.31 

44 

parallelog

ram mesh 

Displacements 96.57 

144 

regular 

mesh 

Displacements 90.37 

144 

trapezoida

l mesh 

Displacements 97.22 
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144 

parallelog

ram mesh 

Displacements 96.11 

45 

regular 

mesh 

Displacements 3.29 

45 

trapezoida

l mesh 

Displacements 3.69 

45 

parallelog

ram mesh 

Displacements 2.97 

145 

regular 

mesh 

Displacements 4.08 

145 

trapezoida

l mesh 

Displacements 4.25 

145 

parallelog

ram mesh 

Displacements 4.13 

50 

regular 

mesh 

Displacements 2.51 

50 

trapezoida

l mesh 

Displacements 2.79 

50 

parallelog

ram mesh 

Displacements 2.78 

150 

regular 

mesh 

Displacements 3.37 

150 

trapezoida

l mesh 

Displacements 3.53 

150 

parallelog

ram mesh 

Displacements 3.43 

36 

regular 

mesh 

Displacements 97.48 

36 

trapezoida

l mesh 

Displacements 98.96 

36 

parallelog

ram mesh 

Displacements 98.59 

37 

regular 

mesh 

Displacements 15.05 

37 

trapezoida

l mesh 

Displacements 24.81 

37 

parallelog

ram mesh 

Displacements 15.09 

5.  

Curved 

cantilev

er 

beam 

Curvilinear Cantilever 

Beam with Concentrated 

Shear Forces at Its Free 

End 

Concentrated 

static load 

Based on the 

analytical 

solution 

42 Displacements 97.50 

142 Displacements 97.50 

44 Displacements 92.76 

144 Displacements 92.59 

45 Displacements 2.74 

145 Displacements 2.57 

50 Displacements 1.41 

150 Displacements 1.95 

36 Displacements 92.77 

37 Displacements 6.01 
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6.  

Twisted 

cantilev

er 

beam 

Twisted Cantilever Beam 

with Concentrated Shear 

Forces at Its Free End 

Concentrated 

static load 

Based on the 

analytical 

solution 

42 Displacements 16.21 

142 Displacements 14.63 

44 Displacements 65.00 

144 Displacements 65.23 

45 Displacements 0.70 

145 Displacements 24.74 

50 Displacements 27.24 

150 Displacements 24.55 

36 Displacements 79.38 

37 Displacements 0.63 

7.  

Bendin

g of 

square 

flat 

plate 

Simply 

support

ed 

Simply Supported Flat 

Square Plate Subjected to 

a Transverse Load 

Uniformly Distributed 

over the Entire Area and 

a Concentrated Shear 

Force Applied in the 

Center 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 0.39 

44, FE 

mesh 8x8 
Displacements 0.32 

45, FE 

mesh 8x8 
Displacements 0.00 

50, FE 

mesh 8x8 
Displacements 0.00 

36, FE 

mesh 

128x128 

Displacements 24.64 

37, FE 

mesh 

128x128 

Displacements 0.39 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 0.95 

44, FE 

mesh 8x8 
Displacements 0.54 

45, FE 

mesh 8x8 
Displacements 0.01 

50, FE 

mesh 8x8 
Displacements 0.02 

36, FE 

mesh 

128x128 

Displacements 25.08 

37, FE 

mesh 

128x128 

Displacements 0.38 

8.  

Bendin

g of 

square 

flat 

plate 

Clampe

d 

support

ed 

Flat Square Plate 

Clamped along the Outer 

Edges and Subjected to a 

Transverse Load 

Uniformly Distributed 

over the Entire Area and 

a Concentrated Shear 

Force Applied in the 

Center 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 0.71 

44, FE 

mesh 8x8 
Displacements 0.63 

45, FE 

mesh 8x8 
Displacements 0.00 

50, FE 

mesh 8x8 
Displacements 0.00 

36, FE 

mesh 

 

 128x128 

Displacements 27.91 

37, FE 

mesh 

 

 128x128 

Displacements 0.08 

Concentrated 

static load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 1.71 

44, FE 

mesh 8x8 
Displacements 1.05 

45, FE 

mesh 8x8 
Displacements 0.04 

50, FE 

mesh 8x8 
Displacements 0.07 

36, FE 

mesh 

128x128 

Displacements 27.66 
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37, FE 

mesh 

128x128 

Displacements 0.18 

9.  

Bendin

g of 

rectang

ular 

flat 

plate 

Simply 

support

ed 

Simply Supported Flat 

Rectangular Plate 

Subjected to a Transverse 

Load Uniformly 

Distributed over the 

Entire Area and a 

Concentrated Shear Force 

Applied in the Center 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 0.10 

44, FE 

mesh 8x8 
Displacements 0.45 

45, FE 

mesh 8x8 
Displacements 0.00 

50, FE 

mesh 8x8 
Displacements 0.00 

36, FE 

mesh 

128x128 

Displacements 28.81 

37, FE 

mesh 

128x128 

Displacements 0.02 

Concentrated 

static load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 12.54 

44, FE 

mesh 8x8 
Displacements 7.68 

45, FE 

mesh 8x8 
Displacements 0.65 

50, FE 

mesh 8x8 
Displacements 0.68 

36, FE 

mesh 

128x128 

Displacements 43.08 

37, FE 

mesh 

128x128 

Displacements 0.09 

10.  

Bendin

g of 

rectang

ular 

flat 

plate 

Clampe

d 

support

ed 

Flat Rectangular Plate 

Clamped along the Outer 

Edges and Subjected to a 

Transverse Load 

Uniformly Distributed 

over the Entire Area and 

a Concentrated Shear 

Force Applied in the 

Center 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 1.34 

44, FE 

mesh 8x8 
Displacements 0.04 

45, FE 

mesh 8x8 
Displacements 0.04 

50, FE 

mesh 8x8 
Displacements 0.04 

36, FE 

mesh 

128x128 

Displacements 30.29 

37, FE 

mesh 

128x128 

Displacements 0.00 

Concentrated 

static load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 20.79 

44, FE 

mesh 8x8 
Displacements 12.04 

45, FE 

mesh 8x8 
Displacements 2.02 

50, FE 

mesh 8x8 
Displacements 1.85 

36, FE 

mesh 

128x128 

Displacements 45.90 

37, FE 

mesh 

128x128 

Displacements 0.21 

11.  

Scordel

is-Lo 

roof 

Open Cylindrical Shell 

Rectangular in Plan and 

Simply Supported along 

the Curvilinear Edges 

Subjected to a Transverse 

Load Uniformly 

Distributed over the 

Entire Area 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

42, FE 

mesh 8x8 
Displacements 15.04 

44, FE 

mesh 8x8 
Displacements 4.70 

45, FE 

mesh 8x8 
Displacements 0.94 

50, FE 

mesh 8x8 
Displacements 0.87 
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36, FE 

mesh 

128x128 

Displacements 4.86 

37, FE 

mesh 

128x128 

Displacements 0.58 

12.  

Quadra

nt of a 

spheric

al shell 

Free Hemispherical Shell 

with a Circular Pole Hole 

Subjected to Two 

Orthogonal Pairs of 

Mutually Balanced Radial 

Tensile and Compressive 

Forces at the Equator 

Concentrated 

static load 

Based on the 

analytical 

solution 

42, FE 

mesh 

32x32 

Displacements 1.38 

44, FE 

mesh 

32x32 

Displacements 0.85 

45, FE 

mesh 

32x32 

Displacements 1.38 

50, FE 

mesh 

32x32 

Displacements 0.85 

36, FE 

mesh 

128x128 

Displacements 62.77 

37, FE 

mesh 

128x128 

Displacements 0.32 

13.  

Nearly 

incomp

ressible 

thick 

cylinde

r 

Nearly Incompressible 

Thick-Walled Cylinder 

under Plane Deformation 

Subjected to Uniformly 

Distributed Internal 

Pressure 

Distributed 

surface static 

load 

Based on the 

analytical 

solution 

42, 

Poisson’s 

ratio 0.49 

Displacements 1.05 

42, 

Poisson’s 

ratio 0.499 

Displacements 1.15 

42, 

Poisson’s 

ratio 

0.4999 

Displacements 1.17 

44, 

Poisson’s 

ratio 0.49 

Displacements 1.94 

44, 

Poisson’s 

ratio 0.499 

Displacements 2.04 

44, 

Poisson’s 

ratio 

0.4999 

Displacements 2.05 

45, 

Poisson’s 

ratio 0.49 

Displacements 3.08 

45, 

Poisson’s 

ratio 0.499 

Displacements 3.20 

45, 

Poisson’s 

ratio 

0.4999 

Displacements 3.22 

50, 

Poisson’s 

ratio 0.49 

Displacements 3.04 

50, 

Poisson’s 

ratio 0.499 

Displacements 3.20 

50, 

Poisson’s 

ratio 

0.4999 

Displacements 3.18 

36, 

Poisson’s 

ratio 0.49 

Displacements 15.48 
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36, 

Poisson’s 

ratio 0.499 

Displacements 64.07 

36, 

Poisson’s 

ratio 

0.4999 

Displacements 94.65 

37, 

Poisson’s 

ratio 0.49 

Displacements 0.54 

37, 

Poisson’s 

ratio 0.499 

Displacements 1.19 

37, 

Poisson’s 

ratio 

0.4999 

Displacements 11.36 

Energy Analysis 

1.  
Energy

94A 

Frame Subjected to 

Various Vertical Forces  
Nodal load 

Based on the 

analytical 

solution 

2 

Estimation of 

the role of 

subsystems in 

the case of 

buckling 

— 

2.  
Energy

94В 

Frame Subjected to 

Vertical Forces 
Nodal load 

Based on the 

analytical 

solution 

2 

Estimation of 

the role of 

subsystems in 

the case of 

buckling 

— 

3.  Energy 

Symmetric Frame 

Subjected to Vertical 

Forces — Detection of 

“Weak” Elements 

Nodal load 

Based on the 

analytical 

solution 

2 

Estimation of 

the role of 

subsystems in 

the case of 

buckling 

— 

Erection 

1.  Test-01 

Static Analysis of Stress-

Strain State of a Building 

Taking into Account 

Genetic Nonlinearity 

Distributed loads 

Comparison 

with the ANSYS 

solution 

44,5 
displacements 2.5 

forces 6.6 

2.  Truss 

Determination of Stress-

Strain State Taking into 

Account Genetic 

Nonlinearity 

Nodal loads 

Based on the 

analytical 

solution 

1 
displacements 0.21 

forces 0.91 

3.  

Rearra

nge_Fr

ame 

Replacement of a Column 

of a Two-Span Single-

Storey Frame Subjected 

to a Constant Load  

Distributed loads 

Based on the 

analytical 

solution 

5 forces 0.0 

4.  

Wiring

_Girder

.MPR 

Sequential Erection of a 

Steel Reinforced Concrete 

Single-Span Beam 

Distributed loads 

Based on the 

analytical 

solution 

5,44,100 displacements 1.29 

Response Spectra 

1.  
DIN_B

_RS 

Determination of the 

Response Spectrum of 

Response Accelerations of 

a Linear Oscillator 

Accelerogram 

Comparison 

with the Abaqus 

calculation 

5 

Frequency at 

which the 

maximum 

acceleration 

occurs 

0.0 

Maximum 

acceleration 
0.95 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

Amplitude-Frequency Characteristics 

1.  АЧХ 

Plotting the Amplitude-

Frequency Characteristic 

of a Single-Mass Elastic 

System under Harmonic 

Excitation 

Concentrated 

dynamic load 

Based on the 

analytical 

solution 

51 

Frequency at 

which the 

maximum 

displacement 

occurs 

0.0 

Maximum 

displacement 
0.65 

Steel Structural Members 

1.  

4.1 

Section

Resista

nce_Ex

ample_

4.1 

Strength and Stiffness 

Analysis of a Welded I-

beam 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

2.  

4.2 

Section

Resis-

tance_

Examp

le_4.2 

Strength and Stiffness 

Analysis of a Rolled I-beam 
Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

3.  

4.3 

Section

Resista

nce_Ex

ample_

4.3 

Strength and Stiffness 

Analysis of a Rolled I-

beam 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

4.  

4.4 

Section

Resis-

tance_E

xample

_4.4 

Strength and Stiffness 

Analysis of a Rolled I-

beam 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

5.  

4.5 

Section

Resis-

tance_E

xample

_4.5 

Strength and Stiffness 

Analysis of a Welded I-

beam 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

6.  

4.6 

Section

Resista

nce_Ex

ample_

4.6 

Analysis of an Axially 

Compressed Welded I-

beam Column 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

7.  

3.1 

Beam_

Exampl

e_3.1 

Strength and Stiffness 

Analysis of Stringers for a 

Normal Stub Girder 

System 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

8.  

3.2 

Beam_

Exampl

e_3.2 

Strength and Stiffness 

Analysis of Stringers for a 

Complex Stub Girder 

System 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

9.  

3.3 

Beam_

Exampl

e_3.3 

Strength and Stiffness 

Analysis of Secondary 

Beams for a Complex 

Stub Girder System 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

10.  

3.4 

Beam_

Exampl

e_3.4 

Strength and Stiffness 

Analysis of Main Beams 

of Complex Stub Girder 

Systems 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 
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 Code Name of the test 
Combination of 

loads and actions 

Type of check 

of the results 

Finite 

elements 

Checked 

parameters 

Deviation 

% 

11.  

5.1 

Column

_Exam

ple_5.1 

Analysis of an Axially 

Compressed Welded I-

beam Column 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

12.  

5.3 

Column

_Exam

ple_5.3 

Analysis of an Axially 

Compressed Electric 

Welded Circular Hollow 

Section Column 

 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

13.  

7.1 

Truss_

Elemen

t_Exam

ple_7.1 

Analysis of a Top Truss 

Chord from Unequal 

Angles 

 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.0 

Reinforced Concrete Structural Members 

Calculations according to SNiP 2.03.01-84* 

1.  
SCAD 

3 SNiP 

Strength Analysis of a 

Rectangular Beam 
Nodal loads 

Based on the 

analytical 

solution 

2 

Utilization 

factors of 

restrictions 

4.2 

2.  
SCAD 

7 SNiP 

Strength Analysis of a T-

section 
Distributed loads 

Based on the 

analytical 

solution 

2 

Utilization 

factors of 

restrictions 

3.0 

3.  
SCAD 

12 SNiP 

Strength Analysis of a 

Wall Panel 
Distributed loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

4.1 

Calculations according to SNiP 52-01-2003 

1.  
SCAD 

6 SP 

Strength Analysis of a 

Rectangular Beam 
Distributed loads 

Based on the 

analytical 

solution 

2 

Utilization 

factors of 

restrictions 

1.9 

2.  

SCAD 

12.1.SP 

и 

SCAD 

12.2.SP 

Calculation of a Rib of a 

TT-shaped Floor Slab for 

Load-bearing Capacity 

under Lateral Forces 

Distributed loads 

Based on the 

analytical 

solution 

2 

Utilization 

factors of 

restrictions 

1.4 

3.  
SCAD 

13 SP 

Calculation of a Simply 

Supported Rectangular 

Beam under Lateral 

Forces 

Distributed loads 

Based on the 

analytical 

solution 

2 

Utilization 

factors of 

restrictions 

1.7 

4.  
SCAD 

34 SP 

Calculation of a Column 

of a Multi-storey Frame 

for Load-bearing 

Capacity under a Lateral 

Force 

Nodal loads 

Based on the 

analytical 

solution 

5 

Utilization 

factors of 

restrictions 

0.4 

5.  

SCAD 

41 SP-

2003  

и 

SCAD 

41 SP-

2012 

Example of Punching 

Near the Edge of the Slab 
Nodal loads 

Based on the 

analytical 

solution 

5, 41, 51 

Utilization 

factors of 

restrictions 

0.1 

6.  
SCAD 

43 SP 

Analysis of a Reinforced 

Concrete Foundation Slab 

for Normal Crack 

Opening 

Concentrated 

moment 

Based on the 

analytical 

solution 

2 

Utilization 

factors of 

restrictions 

4.9 
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 Plane Truss Subjected to a Concentrated Force 

 

 
 

Objective: Determination of the stress-strain state of a plane truss subjected to a concentrated force. 

 

Initial data file: SSLL09_v11.3.SPR 

 

Problem formulation: The plane truss consists of two inclined downward bars of the same length and 

rigidity of the cross-section arranged symmetrically with respect to the vertical axis, connected by hinges in 

the common node (point C) and simply supported at the opposite nodes (points A and B). A vertical 

concentrated force F is applied in the common node of the truss bars. Determine the vertical displacement 

of the common node of the truss bars Z and longitudinal forces in the truss bars N. 

 

References: S. Timoshenko, Resistance des materiaux, t.1, Bruxelles, Edition Polytechnique Beranger, 

1963, p. 10. 

 

Initial data: 

E = 2.1·1011  Pa -  - elastic modulus of truss bars; 

l = 4.5 m  - length of truss bars; 

θ = 30º   - inclination angle of the bars to the horizon; 

A = 3.0·10-4 m2  - cross-sectional area of the bars; 

F = 2.1·104 N  - value of the vertical concentrated force. 

 

Finite element model: Design model – plane hinged bar system, 2 bar elements of type 10. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z for pinned 

support nodes. Number of nodes in the design model – 3. 

 

Results in SCAD 

 
 

Design and deformed models 
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Values of vertical displacements Z (m) 

 
Values of longitudinal forces N (N) 

 

 

Comparison of solutions: 
 

Parameter Theory SCAD Deviations, % 

Vertical displacement Z (point C), m -3.0000·10-3 -3.0000·10-3 0.00 

Longitudinal force N (bar AC), N 21000.0 21000.0 0.00 

Longitudinal force N (bar BC), N 21000.0 21000.0 0.00 

 

Notes: In the analytical solution, the vertical displacement of the common node of the truss bars Z and 

longitudinal forces in the truss bars N are determined according to the following formulas: 

 

 2sinAE2

LF
Z




 ; 

 

 sin2

F
N


 . 
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Plane Hinged Bar System Subjected to a Concentrated Force 

 

 
 

 

Objective: Determination of the strain state of a plane hinged bar system subjected to a concentrated force. 

 

Initial data file: SSLL11_v11.3.SPR 

 

Problem formulation: The plane hinged bar system consists of four inclined bars. The bars in the first pair 

have the same lengths and rigidities of the cross-section, go upward to the common node (point C) and are 

simply supported in the opposite nodes (points A and B). The bars in the second pair have the same 

rigidities of the cross-section, go upward to the common node (point D) and are attached to one of the bars 

of the first pair at the opposite nodes (points C and B). A vertical concentrated force F is applied in the 

common node of the second pair of bars. Determine horizontal X and vertical Z displacements of the 

common nodes of the first (point C) and second (point D) pairs of bars of the system.  

 

References: S. S. Rao, The finite element method in engineering, 4 ed, Elsevier science end technology 

books, 2004, p. 313. 

 

Initial data: 

E = 2.0·1010  Pa - - elastic modulus of the bars of the system; 

XA = 0.0 m  - coordinates of the node A; 

YA = 0.0 m 

XB = 1.0 m  - coordinates of the node B; 

YB = 0.0 m 

XC = 0.5 m  - coordinates of the node C; 

YC = 0.5 m 

XD = 2.0 m  - coordinates of the node D; 

YD = 1.0 m 

AAC = 2.0·10-4 m2 - cross-sectional area of the bar AC; 

ABC = 2.0·10-4 m2 - cross-sectional area of the bar BC; 

ACD = 1.0·10-4 m2 - cross-sectional area of the bar CD; 

ABD = 1.0·10-4 m2 - cross-sectional area of the bar BD; 

F = 1.0·103 N  - value of the vertical concentrated force. 

 

Finite element model: Design model – plane hinged bar system, 4 bar elements of type 10. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom X, Z for pinned 

support nodes (points A and B). Number of nodes in the design model – 4. 
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Results in SCAD 

 
Design and deformed models 

 

 

 

 

 
Values of horizontal displacements X (m) 
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Values of vertical displacements Z (m) 

 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Horizontal displacement X (point C), m 2.6517·10-4 2.6517·10-4 0.00 

Vertical displacement Z (point C), m 0.8839·10-4 0.8839·10-4 0.00 

Horizontal displacement X (point D), m 34.7903·10-4 34.7903·10-4 0.00 

Vertical displacement Z (point D), m -56.0035·10-4 -56.0035·10-4 0.00 
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Plane Truss Subjected to Force, Thermal and Kinematic Actions 

 
Objective: Determination of the stress-strain state of a truss subjected to force, thermal and kinematic 

actions. 

 

Initial data file: SSLL12_v11.3.spr 

 

Problem formulation: The two-span truss is loaded by two concentrated forces FE and FF in the nodes of 

the top chord, uniformly heated across all cross-sections of its elements by the value of ΔT and subjected to 

the displacement of its supports by the values of vA, vB and vC. Determine the longitudinal force N in the 

support diagonal BD and vertical displacement v (Z) in the point D of its joint with the bottom chord and 

the lattice members. 

 

References: M. Laredo, Resistence des materiaux, Paris, Dunod, 1970, p.579. 

 

Initial data: 

Lattice members A1: 

EF = 2.961·108 N – axial stiffness;  

Elements of the top and bottom chords, support diagonals and support vertical A2: 

EF = 5.922·108 N – axial stiffness;  

Elements modeling the constraints in the support nodes in the directions vA, vB and vC (null elements): 

EF = 1010 N  – axial stiffness;  

Boundary conditions: 

θ = 30º   – angle of the support area in the node C; 

Properties of the material: 

α = 10-5 1/ºC  – linear expansion coefficient; 

Loads and actions: 

FE = 1.5·105 N 

FF = 1.0·105 N 

ΔT = 150 ºC 

vA = 0.020 m 

vB = 0.030 m 

vC = 0.015 m. 

Finite element model: Design model – plane hinged bar system. Lattice members: A1 – 8 elements of type 

1, elements of the top and bottom chords, support diagonals and support vertical A2 – 9 elements of type 1; 
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elements modeling the constraints in the support nodes in the directions vA, vB and vC – 3 elements of type 

154. Boundary conditions in the direction uA are provided by imposing the respective rigid constraint. 

Number of nodes in the design model – 13. 

 

Results in SCAD 

 
Design and deformed models 

 

 
Values of vertical displacements v (Z) (m) 

 

 
Values of longitudinal forces N (N) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Vertical displacement vD (Z), m -1.6180∙10-2 -1.6177∙10-2 0.02 

Longitudinal force NBD, N 43633.0 43633.5 0.00 
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Plane Hinged Bar System with Elements of Different Material Subjected to 

Temperature Variation 
 

 
 

Objective: Determination of the stress state of a plane hinged bar system with elements of different material 

subjected to temperature variation. 

 

Initial data file: T1_v11.3.spr 

 

Problem formulation:  

Three bars of the plane system are connected by hinges in the common node (O) and are simply supported 

in the opposite nodes (B, C, D). Support nodes are arranged on one horizontal straight line symmetrically 

with respect to the vertical axis (OC), the common node lies on the vertical axis. The vertical bar (OC) is 

made of steel, the inclined bars (OB, OD) are made of copper. The system is subjected to the temperature 

variation ∆t relative to the assembly temperature. Determine longitudinal forces N in each bar. 

 

References: S.P. Timoshenko, Strength of Materials, Volume 1: Elementary Theory and Problems, 

Moscow, Nauka, 1965, p. 34. 

   

Initial data: 

Es = 2.0·10
6 kgf/cm2 – elastic modulus of steel; 

Eс = 1.0·10
6 kgf/cm2 – elastic modulus of copper; 

αs = 1.25∙10
-5 1/ ºC – linear thermal expansion coefficient of steel; 

αc = 1.65∙10
-5 1/ ºC – linear thermal expansion coefficient of copper; 

l = 100.0 cm  – length of the vertical bar; 

φ = 45 º   – angle between inclined and vertical bars; 

As = 5.0∙5.0 cm2 – cross-sectional area of a vertical steel bar; 

Ac = 5.0∙5.0 cm2 – cross-sectional area of an inclined copper bar; 

∆t = 50 ºC  – temperature variation of the system. 

 

Finite element model: Design model – plane hinged bar system, 3 elements of type 1. Boundary conditions 

are provided by imposing constraints in the support nodes in the directions of the degrees of freedom X, Z. 

The effect of the temperature variation of the system ∆t relative to the assembly temperature is specified as 

uniform along the longitudinal axes of all bar elements. Number of nodes in the design model – 4. 
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Results in SCAD 

 
Design and deformed models 

 

 
Longitudinal force diagram N (kgf) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Longitudinal force N (bar OC), kgf 13386.7 13386.7 0.00 

Longitudinal force N (bars OB and OD), kgf -9465.8 -9465.8 0.00 

 

Notes: In the analytical solution, the longitudinal forces N in the bars of the system are determined 

according to the following formulas: 
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Plane Hinged Bar System with Elements of the Same Material Subjected to 

Temperature Variation 
 

 
 

Objective: Determination of the stress state of a plane hinged bar system with elements of the same material 

subjected to temperature variation. 

 

Initial data file: T2_v11.3.spr 

 

Problem formulation: Three bars of the plane system are connected by hinges in the common node (O) and 

are simply supported in the opposite nodes (B, C, D). Support nodes are arranged on one horizontal straight 

line symmetrically with respect to the vertical axis (OC), the common node lies on the vertical axis. 

Vertical (OC) and inclined (OB, OD) bars are made of steel. The system is subjected to the temperature 

variation ∆t relative to the assembly temperature. Determine normal stresses σ in the cross-sections of the 

bars of the system. 

 

References: S.P. Timoshenko, Strength of Materials, Volume 1: Elementary Theory and Problems, 

Moscow, Nauka, 1965, p. 35. 

   

Initial data: 

Es = 2.0·10
6 kgf/cm2 - elastic modulus of steel; 

αs = 1.25∙10
-5 1/ ºC - linear thermal expansion coefficient of steel; 

l = 100.0 cm  - length of the vertical bar; 

φ = 45 º   - angle between inclined and vertical bars; 

A = 5.0∙5.0 cm2  - cross-sectional area of vertical and inclined bars; 

∆t = 50 ºC  - temperature variation of the system. 

 

Finite element model: Design model – plane hinged bar system, 3 elements of type 1. Boundary conditions 

are provided by imposing constraints in the support nodes in the directions of the degrees of freedom X, Z. 

The effect of the temperature variation of the system ∆t relative to the assembly temperature is specified as 

uniform along the longitudinal axes of all bar elements. Number of nodes in the design model – 4. 
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Results in SCAD 

 
Design and deformed models 

 

 
Longitudinal force diagram N (kgf) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Normal stresses σ (bar OC), kgf/cm2 517.768 
12944.2 / (5.0 * 5.0) = 

= 517.768 
0.00 

Normal stresses σ (bars OB and OD), kgf/cm2 -366.116 
-9152.9 / (5.0 * 5.0) = 

= -366.116 
0.00 

 

Notes: In the analytical solution the normal stresses σ in the cross-sections of bars of the system are 

determined according to the following formulas: 
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Spatial Hinged Bar System Subjected to a Concentrated Force 
 

 

 

 

Objective: Determination of the stress state in the elements of a spatial hinged-bar system subjected to a 

concentrated force. 

  

Initial data file: CS01_v11.3.SPR 

 

Problem formulation: Three bars of the spatial system are connected by hinges in a common node (4) and 

are simply supported in the opposite nodes (1, 2, 3). Support nodes are arranged in one horizontal plane, the 

common node lies outside this plane and is loaded with a vertical concentrated force P. Determine 

longitudinal forces N in each bar. 

 

References: F. P. Beer, E. R. Johnston Jr., D. F. Mazurek, P. J. Cornwell, E. R. Eisenberg, Vector 

Mechanics for Engineers, Statics and Dynamics, New York, McGraw-Hill Co., 1962, p. 47.  

 

Initial data: 

E = 3.0·107 Pa  – elastic modulus, 

A = 1.0 m2   – cross-sectional area of the bars; 

P = 50 N  – value of the concentrated force. 

 

Finite element model: Design model - spatial hinged bar system, 3 bar elements of type 4. Boundary 

conditions in the support nodes are provided by imposing constraints in the directions of the degrees of 

freedom: X, Y, Z. Number of nodes in the design model – 4. 

 

Coordinates of nodes: 

Node X (m) Y (m) Z (m) 

1 0.0 0.0 0.0 

2 0.0 72.0 0.0 

3 96.0 0.0 0.0 

4 48.0 24.0 -72.0 
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Results in SCAD 

 

 
 

Design and deformed models 

 

        

 
 

Longitudinal force diagram N (N)          
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Comparison of solutions: 

Values of longitudinal forces N (N) 

Bar (nodes) Theory SCAD Deviations, % 

1 (1-4) 10.39 10.39 0.00 

2 (2-4) 22.91 22.91 0.00 

3 (3-4) 31.18 31.18 0.00 

 

Notes: In the analytical solution, the longitudinal forces N in the elements of the spatial hinged-bar system 

subjected to a concentrated load are determined according to the following formulas: 
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Cantilever Beam Subjected to a Concentrated Load  

 

Objective: Analysis for bending in the force plane under a concentrated force without taking into account 

the transverse shear deformations. The values of the maximum transverse displacement, rotation 

angle and bending moment are checked. 
 

Initial data file:  Example 4.1.SPR 

 

Problem formulation: The cantilever beam is loaded by a concentrated force Р applied to its free end. 

Determine the maximum values of the transverse displacement w, rotation angle θ and bending moment М. 

 

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: 

Naukova Dumka, 1988, p. 263. 
 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus,  

ν = 0.3   - Poisson’s ratio,  

L = 3 m   - beam length; 

I = 2.44·10-6 m4  - cross-sectional moment of inertia;  

Р = 5 kN  - value of the concentrated force. 

 

Finite element model: Design model – general type system, 10 bar elements of type 5, 11 nodes. 

 

Results in SCAD: 

 
 Bending moment diagram М (kN·m)  

 

 
 Values of transverse displacements w(mm) 

 

 
 Values of rotation angles θ (rad) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Transverse displacement w, mm -92.21 -92.21 0.00 

Rotation angle Ө, rad 0.04611 0.04611 0.00 

Bending moment М, kN·m -15.0 -15.0 0.00 
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Notes: In the analytical solution, the maximum values of the transverse displacement w, rotation angle θ  

and bending moment М are determined according to the following formulas: 
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 ;  LPM  . 
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Cantilever Beam Subjected to a Concentrated Shear Force  

 

Objective: Determination of the strain state of a cantilever beam subjected a concentrated shear force. 

  

Initial data files:  

CS06_с_v11.3.SPR bar model 

CS06_п_v11.3.SPR plane-stress model 

 

Problem formulation: The cantilever beam of a rectangular cross-section is subjected to a concentrated 

shear force Р applied at its free end. Determine the displacement z of the free end of the beam taking into 

account the effect of the transverse shear.  

 

Initial data: 

E = 3.0·107 Pa  - elastic modulus,  

ν = 0.0   - Poisson’s ratio,  

L = 10.0 m  - beam length; 

t = 0.1 m  - width of the beam cross-section; 

h = 1.0 m  - height of the beam cross-section; 

k = 1.2   - shear coefficient; 

P = 1.0 N  - value of the concentrated force 

 

Finite element model: Two design models are considered: 

Bar model (B), design model – plane frame, 10 elements of type 10. The spacing of the finite element mesh 

along the longitudinal axis is 1.0 m. Boundary conditions at the clamped end are provided by imposing 

constraints in the directions of the degrees of freedom: X, Z, UY. Number of nodes in the design model – 

11. 

Plane-stress model (P), 10 eight-node elements of type 30. The spacing of the finite element mesh along the 

longitudinal axis is 1.0 m. Boundary conditions at the clamped end are provided by imposing constraints in 

the directions of the degrees of freedom: X, Z. Number of nodes in the design model – 53. 

 

Results in SCAD 

 
Design model. Bar model 
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Deformed model. Bar model 

 

 

 

        

 
Displacements z (m). Bar model          

 

 

 
Design model. Plane-stress model 

 

 

 
Deformed model. Plane-stress model 

 

 
Displacements z (m). Plane-stress model 

 

Comparison of solutions: 

Model Displacements z, m Deviations, % 

Bar (B) -1.341∙10-3
 0.00 
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Model Displacements z, m Deviations, % 

Plane-stress (P) -1.340∙10-3
 0.07 

Theory -1.341∙10-3 ─ 

 

Notes: In the analytical solution, the displacement z of the free end of the beam taking into account the 

effect of the transverse shear is determined according to the following formula: 
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Vertical Cantilever Bar of Square Cross-Section with Longitudinal and 

Transverse Concentrated Loads at Its Free End  

 
 

Objective: Check of the consistency of the results for models of different dimensions. 

 

Initial data files: 
File name Description 

Задача 4.9_c.SPR Bar model 

Задача 4.9_п.SPR Shell element model 

Задача 4.9_о.SPR Solid element model 

 

Problem formulation: Determine the displacements of the free end x, y, z and maximum stresses in the 

clamped section σz. 

Initial data: 

E = 3.0·107  kPa - elastic modulus;  

μ = 0.2   - Poisson’s ratio; 

b = h = 0.5 m  - cross-sectional dimensions of the cantilever bar; 

l = 10 m  - height of the cantilever bar; 

Px = 10 kN - value of the concentrated force acting along the X axis of the global coordinate 

system ( loading 1 ); 

Py = 10 kN - value of the concentrated force acting along the Y axis of the global coordinate 

system ( loading 2 ); 

N = 10000 kN - value of the concentrated force acting along the Z axis of the global coordinate 

system ( loading 3 ). 

 

Finite element model: Design model – general type system. Three design models are considered: 

Bar model (B), 2 elements of type 5, 3 nodes; 

Shell element model  (P), 20 elements of type 50, 85 nodes; 

Solid element model (S), 10 elements of type 37, 128 nodes. 
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Results in SCAD 

 
Values of the displacements x, y , z in the bar model (mm) 

 

 
Values of the displacements x, y , z in the shell element model (mm) 
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Values of the displacements x, y , z in the solid element model (mm) 

 

Comparison of solutions: 

Model 

Loading 1 

Displacements 

x (mm) 

Deviations, 

% 
Stresses σz (kPa) Deviations, % 

Bar (B) 21.333 0.00 4800 0.00 

Shell element (P) 21.330 0.01 4819 0.40 

Solid element (S) 21.336 0.01 4738 1.29 

Theory 21.333 ─ 4800 ─ 

 

Model 

Loading 2 

Displacements 

y (mm) 
Deviations, % Stresses σz (kPa) Deviations, % 

Bar (B) 21.333 0.00 4800 0.00 

Shell element (P) 21.359 0.12 4720 1.67 

Solid element (S) 21.345 0.06 4743 1.19 

Theory 21.333 ─ 4800 ─ 

 

Model 

Loading 3 

Displacements 

z (mm) 
Deviations, % Stresses σz (kPa)  Deviations, % 

Bar (B) -13.333 0.00 -40000 0.00 

Shell element (P) -13.333 0.00 -40000 0.00 

Solid element (S) -13.333 0.00 -40000 0.00 

Theory -13.333 ─ -40000 ─ 

 

Notes: In the analytical solution for non-deformed models, the displacements of the free end x, y, z and the 

maximum stresses in the clamped section σz are determined according to the following formulas: 
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Simply Supported Beam Subjected to a Concentrated Force and Uniformly 

Distributed Pressure  

 
 

Objective: Combined loading (lateral pressure, concentrated force) in one plane without taking into account 

the transverse shear deformations. Displacements and forces are checked. 

 

Initial data file: 4.3.SPR 

 

Problem formulation: The simply supported beam is subjected to a concentrated force Р and uniformly 

distributed pressure q. Displacements w, rotation angles θ, shear forces Q and bending moments М are 

determined. 

 

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: 

Naukova Dumka, 1988. 

 

Initial data: 

E = 2.0·1011 Pa  - elastic modulus;  

μ = 0.3   - Poisson’s ratio;  

l = 3 m   - beam length; 

F = 14.2·10-4 m2 - cross-sectional area; 

I = 2.44·10-6 m4  - moment of inertia; 

Р = −5 kN  - value of the concentrated force; 

q = 10 kN/m  - value of pressure;  

a = b = 1.5 m  - geometric size.  

 

Finite element model:  

Design model – plane frame, 10 bar elements, 11 nodes. 

 

Results in SCAD 

 
 Bending moment diagram М (kN*m)   

   
 Shear force diagram Q  (kN) 
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 Values of transverse displacements w (mm) 

 

 
 Values of rotation angles θ (rad) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Deflection in the point С, mm -5.043 -5.043 0.00 

Rotation angle in the point В, rad -7.204·10-3 -7.204·10-3 0.00 

Bending moment in the point С, kN·m 1.875 1.875 0.00 

Shear force in the point A, kN 1.25 1.25 0.00 

Shear force in the point B, kN -8.75 -8.75 0.00 

 

Notes: In the analytical solution, the deflection in the point C can be calculated according to the following 

formula (“Handbook on Strength of Materials” p. 295, 297): 
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The rotation angle in the point B can be calculated according to the following formula (“Handbook on 

Strength of Materials” p. 295, 297): 
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The bending moment in the point C can be calculated according to the following formula: 
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The shear force in the point A can be calculated according to the following formula: 
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The shear force in the point B can be calculated according to the following formula: 
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Three-Step Simply Supported Beam Subjected to Concentrated Forces 

 
 

 

Objective: Strain state of a three-step simply supported beam subjected to concentrated forces without 

taking into account the transverse shear deformations. Transverse displacements and rotation angles are 

checked. 

Initial data file: 4.5.SPR 

 

Problem formulation: The three-step simply supported beam is subjected to three concentrated forces Р. 

Determine the rotation angles of support sections and transverse displacements in the force application 

points. 

 

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: 

Naukova Dumka, 1988. 

 

Initial data: 

E = 2.0·10
11

  Pa -  - elastic modulus,  

l = 1 m   - half length of the beam span of each section; 

F = 1·10-2 m2  - cross-sectional area; 

I1  = 5·10-6 m4
  - moment of inertia; 

Р = 1 kN  - load value.  

I1 : I2 : I3 = 1 : 2 : 3 

F1 : F2 :F3 = 1 : 2 : 3 
 

Finite element model: Design model – general type system, 6 bar elements of type 5, 7 nodes. 

 

Results in SCAD 

 

 

 
 

 Values of transverse displacements w (mm) 

 

   

 

   

 
 Values of rotation angles θ (rad) 
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Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Transverse displacements, mm 

w  (l) 

w  (3l) 

w  (5l) 

 

-3.02 

-4.94 

-2.23 

 

-3.02 

-4.94 

-2.23 

 

0.00 

0.00 

0.00 

Rotation angles, rad 

θ (0) 

θ (6l) 

 

0.00327 

-0.00231 

 

0.00327 

-0.00231 

 

0.00 

0.00 

 

Notes: In the analytical solution, the rotation angles of support sections and deflections in the force 

application points are determined according to the following formulas: 
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Doubly Clamped Beam Subjected to a Uniformly Distributed Load  

 

 

Objective: Loading of a doubly clamped beam in one plane without taking into account the transverse shear 

deformations. The values of the maximum transverse displacement and the bending moments are checked. 

 

Initial data file: 4.4.SPR 

 

Problem formulation: The doubly-clamped beam is subjected to a uniformly distributed load q. Determine 

the maximum transverse displacement w and bending moments М.  

 

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: 

Naukova Dumka, 1988.  

 

Initial data: 

E = 2.0·1011 Pa  - elastic modulus,  

μ = 0.3   - Poisson’s ratio,  

l = 3 m   - beam length; 

F = 14.2·10-4 m2 - cross-sectional area; 

I   = 2.44·10-6 m4 - moment of inertia; 

q = 10 kN/m  - load value.  

 

Finite element model: Design model – plane frame, 10 bar elements of type 2, 11 nodes. 

 

Results in SCAD 

 

 
 Bending moment diagram М (kN*m)      

   

   

 
 Values of transverse displacements  w (mm). 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Transverse displacement in the middle of 

the beam span, mm 
-4.32 -4.32 0.00 

Bending moment in the middle of the 

beam span, kN·m 
3.75 3.75 0.00 

Bending moment at the beam support, 

kN·m 
-7.5 -7.5 0.00 
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Notes: In the analytical solution, the deflection at the center of the beam can be calculated according to the 

following formula ( “Handbook on Strength of Materials” p. 352): 
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; 

 

Bending moments at the clamping are calculated according to the following formula:  
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Bending moment in the middle of the beam: 
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Doubly Clamped Beam Subjected to a Uniformly Distributed Load, Concentrated 

Longitudinal and Shear Forces and a Bending Moment  
    

  
 

Objective: Determination of the stress-strain state of a doubly clamped beam subjected to a uniformly 

distributed load, concentrated longitudinal and shear forces and a bending moment. 

 

Initial data file: SSLL01_v11.3.SPR 

 

Problem formulation: The doubly clamped beam is subjected to a load P uniformly distributed over the 

entire length of the span l, unidirectional concentrated longitudinal forces F1 and F2, applied at the distance 

of 0.3l from the left and right end respectively, concentrated shear force F, applied at the distance of 0.3l 

from the right end, and a concentrated bending moment C, applied at the distance of 0.3l from the left end. 

Determine the vertical displacement Z, longitudinal force N and bending moment M in the middle of the 

beam span (point G), and the horizontal reaction at the left end of the beam H (point A). 

 

References: S. Timoshenko, Resistance des materiaux, t.1, Paris, Eyrolles, 1976, p. 26. M. Courtand et P. 

Lebelle, Formulaire du beton arme, t.2, Paris, Eyrolles, 1976, p. 219. 

 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus,  

μ = 0.2   - Poisson’s ratio,  

l = 1.0 m  - beam length; 

J = 1.7·10-8 m4  - cross-sectional moment of inertia cross-sectional moment of inertia;  

P = 24000 N/m  - value of the uniformly distributed load; 

F1 = 30000 N  - value of the concentrated longitudinal force; 

F2 = 10000 N  - value of the concentrated longitudinal force; 

F = 20000 N  - value of the concentrated shear force; 

C = 24000 N·m  - value of the concentrated bending moment. 

 

Finite element model: Design model – general type system, 4 bar elements of type 10. Boundary 

conditions at the clamped ends are provided by imposing constraints in the directions of the degrees of 

freedom: X, Y, Z, UX, UY, UZ. Number of nodes in the design model – 5. 

 

Results in SCAD 
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Design and deformed models 

 

 
 

Values of vertical displacements Z (m) 

 

 

 
Longitudinal force diagram N (N) 

 

 
Bending moment diagram М (kN*m) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Vertical displacement Z (point G), m -4.9023·10-2 -4.9000·10-2 0.05 

Longitudinal force N (point G), N -6000.0 -6000.0 0.00 

Bending moment M (point G), N·m 2800.0 2800.0 0.00 
Horizontal reaction H (point A), N 24000.0 24000.0 0.00 
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Two-Span Simply Supported Beam with an Intermediate Compliant Support 

Subjected to Concentrated Shear Forces Applied in the Middle of the Spans  
 

  
 

 

Objective: Determination of the stress-strain state of a two-span simply supported beam with an 

intermediate compliant support subjected to concentrated shear forces applied in the middle of the spans. 

 

Initial data file: SSLL03_v11.3.SPR 

 

Problem formulation: The two-span simply supported beam with an intermediate compliant support is 

subjected to concentrated shear forces F, applied in the middle of the spans (at the distance l from the end 

supports). Determine the vertical displacement Z and the vertical reaction N of the intermediate compliant 

support, and the bending moment M in the beam above the intermediate compliant support (point B). 

 

References: C. Massonnet, Application des ordinateurs au calcul des structures, Paris, Eyrolles, 1968, 

p. 233. 

 

Initial data: 

E = 2.1·1011  Pa  - elastic modulus,  

2·l = 6.0 m  - length of the beam span; 

A = 0.4762·10-3 m2 - cross-sectional area;  

I = 6,3·10-4 m4  - cross-sectional moment of inertia;  

k = 2.1·1011 N/m - stiffness of the intermediate compliant support; 

F = 4.2·104 N  - value of the concentrated shear forces. 

 

Finite element model: Design model – plane frame, 4 bar elements of type 2. Boundary conditions are 

provided by imposing constraints in the directions of the degrees of freedom: X, Z – for the left support; Z – 

for the right support, and by imposing a constraint of finite rigidity in the direction of the degree of freedom 

Z – for the intermediate support (member type 51). Number of nodes in the design model – 5. 

 

Results in SCAD 

 
Design and deformed models 
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Values of vertical displacements Z (m) 

 

 

 
Values of vertical support reactions N (N) 

 

 
Bending moment diagram М (kN*m) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Vertical displacement Z (point B), m -1.0000·10-2 -1.0000·10-2 0.00 

Vertical reaction H (point B), N 21000.0 21000.0 0.00 

Bending moment M (point B), N·m 63000.0 63000.0 0.00 
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Beam on the Elastic Horizontal Subgrade Subjected to Concentrated Vertical 

Forces 

 

 
 

 

Objective: Determination of the stress-strain state of a beam on the elastic horizontal subgrade subjected to 

concentrated vertical forces. 

 

Initial data files: 
File name Description 

SSLL15_var_1_v11.3.SPR Design model – bar elements on the elastic subgrade 

SSLL15_var_2_v11.3.SPR 
Design model – bar elements on elastic supports in the form of elements 

of constraints of finite rigidity of type 51  

 

Problem formulation: The beam on the elastic horizontal subgrade with the stiffness k constant along the 

length is subjected to three concentrated vertical forces of the same value F, applied at the edges (points A 

and B) and in the middle of the span (point C). Determine the vertical displacements Z in the middle of the 

beam span (point C) and at its edges (points A and B), rotation angles UY of the beam edges, as well as the 

bending moment M in the middle of the beam span. 

 

References: M. Courtand et P. Lebelle, Formulaire du beton arme, t.2, Paris, Eyrolles,1976, p. 382. 

 

Initial data: 

E = 2.1∙1011 Pa    - elastic modulus;  

l = 0.5∙π∙(10.0)0.5 = 4.967294133 m - beam length; 

b = 1.0 m    - beam width; 

Iy = 1.0∙10
-4 m4    - cross-sectional moment of inertia of the beam; 

kz = 8.4∙10
5 N/m3   - subsoil parameter; 

F = 1.0∙104 N    - value of the concentrated vertical force. 

 

Finite element model: Two variants of the design model are considered. 

Variant 1: 

Design model – grade beam / plate, 12 bar elements of type 3 on the elastic subgrade directed along the Z1 

axis of the local coordinate system. Number of nodes in the design model – 13. 

Variant 2:  

Design model – grade beam / plate, 12 bar elements of type 3 on the elastic supports in the form of 13 

elements of constraints of finite rigidity of type 51 directed along the Z axis of the global coordinate 

system. Stiffness of intermediate elastic supports: kz∙b∙l/12 = 347711 N/m, stiffness of end elastic supports: 

0.5∙kz∙b∙l/12 = 173855 N/m. In order to prevent the dimensional instability of the system, a constraint in the 

direction of the degree of freedom UX is imposed along the beam symmetry axis and the minimum 

torsional stiffness of the beam is introduced GIx = 1.0 N∙m2. Number of nodes in the design model – 13. 

 

Results in SCAD 
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Design and deformed models. Variant 1 

 
Design and deformed models. Variant 2 

 

 

 

 
Values of vertical displacements Z (m) for the design model according to variant 1 

 

 

 

 
Values of vertical displacements Z (m) for the design model according to variant 2 

 

 

 

 
Values of rotation angles UY (rad) for the design model according to variant 1 

 

 

 

 
Values of rotation angles UY (rad) for the design model according to variant 2 
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Values of bending moments M (N·m) for the design model according to variant 1 

 

 
Values of bending moments M (N·m) for the design model according to variant 2 

 

 

Comparison of solutions: 

Parameter Theory 

SCAD 

DM 

according to 

variant 1 

Deviations, % 

SCAD 

DM 

according to 

variant 2 

Deviations, % 

Vertical displacement ZC, m -6.844∙10-3 -6.843∙10-3 0.01 -6.844∙10-3 0.00 

Vertical displacement ZA, m -7.854∙10-3 -7.859∙10-3 0.06 -7.845∙10-3 0.11 

Rotation angle UYA, rad -7.060∙10-4 -7.060∙10-4 0.00 -6.945∙10-4 1.63 

Bending moment MC, N∙m -5759.0 -5758.8 0.00 -5742.6 0.28 
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Simply Supported Beam on the Elastic Horizontal Subgrade Subjected to a 

Vertical Uniformly Distributed Load, Concentrated Vertical Force and Bending 

Moment 

 
 

Objective: Determination of the stress-strain state of a simply supported beam on the elastic horizontal 

subgrade subjected to a vertical uniformly distributed load, concentrated force and bending moment. 

 

Initial data files: 
File name Description 

SSLL16_var_1_v11.3.SPR Design model – bar elements on the elastic subgrade 

SSLL16_var_2_v11.3.SPR 
Design model – bar elements on elastic supports in the form of elements 

of constraints of finite rigidity of type 51  

 

Problem formulation: The simply supported beam on the elastic horizontal subgrade with the stiffness k 

constant along the length is subjected to a vertical uniformly distributed load P, concentrated vertical force 

F, applied in the middle of the span (point D) and concentrated bending moments C and C, applied at the 

edges (points A and B). Determine the vertical displacement Z in the middle of the beam span (point D), 

rotation angles UY of the beam edges (points A and B), as well as the bending moment M in the middle of 

the beam span and the shear force Q at the edge of the beam. 

 

References: M. Courtand et P. Lebelle, Formulaire du beton arme, t.2, Paris, Eyrolles,1976, p. 385. 

 

Initial data: 

E = 2.1∙1011 Pa    - elastic modulus;  

l = 0.5∙π∙(10.0)0.5 = 4.967294133 m - beam length; 

b = 1.0 m    - beam width; 

Iy = 1.0∙10
-4 m4    - cross-sectional moment of inertia of the beam; 

kz = 8.4∙10
5 N/m3   - subsoil parameter; 

P = 5.0∙103 N/m - value of the vertical uniformly distributed load; 

F = 1.0∙104 N    - value of the concentrated vertical force; 

C = 1.5∙104 N∙m   - value of the concentrated bending moment. 

 

Finite element model: Two variants of the design model are considered. 

Variant 1: 

Design model – grade beam / plate, 24 bar elements of type 3 on the elastic subgrade directed along the Z1 

axis of the local coordinate system. Boundary conditions are provided by imposing constraints in the 

direction of the degree of freedom Z for roller support nodes. Number of nodes in the design model – 25. 

Variant 2:  

Design model – grade beam / plate, 24 bar elements of type 3 on the elastic supports in the form of 25 

elements of constraints of finite rigidity of type 51 directed along the Z axis of the global coordinate 

system. Stiffness of intermediate elastic supports: kz∙b∙l/24 = 173855 N/m, stiffness of end elastic supports: 

0.5∙kz∙b∙l/12 = 86928 N/m. Boundary conditions are provided by imposing constraints in the direction of the 

degree of freedom Z for roller support nodes. In order to prevent the dimensional instability of the system, a 

constraint in the direction of the degree of freedom UX is imposed along the beam symmetry axis and the 

minimum torsional stiffness of the beam is introduced GIx = 1.0 N∙m2. Number of nodes in the design 

model – 25. 
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Results in SCAD 

 
Design and deformed models. Variant 1 

 

 
Design and deformed models. Variant 2 

 

 

 

 
Values of vertical displacements Z (m) for the design model according to variant 1 

 

 

 

 
Values of vertical displacements Z (m) for the design model according to variant 2 

 

 

 

 
Values of rotation angles UY (rad) for the design model according to variant 1 

 

 

 
Values of rotation angles UY (rad) for the design model according to variant 2 
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Values of bending moments M (N·m) for the design model according to variant 1 

 

 

 
Values of bending moments M (N·m) for the design model according to variant 2 

 

 

 
Values of shear forces Q (N) for the design model according to variant 1 

 

 

 
Values of shear forces Q (N) for the design model according to variant 2 

 

Comparison of solutions: 

Parameter Theory 

SCAD 

DM 

according to 

variant 1 

Deviations, 

% 

SCAD 

DM 

according to 

variant 2 

Deviations, 

% 

Vertical displacement ZD, m -4.233∙10-3 -4.233∙10-3 0.00 -4.233∙10-3 0.00 

Rotation angle UYA, rad 3.045∙10-3 3.045∙10-3 0.00 3.045∙10-3 0.00 

Bending moment MD, N∙m 33840.0 33839.9 0.00 33827.2 0.04 

Shear force QA, N 11674.0 11674.3 0.00 11683.4 0.08 
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Doubly Clamped Beam Subjected to the Transverse Displacement of One of its 

Ends 

 
 

 

Objective: Determination of the stress state of a doubly clamped beam subjected to the transverse 

displacement of one of its ends. 

  

Initial data file: CS09_v11.3.SPR 

 

Problem formulation: The doubly clamped beam of a rectangular cross-section is subjected to a transverse 

displacement v of one of its ends. Determine the shear force Q and the bending moment M at the displaced 

end. 

 

References: J. M. Gere and W. Weaver, Jr., Analysis of Framed Structures, New York, D. Van Nostrand 

Co., 1965. 

  

Initial data: 

E = 3.0·107 Pa  - elastic modulus,  

L = 80.0 m  - beam length; 

b = 2.0 m  - width of the beam cross-section; 

h = 2.0 m  - height of the beam cross-section; 

v = 1.0 m  - value of the transverse displacement. 

 

Finite element model: Design model – plane frame, 4 elements of type 2. The spacing of the finite element 

mesh along the longitudinal axis (along the X axis of the global coordinate system) is 20.0 m. Boundary 

conditions at the clamped ends are provided by imposing constraints in the directions of the degrees of 

freedom: X, Z, UY. The action of the given transverse displacement is specified by the displacement of the 

respective constraint along the Z axis of the global coordinate system. Number of nodes in the design model 

– 5. 

 

Results in SCAD 

 
Design and deformed models 

 

 
Shear force diagram Q (N) 
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Bending moment diagram М (N·m)  

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Shear force Q at the displaced end , N 937.5 937.5 0.00 

Bending moment M at the displaced end, N∙m 37500.0 37500.0 0.00 

 

Notes: In the analytical solution, the shear force Q and the bending moment M at the displaced end are 

determined according to the following formulas: 
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Plane System of Two Coaxial Bars Subjected to Temperature Variation 
 

 
 

Objective: Determination of the stress state of a plane system of two coaxial bars subjected to temperature 

variation. 

 

Initial data file: B1_v11.3.SPR 

 

Problem formulation: The system consists of two coaxial horizontal bars of square cross-section, rigidly 

connected in the common node and clamped at the opposite nodes. The system is subjected to the 

temperature variation ∆t relative to the assembly temperature. Determine normal stresses σ in the cross-

sections of the bars of the system. 

 

References: S.P. Timoshenko, Strength of Materials, Volume 1: Elementary Theory and Problems, 

Moscow, Nauka, 1965, p.35. 

   

Initial data: 

Es = 2.0·10
6 kgf/cm2 - elastic modulus of steel; 

αs = 1.25∙10
-5 1/ ºC - linear thermal expansion coefficient of steel; 

L1 = 100.0 cm  - length of the left bar; 

F1 = 1.0∙1.0 cm2 - cross-sectional area of the left bar; 

L2 = 100.0 cm  - length of the right bar; 

F2 = 1.0∙2.0 cm2 - cross-sectional area of the right bar; 

∆t = 60 ºC  - temperature variation of the system. 

 

Finite element model: Design model – plane frame, 2 elements of type 2. Boundary conditions are 

provided by imposing constraints in the end nodes of the system in the directions of the degrees of freedom 

X, Z, UY. The effect of the temperature variation of the system ∆t relative to the assembly temperature is 

specified as uniform along the longitudinal axes of all bar elements. Number of nodes in the design model – 

3. 

 

Results in SCAD 

 
Design model 

 

 
Longitudinal force diagram N (kgf) 
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Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Normal stresses σ (left bar), kgf/cm2 -2000.000 
-2000.0 / (1.0 * 1.0) = 

= -2000.000 
0.00 

Normal stresses σ (right bar), kgf/cm2 -1000.000 
-2000.0 / (1.0 * 2.0) = 

= -1000.000 
0.00 

 

Notes: In the analytical solution, the normal stresses σ in the cross-sections of the bars of the system are 

determined according to the following formulas: 
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Stress-Strain State of a Simply Supported Beam Subjected to Longitudinal-

Transverse Bending 

 

 

 

Objective: Longitudinal-transverse bending in one plane. 

 

Initial data files: 
File name Description 

4.8_s_c.SPR Longitudinal-transverse bending under a longitudinal compressive force  

4.8_s_t.SPR Longitudinal-transverse bending under a longitudinal tensile force  

 

Problem formulation: A simply supported beam under pure bending is additionally loaded by a 

longitudinal force. Determine the maximum transverse displacements w(x) and bending moments M(x) 

under a longitudinal compressive and tensile force. 

 

References: Strength Analysis in Mechanical Engineering / S. D. Ponomarev, V. L. Biderman, K. K. 

Likharev, et al., In three volumes. Volume 1. M.: Mashgiz, 1956.  

 

Initial data: 

E = 1.0·1010  Pa  - elastic modulus;  

μ = 0.3   - Poisson’s ratio; 

F = 1·10-2 m2  - cross-sectional area; 

I  = 8.333·10-6 m4 - cross-sectional moment of inertia; 

M = 10 kN·m  - value of the bending moment; 

N  = ±200 kN  - value of the concentrated force; 

l = 1.0 m  - beam length.  

 

Finite element model: The calculation is performed in the geometrically linear formulation for an 

energetically equivalent model in the form of a bar on the elastic subgrade resisting the rotations of its 

sections with a linear stiffness parameter kφ = N. Design model – plane frame, 16 bar elements of type 2, 17 

elements of concentrated rotational (clock) springs with stiffness CUY = -12.5 kN·m/rad (-6.25 kN·m/rad) 

for a bar under compression and bending and CUY = 12.5 kN m/rad (6.25 kN·m/rad) for a bar under tension 

and bending of type 51, 17 nodes. 

 

Results in SCAD 

 
Values of transverse displacements w under a longitudinal compressive force (mm) 

 

 
Bending moment diagram M under a longitudinal compressive force (kN·m) 
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Values of transverse displacements w under a longitudinal tensile force (mm) 

 

 
Bending moment diagram M under a longitudinal tensile force (kN·m) 

 

Comparison of solutions: 

Parameter 

Longitudinal compressive force Longitudinal tensile force 

Theory SCAD 
Deviations, 

% 
Theory SCAD 

Deviations, 

% 

Transverse 

displacements  

w(0.5·l), mm 

-19.959 -19.980 0.11 -11.986 -11.978 0.07 

Bending moment  

M(0.5·l), kN·m 
13.992 13.996 0.03 7.603 7.604 0.01 

 

Notes: In the analytical solution, the equation of the elastic line w(x) and the equation of the bending 

moment M(x) under a longitudinal compressive force are determined according to the following formulas: 
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In the analytical solution, the equation of the elastic line w(x) and the equation of the bending moment M(x) 

under a longitudinal tensile force are determined according to the following formulas: 
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System of Cross Bars Subjected to a Distributed Load and a Concentrated Force 

in Their Plane  

 

 
 

 

Objective: Determination of the stress-strain state of a system of cross bars subjected to a distributed load 

and a concentrated force in their plane. 

 

Initial data file: SSLL10_v11.3.SPR 

 

Problem formulation: The system consists of two cross bars of square cross-section, horizontal (BD) and 

vertical (CE), rigidly connected in the common node (point А). The horizontal bar is clamped in the left and 

right nodes (points D and B). The vertical bar is clamped in the lower node (point E) and simply supported 

in the upper one (point C). A vertical concentrated force F is applied in the middle of the left span of the 

horizontal bar (point G), and a vertical uniformly distributed load p is applied to the right span of the 

horizontal bar (AB). Determine the rotation angle UY in the common node of cross bars (point A) and 

bending moments M in the bars on both sides of the node. 

 

References: S. Timoshenko et D.H. Young, Theorie des constructions, Paris, Librairie Polytechnique 

Beranger, 1949, p. 412-416. 

 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus of the bars of the system; 

LAD = 1.0 m  - length of the left span of the horizontal bar; 

bAD = 1.0 m  - side of the cross-section of the left span of the horizontal bar; 

LAB = 4.0 m  - length of the right span of the horizontal bar; 

bAB = 4.0 m  - side of the cross-section of the right span of the horizontal bar; 

LAC = 1.0 m  - length of the upper part of the vertical bar; 

bAC = 1.0 m  - side of the cross-section of the upper part of the vertical bar; 

LAE = 2.0 m  - length of the lower part of the vertical bar; 

bAE = 2.0 m  - side of the cross-section of the lower part of the vertical bar; 

F = 1.0·105 N  - value of the vertical concentrated force; 

p = 1.0·103 N/m  - value of the vertical uniformly distributed load. 

 

 

Finite element model: Design model – plane frame, 5 bar elements of type 10. Boundary conditions are 

provided by imposing constraints in the directions of the degrees of freedom X, Z for the simply supported 

node (point C) and in the directions of the degrees of freedom X, Z, UY for the clamped nodes (points E, D, 

B). Number of nodes in the design model – 6. 
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Results in SCAD 

 
Design and deformed models  

 

 

 

 
Values of rotation angles UY (rad) 
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Values of bending moments M (N·m) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Rotation angle UY (point A), rad -2.2712·10-1 -2.2740·10-1 0.12 

Bending moment M (bar AD), N∙m -12348.6 -12347.5 0.01 

Bending moment M (bar AB), N∙m -11023.7 -11021.0 0.02 

Bending moment M (bar AC), N∙m 113.6 113.7 0.09 

Bending moment M (bar AE), N∙m -1211.3 -1212.8 0.12 
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Cantilever Frame Subjected to a Concentrated Force  

 

 
 

Objective: Determination of the stress-strain state of a cantilever frame subjected to a concentrated force. 

 

Initial data file: SSLL05_v11.3.SPR 

 

Problem formulation: The cantilever frame consists of two horizontal bars of the same length L, clamped 

on the left (points A, C) and joined by a vertical bar of the length l on the right (points B, D). Horizontal 

bars have considerable tensile/compressive stiffness, a vertical bar has both considerable 

tensile/compressive and bending stiffness. A vertical concentrated force F is applied in the joint between 

the lower horizontal bar and the vertical bar (point D). Determine the vertical displacements Z in the joints 

between the horizontal bars and the vertical bar (points B, D), as well as the bending moments My, shear 

forces Qz and longitudinal forces Nx in the clamped nodes of the horizontal bars (points A, C). 

  

References: A. Campa, R. Chappert et R. Picand, La mecanique par les problemes, fasc. 4: Resistance des 

materiaux, Paris, Foucher, 1987. 

 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus of the horizontal bars; 

L = 2.0 m  - length of the horizontal bars; 

l = 0.2 m  - length of the vertical bar; 

Iz = 4/3·10
-8 m4  - cross-sectional moment of inertia of the horizontal bars; 

F = 1.0·103 N  - value of the vertical concentrated force. 

 

Finite element model: Design model – plane frame, 3 bar elements of type 10. Boundary conditions are 

provided by imposing constraints in the directions of the degrees of freedom X, Z, UY (points A, C). 

Tensile/compressive stiffness (E∙A) of horizontal and vertical bars is taken as 1.0·1012 N, bending stiffness 

of the vertical bar (E∙I) is taken as 1.0·1012 N∙m2. Number of nodes in the design model – 4. 

 

Results in SCAD 

 
Design and deformed models  
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Values of vertical displacements Z (m) 

 

 
Bending moment diagram Мy (kN·m) 

 

 

 

 
Shear force diagram Qz (kN) 

 

 
Longitudinal force diagram Nx (kN) 

  

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Vertical displacement Z (point B), m -1.2500·10-1 -1.2498·10-1 0.02 

Vertical displacement Z (point D), m -1.2500·10-1 -1.2498·10-1 0.02 

Bending moment My (point A), N·m -500.0 -500.0 0.00 

Bending moment My (point C), N·m -500.0 -500.0 0.00 

Shear force Qz (point A), N 500.0 500.0 0.00 

Shear force Qz (point C), N 500.0 500.0 0.00 

Shear force Nx (point A), N 5000.0 5000.0 0.00 

Shear force Nx (point C), N -5000.0 -5000.0 0.00 
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Single-Span Simply Supported Plane Frame with a Dual-Pitched Girder 

Subjected to a Vertical Uniformly Distributed Load, Concentrated Vertical and 

Horizontal Forces and a Bending Moment    

 
 

Objective: Determination of the stress-strain state of a single-span simply supported plane frame with a 

dual-pitched girder subjected to a vertical uniformly distributed load, concentrated vertical and horizontal 

forces and a bending moment. 

 

Initial data file: SSLL14_v11.3.spr 

 

Problem formulation: The single-span simply supported frame with a rigid connection between the dual-

pitched girder and the columns is subjected to a vertical load Pzx uniformly distributed along the length of 

the left half-span of the girder 0.5∙L, concentrated vertical force F1 in the ridge joint (point C), concentrated 

horizontal force F2 and bending moment M in the joint between the girder and the left column. Determine 

the vertical displacement Z in the ridge joint (point C), longitudinal N and shear Q force in the support 

node of the left column (point A). 

 

References: J.C. Bianchi, Rapport de la SOCOTEC, Paris, non publie, 1964. 

 

Initial data: 

Material: 

E = 2.1∙1011 Pa     - elastic modulus;  

Columns L1: 

h = 8.0 m     - height; 

EA1 = 1.0∙10
10 N    - axial stiffness; 

EI1 = 2.1∙10
11 ∙ 5.0∙10-4 =  10.5∙107 N∙m2 - bending stiffness; 

Girder L2: 

L = 20.0 m     - span length; 

a = 4.0 m     - rise; 

b = ((0.5∙20.0)
2
 + 4.0

2
)

0.5
   - length of the slope; 

EA2 = 1.0∙10
10 N    - axial stiffness; 

EI2 = 2.1∙10
11∙2.5∙10-4 =  5.25∙107 N∙m2  - bending stiffness; 

Loads and actions: 

Pzx = 3.0∙10
3 N/m - vertical load uniformly distributed along the length of the 

left half-span of the girder 0.5∙L; 

Pz = 3.0∙10
3∙0.5∙20.0/((0.5∙20.0)2 + 4.02)0.5  

    = 2.78543∙103 N/m  - the same load distributed along the length of the left slope 

of the girder b; 

F1 = 2.0∙104 N - concentrated vertical force in the ridge joint; 

F2 = 1.0∙104 N - concentrated horizontal force in the joint between the 

girder and the left column; 

M = 1.0∙105 N∙m  - concentrated bending moment in the joint between the 

girder and the left column. 
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Finite element model: Design model – plane frame, girder – 2 elements of type 2, columns – 2 elements of 

type 2. Boundary conditions are provided by imposing constraints in the directions of the degrees of 

freedom X, Z for pinned support nodes. Number of nodes in the design model – 5. 

 

Results in SCAD 

 
Design and deformed models  

 

 

 
Values of vertical displacements Z (m) 
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Values of longitudinal forces N (N) 

 

 
Values of shear forces Q (N) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Vertical displacement ZC, m -3.0720∙10-2 -3.0752∙10-2 0.10 

Longitudinal force NA, N -31.500 -31.500 0.00 

Shear force NA, N 20239.4 20238.7 0.00 
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Spatial Bar System with Elastic Constraints Subjected to a Concentrated Force 

 
 

Objective: Determination of the stress-strain state of the spatial bar system with elastic constraints subjected 

to a concentrated force. 

 

Initial data file: SSLL04_v11.3.SPR 

 

Problem formulation: The spatial system consists of four bars connected in series. End bars lie 

orthogonally in parallel horizontal planes, intermediate bars are vertical and are connected by hinges 

relatively to the angular degrees of freedom (point 3). There are rigid constraints of linear and angular 

degrees of freedom in the plane of the cross-section of the respective end bar and elastic constraints of 

linear and angular degrees of freedom out of the plane of the cross-section of the respective end bar on both 

ends of the spatial system (points 1,5). A vertical concentrated force F is applied in the joint between the 

upper horizontal and vertical bars (point 4). Determine the vertical displacement Z for the joint between 

vertical bars (point 3), horizontal displacement Y along the upper end bar and the rotation angle UX in the 

vertical plane containing this bar for the upper constraint of the spatial system (point 5), as well as the 

torque and bending moments Mx, My, Mz for the upper and lower constraints of the spatial system (points 1, 

5). 

 

References: M. Laredo, Resistance des materiaux, Paris, Dunod, 1970, p. 165. 

 

Initial data: 

E = 2.1·1011  Pa  - elastic modulus, 

G = 0.7875·1011  Pa - shear modulus, 

l = 2.0 m  - length of the horizontal bars; 

0.5 l = 1.0 m  - length of the vertical bars; 

A = 1.0·10-3 m2  - cross-sectional area of the bars;  

Ix = 2·10
-6 m4  - moment of inertia in the plane of the cross-section of the bars (torsion); 

Iy = Iz = 2·10
-6 m4 - moments of inertia out of the plane of the cross-section of the bars (bending); 

k = 5.25·104 N/m - stiffness of constraints with respect to the linear degree of freedom; 

ku = 5.25·104 N∙m/rad - stiffness of constraints with respect to the angular degrees of freedom; 

F = 1.0·104 N  - value of the vertical concentrated force. 

 

Finite element model: Design model – general type system, 4 bar elements of type10. Boundary conditions 

are provided by imposing rigid constraints in the directions of the degrees of freedom X, Z, UY and 

constraints of finite rigidity in the directions of the degrees of freedom Y, UX, UZ (member type 51) – for 

the end of the upper bar of the spatial system (point 5); by imposing rigid constraints in the directions of the 

degrees of freedom Y, Z, UX and constraints of finite rigidity in the directions of the degrees of freedom X, 

UY, UZ (member type 51) – for the end of the lower bar of the spatial system (point 1). Number of nodes in 

the design model – 5. 
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Results in SCAD 

 
Design and deformed models  

 
Values of vertical displacements Z (m) 
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Values of horizontal displacements Y (m) 

 

 

 
Values of rotation angles UX (rad) 
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Torque diagram Мx (kN*m) 

 

   
Bending moment diagram Мy (kN*m) 
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Bending moment diagram Мz (kN*m) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Vertical displacement Z (point 3), m -3.7004·10-1 -3.7004·10-1 0.00 

Horizontal displacement Y (point 5), m -2.9762·10-2 -2.9762·10-2 0.00 

Rotation angle UX (point 5), rad 1.6071·10-1 1.6073·10-1 0.01 

Torque Mx (point 5), N·m 1562.5 1562.3 0.01 

Bending moment My (point 5), N·m -8437.5 -8438.1 0.01 

Bending moment Mz (point 5), N·m -3125.0 3124.6 0.01 

Torque Mx (point 1), N·m -1562.5 -1562.5 0.00 

Bending moment My (point 1), N·m -8437.5 -8437.1 0.00 

Bending moment Mz (point 1), N·m 3125.0 3125.0 0.00 
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Ring Subjected to a Distributed Load Acting in Its Plane  

 
 

 

Objective: Analysis for bending in the ring plane under a concentrated force without taking into account the 

transverse shear deformations. 

 

Initial data file: 4.7.SPR 

 

Problem formulation: The ring is subjected to a distributed load q acting in its plane. Determine: the 

normal force in the ring section N and the change in the ring diameter δ.  

 

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: 

Naukova Dumka, 1988. 

 

Initial data: 

E = 2.0·1011  Pa    -   elastic modulus,  

μ = 0.3                   -    Poisson’s ratio,  

R= 1 m                   -    ring radius; 

F = 0,001 m2          -    cross-sectional area; 

q = 100 kN/m         -   value of the distributed load.  

 

Finite element model:  Design model – general type system, 72 bar elements of type 10, 72 nodes. 
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Results in SCAD 

 
Normal force diagram N (kN) 

   

   
Values of displacements δ (mm) 
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Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Change in the ring diameter δ, mm 0.50 0.50 0.00 

Normal force in the ring section N, kN 100.00 99.14 0.86 

 

Notes: In the analytical solution, the change in the ring diameter is determined according to the following 

formulas (“Handbook on Strength of Materials” p. 384) : 

 

FE

Rq 2




 . 

 

Normal force in the ring section: 

 

RqN  . 
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Simply Supported Semicircular Arch of Constant Cross-Section Subjected to a 

Concentrated Force Acting in Its Plane 

 

 
 

Objective: Determination of the strain state of a simply supported semicircular arch of constant cross-

section subjected to a concentrated force acting in its plane. 

 

Initial data file: SSLL08_v11.3.SPR 

 

Problem formulation: The semicircular arch of constant cross-section with pinned and roller supports 

subjected to a concentrated force F acting in its plane at the level of the key, directed downward along the 

normal to the longitudinal axis. Determine the deflection of the longitudinal axis of the arch Z, 

displacement of the roller support X and rotation angles of the support hinges UY.  

 

References: P. Dellus, Resistance de materiaux, Paris, Technique et Vulgarisation, 1958.   

 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus of a semicircular arch; 

r = 1.0 m  - arc radius of the longitudinal axis of the semicircular arch; 

de = 0.020 m  - outer diameter of the ring cross-section of the arch; 

di = 0.016 m  - inner diameter of the ring cross-section of the arch; 

F = 100 N  - value of the concentrated force. 

 

Finite element model: Design model – plane frame, 48 bar elements of type 10. Boundary conditions are 

provided by imposing constraints in the directions of the degrees of freedom X, Z – for the pinned support 

and Z – for the roller support. Number of nodes in the design model – 49. 
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Results in SCAD 

 

 
Design and deformed models 

 
Values of vertical displacements Z (m) 
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Values of horizontal displacements X (m) 

 
Values of rotation angles UY (rad) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Deflection of the longitudinal axis of the arch Z, m -1.9206·10-2 -1.9211·10-2 0.03 

Displacement of the roller support X, m 5.3912·10-2 5.3902·10-2 0.02 

Rotation angle of the roller support UY, rad -3.0774·10-2 -3.0788·10-2 0.05 

Rotation angle of the pinned support UY, rad 3.0774·10-2 3.0788·10-2 0.05 

 

Notes: In the analytical solution, the deflection of the longitudinal axis of the arch Z, the displacement of 

the roller support X and the rotation angles of the support hinges UY are determined according to the 

following formulas: 
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Strain State of a Split Circular Ring Subjected to Two Mutually Perpendicular 

Forces Px and Py, Acting in the Plane of the Ring  

 

 
 

 

Objective: Strain state of a split circular ring under bending in the plane without taking into account the 

transverse shear deformations. 

 
Initial data file: 4.6.SPR 

 

Problem formulation: The split circular ring is subjected to two mutually perpendicular forces Px and Py, 

acting in the plane of the ring axes. Determine the strain state of the ring. 

 

References: Strength Analysis in Mechanical Engineering / S. D. Ponomarev, V. L. Biderman, K. K. 

Likharev, et al., In three volumes. Volume 1. M.: Mashgiz, 1956. 

 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus;  

R = 1.3 m  - radius of the ring axis; 

F = 1·10-2 m2  - cross-sectional area; 

I  = 5·10-6 m4  - cross-sectional moment of inertia; 

Px = Py = 1 kN  - value of the concentrated force.  

 

Finite element model: Design model – plane model, 120 bar elements of type 2, 121 nodes. 
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Results in SCAD 

 
 

Values of displacements u (mm) 

   

   

 
Values of displacements  v (mm) 
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Comparison of solutions: 

Angle φ, 

degree 
Displacements along the x axis Displacements along the y axis 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

0 -6.902 -6.900 0.03 -20.706 -20.703 0.01 

45 2.690 2.691 0.04 -16.777 -16.774 0.02 

90 6.275 6.275 0.00 -8.472 -8.470 0.02 

135 3.984 3.984 0.00 -2.419 -2.417 0.08 

180 0.943 0.942 0.11 -0.943 -0.941 0.21 

225 0.154 0.153 0.65 -1.125 -1.124 0.09 

270 0.316 0.315 0.32 -0.627 -0.627 0.00 

315 0.114 0.114 0.00 -0.074 -0.075 1.35 

360 0.000 0.000 0.00 0.000 0.000 0.00 

 

 

Notes: In the analytical solution the displacements of the points of the ring in the directions x and y are 

determined according to the following formulas: 
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Cantilever Curved Beam with a Transverse Concentrated Force at Its Free End 

 
Objective: Check of the accuracy of the determination of the displacement value for the free end of a beam 

in the direction of the concentrated force for models of different dimensions. 

 

Initial data files: 
File name Description 

4.38_c.SPR Bar model 

4.38_п.SPR Shell element model 

4.38_о.SPR Solid element model 

 

Problem formulation: The cantilever curved beam with a longitudinal circular axis having a length of the 

split ring and with a rectangular cross-section constant along the axis is subjected to a transverse 

concentrated force P applied at its free end. Determine the displacement of the free end of the beam w in the 

direction of the concentrated force. 

 

References: Sacharov A., Altenbach J.: Finite Elements in Solid Mechanics. -Kiev: High School. 1982, 

Leipzig: Fahbuhferlag. 1982;  

G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: Naukova 

Dumka, 1975. 

 

Initial data: 

E = 100.0 kPa  - elastic modulus;  

ν = 0.0   - Poisson’s ratio; 

R = 0.20 m  - arc radius of the longitudinal axis of the cantilever curved beam; 

α = 360º  - central angle of the arc length of the longitudinal axis of the cantilever curved 

beam; 

b = h = 0.01 m  - cross-sectional dimensions of the cantilever curved beam; 

P = 10-8 kN - value of the transverse concentrated force on the free end of the beam. 

 

Finite element model: Design model – general type system. Three design models are considered: 

 Bar model (B), 120 elements of type 5, the spacing of the finite element mesh along the 

longitudinal axis is 3.0º, 121 nodes; 

 Shell element model (P), 480 eight-node elements of type 50, the spacing of the finite element mesh 

along the longitudinal axis is 3.0º, and along the height of the beam is 0.0025 m, 1689 nodes; 

 Solid element model (S), 1920 twelve-node elements of type 37, the spacing of the finite element 

mesh along the longitudinal axis is 3.0º, and along the height and width of the beam is 0.0025 m, 10865 

nodes. 
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Results in SCAD 

 
Design model. Bar model 

 

 
Design model. Shell element model 
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Design model. Solid element model 

 

 

 

 
 

Deformed model and the values of the displacements of the free end of the beam w 

in the bar model (mm) 
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Deformed model and the values of the displacements of the free end of the beam w 

in the shell element model (mm) 

 

 

 

 
Deformed model and the values of the displacements of the free end of the beam w 

in the solid element model (mm) 

 

Comparison of solutions: 

Model Displacements w, mm Deviations, % 

Bar (B) 3.015 0.03 

Shell element (P) 3.017 0.03 

Solid element (S) 3.017 0.03 

Theory 3.016 ─ 
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Notes: In the analytical solution the displacement of the free end of the beam w in the direction of the 

transverse concentrated force is determined according to the following formula (G.S. Pisarenko, A.P. 

Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: Naukova Dumka, 1975, p. 392): 
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Cantilever Circular Bar of Constant Cross-Section with Concentrated Forces and 

a Moment Acting in Its Plane at Its Free End  
 

 
 

 

Objective: Determination of the strain state of a cantilever circular bar of constant cross-section with 

concentrated forces and a moment acting in its plane at its free end. 

 

Initial data file: 
File name Description 

SSLL06_вариант_1_v11.3.SPR 

Design model – plane frame. 

Cantilever circular bar lies in the XOZ plane of the global coordinate 

system 

 

Problem formulation: The cantilever circular bar of constant cross-section is subjected to concentrated 

horizontal (normal) F1 and vertical (tangential) F2 forces and a moment M acting in its plane and applied at 

its free end. Determine the horizontal X and vertical Z displacements , as well as the rotation angle UY of 

the free end of the bar (point B). 

  

References: J.S. Przemieniecki, Theory of matrix structural analysis, New York, McGraw-Hill, 1968. 

 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus of the cantilever circular bar; 

r = 3.0 m  - arc radius of the longitudinal axis of the cantilever circular bar; 

α = 90º   - central angle of the arc length of the longitudinal axis of the cantilever circular 

bar; 

de = 0.020 m  - outer diameter of the ring cross-section of the bar; 

di = 0.016 m  - inner diameter of the ring cross-section of the bar; 

F1 = 10 N  - value of the horizontal concentrated force; 

F2 = 5 N  - value of the vertical concentrated force; 

M = 8 N∙m  - value of the concentrated moment. 

 

Finite element model: Design model – plane frame, 24 bar elements of type 10. Boundary conditions are 

provided by imposing constraints in the directions of the degrees of freedom X, Z, UY (point A). Number 

of nodes in the design model – 25. 
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Results in SCAD 

 
Design and deformed models  

 

 
Values of horizontal displacements X (m) 
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Values of vertical displacements Z (m) 

 

 

 

 
 

Values of rotation angles UY (rad) 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Horizontal displacement X (point B), m 3.7908·10-1 3.7882·10-1 0.07 

Vertical displacement Z (point B), m 2.4173·10-1 2.4174·10-1 0.01 

Rotation angle UY (point B), rad -1.6539·10-1 -1.6535·10-1 0.02 
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Notes: In the analytical solution the horizontal X and vertical Z displacements, as well as the rotation angle 

UY of the free end of the bar are determined according to the following formulas: 
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Cantilever Circular Bar of Constant Cross-Section with a Concentrated Force out 

of Its Plane at Its Free End  
 

 
 

Objective: Determination of the stress-strain state of a cantilever circular bar of constant cross-section with 

a concentrated force acting out of its plane at its free end. 

 

Initial data file: 
File name Description 

SSLL07_вариант_1_v11.3.SPR 
Design model – general type system. Cantilever circular bar lies in the 

XOZ plane of the global coordinate system 

 

Problem formulation: The cantilever circular bar of constant cross-section is subjected to a concentrated 

force F acting in its plane and applied at its free end. Determine the displacement Y of the free end of the 

bar out of its plane (point B), as well as the torque Mx and out-of-plane bending moment Mz for the cross-

section corresponding to the central angle θ from the clamped end. 

  

References: S. Timoshenko, Strength of materials, Part 1: Elementary theory and problem, 3ed, 1955; R.J. 

Roark, Formulas for stress and strain, 4ed, New York, McGraw-Hill, 1965. 

 

Initial data: 

E = 2.0·1011  Pa  - elastic modulus of the cantilever circular bar; 

ν = 0.3   - Poisson’s ratio; 

r = 1.0 m  - arc radius of the longitudinal axis of the cantilever circular bar; 

θ = 90º   - central angle of the arc length of the longitudinal axis of the cantilever circular 

bar; 

de = 0.020 m  - outer diameter of the ring cross-section of the bar; 

di = 0.016 m  - inner diameter of the ring cross-section of the bar; 

F = 100 N  - value of the concentrated force. 

 

Finite element model: Design model – general type system, 15 bar elements of type 10. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom X, Y, Z, UX, 

UY, UZ (point A). Number of nodes in the design model – 16. 
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Results in SCAD 

 
Design and deformed models  

 

 

 

 
Values of displacements out of the plane of the bar Y (m) 
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Torque diagram Мx (kN·m) 

 

 

 

 

 
Bending moment diagram out of the plane of the bar Мz (kN·m) 
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Comparison of solutions: 

Parameter Theory SCAD 
Deviations, 

% 

Displacement out of the plane of the bar Y (point B), m -1.34462·10-1 -1.34364·10-1 0.07 

Torque Mx (θ = 15º), N∙m -74.118 -73.981 0.18 

Bending moment out of the plane of the bar Mz (θ = 15º), N∙m -96.593 -96.593 0.00 

 

Notes: In the analytical solution the displacement Y of the free end of the bar out of its plane (point B), as 

well as the torque Mx and out-of-plane bending moment Mz for the cross-section corresponding to the 

central angle θ from the clamped end are determined according to the following formulas: 
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Single-Span Beam with a Prestressed Tie Subjected to a Uniformly Distributed 

Load  
 

 
 

 
 

Objective: Determination of the stress-strain state of a beam with a tie taking into account the transverse 

shear deformations in the beam. 

 

Initial data file: SSLL13_v11.3.spr 

 

Problem formulation: The single-span beam with a tie tightened by the displacement value δ by the struts 

is subjected to a uniformly distributed load q. Determine the longitudinal force N in the tie CE, the bending 

moment M in the section of the stiffening beam H in the middle of its span, the vertical displacement z in 

the joint between the strut and the stiffening beam (point D). 

 

References: M. Laredo, Resistence des materiaux, Paris, Dunod, 1970, p. 77. 

 

Initial data: 

Tie A1: 

EF = 9.450∙108 N  - axial stiffness;  

Strut A2: 

EF = 7.308∙108 N  - axial stiffness;  

Stiffening beam AB: 

EF = 3.1836∙109 N  - axial stiffness;  

EIy = 4.5654∙107 N/m2  - bending stiffness;  

GFy = 5.09376∙108 N  - shear stiffness; 

Loads and actions: 

δ = 6.52·10-3 m   - displacement in the tie; 

P = 5.0∙104 N/m  - transverse uniformly distributed load on the stiffening beam. 

 

Finite element model: Design model – plane frame, tie A1 – 4 elements of type 1, struts A2 – 2 elements of 

type 1, stiffening beam AB – 3 elements of type 2 taking into account the shear, elements modeling the 

prestressing of the tie in the CE section – 2 elements of type 154 with the axial stiffness EF = 1.0∙1018 N. 

The tie in the CE section is represented by two elements of equal length increased with respect to half the 

length of the section by imposing rigid inserts in the longitudinal direction. The length of the elements is 

increased in order to separate their nodes near the symmetry axis of the structure at the prestressing stage. A 

null element is attached to each of these nodes, with the help of which they are displaced in the longitudinal 

direction. In order to prevent the dimensional instability of the system the displacements of nodes are 

combined by elements in the transverse direction by the degree of freedom Z in the section of the 

tie CE. Boundary conditions in the direction of the degree of freedom Z in the support nodes A and B are 

provided by imposing the respective rigid constraint. Number of nodes in the design model – 10. 
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Results in SCAD 

 
Design and deformed models 

 

 
Values of vertical displacements Z (m) 

 

 
Values of longitudinal forces N (N) 

 

 
 

 
Values of bending moments M (N·m) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Bending moment MH, N·m 49249.5 49249.5 0.00 

Longitudinal force NCE, N 584584.0 584584.1 0.00 

Vertical displacement ZD, m -5.428∙10-4 -5.428∙10-4 0.00 
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Two-Span Single-Storey Frame Subjected to a Constant Transverse Unit Force 

Moving Along the Girder Spans with a Small Speed. Plotting of Influence Lines of 

Internal Forces in the Frame Sections 

 
 

Objective: Determination of the values of the bending moment in the section of the middle of the left 

girder span of a two-span single-storey frame depending on the position of a constant transverse unit 

force moving along the girder spans with a small speed. 
  

Initial data file: Influence_Line.SPR 
 

Problem formulation: The constant transverse unit force P moves along the girder of the two-span 

single-storey frame with a small speed. The girder is rigidly connected with the middle and right edge 

columns, which have pinned supports, and the end of its left span is simply supported. Determine the values 

of the bending moment in the section of the middle of the left girder span of the frame M1-1 depending on 

the position of the transverse force and plot the influence line.  
 

References: A. F. Smirnov, A. V. Aleksandrov, B. Ya. Lashchenikov, N. N. Shaposhnikov, Structural 

Mechanics. Bar Systems, Moscow, Stroyizdat, 1981, p. 352-356. 
  

Initial data: 

l = 6.0 m   - length of the girders of the frame; 

h = 6.0 m   - height of the columns of the frame; 

EA = 1.0·106 kN  - axial stiffness of the structural members of the frame; 

EI = 83.3333 kN∙m2  - bending stiffness of the structural members of the frame; 

P = 1.0 kN - value of the transverse unit force. 
 

Finite element model: Design model – plane frame, 24 elements of type 2. The spacing of the finite 

element mesh along the longitudinal axes of the structural elements (along the X1 axes of the local 

coordinate systems) is 1.0 m. Boundary conditions are provided by imposing constraints on the support 

nodes of the columns in the directions of the degrees of freedom X, Z and on the support node of the left 

girder span in the direction of the degree of freedom Z.  

The problem is solved by the kinematic method: 

 the elements of the middle of the left girder span are divided with the formation of a pair of 

duplicate nodes each one belonging to one of these adjacent elements; 

 the displacements of the pair of duplicate nodes are merged for all degrees of freedom except for 

UY; 

 unit concentrated opposite bending moments My = 1.0 kN∙m are applied to the nodes of the pair. 
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The result of the influence line of the bending moment in the section of the left frame span [nodes 26, 8] 

should be considered in the form of deformations according to the following formula: Z/[UY26-

UY8]/1000. It is necessary to divide the expression by 1000 if the dimension Z is given in mm. 

Number of nodes in the design model – 26. 

 

Results in SCAD 

 

 
Design model 

 

 

 

 
Values of rotation angles UY (rad) 
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   Values of the bending moment in the section of the middle of the left girder span of the frame M1-1 (kN·m) 

depending on the position of the transverse force 

 

 
   Influence lines of the bending moment in the section of the middle of the left girder span of the frame M1-1 

 

Comparison of solutions: 
Values of the bending moment in the section of the middle of the left girder span of the frame M1-1 (kN∙m) 

depending on the position of the transverse force 

Position of the transverse force  

from the edge of the left span, m 
Theory SCAD Deviation, % 

0.00 0.000 0.000 0.00 

1.00 0.343 0.343 0.00 

2.00 0.714 0.713 0.14 

3.00 1.137 1.137 0.00 

4.00 0.641 0.642 0.16 

5.00 0.254 0.254 0.00 

6.00 0.000 0.000 0.00 

7.00 -0.125 -0.125 0.00 

8.00 -0.165 -0.165 0.00 

9.00 -0.144 -0.145 0.69 
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Position of the transverse force  

from the edge of the left span, m 
Theory SCAD Deviation, % 

10.00 -0.093 -0.093 0.00 

11.00 -0.036 -0.036 0.00 

12.00 0.000 0.000 0.00 
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Bending of a Rectangular Deep Beam Rigidly Suspended along the Sides 

Subjected to a Uniformly Distributed Load Applied to Its Upper Side 

 
 

Objective: Determination of the strain state of a rectangular deep beam rigidly suspended along the sides 

subjected to a uniformly distributed load applied to its upper side. 

 

Initial data file: KSLS01_v11.3.SPR 

 

Problem formulation: The uniformly distributed load p acting in the plane of the deep beam along the y 

axis is applied to the upper side of the rectangular deep beam rigidly suspended along the sides. Determine 

the components of the strain tensor in the Cartesian coordinates u(x,z) and v(x,z) for the midsurface of the 

deep beam in its plane. 

 

References: A.S. Kalmanok, Analysis of Deep Beams, Moscow, Gosstroyizdat, 1956. 

  

Initial data: 

E = 2.65·106 Pa  - elastic modulus;  

ν = 0.15  - Poisson’s ratio;  

h = 0.1 m  - thickness of the deep beam; 

a = 1.6 m  - length of the deep beam span; 

b = 1.6 m  - height of the deep beam; 

p = 500.0 N/m  - uniformly distributed load. 

 

Finite element model: Design model – plane hinged bar system, 200 deep beam elements of type 21. The 

spacing of the finite element mesh along the x and z axes of the global coordinate system is 0.08 m. 

Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z for 

the side and in the direction of the degree of freedom X at the symmetry axis. Number of nodes in the 

design model – 231. 
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Results in SCAD 

  
Design model 

 

 
 

Deformed model 
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Values of displacements along the deep beam span u (m) 

 

   
Values of displacements along the deep beam height v (m) 

 

Comparison of solutions: 

Coordinates Displacements u, m Displacements v, m 

x z 
Theory SCAD 

Deviations, 

% 
Theory SCAD 

Deviations, 

% 

0.0 0.0 -0.719∙10-3 -0.713∙10-3 0.83 0.000∙10-3 0.000∙10-3 ─ 

0.0 0.8 -0.220∙10-3 -0.221∙10-3 0.45 0.000∙10-3 0.000∙10-3 ─ 

0.0 1.6 1.468∙10-3 1.401∙10-3 4.56 0.000∙10-3 0.000∙10-3 ─ 

0.4 0.0 -0.508∙10-3 -0.504∙10-3 0.79 -0.672∙10-3 -0.667∙10-3 0.74 

0.4 0.8 -0.148∙10-3 -0.148∙10-3 0.00 -0.950∙10-3 -0.945∙10-3 0.53 
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Coordinates Displacements u, m Displacements v, m 

x z 
Theory SCAD 

Deviations, 

% 
Theory SCAD 

Deviations, 

% 

0.4 1.6 0.780∙10-3 0.778∙10-3 0.26 -2.032∙10-3 -2.027∙10-3 0.25 

0.8 0.0 0.000∙10-3 0.000∙10-3 ─ -0.950∙10-3 -0.943∙10-3 0.74 

0.8 0.8 0.000∙10-3 0.000∙10-3 ─ -1.326∙10-3 -1.320∙10-3 0.45 

0.8 1.6 0.000∙10-3 0.000∙10-3 ─ -2.510∙10-3 -2.504∙10-3 0.24 

Notes: In the analytical solution the components of the strain tensor in the Cartesian coordinates u(x,z) 

and v(x,z) for the midsurface of the deep beam in its plane can be calculated according to the following 

formulas: 
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Pure Bending of a Square Plate in the Plane Stress State Clamped on One Side 

and Simply Supported in the Center of the Opposite Side 

 
 

Objective: Check of the equilibrium of the plate sections parallel to the support sides by the shear stresses. 

 

Initial data files: 
File name Description 

4.29_балка_КЭ_2.SPR 
1 variant of the design model – support bar from elements 

of finite rigidity of type 2 

4.29_балка_КЭ_100.SPR 
2 variant of the design model – support bar from the rigid 

body element of type 100 

 

Problem formulation: The square plate in the plane stress state clamped on one side and simply supported 

by a rigid bar on the opposite side is subjected to a pair of concentrated forces P, applied at the opposite 

ends of the bar and directed perpendicular to its axis. Check the equality of the values of the areas of shear 

stress diagrams τ for the plate sections parallel to the support sides and the values of the respective support 

reactions H. 

 

References: Perelmuter A.V., Slivker V.I. Design models of structures and a possibility of their analysis. 

— Moscow: SCAD SOFT, 2011. 

 

Initial data: 

E = 3.0·105 kPa  - elastic modulus;  

ν = 0.25  - Poisson’s ratio;  

δ= 1.0 m  - thickness of the deep beam; 

a = 16.0 m  - plate side; 

P = 1000.0 kN  - concentrated force. 

 

Finite element model: Two variants of the design model are considered. 

Variant 1: 

Design model – plane frame, plate elements – 64 eight-node elements of type 30, bar elements – 16 

elements of type 2 (EA = 3.0·1015 kN, EI = 3.0·1012 kN∙m2). The spacing of the finite element mesh in the 

directions parallel to the support sides is 1.0 m. Number of nodes in the design model – 225. 

Variant 2: 

Design model – plane frame, plate elements – 64 eight-node elements of type 30, bar elements – 1 element 

of type 100 (rigid body with a master node in the center of the simply supported side of the plate). The 

spacing of the finite element mesh in the directions parallel to the support sides is 1.0 m. Number of nodes 

in the design model – 225. 
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Results in SCAD 

 

Design model. Variant 1 

 

 
Design model. Variant 2 
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Values of support reactions H (kN) for the design model according to variant 1 

 

 

 
Values of support reactions H (kN) for the design model according to variant 2 
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Isolines of stresses τ (kN/m2) for the design model according to variant 1 

 

 

 
Values of stresses τ (kN/m2) for the design model according to variant 1 
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Isolines of stresses τ (kN/m2) for the design model according to variant 2 

 

 
Values of stresses τ (kN/m2) for the design model according to variant 2 
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Comparison of solutions: 

Comparison of the values of the areas of shear stress diagrams τ for the plate sections parallel to the support 

sides and located at the distance y from the simply supported side with the value of the support reaction H 

at the simply supported side. 

Design model according to variant 1 

H = 872.45 kN 

Design model according to variant 2 

H = 872.45 kN 

y, m dxQ

a

 
0

 , kN Deviations, % y, m dxQ

a

 
0

 , kN Deviations, % 

0.0 857.71 1.69 0.0 857.67 1.69 

2.0 867.07 0.62 2.0 867.06 0.62 

4.0 872.87 0.05 4.0 872.88 0.05 

6.0 872.60 0.02 6.0 872.61 0.02 

8.0 872.59 0.02 8.0 872.59 0.02 

10.0 872.61 0.02 10.0 872.62 0.02 

12.0 872.70 0.03 12.0 872.71 0.03 

14.0 872.10 0.04 14.0 872.11 0.04 

16.0 871.11 0.15 16.0 871.12 0.15 
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Compression and Bending of a Symmetric Wedge by Concentrated Forces Applied 

to Its Vertex (Michell’s Problem)  

 
 

Objective: Determination of the stress state of a symmetric wedge of unit thickness in polar coordinates 

subjected to compression and bending by concentrated forces applied to its vertex. 

 

Initial data file:  4.22.SPR 

 

Problem formulation: The compressive force Px1 acting along the symmetry axis of the wedge OX1 and 

the bending force Px2, which is a skew-symmetric load with respect to the symmetry axis of the wedge 

OX1, are applied to the vertex of the wedge of unit thickness. Determine the stress tensor components in 

polar coordinates σrr, σθθ, σrθ at a radial distance r = 5.0 m from the vertex of the wedge. 

 

References: S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979. 

 

Initial data: 

E = 3.0·107 kPa  - elastic modulus;  

μ = 0.2   - Poisson’s ratio;  

h = 1.0 m  - thickness of the wedge; 

2·α = 30º  - apex angle of the wedge; 

R = 15.0 m  - radius of the fixed end of the wedge; 

Px1 = -5.0 kN  - concentrated force compressing the wedge (horizontal); 

Px2 = 5.0 kN  - concentrated force bending the wedge (vertical). 

 

Finite element model: Design model – general type system, wedge elements– 280 eight-node elements of 

type 50. The spacing of the finite element mesh in the radial direction is 0.5 m, and in the tangential 

direction is 3º. The direction of the output of internal forces is radial tangential. Since in the case of a 

cylindrical surface of a small radius a the force Px1 at the vertex of the wedge cannot be represented as a 

resultant of stresses distributed according to the law of the analytical solution given below, the edge of the 

wedge is modeled by a rigid body with a master node at the vertex of the wedge and the slave nodes at the 

radial distance of a = 1.0 m from the vertex of the wedge (member type – 100). Since there are no forces 

distributed according to the law of the analytical solution at the fixed end of the wedge, in order to obtain an 

exact solution at the radial distance r = 5.0 m from the action of the force Px2 the radial distance to the fixed 

end is taken as R = 15.0 m. Number of nodes in the design model – 918. 
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Results in SCAD 

 
Design model 

 

 

   
 

Values of stresses σrr (kN/m2) under the compressive force Px1 and the bending force Px2 
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Values of stresses σθθ (kN/m2) under the compressive force Px1 and the bending force Px2 

 

  
 

Values of stresses σrθ (kN/m2) under the compressive force Px1 and the bending force Px2 
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Comparison of solutions: 

Stress tensor components at a radial distance r = 5.0 m from the vertex of the wedge under the compressive 

force Px1 

Angle θ 
Stresses σrr (kN/m

2
) 

Theory SCAD Deviations, % 

-15º -1.8873 -1.8845 0.15 

0º -1.9539 -1.9508 0.16 

+15º -1.8873 -1.8845 0.15 

 

Angle θ 
Stresses σθθ (kN/m

2
) 

Theory SCAD Deviations, % 

-15º 0.0000 -0.0005 ─ 

0º 0.0000 -0.0007 ─ 

+15º 0.0000 -0.0005 ─ 

 

Angle θ 
Stresses σrθ (kN/m

2
) 

Theory SCAD Deviations, % 

-15º 0.0000 -0.0498 ─ 

0º 0.0000 0.0000 ─ 

+15º 0.0000 0.0498 ─ 

 

 

Stress tensor components at a radial distance r = 5.0 m from the vertex of the wedge under the bending 

force Px2 

Angle θ 
Stresses σrr (kN/m

2
) 

Theory SCAD Deviations, % 

-15º -21.9350 -21.9098 0.11 

0º 0.0000 0.0000 ─ 

+15º 21.9350 21.9098 0.11 

 

Angle θ 
Stresses σθθ (kN/m

2
) 

Theory SCAD Deviations, % 

-15º 0.0000 -0.0086 ─ 

0º 0.0000 0.0000 ─ 

+15º 0.0000 0.0086 ─ 

 

Angle θ 
Stresses σrθ (kN/m

2
) 

Theory SCAD Deviations, % 

-15º 0.0000 0.5314 ─ 

0º 0.0000 0.0494 ─ 

+15º 0.0000 -05314 ─ 

 

Notes: In the analytical solution the stresses σrr, σθθ, σrθ  in the body of the wedge subjected to the 

compressive force Px1 are determined according to the following formulas (S.P. Demidov, Theory of 

Elasticity. — Moscow: High school, 1979, p. 273): 

 

  









2sin2r

cosP2
rr ; 0 ; 0r  . 

 

In the analytical solution the stresses σrr, σθθ, σrθ  in the body of the wedge subjected to the bending force 

Px2 are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. — Moscow: 

High school, 1979, p. 275):  

 

  









2sin2r

sinP2
rr ; 0 ; 0r  . 
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Bending of a Symmetric Wedge by a Concentrated Moment Applied to Its Vertex 

(Inglis Problem) 

 
 

Objective: Determination of the stress state of a symmetric wedge of unit thickness in polar coordinates 

subjected to bending by a concentrated moment applied to its vertex. 

 
Initial data file: 4.23.SPR 

 

Problem formulation: The moment M acting in the plane of the wedge X1OX2 is applied to the vertex of 

the wedge of unit thickness. Determine the stress tensor components in polar coordinates σrr, σθθ, σrθ at a 

radial distance r = 5.0 m from the vertex of the wedge. 

 

References: S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979. 

 

Initial data: 

E = 3.0·107 kPa  - elastic modulus;  

μ = 0.2   - Poisson’s ratio;  

h = 1.0 m  - thickness of the wedge; 

2·α = 30º  - apex angle of the wedge; 

R = 15.0 m  - radius of the fixed end of the wedge; 

M = -25.0 kN  - concentrated moment bending the wedge. 

 

Finite element model: Design model – general type system, wedge elements – 280 eight-node elements of 

type 50. The spacing of the finite element mesh in the radial direction is 0.5 m, and in the tangential 

direction is 3º. The direction of the output of internal forces is radial tangential. Since in the case of a 

cylindrical surface of a small radius a the moment M at the vertex of the wedge cannot be represented as a 

resultant of stresses distributed according to the law of the analytical solution given below, the edge of the 

wedge is modeled by a rigid body with a master node at the vertex of the wedge and the slave nodes at the 

radial distance of a = 1.0 m from the vertex of the wedge (member type – 100). Since there are no forces 

distributed according to the law of the analytical solution at the fixed end of the wedge, in order to obtain an 

exact solution at the radial distance r = 5.0 m from the action of the moment M the radial distance to the 

fixed end is taken as R = 15.0 m. Number of nodes in the design model – 918. 
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Results in SCAD 

 

 
Design model 

 

   
 

Values of stresses σrr (kN/m2) under the bending moment M 
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Values of stresses σθθ (kN/m2) under the bending moment M 

 

 

   
Values of stresses σrθ (kN/m2) under the bending moment M 
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Comparison of solutions: 

Stress tensor components at a radial distance r = 5.0 m from the wedge top under the bending moment M. 

Angle θ 
Stresses σrr (kN/m

2
) 

Theory SCAD Deviations, % 

-15º 21.4822 21.4264 0.26 

0º 0.0000 0.0000 ─ 

+15º -21.4822 -21.4264 0.26 

 

Angle θ 
Stresses σθθ (kN/m

2
) 

Theory SCAD Deviations, % 

-15º 0.0000 -0.0059 ─ 

0º 0.0000 0.0000 ─ 

+15º 0.0000 0.0059 ─ 

 

Angle θ 
Stresses σrθ (kN/m

2
) 

Theory SCAD Deviations, % 

-15º 0.0000 0.5071 ─ 

0º -2.8781 -2.9418 2.21 

+15º 0.0000 0.5071 ─ 

 

Notes: In the analytical solution the stresses σrr, σθθ, σrθ  in the body of the wedge subjected to the bending 

moment M are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. — 

Moscow: High school, 1979, p. 276):  

 
 

    









2cos2tg2r

2sinM2
2rr ; 0 ; 

    
    


 






2cos2tg2r

2cos2cosM
2r . 
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Bending of a Symmetric Wedge by a Uniformly Distributed Load Applied to the 

Surface of One of the Faces of the Wedge (Levi Problem)  

 
 

Objective: Determination of the stress state of a symmetric wedge of unit thickness in polar coordinates 

subjected to bending by a uniformly distributed load applied to the surface of one of the faces of the wedge. 
 

Initial data file: 4.24.SPR 
 

Problem formulation: The uniformly distributed load q acting in the plane of the wedge along the Ox2 axis 

is applied to the surface of one of the faces of the wedge of unit thickness. Determine the stress tensor 

components in polar coordinates σrr, σθθ, σrθ at a radial distance r = 5.0 m from the vertex of the wedge. 

 

References: S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979. 

 

Initial data: 

E = 3.0·107 kPa  - elastic modulus;  

μ = 0.2   - Poisson’s ratio;  

h = 1.0 m  - thickness of the wedge; 

α = 30º   - apex angle of the wedge; 

R = 15.0 m  - radius of the fixed end of the wedge; 

q = 10.0 kN/m  - uniformly distributed load bending the wedge. 

 

Finite element model: Design model – general type system, wedge elements – 290 eight-node elements of 

type 50 and 10 six-node elements of type 45. The spacing of the finite element mesh in the radial direction 

is 0.5 m, and in the tangential direction is 3º. The direction of the output of internal forces is radial 

tangential. Since there are no forces distributed according to the law of the analytical solution at the fixed 

end of the wedge, in order to obtain an exact solution at the radial distance r = 5.0 m from the action of the 

uniformly distributed load q the radial distance to the fixed end is taken as R = 15.0 м. Number of nodes in 

the design model – 961. 
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Results in SCAD 

 
Design model 

 

   

Values of stresses σrr (kN/m2) under the action of the uniformly distributed load q 
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Values of stresses σθθ (kN/m2) under the action of the uniformly distributed load q 

 

 

   
 

Values of stresses σrθ (kN/m2) under the action of the uniformly distributed load q 
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Comparison of solutions: 

Stress tensor components at a radial distance r = 5.0 m from the vertex of the wedge under the uniformly 

distributed load q. 

Angle θ 
Stresses σrr (kN/m

2
) Stresses σθθ (kN/m

2
) Stresses σrθ (kN/m

2
) 

Theory SCAD Theory SCAD Theory SCAD 

0º 97.4110 97.3548 -10.0000 -9.9243 0.0000 -2.7111 

15º -5.0000 -5.0011 -5.0000 -5.0000 -14.3903 -14.2629 

30º -107.4110 -107.3501 0.0000 -0.0757 0.0000 -2.7108 

 

Notes: In the analytical solution the stresses σrr, σθθ, σrθ  in the body of the wedge subjected to the uniformly 

distributed load q are determined according to the following formulas (S.P. Demidov, Theory of Elasticity. 

— Moscow: High school, 1979, p. 276):  
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Triangular Dam Subjected to Its Self-Weight and Hydrostatic Pressure  

 
 

Objective: Determination of the stress state of a triangular dam of unit thickness in Cartesian coordinates 

subjected to its self-weight and hydrostatic pressure. 

 

Initial data file: 4.25.SPR 

 

Problem formulation: A horizontal load distributed according to the linear law with a unit volume weight γ 

acting in the plane of the dam is applied to the surface of the vertical face of the triangular dam of unit 

thickness. The dam is also subjected to the self-weight γ1. Determine the stress tensor components in 

Cartesian coordinates σx, σy, τxy in the horizontal section of the dam located at the depth of y0 = 5.0 m from 

the top of the dam. 

 

References: V. I. Samul, Fundamentals of the Elasticity and Plasticity Theory. — Moscow: High school, 

1982. 

 

Initial data: 

E = 3.0·107 kPa  - elastic modulus of the dam material;  

μ = 0.2   - Poisson’s ratio of the dam material;  

h = 1.0 m  - thickness of the dam; 

β = 30º   - apex angle of the dam; 

H = 15.0 m  - height of the dam; 

γ = 10.0 kN/m3  - specific weight of liquid; 

γ1 = 20.0 kN/m3  - specific weight of the dam material. 

 

Finite element model: Design model – plane frame, plate elements – 452 eight-node elements of type 30 

and 23 six-node elements of type 25. The spacing of the finite element mesh in the horizontal OX and 

vertical OY directions is 0.25 m. The direction of the output of internal forces is along the OX and OY axes 

of the global coordinate system. Since there are no forces distributed according to the law of the analytical 

solution at the fixed end of the dam, in order to obtain an exact solution at the depth y0 = 5.0 m from the top 

of the dam under the self-weight and the hydrostatic pressure, the height of the dam to the fixed end is taken 

as H = 15.0 m. Number of nodes in the design model – 1506. 
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Results in SCAD 

 

 
Design model 

 

   
 

Values of stresses σx (kN/m2) 
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Values of stresses σy (kN/m2) 

 

 

   
 

Values of stresses τxy (kN/m2) 
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Values of stresses σx, σy, τxy (kN/m2) in the horizontal section of the dam located at the depth of y0 = 5.0 m from the top 

of the dam 

 

Comparison of solutions: 

Stress tensor components in Cartesian coordinates σx, σy, τxy in the horizontal section of the dam located at 

the depth of y0 = 5.0 m from the top of the dam. 

Parameter 

On the inclined face of the dam 

(x = y0·tgβ = 2.8868 m) 

Theory SCAD Deviations, % 

σx (kN/m2) -50.00 -50.69 1.38 

σy (kN/m2) -150.00 -152.55 1.70 

τxy (kN/m2) -86.60 -87.42 0.95 

 

Parameter 

On the vertical face of the dam 

(x = 0.0000 m) 

Theory SCAD Deviations, % 

σx (kN/m2) -50.00 -50.00 0.00 

σy (kN/m2) 50.00 49.43 1.14 

τxy (kN/m2) 0.00 -0.43 ─ 

 

 

Notes: In the analytical solution the stresses σx, σy, τxy  in the body of the dam subjected to its self-weight 

and hydrostatic pressure are determined according to the following formulas (V. I. Samul, Fundamentals of 

the Elasticity and Plasticity Theory. — Moscow: High school, 1982, p. 77): 
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Plane Subjected to a Concentrated Moment and a Concentrated Force 

 
 

Objective: Determination of the stress state of a plane of unit thickness in polar coordinates subjected to a 

concentrated moment and a concentrated force. 

 

Initial data file: 4.26.SPR 

 

Problem formulation: The concentrated moment M and the concentrated force P1 acting along the Ox1 axis 

are applied in the origin of the plane of the unit thickness. Determine the stress tensor components in polar 

coordinates σrr, σθθ, σrθ at different radial distances r from the origin of the plane at the angle to the Ox1 axis 

θ = 0º. 

 

References: S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979. 

 

Initial data: 

E = 3.0·107 kPa  - elastic modulus;  

ν = 0.2   - Poisson’s ratio;  

h = 1.0 m  - thickness of the plane; 

R = 10.0 m  - radius bounding the area of the plane along the fixed edge; 

M = 100.0 kN·m - concentrated moment acting in the plane; 

P1 = 100.0 kN  - concentrated force acting in the plane along the OX1 axis. 

P2 = 0.0 kN  - concentrated force acting in the plane along the OX2 axis. 

 

Finite element model: Design model – plane frame, plate elements – 972 eight-node elements of type 30. 

The spacing of the finite element mesh in the radial direction from r = 0.00 m to r = 0.50 m is 0.05 m, from 

r = 0.50 m to r = 1.00 m is 0.10 m, from r = 1.00 m to r = 5.00 m is 0.50 m, from r = 5.00 m to r = 10.00 m 

is 1.00 m, and in the tangential direction the spacing is 10º. The direction of the output of internal forces is 

radial tangential. A concentrated moment M and a concentrated force P1 in the vicinity of their application 

point on the cylindrical surface of a small radius a cannot be represented as a resultant of stresses 

distributed according to the laws of the analytical solution given below. Therefore, the area of the plane 

bounded by this cylindrical surface is modeled by a rigid body with a master node at the point of the 

application of concentrated forces and the slave nodes at the radial distance of a = 0.05 m from it (member 

type – 100). In order to exclude the effect of the boundary conditions on the accuracy of the solution, the 

radial distance to the fixed edge of the plane is taken as R = 10.0 m. Number of nodes in the design model – 

2989. 
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Results in SCAD 

 
Design model 

 

 

 
Values of stresses σrr (kN/m2) under the concentrated moment M 

 



V e r i f i c a t i o n  E x a m p l e s    

S t a t i c s  145 

   
Values of stresses σθθ (kN/m2) under the concentrated moment M 

 

 

 

 

  
 

Values of stresses σrθ (kN/m2) under the concentrated moment M 
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Stress diagram σrθ (kN/m2) under the concentrated moment M 

for the angle to the OX1 axis θ = 0º 

 

 

 

  
 

Values of stresses σrr (kN/m2) under the concentrated force P1 
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Stress diagram σrr (kN/m2) under the concentrated force P1 

for the angle to the OX1 axis θ = 0º 

 

  
 

 

Values of stresses σθθ (kN/m2) under the concentrated force P1 
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Stress diagram σθθ (kN/m2) under the concentrated force P1 

for the angle to the OX1 axis θ = 0º 

 

 

  
 

Values of stresses σrθ (kN/m2) under the concentrated force P1 
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Stress diagram σrθ (kN/m2) under the concentrated force P1 

for the angle to the OX1 axis θ = 0º 

 

Comparison of solutions: 

Stress tensor components for the angle to the Ox1 axis θ = 0º under the concentrated moment M 

Radius r 

(m) 

Stresses σrr (kN/m
2
) 

Theory SCAD Deviations, % 

0.2 0.00 0.00 ─ 

0.3 0.00 0.00 ─ 

0.4 0.00 0.00 ─ 

0.5 0.00 0.00 ─ 

1.0 0.00 0.00 ─ 

1.5 0.00 0.00 ─ 

2.0 0.00 0.00 ─ 

2.5 0.00 0.00 ─ 

3.0 0.00 0.00 ─ 

 

Radius r 

(m) 

Stresses σθθ (kN/m
2
) 

Theory SCAD Deviations, % 

0.2 0.00 0.00 ─ 

0.3 0.00 0.00 ─ 

0.4 0.00 0.00 ─ 

0.5 0.00 0.00 ─ 

1.0 0.00 0.00 ─ 

1.5 0.00 0.00 ─ 

2.0 0.00 0.00 ─ 

2.5 0.00 0.00 ─ 

3.0 0.00 0.00 ─ 
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Radius r 

(m) 

Stresses σrθ (kN/m
2
) 

Theory SCAD Deviations, % 

0.2 397.89 385.79 3.04 

0.3 176.84 174.22 1.48 

0.4 99.47 98.49 0.99 

0.5 63.66 62.93 1.15 

1.0 15.92 15.43 3.08 

1.5 7.07 6.67 5.65 

2.0 3.98 3.86 3.02 

2.5 2.55 2.50 1.96 

3.0 1.77 1.74 1.69 

 

Stress tensor components for the angle to the Ox1 axis Ox1 θ = 0º under the concentrated force P1. 

Radius r 

(m) 

Stresses σrr (kN/m
2
) 

Theory SCAD Deviations, % 

0.2 -127.32 -122.67 3.65 

0.3 -84.88 -83.26 1.91 

0.4 -63.66 -62.84 1.29 

0.5 -50.93 -50.36 1.12 

1.0 -25.46 -25.08 1.49 

1.5 -16.98 -16.65 1.94 

2.0 -12.73 -12.61 0.94 

2.5 -10.19 -10.15 0.39 

3.0 -8.49 -8.50 0.12 

 

Radius r 

(m) 

Stresses σθθ (kN/m
2
) 

Theory SCAD Deviations, % 

0.2 31.83 27.80 12.66 

0.3 21.22 19.69 7.21 

0.4 15.92 15.08 5.28 

0.5 12.73 12.16 4.48 

1.0 6.37 6.09 4.40 

1.5 4.24 3.96 6.60 

2.0 3.18 2.92 8.18 

2.5 2.55 2.27 10.98 

3.0 2.12 1.82 14.15 

 

Radius r 

(m) 

Stresses σrθ (kN/m
2
) 

Theory SCAD Deviations, % 

0.2 0.00 0.00 ─ 

0.3 0.00 0.00 ─ 

0.4 0.00 0.00 ─ 

0.5 0.00 0.00 ─ 

1.0 0.00 0.00 ─ 

1.5 0.00 0.00 ─ 

2.0 0.00 0.00 ─ 

2.5 0.00 0.00 ─ 

3.0 0.00 0.00 ─ 

 

 

Notes:  

1. In the analytical solution the stresses σrr, σθθ, σrθ  in the plane under the concentrated moment are 

determined according to the following formulas (S.P. Demidov, Theory of Elasticity. — Moscow: High 

school, 1979, p. 299): 

 

0rr  ;  0 ; 
2r

r2

M





  . 
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In the analytical solution the stresses σrr, σθθ, σrθ in the plane under the concentrated force are determined 

according to the following formulas (S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979, 

p. 300): 
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 . 

 

2. It is impossible to perform an accurate modeling of the problem considered in the source in SCAD, 

because an infinite plane is considered, and the solution has a singularity. Therefore, the verification matrix 

contains deviations from the theoretical solution in the point located at the distance of 1,5 m from the 

origin. 
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Bending of a Curved Beam of a Narrow Rectangular Cross-Section by a Force 

Applied to Its Free End (Golovin’s Problem)  

 
 

Objective: Determination of the stress state of a curved beam of a narrow rectangular cross-section 

subjected to bending by a concentrated force applied to its free end. 

 

Initial data file: 4.21.SPR 

 

Problem formulation: A force P acting parallel to the edge in the plane of the circular axis of the beam is 

applied to the free end of the cantilever curved beam of the unit thickness. Determine the stress tensor 

components in polar coordinates σrr, σθθ, σrθ for the beam cross-section at θ = 90º to the edge of the free end 

of the beam (section n-n).  

  

References: S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979. 

 

Initial data: 

E = 3.0·107 kPa  - elastic modulus;  

μ = 0.2   - Poisson’s ratio;  

h = 1.0 m  - thickness of the beam; 

r1 = 5 m   - inner radius of the beam; 

r2 = 15 m  - outer radius of the beam; 

P = 5.0 kN  - concentrated force bending the beam (horizontal). 

Constraints: full restraint of the nodes of the clamped edge of the beam (section m-m) 

 

Finite element model: Design model – general type system, beam elements – 300 eight-node elements of 

type 50. The spacing of the finite element mesh in the radial direction is 1.0 m, and in the tangential 

direction is 9º. The direction of the output of internal forces is radial tangential. Since the boundary 

conditions at the end surface of the free end of the curved beam (θ = 0º) are given in integral form in the 

analytical solution, they are softened by introducing a rigid body (member type – 100), the nodes of which 

are located along the end surface. Number of nodes in the design model – 981. 
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Results in SCAD 

 

 
Design model 

 

  
 

Values of stresses σrr (kN/m2) 
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Stress diagram σrr (kN/m2) for the beam cross-section 

at θ = 90º to the edge of the free end of the beam (section n-n) 

 

 

 

  
 

Values of stresses σθθ (kN/m2) 
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Stress diagram σθθ (kN/m2) for the beam cross-section 

at θ = 90º to the edge of the free end of the beam (section n-n) 

 

 

 

  
 

Values of stresses σrθ (kN/m2) 
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Comparison of solutions:  

 

Stresses σrr (kN/m
2
) Stresses σθθ (kN/m

2
) 

r = 5.0000 m r = 7.4349 m r = 15.0000 m r = 5.0000 m 
r = 10.0876 

m 
r = 15.0000 m 

Theory 0.0000 -0.8375 0.0000 -5.3581 0.0000 1.7860 

SCAD -0.0744 -0.8515 0.0109 -5.3022 0.0078 1.7893 

Deviations, 

% 
─ 1.67 ─ 1.04 ─ 0.18 

 

Notes: In the analytical solution the stresses σrr, σθθ, σrθ  in the body of the cantilever curved beam subjected 

to the force P applied at its free end and directed parallel to its edge are determined according to the 

following formulas (S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979, p. 271): 
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Unilateral Tension of a Plate with a Small Circular Hole (Kirsch Problem) 

 
 

Objective: Determination of the stress state of a plate of considerable width and unit thickness with a small 

circular hole in polar coordinates subjected to unilateral uniform tension. 

 

Initial data files: 
File name Description 

4.27_b_20_9_grad.SPR 1 variant of the design model – coarse FE mesh 

4.27_b_60_4.5_grad.SPR 2 variant of the design model – fine FE mesh 

 

Problem formulation: The square plate of considerable width and unit thickness with a small circular hole 

of radius a is subjected to unilateral uniform tension by stresses σ in the direction of the x1 axis applied in 

its center. Determine the stress tensor components in polar coordinates σrr, σθθ, σrθ at different radial 

distances r from the origin at the angles to the x1 axis θ = 0º and θ = 90º. 

 

References: S.P. Demidov, Theory of Elasticity. — Moscow: High school, 1979. 

 

Initial data: 

E = 3.0·107 kPa  - elastic modulus;  

μ = 0.2   - Poisson’s ratio;  

h = 1.0 m  - thickness of the plate; 

a = 1.0 m  - radius of the hole; 

2·b = 20.0 m (60.0 m) - width of the plate; 

σ = 100.0 kN/m  - tensile stress in the direction of the x1 axis. 

 

Finite element model: Two variants of the design model are considered. 

Variant 1: 

Design model – plane frame, width of the plate 2·b = 20.0 m, plate elements – 1088 eight-node elements of 

type 30 and 32 six-node elements of type 25. The spacing of the finite element mesh in the radial direction 

from r = 1.00 m to r = 2.00 m is 0.10 m, from r = 2.00 m to r = 10.00 m is 0.50 m and in the tangential 

direction the spacing is 9º. The direction of the output of internal forces is radial tangential. Number of 

nodes in the design model – 3409. 

Variant 2: 

Design model – plane frame, width of the plate 2·b = 60.0 m, plate elements – 5024 eight-node elements of 

type 30 and 40 six-node elements of type 25. The spacing of the finite element mesh in the radial direction 

from r = 1.00 m to r = 3.00 m is 0.10 m,  from r = 3.00 m to r = 5.00 m is 0.20 m, from r = 5.00 m to r = 

9.00 m is 0.40 m, from r = 9.00 m to r = 21.00 m is 0.80 m, from r = 21.00 m to r = 29.00 m is 1.60 m, and 

in the tangential direction the spacing is 4.5º. The direction of the output of internal forces is radial 

tangential. Number of nodes in the design model – 15312. 
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Results in SCAD 

 
Design model. Variant 1 

 

 

 

 
Design model. Variant 2 
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Values of stresses σrr (kN/m2) for the design model according to variant 1 

 

 

 
Stress diagram σrr (kN/m2) at the angle to the Ox1 axis θ = 0º for the design model according to variant 1 
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Stress diagram σrr (kN/m2) at the angle to the Ox1 axis θ = 90º for the design model according to variant 1 

 

 

  
 

Values of stresses σrr (kN/m2) for the design model according to variant 2 
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Stress diagram σrr (kN/m2) at the angle to the Ox1 axis θ = 0º for the design model according to variant 2 

 

 
Stress diagram σrr (kN/m2) at the angle to the Ox1 axis θ = 90º for the design model according to variant 2 
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Values of stresses σθθ (kN/m2) for the design model according to variant 1 

 

 

 
Stress diagram σθθ (kN/m2) at the angle to the Ox1 axis θ = 0º for the design model according to variant 1 

 

 



V e r i f i c a t i o n  E x a m p l e s    

S t a t i c s  163 

 
Stress diagram σθθ (kN/m2) at the angle to the Ox1 axis θ = 90º for the design model according to variant 1 

 

 

  
 

Values of stresses σθθ (kN/m2) for the design model according to variant 2 
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Stress diagram σθθ (kN/m2) at the angle to the Ox1 axis θ = 0º for the design model according to variant 2 

 

 

 
Stress diagram σθθ (kN/m2) at the angle to the Ox1 axis θ = 90º for the design model according to variant 2 
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Values of stresses σrθ (kN/m2) for the design model according to variant 1 

 

 

 
 

Stress diagram σrθ (kN/m2) at the angle to the Ox1 axis θ = 0º for the design model according to variant 1 
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Stress diagram σrθ (kN/m2) at the angle to the Ox1 axis θ = 90º for the design model according to variant 1 

 

 

 

  
 

Values of stresses σrθ (kN/m2) for the design model according to variant 2 
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Stress diagram σrθ (kN/m2) at the angle to the Ox1 axis θ = 0º for the design model according to variant 2 

 

 

 
 Stress diagram σrθ (kN/m2) at the angle to the Ox1 axis θ = 90º for the design model according to variant 2 
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Comparison of solutions: 

Stress tensor components in polar coordinates σrr, σθθ, σrθ. 

Solution 

Stresses σrr (kN/m
2
) Stresses σθθ (kN/m

2
) 

θ = 0º θ = 90º θ = 0º θ = 90º 

r  = 

1.000 m 

r  = 

 (√6/5)·a 

= 1.095 m 

r  = 

 (√3/2)·a = 

1.225 m 

r  = 

1.000 m 

r  =  

(√2)·a = 

1.414 m 

r  = 

1.000 m 

r  = 

(√3)·a = 

1.732 m 

r  = 

(√6)·a = 

2.449 m 

r  = 

1.000 m 

Theory 0.00 
-σ/24 = 

-4.17 
0.00 0.00 

3·σ/8 = 

37.50 

-σ = 

-100.00 
0.00 

σ/24 = 

4.17 

3·σ = 

300.00 

SCAD, 

DM var.1 
-1.32 -5.65 -1.26 2.77 39.43 -100.63 -1.18 3.56 307.46 

Deviations, 

% 
─ ─ ─ ─ 5.15 0.63 ─ ─ 2.49 

SCAD, 

DM var.2 
-0.76 -4.78 -0.36 1.31 37.94 -100.05 -0.04 4.16 299.85 

Deviations, 

% 
─ ─ ─ ─ 1.17 0.05 ─ ─ 0.05 

 

Notes: In the analytical solution the stresses σrr, σθθ, σrθ  in the plate with a small circular hole subjected to 

unilateral uniform tension are determined according to the following formulas (S.P. Demidov, Theory of 

Elasticity. — Moscow: High school, 1979, p. 302): 
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Stress-Strain State of a Simply Supported Circular Plate Subjected to a Uniformly 

Distributed Transverse Load  

 

 
 

Objective: Determination of the stress-strain state of a simply supported circular plate of constant thickness 

subjected to a uniformly distributed transverse load. 

 

Initial data file: 4.14.SPR 

 

Problem formulation: The simply supported circular plate of constant thickness is subjected to the 

uniformly distributed transverse load. Determine the deflection w, the radial slope θ, the radial Mr and 

tangential Mθ bending moments along the axis and along the external contour of the plate. 

 

References: S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. 

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus;  

μ = 0.3   - Poisson’s ratio;  

R = 1.2 m  - outer radius of the plate; 

h = 2.0·102 m  - thickness of the plate; 

q = 10 kPa  - uniformly distributed transverse load. 

 

Finite element model: Design model – general type system, plate elements – 528 eight-node elements of 

type 50 and 48 six-node elements of type 45. The direction of the output of internal forces is radial 

tangential. Boundary conditions are provided by imposing constraints in the direction of the degree of 

freedom Z along the external contour of the plate. Number of nodes in the design model – 1729. 
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Results in SCAD 

 
 

Design model 

 

 

  
 

Values of deflections w (mm) 
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Values of radial slopes θ (rad) 

 

 

 
Values of radial bending moments Mr (kN·m/m) 
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Values of tangential bending moments Mθ (kN·m/m) 

 
 

 

Comparison of solutions: 

Parameter 
Along the axis of the plate  Along the external contour of the plate 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

w, mm -9.015 -9.024 0.10 0.000 0.000 ─ 

θ, rad 0.000000 0.000000 ─ 0.011340 0.011392 0.46 

Mr, kN·m/m 2.970 2.972 0.07 0.000 0.063 ─ 

Mθ, 

kN·m/m 
2.970 2.972 0.07 1.260 1.226 2.70 

 

Notes: . In the analytical solution the deflection w, the radial slope θ, the radial Mr and tangential Mθ 

bending moments along the axis of the plate can be determined according to the following formulas (S.P. 

Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948, p. 66):  
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In the analytical solution the deflection w, the radial slope θ, the radial Mr and tangential Mθ bending 

moments along the external contour of the plate can be determined according to the following formulas 

(S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948, p. 66): 
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Stress-Strain State of a Clamped Circular Plate Subjected to a Uniformly 

Distributed Transverse Load  

 

 
 

Objective: Determination of the stress-strain state of a clamped circular plate of constant thickness subjected 

to a uniformly distributed transverse load. 
 

Initial data file: 4.15.SPR 

 

Problem formulation: The clamped circular plate of constant thickness is subjected to the uniformly 

distributed transverse load. Determine the deflection w, the radial slope θ, the radial Mr and tangential Mθ 

bending moments along the axis and along the external contour of the plate. 
 

References: S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. 

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus;  

μ = 0.3   - Poisson’s ratio;  

R = 1.2 m  - outer radius of the plate; 

h = 2.0·10-2 m  - thickness of the plate; 

q = 10 kPa  - uniformly distributed transverse load. 

 
Finite element model: Design model – general type system, plate elements – 528 eight-node elements of 

type 50 and 48 six-node elements of type 45. The direction of the output of internal forces is radial 

tangential. Boundary conditions are provided by imposing constraints in the directions of the degrees of 

freedom Z, UX, UY along the external contour of the plate. Number of nodes in the design model – 1729.  
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Results in SCAD 

 
Design model 

 

 

 
 

Values of deflections w (mm) 
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Values of radial slopes θ (rad) 

 

 

 
Values of radial bending moments Mr (kN·m/m) 
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Values of tangential bending moments Mθ (kN·m/m) 

 

 

 

Comparison of solutions: 

Parameter 
Along the axis of the plate  Along the external contour of the plate 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

w, mm -2.211 -2.198 0.59 0.000 0.000 ─ 

θ, rad 0.000000 0.000000 ─ 0.000000 0.000000 ─ 

Mr, kN·m/m 1.170 1.167 0.26 -1.800 -1.736 3.56 

Mθ, kN·m/m 1.170 1.167 0.26 -0.540 -0.505 6.48 

 

Notes: In the analytical solution the deflection w, the radial slope θ, the radial Mr and tangential Mθ bending 

moments along the axis of the plate can be determined according to the following formulas (S.P. 

Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948, p. 65): 
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In the analytical solution the deflection w, the radial slope θ, the radial Mr and tangential Mθ bending 

moments along the external contour of the plate can be determined according to the following formulas 

(S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948, p. 66): 
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Stress-Strain State of a Simply Supported Annular Plate Subjected to a Uniformly 

Distributed Transverse Load  

 
 

Objective: Determination of the stress-strain state of a simply supported annular plate of constant thickness 

subjected to a uniformly distributed transverse load. 

 

Initial data file: 4.16.SPR 

 

Problem formulation: The simply supported annular plate of constant thickness is subjected to the 

uniformly distributed transverse load. Determine the deflection w, the radial Mr and tangential Mθ bending 

moments along the internal and external contour of the plate. 

 

References: S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. 

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus;  

μ = 0.3   - Poisson’s ratio;  

R = 1.2 m  - outer radius of the plate; 

r = 0.6 m  - inner radius of the plate; 

h = 2.0·10-2 m  - thickness of the plate; 

p = 10 kPa  - uniformly distributed transverse load. 

 

Finite element model: Design model – general type system, plate elements – 288 eight-node elements of 

type 50. The direction of the output of internal forces is radial tangential. Boundary conditions are provided 

by imposing constraints in the direction of the degree of freedom Z along the external contour of the plate. 

Number of nodes in the design model – 960.  
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Results in SCAD 

 

 
Design model 

 

 

 
Values of deflections w (mm) 
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Values of radial bending moments Mr (kN·m/m) 

 

 
Values of tangential bending moments Mθ (kN·m/m) 
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Comparison of solutions: 

Parameter 
Along the internal contour of the plate Along the external contour of the plate 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

w, mm -8.933 -8.863 0.78 0.000 0.000 ─ 

Mr, kN·m/m 0.000 0.001 ─ 0.000 0.052 ─ 

Mθ, kN·m/m 3.462 3.474 0.35 1.574 1.547 1.72 

 

Notes: In the analytical solution the deflection w, the radial Mr and tangential Mθ bending moments along 

the internal contour of the plate can be determined according to the following formulas (S.P. Timoshenko, 

Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. p. 71):  
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In the analytical solution the deflection w, the radial Mr and tangential Mθ bending moments along the 

external contour of the plate can be determined according to the following formulas (S.P. Timoshenko, 

Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. p. 71): 
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Rectangular Narrow Cantilever Plate Subjected to a Uniformly Distributed 

Transverse Load 

 

 
 

 

Objective: Determination of the strain state of a rectangular narrow cantilever plate subjected to a uniformly 

distributed transverse load. 

 

Initial data file: SSLS01_v11.3.SPR 

 

Problem formulation: The rectangular narrow cantilever plate is subjected to the transverse load uniformly 

distributed over its area P. Determine the transverse displacement Z of the free edge of the plate. 

 

References: S. Timoshenko, Resistance des materiaux, t.1, Paris, Librairie Polytechnique Beranger, 1949. 

 

Initial data: 

E = 2.1∙1011 Pa  - elastic modulus;  

ν = 0.0   - Poisson’s ratio; 

l =  1.0 m  - length of the plate; 

b = 0.1 m  - width of the plate; 

h = 0.005 m  - thickness of the plate; 

P = 1.7∙103 N/m2 - value of the uniformly distributed transverse load. 

 

Finite element model: Design model – grade beam / plate, 10 plate elements of type 11. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY for 

the clamped edge. Number of nodes in the design model – 22. 

 

Results in SCAD 

 
Design model 
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Deformed model 

 

 

 
 

Values of transverse displacements Z (m) 

 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Transverse displacement of the free edge Z, m -9.714∙10-2 -9.714∙10-2 0.00 

 

Notes: In the analytical solution the transverse displacement Z of the free edge of the plate is determined 

according to the following formula: 
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Torsion of a Rectangular Narrow Cantilever Plate by a Pair of Concentrated 

Forces  
 

 
 

Objective: Determination of the strain state of a rectangular narrow cantilever plate subjected to a pair of 

transverse concentrated forces applied at the corners of its free edge. 

 

Initial data file: SSLS27_v11.3.SPR 

 

Problem formulation: The rectangular narrow cantilever plate is subjected to a pair of transverse 

concentrated forces Fz (points B, C) applied in the corners of the free edge. Determine: the transverse 

displacement Z of the corner of the free edge of the plate (point С). 

 

References: J. Robinson, Element evaluation. A set of assessment parts and standard tests, Proceeding of 

Finite Element Methods in the commercial environment, vol. 1, October 1978. 

J.L. Batoz, M.B. Tahar, Evaluation of new quadrilateral thin plate boundary element, International Journal 

for numerical methods in engineering, vol. 18, Jon Wiley and Sons, 1982. 

  

Initial data: 

E = 1.0·107 Pa  - elastic modulus,  

ν = 0.25  - Poisson’s ratio,  

l = 1.0 m  - width of the cantilever plate, 

L = 12.0 m  - length of the cantilever plate,  

h = 0.05 m  - thickness of the plate,  

Fz, = 1.0 N  - value of the transverse concentrated force. 

 

Finite element model: Design model – grade beam / plate, 500 plate elements of type 11. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UX, UY for 

the clamped edge (line AD). Number of nodes in the design model – 561. 
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Results in SCAD 

 
 

 
Design model 

 

 

 

 
Deformed model 

  
Values of transverse displacements Z (m) 
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Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

Transverse displacement Z of the corner of the free 

edge of the plate (point C), m 
3.537∙10-2 3.530∙10-2 0.20 
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Square Plate Simply Supported along the Perimeter Subjected to a Uniformly 

Distributed Load   

 
 

Objective: Determination of maximum displacements and bending moments in a square plate simply 

supported along the perimeter and subjected to a uniformly distributed load p.  

 

Initial data file: 4.17.SPR 

 

Problem formulation: The square isotropic plate of constant thickness is simply supported along the 

perimeter and subjected to the uniformly distributed load p. Determine: maximum displacements and 

bending moments.  

 

References: Strength, Stability, Vibrations. Handbook in three volumes. Volume 1. Ed. I.A. Birger and 

Ya.G. Panovko. — M.: Mechanical engineering, 1968, p. 532-535 

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus,  

μ = 0.3   - Poisson’s ratio,  

a = 1.5 m  - size of the plate sides,  

h = 0.01 m  - thickness of the plate,  

р = 10 kPa  - normal pressure, 

Constraints: hinge restraint of nodes along the contour out of the XOY plane (displacement  w = 0) 

 

Finite element model: Design model – grade beam, plate. Plate elements – 144 eight-node elements of type 

20. Number of nodes in the design model – 481. 
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Results in SCAD 

 
Design model 

 

 

 

  
Values of displacements w (mm) 
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Values of bending moments Mx (kN·m/m) 

 

 

  
Values of bending moments My (kN·m/m) 
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Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Displacement in the center of the plate w, mm 11.22 11.23 0.09 

Bending moment Мх, kN∙m /m 1.078 1.077 0.09 

Bending moment Му, kN∙m /m 1.078 1.077 0.09 

 

Notes: In the analytical solution the displacement w and the bending moments Mx and My in the center of 

the plate subjected to the uniformly distributed load are determined according to the following formulas 

(Handbook in three volumes. Volume 1. Ed. I.A. Birger and Ya.G. Panovko. — M.: Mechanical 

engineering, 1968, p. 532-535): 
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Rectangular Plate Simply Supported along the Perimeter Subjected to a Uniformly 

Distributed Transverse Load  

 
 

Objective: Determination of the stress-strain state of a rectangular plate simply supported along the 

perimeter and subjected to a uniformly distributed transverse load. 

 

Initial data files: 

File name Description 

SSLS24_b_1a_v11.3.SPR Design model with the ratios of the sides of the plate b/a = 1.0 

SSLS24_b_2a_v11.3.SPR Design model with the ratios of the sides of the plate b/a = 2.0 

SSLS24_b_5a_v11.3.SPR Design model with the ratios of the sides of the plate b/a = 5.0 

 

Problem formulation: The rectangular plate simply supported along the perimeter is subjected to the 

transverse load uniformly distributed over its area p. Determine the transverse displacement Z and bending 

moments Mx, My in the center of the plate for different ratios of its sides b/a. 

 

References: S. Timoshenko, S. Woinowski, Theorie des plaques et des coques, Paris, Librairie 

Polytechnique Beranger, 1961. 

 

Initial data: 

E = 1.0·107 Pa  - elastic modulus;  

ν = 0.3   - Poisson’s ratio;  

h = 0.01 m  - thickness of the plate; 

a = 1.0 m  - short side of the plate (along the X axis of the global coordinate system); 

b = 1.0 m, 2.0 m, 5.0 m - long side of the plate (along the Y axis of the global coordinate system); 

p = 1.0 N/m2  - value of the uniformly distributed transverse load. 

 

Finite element model: Three design models are considered. 

Design model 1 (b/a = 1.0) – grade beam / plate, shell elements – 100 plate elements of type 20. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UY for the 

edges parallel to the X axis of the global coordinate system, and Z, UX for the edges parallel to the Y axis 

of the global coordinate system. Number of nodes in the design model – 121. 

Design model 2 (b/a = 2.0) – grade beam / plate, shell elements – 200 plate elements of type 20. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UY for the 

edges parallel to the X axis of the global coordinate system, and Z, UX for the edges parallel to the Y axis 

of the global coordinate system. Number of nodes in the design model – 231. 

Design model 3 (b/a = 5.0) – grade beam / plate, shell elements – 500 plate elements of type 20. Boundary 

conditions are provided by imposing constraints in the directions of the degrees of freedom Z, UY for the 

edges parallel to the X axis of the global coordinate system, and Z, UX for the edges parallel to the Y axis 

of the global coordinate system. Number of nodes in the design model – 561. 
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Results in SCAD 

 
 

   
Design models 1, 2, 3  
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Deformed models 1, 2, 3 

  
Values of transverse displacements Z (m) 

for the design model 1 
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Values of transverse displacements Z (m) 

for the design model 2 

 

 

 

 

 

  
 

Values of transverse displacements Z (m) 

for the design model 3 
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Values of bending moments Mx (N·m/m) 

for the design model 1 

 

  
Values of bending moments Mx (N·m/m) 

for the design model 2 
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Values of bending moments Mx (N·m/m) 

for the design model 3 

 

 

  
Values of bending moments My (N·m/m) 

for the design model 1 
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Values of bending moments My (N·m/m) 

for the design model 2 

 

 

 

  
Values of bending moments My (N·m/m) 

for the design model 3 
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Comparison of solutions: 

Design  model 1 (b/a = 1.0) 

Parameter Theory SCAD Deviation, % 

Transverse displacement Z in the center of the plate, m -4.436∙10-3 -4.419∙10-3 0.38 

Bending moments Mx in the center of the plate, N·m/m 4.789∙10-2 4.714∙10-2 1.57 

Bending moments My in the center of the plate, N·m/m 4.789∙10-2 4.714∙10-2 1.57 

 

Design  model 2 (b/a = 2.0) 

Parameter Theory SCAD Deviation, % 

Transverse displacement Z in the center of the plate, m -1.106∙10-2 -1.104∙10-2 0.18 

Bending moments Mx in the center of the plate, N·m/m 1.017∙10-2 1.018∙10-2 0.10 

Bending moments My in the center of the plate, N·m/m 4.635∙10-2 4.607∙10-2 0.60 

 

Design  model 3 (b/a = 5.0) 

Parameter Theory SCAD Deviation, % 

Transverse displacement Z in the center of the plate, m -1.416∙10-2 -1.416∙10-2 0.00 

Bending moments Mx in the center of the plate, N·m/m 1.246∙10-1 1.254∙10-1 0.64 

Bending moments My in the center of the plate, N·m/m 3.774∙10-2 3.798∙10-2 0.64 

 

Notes: In the analytical solution the transverse displacement Z and bending moments Mx, My in the center 

of the plate for different ratios of its sides b/a can be determined according to the following formulas: 
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Rectangular Plate Simply Supported at Three Vertices Subjected to a 

Concentrated Force and Concentrated Moments out of Its Plane  
 

 
 

Objective: Determination of the strain state of a rectangular plate simply supported at three vertices and 

subjected to a concentrated force and concentrated moments out of its plane. 

 

Initial data file: SSLS26_v11.3.SPR 

 

Problem formulation: The rectangular plate simply supported at three vertices (points A, B, D) is subjected 

to a concentrated force Fz out of its plane applied to the free vertex (point C), and concentrated moments Mx 

and My, applied in pairs to all four vertices (points A, B, C, D) with unilateral bending in planes parallel to 

the adjacent sides. Determine the displacement Z of the free vertex (point C) out of the plane of the plate. 

 

References: J.L. Batoz, An explicit formulation for an efficient triangular plate-bending element, 

International Journal for Numerical Methods in Engineering, vol.18, John Wiley and Sons, 1982. 

  

Initial data: 

E = 1.0·103 Pa  - elastic modulus;  

ν = 0.3   - Poisson’s ratio;  

h = 1.0 m  - thickness of the plate; 

a = 40.0 m  - long side of the plate (along the X axis of the global coordinate system); 

b = 20.0 m  - short side of the plate (along the Y axis of the global coordinate system); 

Fz = 2.0 N  - value of the transverse concentrated force; 

Mx = 20.0 N∙m - value of the concentrated moments bending the plate along the short side (with 

respect to the X axis of the global coordinate system); 

My = 10.0 N∙m - value of the concentrated moments bending the plate along the long side (with 

respect to the Y axis of the global coordinate system). 

 

Finite element model: Design  model – grade beam / plate, shell elements – 100 plate elements of type 20. 

Boundary conditions are provided by imposing constraints in the direction of the degree of freedom Z in the 

vertices of the plate on the X and Y axes of the global coordinate system (points A, B, C). Number of nodes 

in the design model – 121. 
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Results in SCAD 

 

Design model 

 

 

 
Deformed model 

 

 



  V e r i f i c a t i o n  E x a m p l e s  

202 S t a t i c s  

  
Values of transverse displacements Z (m) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

Displacement Z of the free vertex (point C), m -1.248∙101 -1.248∙101 0.00 
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Stress-Strain State of a Clamped Hexagonal Plate Subjected to a Uniformly 

Distributed Load  

 
 

Objective: Determination of displacements and bending moments in the center of a hexagonal plate 

clamped on all sides and subjected to a uniformly distributed load q.  

 

Initial data file: 4.19.SPR 

 

Problem formulation: The regular hexagonal plate of constant thickness clamped on all sides is subjected 

to normal pressure q. Determine: the axial displacement w and bending moments Mx, My in the center of the 

plate.  

 

References: Vainberg D. V., Handbook on Strength, Stability and Oscillations of Plates. Kiev: Budivelnik, 

1973.  

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus,  

μ = 0.3   - Poisson’s ratio,  

a = 0.134 m  - side of the hexagonal plate,  

h = 0.003 m  - thickness of the plate,  

q = 1000 kPa  - normal pressure, 

Constraints: rigid restraint of nodes along the contour (displacement  w = 0) 

 

Finite element model: Design model – general type system. Plate elements – 389 four-node elements of 

type 44 and 73 three-node elements of type 42. Number of nodes in the design model – 451. 
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Results in SCAD 

 

 
Design model 

 

  
 

Values of displacements w (mm) 

 

 

 



V e r i f i c a t i o n  E x a m p l e s    

S t a t i c s  205 

 

  
 

Values of bending moments Mx (kN·m/m) 

 

  
 

Values of bending moments My (kN·m/m) 
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Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Displacement in the center of the plate w, 

mm  

6.51 6.46 0.77 

Bending moment Мх, kN∙m /m 1.163 1.171 0.69 

Bending moment Му, kN∙m /m 1.163 1.171 0.69 

 

Notes: In the analytical solution the displacement w and bending moments Mx and My in the center of the 

plate can be determined according to the following formulas (Vainberg D. V., Handbook on Strength, 

Stability and Oscillations of Plates. Kiev: Budivelnik, 1973): 
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Clamped Rectangular Plate of Constant Thickness Subjected to Thermal Loading 
 

Objective: Determine the bending moments and stresses in a rectangular plate clamped on all sides at the 

linear temperature variation across the thickness of the plate.  

 

Initial data file: 4.20.SPR 

 

Problem formulation: The rectangular plate of constant thickness clamped on all sides is considered. The 

temperature is constant in the planes parallel to the midsurface and varies linearly across the thickness of 

the plate. Determine: the displacement w, bending moments Mx, My and maximum thermal stress σ. 

 

References: S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells. — M.:Nauka, 1963. 

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus,  

μ = 0.3   - Poisson’s ratio,  

aх = 1.5 m  - width of the plate,  

aу = 2.5 m  - length of the plate, 

h = 0.02 m  - thickness of the plate,  

α= 1.5·10-5  1/С0 - linear thermal expansion coefficient of the material, 

ΔТ = 20 С0  - temperature difference between the upper and lower surfaces of the plate  

 

Constraints: rigid restraint of nodes along the contour (displacement  u=v=w = θx = θy= θz = 0) 

 

Finite element model: Design model – general type system. Plate elements – 200 four-node elements of 

type 41. Number of nodes in the design model – 231. 

 

 
Design model 
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Results in SCAD 
 

 
Values of displacements w (mm) 

 

 
Values of bending moments Mx (kN·m/m) 
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Values of bending moments My (kN·m/m) 

 

 

 
Values of stresses on the upper surface of the plate σ (kN/m2) 
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Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Displacement w, mm 0.00 0.00 ─ 

Bending moments Мх = Му , kN∙m /m 2.857 2.857 0.00 

Maximum thermal stress, kPa 42857 42857 0.00 

 

Notes: In the analytical solution the bending moments Mx, My and maximum thermal stress σ in the 

clamped plate subjected to the linear temperature variation across the thickness of the plate can be 

determined according to the following formulas (S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates 

and Shells. — M.:Nauka, 1963, p. 64): 
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Simply Supported Thick Square Plate Subjected to a Uniformly Distributed 

Transverse Load 
 

 
 

Objective:  

Determination of the strain state of a simply supported thick square plate subjected to a uniformly 

distributed transverse load. 

  

Initial data files: 
File name Description  

толстая_плита_a_h_2.SPR 
Design model for the plate side-to-thickness ratios 

a/h = 2.0 

толстая_плита_a_h_4.SPR 
Design model for the plate side-to-thickness ratios 

a/h = 4.0 

толстая_плита_a_h_8.SPR 
Design model for the plate side-to-thickness ratios 

a/h = 8.0 

 

Problem formulation:  

The simply supported thick square plate is subjected to a uniformly distributed transverse load p. Determine 

the deflection w in the center of the plate taking into account the transverse shear deformations. 

 

References: L. G. Donnell, Beam, Plates, and Shells, Moscow, Nauka, 1982, p. 313-316. 

  

Initial data: 

E = 3.0·107 kPa  - elastic modulus,  

ν = 0.2   - Poisson’s ratio,  

h = 2.0; 4.0; 8.0 m - thickness of the plate; 

a = 16.0 m  - side of the plate; 

p = 100.0 kN/m2 - value of the uniformly distributed transverse load. 

 

Finite element model:  

Three design models for the following plate side-to-thickness ratios a/h = 8.0; 4.0; 2.0 are considered. Four 

variants of each model with the following types of finite elements are considered: 44, 50 – quadrangular 

four-node and eight-node thin shell elements for the calculation according to the Kirchhoff-Love theory; 

144, 150 – quadrangular four-node and eight-node thick shell elements for the calculation according to the 

Reissner–Mindlin theory. 

Design models are created for the following meshes: 2x2; 4x4; 8x8; 16x16; 32x32; 64x64. 

Boundary conditions are provided by imposing constraints in the directions of the degrees of freedom X, Y, 

Z, UY for the edges along the X axis of the global coordinate system, and X, Y, Z, UX for the edges along 

the Y axis of the global coordinate system. 
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Results in SCAD 

 
Design models 

 

 

 
Deflections w of plates with the ratio a/h = 8.0, m 
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Deflections w of plates with the ratio a/h = 4.0, m 

 

 

 
Deflections w of plates with the ratio a/h = 2.0, m 
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Comparison of solutions: 
 

Deflections w in the center of the plates with the ratio a/h = 8.0, m 

Member 

type 

SCAD, mesh 
Theory Deviation 

2x2 4x4 8x8 16x16 32x32 64x64 

44 0.001065 0.001213 0.001262 0.001274 0.001277 0.001278 
0.001278 

0.00 % 

50 0.001276 0.001278 0.001278 0.001278 0.001278 0.001278 0.00 % 

144 0.001472 0.001472 0.001449 0.001443 0.001441 0.001441 
0.001369 

5.26 % 

150 0.001314 0.001364 0.001368 0.001368 0.001368 0.001368 0.07 % 

 

Deflections w in the center of the plates with the ratio a/h = 4.0, m 

Member 

type 

SCAD, mesh 
Theory Deviation 

2x2 4x4 8x8 16x16 32x32 64x64 

44 0.000133 0.000152 0.000158 0.000159 0.000160 0.000160 
0.000160 

0.00 % 

50 0.000159 0.000160 0.000160 0.000160 0.000160 0.000160 0.00 % 

144 0.000258 0.000246 0.000242 0.000242 0.000241 0.000241 
0.000205 

17.56 % 

150 0.000205 0.000205 0.000205 0.000205 0.000205 0.000205 0.00 % 

 

Deflections w in the center of the plates with the ratio a/h = 2.0, m 

Member 

type 

SCAD, mesh 
Theory Deviation 

2x2 4x4 8x8 16x16 32x32 64x64 

44 0.000017 0.000019 0.000020 0.000020 0.000020 0.000020 
0.000020 

0.00 % 

50 0.000020 0.000020 0.000020 0.000020 0.000020 0.000020 0.00 % 

144 0.000065 0.000062 0.000061 0.000061 0.000061 0.000061 
0.000043 

41.86 % 

150 0.000043 0.000043 0.000043 0.000043 0.000043 0.000043 0.00 % 

 

Notes: In the analytical solution the deflections w in the center of the plate are determined according to the 

following formulas: 

without taking into account the transverse shear deformations 
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taking into account the transverse shear deformations 
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Two-Ribbed Beam Subjected to Uniformly Distributed Loads Applied in the Plane 

of the Ribs 

 

 
Objective: Study of the distribution of the normal stresses in a two-ribbed beam subjected to uniformly 

distributed loads applied in the plane of the ribs. 

  

Initial data file: 4.34.SPR 

 

Problem formulation: The two-ribbed beam simply supported by ideal end diaphragms rigid in their plane 

and compliant out of their plane is subjected to the loads q uniformly distributed along the line along the 

ribs and applied in their plane. Determine the normal stresses σxi acting along the beam in the elements of 

its structure in the points of the cross-section i = 1, 4, 5, 6 for the half (l/2) and quarter (l/4) of the beam 

span taking into account the following assumptions made when deriving the analytical solution: 

 Bending deformations of the elements of the beam structure out of their plane are neglected; 

 It is assumed that there are no displacements in the horizontal plane in the direction across the beam at 

the joints between the ribs and the flange; 

 The difference between the stresses in the structural elements of the beam at the joints between the ribs 

and the flange is not taken into account.  

 

References: A. V. Aleksandrov, B. Ya. Lashchenikov, N. N. Shaposhnikov, Structural Mechanics. Thin-

Walled Spatial Systems. — Moscow: Stroyizdat, 1983. 

 

Initial data: 

E = 3·107 kPa   - elastic modulus;  

μ = 0.15   - Poisson’s ratio;  

δ = 0.1 m   - thickness of the ribs and the flange; 

b = 1.0 m   - height of the ribs; 

2·b = 2.0 m   - distance between the ribs; 

4·b = 4.0 m   - width of the flange; 

l = 7.85·b = 7.85 m  - length of the beam; 

q = 10.0 kN/m   - load uniformly distributed along the line along the ribs. 

 

Finite element model: Design model – general type system, beam elements – 768 eight-node grade beam 

elements of type 27. The spacing of the finite element mesh in the direction across the beam is 0.25 m and 

in the direction along the beam is 0.2453125 m. The direction of the output of internal forces is along the 

OX axis of the global coordinate system. Number of nodes in the design model – 2417. 
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Results in SCAD 

 
Design model 

 

  
Design model 
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Deformed model 

 

 

 
Deformed model 
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Values of the normal stresses in the beam flange σxi (kN/m2) 

 

 

 

 

 

 
Diagram of the normal stresses in the beam flange σxi (kN/m2) 

for the cross-section in the middle of the grade beam span l/2 
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Diagram of the normal stresses in the beam flange σxi (kN/m2) 

for the cross-section in the quarter of the grade beam span l/4 

 

 

 

  
Values of the normal stresses in the beam rib σxi (kN/m2) 

 

 

 
Diagram of the normal stresses in the beam rib σxi (kN/m2) 

for the cross-section in the middle of the grade beam span l/2 
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Diagram of the normal stresses in the beam rib σxi (kN/m2) 

for the cross-section in the quarter of the grade beam span l/4 

 

Comparison of solutions: 

Normal stresses σxi (kN/m2) acting along the beam in the elements of its structure in the points of the cross-

section i = 1, 4, 5, 6 for the half (l/2) and quarter (l/4) of the beam span 

x, m l/2 = 3.925 l/4 = 1.9625 

i 1 4 5 6 1 4 5 6 

Theory -564 2631 -472 -488 -435 1987 -345 -359 

SCAD -567 2631 -471 -487 -439 1989 -344 -358 

Deviations, % 0.53 0.00 0.21 0.20 0.92 0.10 0.29 0.28 

 

Notes: In the analytical solution the normal stresses σxi (kN/m2), acting along the beam in the elements of 

its structure in the points of the cross-section i = 1, 4, 5, 6 for the half (l/2) and quarter (l/4) of the beam 

span taking into account seven harmonics of unknown generalized displacements for μ = 0.15 and l = 

7.85∙b can be determined according to the following formulas (A. V. Aleksandrov, B. Ya. Lashchenikov, N. 

N. Shaposhnikov. Structural Mechanics. Thin-Walled Spatial Systems. — Moscow: Stroyizdat, 1983, 

p. 383): 
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Curved Hollow Section Beam of a Bridge Superstructure Subjected to a 

Concentrated Force  

 
 

Objective: Study of the distribution of the tangential stresses and vertical displacements in a curved hollow 

section beam of a bridge superstructure subjected to a concentrated vertical force applied in the middle of 

the span above the outer web. 

  

Initial data file: 4.35.SPR 

 

Problem formulation: The hollow section beam of a bridge superstructure with a longitudinal axis bent 

into a circular curve is simply supported by end diaphragms and subjected to a concentrated force P applied 

in the middle of the span above the outer web. Determine: 
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 distribution of the tangential stresses σx acting along the beam on the external surfaces and in the 

midplanes of the upper and lower flanges across the cross-section in the middle of the span; 

 distribution of the tangential stresses σx, acting along the beam on the external surface of the lower 

flange along the longitudinal axis; 

 distribution of the vertical displacements w across the lower faces of the outer and inner webs along the 

longitudinal axis.  

 

References: Worsak Kanok-Nukulchai, A simple and efficient finite element for general shell analysis, Int. 

J. num. meth. Engng, 14, 179-200 (1979); A.R.M. Fam and C. Turkstra,  Model study of horizontally 

curved box girder, J. Engng Struct. Div., ASCE, 102, ST5, 1097-1108 (1976). 

 

Initial data: 

E = 4.0·105 kPa  - elastic modulus;  

ν = 0.36  - Poisson’s ratio; 

R = 51.0 m  - radius of the longitudinal axis of the beam; 

θ = 45º   - central angle containing a half of the beam span; 

P = 20 kN - concentrated vertical force applied in the middle of the beam span above the outer 

web; 

btf = 18.0 m  - width of the upper flange; 

ttf = 0.246 m  - thickness of the upper flange; 

bbf = 12.0 m  - width of the lower flange; 

tbf = 0.195 m  - thickness of the lower flange; 

hew = 2.5 m  - height of the outer web along the inner flange surfaces; 

tew = 0.246 m  - thickness of the outer web; 

hiw = 2.5 m  - height of the inner web along the inner flange surfaces; 

tiw = 0.239 m  - thickness of the inner web; 

ted = 0.239 m  - thickness of the end diaphragm; 

 

Finite element model: Design model – general type system, beam elements – 156 eight-node thick shell 

elements for the calculation according to the Reissner–Mindlin theory of type 150. The spacing of the finite 

element meshes of the upper and lower flanges in the radial direction is ~3.0 m and in the tangential 

direction is 7.5º. The spacing of the finite element meshes of the outer and inner webs in the vertical 

direction is ~2.7 m and in the tangential direction is 7.5º. The direction of the output of internal forces is 

radial tangential. Constraints providing simply supported conditions are installed in the vertical direction in 

the joints between the elements of the outer and inner webs and the elements of the end diaphragms and the 

lower flange. Constraints preventing the displacements of these joints in the horizontal plane in the radial 

direction are modeled by 4 bar elements of type 4 with the axial stiffness EF = 4.0·107 kN and the end 

nodes constrained in all linear degrees of freedom. The dimensional stability of the design model in the 

tangential direction is provided by imposing constraints according to its symmetry conditions. Number of 

nodes in the design model – 466. 

 

Results in SCAD 
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Design model 

 

 

 

 
 

 
Deformed model 

 

 

 

   
Values of tangential stresses σx, acting along the beam, 

in the midplane of the upper flange (kN/m2) 

 

 

 
Diagram of the distribution of the tangential stresses σx, acting along the beam, 

in the midplane of the upper flange across the cross-section in the middle of the span (kN/m2) 
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Values of tangential stresses σx, acting along the beam, 

on the external surface of the upper flange (kN/m2) 

 

 
Diagram of the distribution of the tangential stresses σx, acting along the beam, 

on the external surface of the upper flange across the cross-section in the middle of the span (kN/m2) 

 

 

 

 

  
 

Values of tangential stresses σx, acting along the beam, 

in the midplane of the lower flange (kN/m2) 

 

 
Diagram of the distribution of the tangential stresses σx, acting along the beam, 

in the midplane of the lower flange across the cross-section in the middle of the span (kN/m2) 
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Values of tangential stresses σx, acting along the beam, 

on the external surface of the lower flange (kN/m2) 

 
Diagram of the distribution of the tangential stresses σx, acting along the beam, 

on the external surface of the lower flange across the cross-section in the middle of the span (kN/m2) 

 

 

  
Values of vertical displacements w of the outer web (m) 

 

 

  
 

 

Values of vertical displacements w of the inner web (m) 
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Comparison of solutions: 
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y Experiment SCAD Deviations, % 

-7.75 -56.0 -55.97 0.05 

-4.50 -67.5 -74.82 10.84 

0.00 -51.4 -52.40 1.95 

4.50 -37.7 -41.10 9.02 

7.75 -58.0 -55.79 3.81 
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y Experiment SCAD Deviations, % 

-4.50 101.5 108.38 6.78 

0.00 74.3 81.10 9.15 

4.50 71.7 71.23 0.66 
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θ Experiment SCAD Deviations, % 

-20 48.2 51.91 7.70 

0 76.4 81.10 6.15 

20 48.2 51.91 7.70 
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θ Experiment SCAD Deviations, % 

-35 0.0625 0.05631 9.90 

-30 0.0904 0.08250 8.74 

-25 0.1125 0.10650 5.33 

-20 0.1336 0.12750 4.57 

-15 0.1531 0.14520 5.16 

-10 0.1652 0.15887 3.83 

-5 0.1725 0.16762 2.83 

-2.5 0.1734 0.17016 1.87 

2.5 0.1734 0.17016 1.87 

5 0.1725 0.16762 2.83 

10 0.1652 0.15887 3.83 

15 0.1531 0.14520 5.16 

20 0.1336 0.12750 4.57 

25 0.1125 0.10650 5.33 

30 0.0904 0.08250 8.74 

35 0.0625 0.05631 9.90 
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θ Experiment SCAD Deviations, % 

-35 0.0438 0.04510 2.97 

-25 0.0830 0.08487 2.25 

-20 0.0975 0.10101 3.60 

-10 0.1202 0.12384 3.03 

-2.5 0.1309 0.13108 0.14 

2.5 0.1309 0.13108 0.14 

10 0.1202 0.12384 3.03 

20 0.0975 0.10101 3.60 

25 0.0830 0.08487 2.25 

35 0.0438 0.04510 2.97 
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Cylindrical Shell with Simply Supported Edges Subjected to Uniform Internal 

Pressure 

 

 
 

Objective: Determination of the stress-strain state of a cylindrical shell with simply supported edges 

subjected to the internal pressure. 

 

Initial data file: 4.31.SPR 

 

Problem formulation: The cylindrical thin-walled shell simply supported along the edges is subjected to 

uniform internal pressure p. Determine the bending moments and longitudinal forces acting on the 

midsurface of the shell in the meridian Mx, Nx and circumferential Mφ, Nφ directions, as well as the radial 

displacements w for the cross-section in the middle of the span. 

 

References: S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. 

 

Initial data: 

E = 2.1·108 kPa  - elastic modulus;  

ν = 0.3   - Poisson’s ratio;  

h = 0.02 m  - thickness of the shell; 

a = 10.0 m  - radius of the midsurface of the shell; 

l = 2.0 m  - length of the shell; 

p = 10.0 kPa  - internal pressure. 

 

Finite element model: Design model – general type system, shell elements – 9216 four-node elements of 

type 44. The spacing of the finite element mesh in the meridian direction is 0.0625 m and in the 

circumferential direction is 1.25º. Boundary conditions at the simply supported edges are provided by 

imposing constraints in the directions of the angular and linear displacements in their plane. Number of 

nodes in the design model – 9504. 
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Results in SCAD 

   
 

Design and deformed models 

 

 
 

    
 

Values of radial displacements w (mm) 
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Values of radial displacements w (mm) 

for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00º 

 

 

  
 

Values of bending moments acting on the midsurface of the shell 

in the meridian direction Mx (kN·m/m) 
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Values of bending moments acting on the midsurface of the shell 

in the meridian direction Mx (kN·m/m) 

for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00º 

 

 

  
 

 

Values of bending moments acting on the midsurface of the shell 

in the circumferential direction Mφ (kN·m/m) 
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Values of bending moments acting on the midsurface of the shell 

in the circumferential direction Mφ (kN·m/m) 

for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00º 

 

  
 

Values of longitudinal forces acting on the midsurface of the shell 

in the meridian direction Nx (kN/m2) 
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Values of longitudinal forces acting on the midsurface of the shell 

in the meridian direction Nx (kN/m2) 

for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00º 

 

  
 

Values of longitudinal forces acting on the midsurface of the shell 

in the circumferential direction Nφ (kN/m2) 
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Values of longitudinal forces acting on the midsurface of the shell 

in the circumferential direction Nφ (kN/m2) 

for the fragment of the model from the section in the area of the horizontal diameter with the central angle of 5.00º 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

w(l/2), mm 2.640 2.635 0.19 

Mx(l/2), kN∙m/m 0.178969 0.180453 0.83 

Mφ(l/2), kN∙m/m 0.053691 0.054136 0.83 

Nx(l/2), kN/m 0.000 8.238∙0.02 = 0.165 ─ 

Nφ(l/2), kN/m 1108.655 55346.398∙0.02 = 1106.928 0.16 

 

Notes: In the analytical solution the bending moments and longitudinal forces acting on the midsurface of 

the shell in the meridian Mx, Nx and circumferential Mφ, Nφ directions, as well as the radial displacements w 

for the cross-section in the middle of the span can be determined according to the following formulas (S.P. 

Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948, p. 377): 
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Cylindrical Vertical Tank with a Wall of Constant Thickness with a Flat Bottom 

Subjected to Internal Fluid Pressure  

 

 
 

Objective: Determination of the stress-strain state of a cylindrical vertical tank with a wall of constant 

thickness clamped in a flat bottom subjected to internal fluid pressure which varies linearly with height. 

 

Initial data file: 4.32.SPR 

 

Problem formulation: The cylindrical vertical tank with a wall of constant thickness is clamped in a flat 

bottom and subjected to internal pressure of the liquid with the specific weight γ. Determine the bending 

moments and longitudinal forces acting on the midsurface of the tank wall in the meridian Mx, Nx and in the 

circumferential Mφ, Nφ directions, as well as the radial displacements w of the tank wall. 

 

References: S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. 

 

Initial data: 

E = 2.1·108 kPa  - elastic modulus; 

ν = 0.3   - Poisson’s ratio;  

h = 0.01 m  - thickness of the tank wall; 

a = 5.0 m  - radius of the midsurface of the tank wall; 

d = 5.0 m  - height of the tank; 

γ = 10.0 kN/m3  - specific weight of the liquid in the tank. 

 

Finite element model: Design model – general type system, shell elements – 15840 four-node elements of 

type 44. The spacing of the finite element mesh in the meridian direction is 0.025 m at the height x from the 

bottom from 0.0 m to 1.5 m; 0.050 m at the height x from the bottom from 1.5 m to 3.0 m; 0.100 m at the 

height x from the bottom from 3.0 m to 5.0 m; and in the circumferential direction the spacing is 2.5º. 

Boundary conditions at the clamping into the bottom are provided by imposing constraints in all directions 

of the angular and linear displacements. Number of nodes in the design model – 15984. 
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Results in SCAD 

  

Design model 

 

 

 

 

 

 

 
Deformed model 
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Deformed model 

 

 

 

   
  

Values of radial displacements w (mm) 
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Values of radial displacements w (mm) 

for the fragment of the model from the section with the central angle of 10.0º 

 

 

  
Values of bending moments acting on the midsurface of the tank wall 

in the meridian direction Mx (kN·m/m) 
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Values of bending moments acting on the midsurface of the tank wall 

in the meridian direction Mx (kN·m/m) 

for the fragment of the model from the section with the central angle of 10.0º 

 

 

  
 

Values of longitudinal forces acting on the midsurface of the tank wall 

in the circumferential direction Nφ (kN/m2) 
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Values of longitudinal forces acting on the midsurface of the tank wall 

in the circumferential direction Nφ (kN/m2) 

for the fragment of the model from the section with the central angle of 10.0º 

 

Comparison of solutions: 

x, m 

w, mm Mx, kN∙m/m Nφ, kN/m 

Theory SCA

D 

Deviati

ons, % 

Theory SCAD Deviati

ons, % 

Theory SCAD Deviati

ons, % 

0.000 0.000 0.000 ─ -0.7302 -0.7267 0.48 0.00 -22.27∙0.01 = -0.22 ─ 

0.025 0.011 0.011 0.00 -0.5321 -0.5253 1.28 4.52 432.34∙0.01 = 4.32 4.42 

0.050 0.039 0.039 0.00 -0.3644 -0.3564 2.20 16.33 1612.89∙0.01 = 16.13 1.22 

0.075 0.079 0.078 1.27 -0.2256 -0.2179 3.41 33.15 3285.96∙0.01 = 32.86 0.87 

0.100 0.126 0.125 0.79 -0.1134 -0.1069 5.73 53.08 5261.88∙0.01 = 52.62 0.87 

0.125 0.178 0.176 1.12 -0.0252 -0.0204 ─ 74.59 7388.51∙0.01 = 73.89 0.94 

0.150 0.230 0.227 1.30 0.0419 0.0448 ─ 96.46 9547.11∙0.01 = 95.47 1.03 

0.175 0.280 0.277 1.07 0.0907 0.0918 1.21 117.78 
11648.07∙0.01 = 

116.48 
1.10 

0.200 0.328 0.324 1.22 0.1241 0.1235 0.48 137.88 
13626.65∙0.01 = 

136.27 
1.17 

0.225 0.372 0.367 1.34 0.1448 0.1428 1.38 156.30 
15439.08∙0.01 = 

154.39 
1.22 

0.250 0.411 0.406 1.22 0.1550 0.1520 1.94 172.76 
17058.39∙0.01 = 

170.58 
1.26 

0.275 0.445 0.440 1.12 0.1572 0.1535 2.35 187.11 
18471.73∙0.01 = 

184.72 
1.28 

0.300 0.475 0.468 1.47 0.1532 0.1491 2.68 199.32 
19676.68∙0.01 = 

196.77 
1.28 

0.325 0.499 0.492 1.40 0.1447 0.1405 2.90 209.44 
20678.89∙0.01 = 

206.79 
1.27 

0.350 0.518 0.512 1.16 0.1332 0.1291 3.08 217.60 
21489.82∙0.01 = 

214.90 
1.24 

0.375 0.533 0.527 1.13 0.1198 0.1160 3.17 223.93 
22124.83∙0.01 = 

221.25 
1.20 

0.400 0.544 0.538 1.10 0.1054 0.1021 3.13 228.64 
22601.65∙0.01 = 

226.02 
1.15 

0.425 0.552 0.546 1.09 0.0909 0.0881 3.08 231.90 
22939.13∙0.01 = 

229.39 
1.08 

0.450 0.557 0.551 1.08 0.0767 0.0745 2.87 233.93 
23156.28∙0.01 = 

231.56 
1.01 

0.475 0.559 0.554 0.89 0.0633 0.0617 2.53 234.90 23271.56∙0.01 = 0.93 
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x, m 

w, mm Mx, kN∙m/m Nφ, kN/m 

Theory SCA

D 

Deviati

ons, % 

Theory SCAD Deviati

ons, % 

Theory SCAD Deviati

ons, % 

232.72 

0.500 0.560 0.555 0.89 0.0510 0.0500 1.96 235.01 
23302.38∙0.01 = 

233.02 
0.85 

0.550 0.555 0.552 0.54 0.0303 0.0302 0.33 233.29 
23172.87∙0.01 = 

231.73 
0.67 

0.600 0.547 0.545 0.37 0.0148 0.0155 4.73 229.89 
22875.52∙0.01 = 

228.76 
0.49 

0.650 0.537 0.535 0.37 0.0043 0.0055 ─ 225.66 
22490.85∙0.01 = 

224.91 
0.33 

0.700 0.527 0.526 0.19 -0.0022 -0.0008 ─ 221.17 
22074.31∙0.01 = 

220.74 
0.19 

0.750 0.516 0.516 0.00 -0.0055 -0.0042 ─ 216.79 
21660.60∙0.01 = 

216.61 
0.08 

0.800 0.506 0.506 0.00 -0.0067 -0.0055 ─ 212.70 
21268.60∙0.01 = 

212.69 
0.00 

0.850 0.498 0.498 0.00 -0.0066 -0.0056 ─ 208.97 
20906.05∙0.01 = 

209.06 
0.04 

0.900 0.490 0.490 0.00 -0.0057 -0.0049 ─ 205.59 20573.53∙0.01 = 

205.74 

0.07 

0.950 0.482 0.483 0.21 -0.0045 -0.0039 ─ 202.53 20267.56∙0.01 = 

202.68 

0.07 

1.000 0.475 0.476 0.21 -0.0032 -0.0028 ─ 199.71 19982.79∙0.01 = 

199.83 

0.06 

 

Notes: In the analytical solution the bending moments and longitudinal forces acting on the midsurface of 

the tank wall in the meridian Mx, Nx and circumferential Mφ, Nφ directions, as well as the radial 

displacements w of the tank wall can be determined according to the following formulas (S.P. Timoshenko, 

Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948, p. 388): 
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Cylindrical Shell with Free Edges at a Temperature Gradient across the 

Thickness (in the Radial Direction)  

 

Objective: Determination of the stress-strain state of a cylindrical shell with free edges subjected to a 

temperature gradient across the thickness. 

 

Initial data file: 4.33.SPR 

 

Problem formulation: The cylindrical thin-walled shell free from constraints is subjected to a temperature 

gradient across the thickness. The temperatures of the cylinder wall on its internal t1 and external surfaces t2 

are constant. The temperature varies linearly across the thickness of the wall. Determine the stress tensor 

components on the internal and external surfaces of the shell in the meridian σx
ext (σx

int) and circumferential 

σφ
ext (σφ

int)  directions, as well as the radial displacements w. 

 

References: S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948. 

 

Initial data: 

E = 2.1·108 kPa  - elastic modulus;  

ν = 0.3   - Poisson’s ratio;  

h = 0.02 m  - thickness of the shell wall; 

a = 1.0 m  - radius of the midsurface of the shell wall; 

l = 4.0 m  - length of the shell; 

α = 0.12·10-4 1/ºC - linear expansion coefficient; 

t1 = 20 ºC  - temperature on the internal surface of the cylinder wall; 

t2 = 0 ºC  - temperature on the external surface of the cylinder wall. 

 

Finite element model: Design model – general type system, shell elements – 12800 four-node elements of 

type 44. The spacing of the finite element mesh in the meridian direction is 0.025 m  and in the 

circumferential direction is 4.5º. The dimensional stability of the design model is provided by imposing 

constraints according to its symmetry conditions. Number of nodes in the design model – 12880. 

 

Results in SCAD 

  
Design model 
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Deformed model 

 
 

 

   
Values of radial displacements w (mm) 
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Values of radial displacements w (mm) 

for the fragment of the model from the section with the central angle of 18.0º 

 

 

   
Values of stresses on the external surface of the shell 

in the meridian direction σx
ext (kN/m2) 

 



V e r i f i c a t i o n  E x a m p l e s    

S t a t i c s  249 

   
Values of stresses on the internal surface of the shell 

in the meridian direction σx
int (kN/m2) 

 

 

 

  
Values of stresses on the external surface of the shell 

in the circumferential direction σφ
ext (kN/m2) 
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Values of stresses on the internal surface of the shell 

in the circumferential direction σφ
int (kN/m2) 

 

Comparison of solutions: 

x, m 
w, mm 

Theory SCAD Deviations, % 

0.200 -18.61∙10-3 -18.01∙10-3 3.22 

0.250 -13.71∙10-3 -13.20∙10-3 3.72 

0.300 -8.14∙10-3 -7.81∙10-3 4.05 

0.350 -3.76∙10-3 -3.60∙10-3 4.26 

0.400 -1.01∙10-3 -0.97∙10-3 3.96 

0.450 0.36∙10-3 0.34∙10-3 5.56 

0.500 0.82∙10-3 0.78∙10-3 4.88 

0.550 0.79∙10-3 0.75∙10-3 5.06 

0.600 0.57∙10-3 0.54∙10-3 5.26 

0.650 0.33∙10-3 0.32∙10-3 3.03 

0.700 0.15∙10-3 0.14∙10-3 6.67 

0.750 0.04∙10-3 0.04∙10-3 0.00 

0.800 -0.02∙10-3 -0.02∙10-3 ─ 

0.850 -0.04∙10-3 -0.03∙10-3 ─ 

0.900 -0.03∙10-3 -0.03∙10-3 ─ 

0.950 -0.02∙10-3 -0.02∙10-3 ─ 

1.000 -0.01∙10-3 -0.01∙10-3 ─ 

1.100 0 0 ─ 

1.200 0 0 ─ 

1.300 0 0 ─ 

1.400 0 0 ─ 

1.500 0 0 ─ 

1.600 0 0 ─ 

1.700 0 0 ─ 

1.800 0 0 ─ 

1.900 0 0 ─ 

2.000 0 0 ─ 

 

x, m 
σx

ext
 (kN/m2) σx

int
 (kN/m2) 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

0.200 31761 32052 0.92 -31761 -32090 1.04 

0.250 35560 35681 0.34 -35560 -35685 0.35 

0.300 37206 37221 0.04 -37206 -37210 0.01 

0.350 37553 37519 0.09 -37553 -37505 0.13 
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x, m 
σx

ext
 (kN/m2) σx

int
 (kN/m2) 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

0.400 37286 37241 0.12 -37286 -37229 0.15 

0.450 36841 36804 0.10 -36841 -36796 0.12 

0.500 36441 36418 0.06 -36441 -36414 0.07 

0.550 36164 36154 0.03 -36164 -36152 0.03 

0.600 36010 36007 0.01 -36010 -36007 0.01 

0.650 35945 35947 0.01 -35945 -35947 0.01 

0.700 35933 35936 0.01 -35933 -35937 0.01 

0.750 35946 35949 0.01 -35946 -35949 0.01 

0.800 35965 35967 0.01 -35965 -35968 0.01 

0.850 35982 35983 0.00 -35982 -35983 0.00 

0.900 35994 35994 0.00 -35994 -35994 0.00 

0.950 36000 36000 0.00 -36000 -36000 0.00 

1.000 36002 36002 0.00 -36002 -36002 0.00 

1.100 36002 36002 0.00 -36002 -36002 0.00 

1.200 36001 36001 0.00 -36001 -36001 0.00 

1.300 36000 36000 0.00 -36000 -36000 0.00 

1.400 36000 36000 0.00 -36000 -36000 0.00 

1.500 36000 36000 0.00 -36000 -36000 0.00 

1.600 36000 36000 0.00 -36000 -36000 0.00 

1.700 36000 36000 0.00 -36000 -36000 0.00 

1.800 36000 36000 0.00 -36000 -36000 0.00 

1.900 36000 36000 0.00 -36000 -36000 0.00 

2.000 36000 36000 0.00 -36000 -36000 0.00 

0.000 45027 44606 0.93 -5373 -5794 7.84 

0.025 37510 37025 1.29 -13846 -14584 5.33 

0.050 32614 32413 0.62 -21047 -21639 2.81 

0.075 29785 29786 0.00 -26849 -27290 1.64 

0.100 28500 28633 0.47 -31284 -31586 0.97 

0.150 28809 29047 0.83 -36646 -36735 0.24 

0.200 30819 31034 0.70 -38637 -38608 0.08 

0.250 32988 33133 0.44 -38748 -38677 0.18 

0.300 34652 34726 0.21 -38072 -38003 0.18 

0.350 35676 35700 0.07 -37256 -37208 0.13 

0.400 36173 36169 0.01 -36598 -36572 0.07 

0.450 36328 36313 0.04 -36176 -36167 0.02 

0.500 36305 36289 0.04 -35960 -35961 0.00 

0.550 36215 36203 0.03 -35883 -35888 0.01 

0.600 36123 36116 0.02 -35883 -35888 0.01 

0.650 36053 36050 0.01 -35914 -35918 0.01 

0.700 36011 36011 0.00 -35949 -35951 0.01 

0.750 35991 35992 0.00 -35976 -35977 0.00 

0.800 35986 35987 0.00 -35993 -35994 0.00 
0.850 35987 35988 0.00 -36002 -36002 0.00 
0.900 35991 35992 0.00 -36005 -36005 0.00 
0.950 35995 35995 0.00 -36005 -36005 0.00 
1.000 35998 35998 0.00 -36004 -36003 0.00 
1.100 36000 36000 0.00 -36001 -36001 0.00 
1.200 36001 36000 0.00 -36000 -36000 0.00 
1.300 36000 36000 0.00 -36000 -36000 0.00 
1.400 36000 36000 0.00 -36000 -36000 0.00 
1.500 36000 36000 0.00 -36000 -36000 0.00 
1.600 36000 36000 0.00 -36000 -36000 0.00 
1.700 36000 36000 0.00 -36000 -36000 0.00 
1.800 36000 36000 0.00 -36000 -36000 0.00 
1.900 36000 36000 0.00 -36000 -36000 0.00 
2.000 36000 36000 0.00 -36000 -36000 0.00 

 

x – ordinate along the axis of the cylindrical shell (meridian direction) measured from the free edge. 

Notes: In the analytical solution the stresses on the internal and external surfaces of the shell in the 

meridian σx
ext (σx

int) and circumferential σφ
ext (σφ

int)  directions, as well as the radial displacements w can be 

determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. — 

Moscow: OGIZ. Gostekhizdat, 1948, p. 399), which give a good approximation “at points at a considerable 

distance from the edges of the shell”: 
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Thick Square Slab Simply Supported along the Sides Subjected to a Transverse 

Load Distributed over the Upper Face According to the Cosine Law 

 
Objective: Determination of the stress-strain state of a thick square slab simply supported along the sides 

subjected to a transverse load distributed over the upper face according to the cosine law in accordance with 

the spatial problem of the theory of elasticity. 

  

SCAD version used: 21.1 

Initial data files: 

 

File name Description 

4.36a_gamma_3.SPR Design model for the slab thickness of 4 m (γ = a / h = 3) 

 

Problem formulation: The thick square slab is simply supported along the sides and subjected to a 

transverse load distributed over the upper face according to the cosine law 

q·cos((π·x)/(2∙a))∙cos((π·y)/(2∙a)). 

Determine: 

 distribution of the horizontal normal stresses σx across the slab thickness z in its center 

 (x = 0, y = 0); 

 distribution of the horizontal tangential stresses τxy across the slab thickness z on its lateral edge 

 (x = a, y = a); 

 value of the vertical normal stresses σz in the center of the slab (x = 0, y = 0, z = 0); 

 value of the vertical tangential stresses τxz in the center of the lateral face of the slab  

 (x = a, y = 0, z = 0); 

 distribution of the vertical displacements z across the slab thickness z in its center (x = 0, y = 0); 

 distribution of the horizontal displacements x across the slab thickness in the center of its lateral face 

 (x = a, y = 0, z = 0). 

 

References: M.K. Usarov, The problem of bending the thick orthotropic plate of three-dimensional 

formulation, Magazine of Civil Engineering,  2011, No. 4, p. 40-47. 

 

Initial data: 

E = 1.0·105 tf/m2 - elastic modulus of the slab material;  

υ = 0.3   - Poisson’s ratio of the slab material; 

2∙a = 30.0 m  - side of the slab; 

2∙h = 10.0 m  - thickness of the slab; 

q = 10.0 tf/m2 - amplitude value of the transverse load distributed over the upper face of the slab 

according to the cosine law. 

 

Finite element model: Design model – general type system, plate elements – 72000 solid eight-node 

isoparametric elements of type 36. The spacing of the finite element mesh of the slab in plan and along the 

thickness is 0.5 m. Internal forces are output along the axes of the global coordinate system. Constraints of 

the linear degrees of freedom Y, Z are installed in the nodes of the lateral faces of the slab x = ± a. 
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Constraints of the linear degrees of freedom X, Z are installed in the nodes of the lateral faces of the slab y 

= ± a b. Number of nodes in the design model – 78141. 

 

Results in SCAD 

 

  
Design and deformed models 
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Values of vertical displacements z (mm) 

 

 
Values of vertical displacements z (mm) in the center of the slab (x = 0, y = 0) 

 

 

 

 

   
 

Values of horizontal displacements x (mm) 

 

 

 
Values of horizontal displacements x (mm) in the middle of the lateral faces of the slab (x = ± a, y = 0, z = 0) 
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Values of horizontal normal stresses σx (tf/m
2)  

 

 

   
 

Values of horizontal tangential stresses τxy (tf/m
2) 

 

   
 

Values of vertical normal stresses σz (tf/m
2) 
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Values of vertical tangential stresses τxz (tf/m
2) 

 

Comparison of solutions: 

z / h 
σx , tf/m

2
 (x = y = 0) τxy , tf/m

2
 (x = y = a) 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

1.0 -21.240 -21.591 1.65 9.129 9.098 0.34 

0.0 -0.481 -0.479 0.42 -0.882 -0.881 0.11 

-1.0 18.639 18.942 1.63 -10.036 -10.005 0.31 

 

z / h 
σz , tf/m

2
 (x = y = 0) τxz , tf/m

2
 (x = a, y = 0) 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

0.0 -4.944 -4.939 0.10 7.023 6.996 0.38 

 

z / h 
z, mm (x = y = 0) x, mm (x = a, y = 0) 

Theory SCAD Deviations, % Theory SCAD Deviations, % 

1.0 -3.5963 -3.5887 0.21 -1.1333 -1.1299 0.30 

0.0 -3.4906 -3.4832 0.21 0.1095 0.1095 0.00 

-1.0 -3.1440 -3.1368 0.23 1.2459 1.2426 0.26 

 

Notes: In the analytical solution the horizontal normal stresses σx across the slab thickness z in its center (x 

= 0, y = 0), horizontal tangential stresses τxy across the slab thickness z on its lateral edge (x = a, y = a), 

vertical normal stresses σz in the center of the slab (x = 0, y = 0, z = 0), vertical tangential stresses τxz in the 

center of the lateral face of the slab (x = a, y = 0, z = 0), vertical displacements z across the slab thickness z 

in its center (x = 0, y = 0), horizontal displacements x across the slab thickness in the center of its lateral 

face (x = a, y = 0, z = 0) for υ = 0.3 and γ = a / h = 3 can be determined according to the following 

formulas: 
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Thick Circular Slab Clamped along the Side Surface Subjected to a Load 

Uniformly Distributed over the Upper Face 

 

 
 

 

Objective: Determination of the stress-strain state of a thick circular slab clamped along the side surface 

subjected to a load uniformly distributed over the upper face in accordance with the spatial problem of the 

theory of elasticity. 

  

SCAD version usedInitial data files: 

File name Description 

4.37_4m.SPR Design model for the slab thickness of 4 m 

4.37_6m.SPR Design model for the slab thickness of 6 m 

 

Problem formulation: The thick circular slab is clamped along the side surface and subjected to a load q 

uniformly distributed over the upper face. Determine: 

distribution of the radial σr and vertical σz normal stresses across the slab thickness in its center (r = 0); 

distribution of the vertical displacements w across the slab thickness in its center (r = 0). 

 

References: Solyanik-Krassa K.V. Axisymmetric Problem of the Theory of Elasticity. – M.: 

Stroyizdat. 1987. p. 336. 

 
Initial data: 

E = 1.0·107 kPa  - elastic modulus;  

μ = 0.25  - Poisson’s ratio; 

2∙a = 20.0 m  - diameter of the slab; 

2∙h = 4.0 m; 6.0 m - thickness of the slab; 

q = 10 kPa - load uniformly distributed over the upper face. 

 

Finite element model 

The spacing of the finite element mesh of the slab in plan in the radial direction is 0.5 m and there are 

16 layers of finite elements along the thickness (models 1х1). 

Elements of the design model: 

4384 solid twenty-node isoparametric elements of type 37 (parallelepiped); 

400 solid fifteen-node isoparametric elements of type 35 (triangular prism). 

Number of nodes in the design model – 20866. 

The calculation was performed taking into account the symmetry planes. The constraints were imposed: 

on the side surface in the directions of all the linear degrees of freedom; 

on the YOZ plane – along the x axis; 

on the XOZ plane – along the y axis. 
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Design models of 4.0 m and 6.0 m thick slabs 

 

Results in SCAD 

 
Values of vertical displacements w (mm) in 4.0 m and 6.0 m thick slabs 

 

Comparison of solutions: 

Thickness Value Point 
Approximate 

theory 
SCAD Deviation (%) 

4m 

w(mm) 

(0,0,2) -0.0436 -0.04538 4.08 

(0,0,0) -0.0424 -0.0454 7.08 

(0,0,-2) -0.0411 -0.04364 6.18 

r= 

(kPa) 

(0,0,2) -34.51 -33.78 2.12 

(0,0,0) -1.6667 -1.5547 6.72 

(0,0,-2) 31.1719 30.62 1.76 

z 

(kPa) 

(0,0,2) -10 -10.16 0.16 

(0,0,0) -5 -5.07 0.14 

(0,0,-2) 0 -0.05 – 

6m 

w 

(0,0,3) -0.02097 -0.02112 0.72 

(0,0,0) -0.01916 -0.01994 4.07 

(0,0,-3) -0.01722 -0.01851 7.49 

r= 

(kPa) 

(0,0,3) -18.2292 -18.51 1.54 

(0,0,0) -1.6667 -1.5149 9.12 

(0,0,-3) 14.896 14.4884 2.74 

z 

(kPa) 

(0,0,3) -10 -9.797 2.03 

(0,0,0) -5 -5.0569 1.14 

(0,0,-3) 0 0.043 – 
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Note 1: The approximate analytical values were calculated according to the formulas given on 

pages 124-125 of “Solyanik-Krassa K.V. Axisymmetric Problem of the Theory of Elasticity. – M.: 

Stroyizdat. 1987.” 

Note 2: The calculations were performed for meshes refined by a factor of 2 and 4 (4x4 models) to 

study the convergence of the method. The symmetry planes were taken into account. The maximum design 

model contained: 

280576 solid twenty-node isoparametric elements of type 37 (parallelepiped); 

25600 solid fifteen-node isoparametric elements of type 35 (triangular prism). 

Number of nodes in the design model – 1222501. 

Comparison of solutions: 

Thickness Value Point 
SCAD Deviation 

(%) 4х4 1х1 

4m 
w(mm) 

(0,0,2) -0.04534 -0.04538 0.09 

(0,0,0) -0.0454 -0.0454 – 

(0,0,-2) -0.04374 -0.04364 0.23 

r= 

(kPa) 

(0,0,2) -33.6603 -33.78 0.36 

(0,0,0) -1.5683 -1.5547 0.87 

(0,0,-2) 30.527 30.62 0.30 

z 

(kPa) 

(0,0,2) -10.0062 -10.16 1.36 

(0,0,0) -5.0037 -5.0742 1.41 

(0,0,-2) 0.00326 -0.05 – 

6m 
w 

(0,0,3) -0.02108 -0.02112 0.19 

(0,0,0) -0.01995 -0.01994 0.05 

(0,0,-3) -0.01852 -0.01851 0.05 

r= 

(kPa) 

(0,0,3) -17.373 -17.557 1.06 

(0,0,0) -1.5213 -1.5149 0.42 

(0,0,-3) 14.3485 14.4884 0.98 

z 

(kPa) 

(0,0,3) -10.0006 -9.797 2.03 

(0,0,0) -5.0367 -5.0694 0.65 

(0,0,-3) 0.0028 0.0434 – 
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Cylindrical Body Free from Restraints Subjected to a Longitudinal Load 

Uniformly Distributed over the Edges 
 

 
 

Objective: Determination of the strain state of a cylindrical body free from restraints subjected to a 

longitudinal load uniformly distributed over the edges. 

 

Initial data file: SSLV01_v11.5.SPR 

 

Problem formulation: The cylindrical body free from restraints is subjected to a longitudinal load 

uniformly distributed over the edges F/A. Determine the meridional ∆L and radial ∆R displacements of the 

points E, D, A (C) of the side surface of the cylinder at the distances from its transverse symmetry plane 

along the generatrix L/3, 2∙L/3, L respectively, as well as the point B of the center of its edge surface. 

 

References: P. Germain, Introduction a la mecanique des milieux continus, Paris, Masson, 1986. 

 

Initial data: 

E = 2.0·105 Pa  - elastic modulus;  

ν = 0.3   - Poisson’s ratio;  

R = 1.0 m  - radius of the cylinder; 

L = 4.0 m  - length of the cylinder; 

F/A = 1.0·102 Pa - load uniformly distributed over the edges. 

 

Finite element model: Design model – axisymmetric problem, axisymmetric elements – 120 shell elements 

of type 61. The spacing of the finite element mesh in the meridian direction is 0.25 m and in the radial 

direction is 0.10 m. The dimensional stability of the design model is provided by imposing constraints 

according to its symmetry conditions. Number of nodes in the design model – 143. 
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Results in SCAD 

  
Design and deformed models 

 

 

 

  
Values of meridional displacements Z (∆L) m 
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Values of radial displacements X (∆R) m 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Meridional displacement ∆L (point E), m -0.500∙10-3 -0.500∙10-3 0.00 

Radial displacement ∆R (point E), m -0.150∙10-3 -0.150∙10-3 0.00 

Meridional displacement ∆L (point D), m -1.000∙10-3 -1.000∙10-3 0.00 

Radial displacement ∆R (point D), m -0.150∙10-3 -0.150∙10-3 0.00 

Meridional displacement ∆L (points A and C), m -1.500∙10-3 -1.500∙10-3 0.00 

Radial displacement ∆R (points A and C), m -0.150∙10-3 -0.150∙10-3 0.00 

Meridional displacement ∆L (point B), m -1.500∙10-3 -1.500∙10-3 0.00 

Radial displacement ∆R (point B), m 0.000∙10-3 0.000∙10-3 0.00 

 

Notes: In the analytical solution the meridional ∆L and radial ∆R displacements can be determined 

according to the following formulas: 

 

E

XP
L


 ;  

E

RP
R





 .
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 Square Panel of a Flat Slab Rigidly Connected to a Column of a Circular Cross-

Section Subjected to a Uniformly Distributed Transverse Load 
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Objective:  

Determine the bending moments in the characteristic points of a square panel of a flat slab rigidly 

connected to a column of a circular cross-section subjected to a uniformly distributed transverse load. 

  

Initial data file:  Flate_plate_Circular_column.spr 

 

Problem formulation:  

The square panel of a flat slab rigidly connected to a column of a circular cross-section is subjected to a 

uniformly distributed transverse load q. Determine the bending moments Mx, My in the characteristic points 

of the square panel of the flat slab. 

 

References:  

S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, Moscow, Book House 

"LIBROKOM", 2009, p. 287-289. 

  

Initial data: 

E = 3.0·107 N/m2 - elastic modulus,  

ν = 0.2   - Poisson’s ratio,  

h = 0.1 m  - thickness of the panel of the flat slab; 

a = 2.5 m  - side of the panel of the flat slab; 

c = 0.1·a = 0.25 m - radius of the column cross-section; 

q = 100.0 N/m2  - value of the uniformly distributed transverse load. 

 

Finite element model:  

Design model – grade beam, plate; elements of the panel of the flat slab – 2412 quadrangular four-node thin 

plate elements for the calculation according to the Kirchhoff-Love theory of type 20 and 16 triangular 

three-node thin plate elements for the calculation according to the Kirchhoff-Love theory of type 15; 

element of the column cross-section – 1 rigid body element of type 100. The spacing of the finite element 

mesh of the panel of the flat slab in the directions of the axes of the global coordinate system is 0.05 m 

except for the support contour where the spacing of the finite element mesh in the radial direction is 0.05 m 

and in the circumferential direction is 11.25°. Internal forces are output along the axes of the global 

coordinate system. Boundary conditions are provided by imposing constraints in the directions of the 
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degrees of freedom UX for the edges of the panel parallel to the X axis of the global coordinate system, and 

UY for the edges of the panel parallel to the Y axis of the global coordinate system. The master node of the 

rigid body of the column is in the center of its cross-section and is restrained in the direction of the degree 

of freedom Z. Number of nodes in the design model – 2537. 

 

Results in SCAD: 

 

 

 
 

 
Design model 

 

 

 
Deformed model 
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Bending moments Mx, N· m/m 

 

 

 

 

  
Bending moments My, N· m/m 
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Bending moments Mxy, N· m/m 
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Comparison of solutions: 

Bending moment Panel point Theory SCAD Deviations, % 

Mx = My x = a/2, y = a/2 18.2500 17.8300 2.30 

Mx x = a/2, y = 0 24.9375 24.9800 0.17 

My x = a/2, y = 0 -10.0625 -10.1400 0.77 

Mx x = c, y = 0 -105.1250 -105.2900 0.16 

 

Notes: In the analytical solution the bending moments Mx, My in the characteristic points of the square panel 

of the flat slab are determined according to the following formulas: 

 
2M=β q a  . 

 
The coefficients β for the calculation of bending moments at c = 0.1∙a and υ = 0.2 

 
Bending moment Panel point β 

Mx = My x = a/2, y = a/2 0.0292 

Mx x = a/2, y = 0 0.0399 

My x = a/2, y = 0 -0.0161 

Mx x = c, y = 0 -0.1682 
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Square Panel of a Flat Slab Rigidly Connected to a Column of a Square Cross-

Section Subjected to a Uniformly Distributed Transverse Load 
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Objective:  

Determination of the bending moments in the characteristic points of a square panel of a flat slab rigidly 

connected to a column of a square cross-section subjected to a uniformly distributed transverse load. 

  

Initial data file: Flate_plate_Square_column.spr 

 

Problem formulation:  

The square panel of a flat slab rigidly connected to a column of a square cross-section is subjected to a 

uniformly distributed transverse load q. Determine the bending moments Mx, My in the characteristic points 

of the square panel of the flat slab. 

 

References:  

S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, Moscow, Book House 

"LIBROKOM", 2009, p. 287-289. 

  

Initial data: 

E = 3.0·107 N/m2 - elastic modulus,  

ν = 0.2   - Poisson’s ratio,  

h = 0.1 m  - thickness of the panel of the flat slab; 

a = 2.5 m  - side of the panel of the flat slab; 

u = 0.2·a = 0.5 m - side of the column cross-section; 

q = 100.0 N/m2  - value of the uniformly distributed transverse load. 

 

Finite element model:  

Design model – grade beam, plate; elements of the panel of the flat slab – 2400 quadrangular four-node thin 

plate elements for the calculation according to the Kirchhoff-Love theory of type 20; element of the column 

cross-section – 1 rigid body element of type 100. The spacing of the finite element mesh of the panel of the 

flat slab in the directions of the axes of the global coordinate system is 0.05 m. Internal forces are output 

along the axes of the global coordinate system. Boundary conditions are provided by imposing constraints 

in the directions of the degrees of freedom UX for the edges of the panel parallel to the X axis of the global 

coordinate system, and UY for the edges of the panel parallel to the Y axis of the global coordinate system. 

The master node of the rigid body of the column is in the center of its cross-section and is restrained in the 

direction of the degree of freedom Z. Number of nodes in the design model – 2521. 
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Results in SCAD: 

 

 

 
 

 
Design model 

 

 

 
Deformed model 
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Bending moments Mx, N· m/m 

 

 

 

 

  
Bending moments My, N· m/m 
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Bending moments Mxy, N  m/m 

 

 

Comparison of solutions: 
Bending moment Panel point Theory SCAD Deviations 

Mx = My x = a/2, y = a/2 16.500 16.620 0.73 

Mx x = a/2, y = 0 21.750 22.370 2.85 

My x = a/2, y = 0 -9.125 -8.770 3.89 

Mx x = u/2, y = 0 -39.125 -43.210 9.45 

Mx x = u/2, y = u/2 -∞ -123.16 ─ 

 

Notes: In the analytical solution the bending moments Mx, My in the characteristic points of the square panel 

of the flat slab are determined according to the following formulas: 

 
2M=β q a  . 

 
Approximate values of the coefficients β for the calculation of bending moments at u = 0.2∙a and υ = 0.2 

 
Bending moment Panel point β 

Mx = My x = a/2, y = a/2 0.0264 

Mx x = a/2, y = 0 0.0348 

My x = a/2, y = 0 -0.0146 

Mx x = u/2, y = 0 -0.0626 

Mx x = u/2, y = u/2 -∞ 
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Elastic Half-Space Subjected to a Transverse Load Uniformly Distributed over a 

Rectangular Surface. Love’s Problem 

 

 
 

Objective: Determination of the stress-strain state of the elastic half-space subjected to a transverse load 

uniformly distributed over a rectangular surface in accordance with the spatial problem of the theory of 

elasticity. 

 

Initial data files: Lave.SPR 

 

Problem formulation: The elastic half-space is subjected to the transverse load q uniformly distributed over 

a rectangular surface. Determine: 

 distribution of the normal stresses σx, σy, σz across the half-space; 

 distribution of the tangential stresses τxy, τxz, τyz across the half-space; 

 distribution of the displacements u, v, w across the half-space. 

 

References: Z.G. Ter-Martirosyan, Soil Mechanics, Moscow, MGSU Publishing House of the Association 

of Construction Institutions of Higher Education, 2009, p. 204; 

V.A. Florin, Fundamentals of Soil Mechanics, Volume 1, Leningrad, State Publishing House of Literature 

on Construction, Architecture and Building Materials, 1959, p. 123; 

V.A. Florin, Fundamentals of Soil Mechanics, Volume 2, Leningrad, State Publishing House of Literature 

on Construction, Architecture and Building Materials, 1959, p. 24. 

 

Initial data: 

E = 30000 kN/m2  - elastic modulus of the half-space;  

 = 0.3    - Poisson’s ratio; 

a = b = 2.0 m - length of the half of the side of a rectangular loaded surface; 

q = 100 kN/m2 - transverse load q uniformly distributed over a rectangular surface. 

 

Finite element model: 969648 m parallelepiped is analyzed. The design model (quarter of the 

parallelepiped cut off by the symmetry planes XOZ and YOZ) – general type system, elements of the 

elastic half-space – 138253 20-node isoparametric solid elements of type 37. The spacing of the initial finite 

element mesh of the half-space in the load application area in plan and along the depth is 0,25 m. The sizes 

of the finite elements increase with the distance from the load application area. 

Internal forces are output along the axes of the global coordinate system. Upper faces of the elements of the 

half-space boundary are subjected to the surface transverse load within the following dimensions in plan 

2a2b = 4.0 м4.0 m.  

 The boundary conditions were defined as follows: normal displacements on the lower and side 

surfaces are restrained.  

 Number of nodes in the design model – 573985. 
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Results in SCAD 

 
Design model 

 

 
 

Deformed model of the surface of the elastic half-space 
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Values of horizontal displacements u (mm) 

 

 
Values of vertical displacements w (mm) 
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Values of vertical τxz tangential stresses (t/m

2
) 

 

Comparison of solutions: 

Solution of the Love’s problem by 20-node 

isoparametric elements (mm, kN/m2) 

Point Parameter 
 Theory SCAD Deviations, % 

(0,0,0) 

Node 1 

w mm -13,616 -13,177 3,2 

x=y kN/m2 -80,0 -79,919 0,10 

z kN/m2 -100,0 -100,079 0,09 

(0,0,-2) 

Node 10005 

w mm -9,017 -8,574 4,91 

x=y kN/m2 -8,29 -8,189 1,21 

z kN/m2 -70,09 -70,109 0,03 

(-2,2,-2) 

Node 10213 

u=v mm 0,488 0,492 0,82 

w mm -5,704 -5,262 7,75 

x=y kN/m2 -7,56 -7,496 0,85 

z kN/m2 -23,25 -23,267 0,07 

xy kN/m2 -5,27 -5,288 0,34 

xz=yz kN/m2 12,11 12,166 0,46 

 

Notes: In the analytical solution the distribution of the normal stresses σx, σy, σz, tangential stresses τxy, τxz, 

τyz and displacements u, v, w across the half-space is determined according to the following formulas: 
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Determination of Internal Forces under Constrained Torsion of Thin-Walled 

Open-Section Bars 

 

Objective: Verify the correctness of the determination of internal force values under constrained 

torsion of a thin-walled open-section bar using the example of a five-span beam.  

 

Problem formulation: a five-span beam with equal spans of 2.5 m is loaded with a transverse 

uniformly distributed load of 20 kN/m in the plane of the web. The cross-section of the beam is a 

C-shaped thin-walled cold-formed profile. The load is applied to the top flange of the beam in the 

plane of the web with an eccentricity relative to the center of mass of 46.3 mm. Determine the 

values of bimoments in the sections of the beam. 

 

Source: A.D. Pavlenko, V.A. Rybakov, A.V. Pikht, E.S. Mikhailov. Non-uniform torsion of thin-

walled open-section multi-span beams // Magazine of Civil Engineering, No. 7(67), 2016, pp. 55-

69. 

 

Initial data file:  

Rybakov_5SpanBeam.spr;  

report – Rybakov_5SpanBeam.rtf; 

 

SCAD version used:  

SCAD++ 23.1.1.3, 18.06.2024 

 

Initial data: 

Е = 210000 N/mm
2
 elastic modulus 

v = 0.3 Poisson’s ratio 

Section type Channel 

h = 220 mm Section height (along the outer edge) 

b = 70 mm Flange width (along the outer edge) 

t = 2 mm Profile thickness (minus the coating thickness) 

q = 20 kN/m Uniformly distributed load on the beam 

l = 2.5 m Length of each beam span 

е = 46.3 mm Eccentricity of the applied load (the load is applied  

to the top flange of the profile, at the middle of the 

flange). 
 

Finite element model:  the design model of the multi-span beam is a spatial bar system. The axis 

of the beam is aligned with the x – x axis of the global coordinate system. At the left end support, 

there are constraints on rotation about the x – x axis as well as linear displacements in the y – y and 

z – z directions of the global coordinate system. At the intermediate supports, there are constraints 

on linear displacements in the y – y and z – z directions. 

Taking into account the overlap joints of the multi-span beam, the condition of equal warping was 

set at the intermediate supports. Additionally, this condition was set at all intermediate nodes of 

the beam. At the end supports of the beam, the condition of zero bimoment was achieved by 

introducing a hinge for warping.  

The eccentricity of the application of the uniformly distributed load on the beam was taken into 

account by applying a uniformly distributed torque of М = q×е = 

20 kN/m × 46.3 mm = 0,926 kNm/m. 
 

Results in SCAD++: 

The resulting bimoment diagram, calculated in SCAD++, is shown in Fig. 1.  
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Figure 1. Bimoment diagram under constrained torsion of a five-span beam with spans of 2.5 m. 

 

Comparison of solutions 

 

Design model of the beam Beam section position 

 

z = 1 m z = 1,25 m z = 2,5 m z = 3,75 m z = 5,0 m z = 6,25 m 

Bimoment (analytical solution), 

kNm
2
 

0,43 0,39 –0,59 0,19 –0,45 0,25 

Bimoment in SCAD++, kNm
2
 0,431 0,402 –0,583 0,202 –0,443 0,265 

Deviation, % 0,2 3,1 1,2 6,3 1,6 6 
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Linear Dynamics  
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Plane Truss Subjected to Instantaneous Pulses Concentrated in Non-Supporting 

Nodes of the Bottom Chord 

 
 

Objective: Determination of the strain state of a plane truss subjected to instantaneous pulses concentrated 

in non-supporting nodes of the bottom chord. 

 

Initial data files: 5.11.SPR, График_5.11.txt 

 

Problem formulation: The plane two-span truss with parallel chords and a diagonal lattice with three 

panels of equal length in each span is supported by the bottom chord. Masses M are concentrated and 

concentrated instantaneous transverse pulses S are applied in the intermediate (non-supporting) nodes of the 

bottom chord. Determine the natural oscillation modes and natural frequencies ω of the plane truss, as well 

as the transverse displacements of the nodal masses Z with time. 

 

References: Rabinovich I.M., Sinitsyn A.P., Luzhin O.V., Terenin V.M., Analysis of Structures Subject to 

Pulse Actions, Moscow, Stroyizdat, 1970, p. 153. 

 

Initial data: 

E = 2.0·108 tf/m2  - elastic modulus; 

F = 1·10-2 m2 - cross-sectional area of the truss elements except for the column above the 

middle support; 

2· F = 2·10-2 m2   - cross-sectional area of the column above the middle support; 

a = 2.0 m   - height of the truss and length of the truss panel; 

M = 16.0 tf·s2/m - value of the concentrated masses in the intermediate (non-supporting) 

nodes of the truss bottom chord; 

S = 4.0· tf∙s - value of the concentrated instantaneous transverse pulses applied in the 

intermediate (non-supporting) nodes of the truss bottom chord; 

g = 10.00 m/s2   - gravitational acceleration. 

 

Finite element model: Since the structure and the applied loads are symmetric, only a half of the truss is 

considered with the restraints of the bottom and top chords on the symmetry axis in the longitudinal 

(horizontal) direction (degree of freedom X) and halving the stiffness of the column above the middle 

support. Design model – plane hinged bar system, 11 bar elements of type 1. Boundary conditions of the 

support nodes of the truss bottom chord are provided by imposing constraints in the direction of the degree 

of freedom Z. The concentrated masses are specified by transforming the static nodal loads M·g. 

The calculation is performed in two stages: first the natural oscillation modes and natural frequencies ω are 

determined by the modal analysis, and then the transverse displacements of the nodal masses Z with time 

are determined by the direct integration of the equations of motion method. The action of the concentrated 

instantaneous transverse pulses is described by the graph of the load variation with time and is given in the 

form of nodal forces acting along the Z axis of the global coordinate system with the scale factor of 1.0 and 

the delay time 0.0 s. Intervals between the time points of the load variation graph are equal to Δtint = 

0.00001 s and correspond to the integration step. When plotting the graph the pulse action is taken with a 

linear shape function, force value P = 400000 tf and duration Δtint = 0.00001 s. The duration of the process 

is equal to t = 0.12 s, which roughly corresponds to twice the value of the fundamental period of 

oscillations 4·π/ω1. Critical damping ratios for the 1-st and 2-nd natural frequencies are taken with the 

minimum value ξ = 0.0001. The conversion factor for the added static loading is equal to k = 0.981 (mass 

generation). Number of nodes in the design model – 7. The determination of the natural oscillation modes 

and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated 

masses is used in the calculation. 
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Results in SCAD 

 

  
Design model 
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1-st and 2-nd natural oscillation modes  (symmetric) 

 
Graph of the variation of the  transverse displacements of the nodal mass Z7 

(closest to the end support) with time (m) 
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Graph of the variation of the  transverse displacements of the nodal mass Z6 

(closest to the middle support) with time (m) 

 

   

   

   

   
Amplitude values of the transverse displacements of the nodal mass Z7 (m) 

and the deformed models at the respective time points 
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Amplitude values of the transverse displacements of the nodal mass Z6 (m) 

and the deformed models at the respective time points 

 

Comparison of solutions: 

Natural frequencies ω, rad/s 

Oscillation mode Theory SCAD Deviations, % 

1 112.0 108.8 2.86 

2 208.0 197.4 5.10 

 

Amplitude values of the transverse displacements of the nodal masses Z 

Nodal mass 

Theory SCAD 

Time, s Displacement, m  Time, s Displacement, m Deviations, % 

7 0.0142 0.002264 0.0144 0.002306 1.86 

7 0.0420 -0.002280 0.0433 -0.002336 2.46 

7 0.0702 0.002251 0.0720 0.002288 1.64 

7 0.0982 -0.002287 0.1014 -0.002331 1.92 

6 0.0139 0.002209 0.0145 0.002249 1.81 

6 0.0422 -0.002192 0.0432 -0.002214 1.00 

6 0.0701 0.002222 0.0724 0.002267 2.03 

6 0.0982 -0.002185 0.1006 -0.002220 1.60 
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Graphs of the variation of the transverse displacements of the nodal masses Z7 and Z6 

with time according to the theoretical solution (m) 

 

Notes: In addition to taking the symmetry into account the following assumptions were made when 

deriving the analytical solution: 

 the displacement of masses in the longitudinal (horizontal) direction is neglected; 

 the difference between the mutual transverse (vertical) displacements of the lower and upper nodes 

of each vertical of the truss is neglected, and the masses are concentrated only in the lower nodes. 

 

In the analytical solution the natural frequencies of oscillations ω of the plane truss are determined 

according to the following formulas: 

 

Ma

FE
448.07




 ;  

Ma

FE
832.06




 . 

 

In the analytical solution the transverse displacements of the nodal masses of the plane truss Z with time are 

determined according to the following formulas: 

   tsin
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  ; 

 

   tsin
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  . 

 

The deviations from the theory for the natural frequencies of oscillations are due to the fact that the 

“manual” calculation in the source is performed with significant errors.  
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Natural Oscillations of a Spatial Pipeline Clamped at the Edges (Hougaard’s 

Problem) 

 

 
 

Objective: Modal analysis of a spatial pipeline clamped at the edges.  
 

Initial data file: 5.1.SPR 
 

Problem formulation: Determine the natural oscillation modes and natural frequencies f of the spatial steel 

pipeline composed of three mutually orthogonal straight segments connected in series by fittings, clamped 

at the edges and filled with water. 

 

References: William Hovgaard, Stresses in Three-dimensional Pipe Bends. Transactions of ASME, vol. 57, 

FSP 75-12, 1935. 

 

Initial data: 

E = 24.0·106 psi = 1.654740·108 kPa - elastic modulus;  

ν = 0.3     - Poisson’s ratio;  

De = 7.288 in = 0.185115 m  - outer diameter of the pipe cross-section; 

t = 0.241 in = 0.006121 m  - thickness of the pipe cross-section; 

ρs = 0.283 lb/in3 = 7.833 t/m3  - density of the pipe material (steel); 

ρw = 0.036 lb/in3 = 0.996 t/m3  - density of the filling material (water); 

Lstr1 = 108.9 in = 2.766 m  - length of the first straight section of the pipeline; 

Lstr2 = 35.6 in = 0.904 m  - length of the second straight section of the pipeline; 

Lstr3 = 41.0 in = 1.041 m  - length of the third straight section of the pipeline; 

Relb = 36.3 in = 0.922 m   - radius of the axis of the pipeline fittings; 

 

stiffness properties and masses: 

EA = E∙(π·De
2/4)∙(1-(1-2·t/De)

2) = 569598 kN  - axial stiffness of the pipe cross-section; 

EIb,str = E∙(π·De
4/64)∙(1-(1-2·t/De)

4) = 2283.81 kN∙m  - bending stiffness of the cross-section of 

the straight segment of the pipe; 

EIb,elb = E∙(π·De
4/64)∙(1-(1-2·t/De)

4)/k = 995.824 kN∙m  - bending stiffness of the cross-section of 

the pipe fitting (taking into account the flattening), 

where: 

k = (10+12·λ2)/ (1+12·λ2) = 2.293391  - Von Karman coefficient of flexibility, 

λ = t·Relb/((De-2∙t)/4) = 0.704654  - geometric parameter; 

GIt = (E/(2·(1+ ν)) ∙(π·De
4/32)∙(1-(1-2·t/De)

4) = 1756.78 kN∙m - torsional stiffness of the pipe cross-

section; 

m = ·(π·De
2/4)∙(ρs -( ρs- ρw)(1-2·t/De)

2)·g = 0.4938 kN/m - linear static load from the weight of 

 the pipe filled with water. 
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Finite element model: Design model – general type system, pipeline elements – 38 bar elements of type 5. 

The spacing of the finite element mesh in the longitudinal direction (along the X1 axis of the local 

coordinate system) is ≈ 0.2 m. Boundary conditions are provided by imposing constraints in the directions 

of the degrees of freedom X, Y, Z, UX, UY, UZ for the end nodes of the pipeline. The distributed mass is 

specified by transforming the static load from the weight of the pipe filled with water, m. Number of nodes 

in the design model – 39. The determination of the natural oscillation modes and natural frequencies is 

performed by the method of subspace iteration. The matrix of concentrated masses is used in the 

calculation. 

 

Results in SCAD 

 
Design model 
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1-st and 2-nd natural oscillation modes 

  
3-rd and 4-th natural oscillation modes 
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5-th and 6-th natural oscillation modes 

 

  
7-th and 8-th natural oscillation modes 
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9-th natural oscillation mode 

 

 

Comparison of solutions: 
Natural frequencies f, Hz 

Oscillation mode Theory SCAD Deviations, % 

1 10.18 10.01 1.67 

2 19.54 19.29 1.28 

3 25.47 24.55 3.61 

4 48.09 46.79 2.70 

5 52.86 50.77 3.95 

6 75.94 82.21 8.26 

7 80.11 84.29 5.22 

8 122.34 126.58 3.47 

9 123.15 128.51 4.35 
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Simply Supported Weightless Beam with Two Concentrated Masses and 

Transverse Sudden Constant Load Applied to One of Them 

 

 
 

Objective: Determination of the stress-strain state of a simply supported weightless beam with two 

concentrated masses and transverse sudden constant load applied to one of them. 

 

Initial data files: 5.12_Sudd_L.SPR, График_5.12_Sudd_L.txt 

 

Problem formulation: Two identical loads of mass m are attached to the simply supported beam of constant 

cross-section at a quarter span distance from each support. The mass of the beam is neglected in 

comparison with the masses of the loads. The force P is applied to one of the masses at the initial time and 

remains constant. Determine the natural oscillation modes and natural frequencies p of the simply supported 

beam, as well as the deflections η and bending moments M in the cross-sections of the beam with the 

attached masses with time. 

 

References: S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. 

Feodos’yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic 

Analysis. Stability. Creep. Moscow, Mashgiz, 1952, p.150. 

 

Initial data: 

E = 3.0·106 tf/m2  - elastic modulus; 

ν = 0.2 - Poisson’s ratio; 

b = 0.4 m - width of the rectangular cross-section of the beam; 

h = 0.8 m - height of the rectangular cross-section of the beam; 

l = 8.0 m   - beam span length; 

m = 3.0 tf·s2/m - value of the concentrated masses attached to the beam; 

P = 76.8 tf - value of the transverse sudden constant force applied to one of the masses; 

g = 10.00 m/d2   - gravitational acceleration; 

I = b·h3/12 = 0.017067  - cross-sectional moment of inertia of the beam. 

 

Finite element model: Design model – plane frame, 32 bar elements of type 2. Boundary conditions of the 

simply supported ends of the beam are provided by imposing constraints in the direction of the degree of 

freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node 

on the symmetry axis of the beam in the direction of the degree of freedom X. The concentrated masses are 

specified by transforming the static nodal loads m·g. 

The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are 

determined by the modal analysis, and then the deflections η and bending moments M in the cross-sections 

of the beam with the attached masses with time are determined by the direct integration of the equations of 

motion method. The action of the transverse sudden constant force is described by the graph of the load 

variation with time and is given in the form of a nodal force acting along the Z axis of the global coordinate 

system with the scale factor of 1.0 and the delay time 0.0 s. Intervals between the time points of the load 

variation graph are equal to Δtint = 0.001571 c (T1/100) and correspond to the integration step. When 

plotting the graph, the action of the transverse sudden constant force is taken as P = 76.8 tf at all time points 

n·Δtint. The duration of the process is equal to t = 0.3142 s, which corresponds to twice the value of the 

fundamental period of oscillations 2·T1. Critical damping ratios for the 1-st and 2-nd natural frequencies are 

taken with the minimum value ξ = 0.0001. The conversion factor for the added static loading is equal to k = 

0.981 (mass generation). Number of nodes in the design model – 33. The modal integration method is used 
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in the calculation. The determination of the natural oscillation modes and natural frequencies is performed 

by the method of subspace iteration. The matrix of concentrated masses is used in the calculation. 

 

Results in SCAD 

 
 

 
 

Design model 

 

 

 
 

 
  

 

1-st and 2-nd natural oscillation modes 

 

 

   



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  299 

Graph of the variation of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force with time (m) 

 

 

   

Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force with time (m) 

 
 

 
 Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m) 

  

 
 

 
 

 Amplitude value of the deflection η2 in the cross-section of the beam 
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with the attached mass not subjected to the shear force 

and the deformed model at the respective time point (m) 

 

 
 

Graph of the variation of the bending moment M1 in the cross-section of the beam 

with the attached mass subjected to the shear force, with time (tm·m) 

 

 
Graph of the variation of the bending moment M2 in the cross-section of the beam 
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with the attached mass not subjected to the shear force, with time (tm·m) 

 

 

 

 

 

 
 

Amplitude values of the bending moment M1 in the cross-section of the beam 

with the attached mass subjected to the shear force (tm·m) 

 

 

 

 

 

 
Amplitude values of the bending moment M2 in the cross-section of the beam 

with the attached mass not subjected to the shear force (tm·m) 
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Comparison of solutions: 

 
The dashed lines show the values of static deflections 

Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

 
The dashed lines show the values of static bending moments 
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Graphs of the variation of the bending moments M1 and M2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (tf·m) 

Natural frequencies p, rad/s 
 

Oscillation mode Theory SCAD Deviations, % 

1 40.000 40.000 0.00 

2 113.137 113.137 0.00 

 

Amplitude value of the deflections η in the cross-sections of the beam 

with the attached masses, m 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s 
Deflection, 

m 
Deviations, % 

1 0.0809 0.017928 0.0817 0.017911 0.09 

2 0.0695 0.014474 0.0707 0.014485 0.08 

 

Amplitude value of the bending moments M in the cross-sections of the beam 

with the attached masses, tf·m 

Nodal mass 

Theory SCAD 

Time, s 
Bending moment, 

tf·m 
Time, s 

Bending 

moment, tf·m 
Deviations, % 

1 0.0346 -128.426 0.0361 -128.486 0.05 

1 0.0493 -115.960 0.0503 -116.387 0.37 

1 0.0824 -229.286 0.0833 -228.949 0.15 

1 0.1180 -87.419 0.1194 -86.744 0.77 

1 0.1334 -101.705 0.1351 -100.782 0.91 

2 0.0226 +41.120 0.0236 +40.829 0.71 

2 0.0599 -128.638 0.0613 -128.687 0.04 

2 0.0849 -74.952 0.0864 -74.957 0.01 

2 0.1052 -105.748 0.1068 -104.818 0.88 

2 0.1423 +60.864 0.1430 +61.063 0.33 

 

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are 

determined according to the following formulas: 

31
lm

IE48
p




 ;  

32
lm

IE384
p




 . 

In the analytical solution the deflections η in the cross-sections of the beam with the attached masses with 

time are determined according to the following formulas: 
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 . 

In the analytical solution the bending moments M in the cross-sections of the beam with the attached 

masses with time are determined according to the following formulas: 
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 . 
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Simply Supported Weightless Beam with Two Concentrated Masses and 

Transverse Harmonic Exciting Force Applied to One of Them 

 
 

Objective: Determination of the strain state of a simply supported weightless beam with two 

concentrated masses subjected to a transverse harmonic exciting force applied to one of them. 
 

Initial data files:  5.12_Harm_L.SPR 

График_5.12_Harm_L_Forc_Freq_1.txt 

График_5.12_Harm_L_Forc_Freq_2.txt 

График_5.12_Harm_L_Forc_Freq_3.txt 

График_5.12_Harm_L_Forc_Freq_4.txt 

График_5.12_Harm_L_Forc_Freq_5.txt 

График_5.12_Harm_L_Forc_Freq_6.txt 

График_5.12_Harm_L_Forc_Freq_7.txt 

 

Problem formulation: Two identical loads of mass m are attached to the simply supported beam of constant 

cross-section at a quarter span distance from each support. The mass of the beam is neglected in 

comparison with the masses of the loads. The force P0 is applied to one of the masses at the initial time and 

varies harmonically with the frequency ω. Determine the natural oscillation modes and natural 

frequencies p of the simply supported beam, as well as the deflections η in the cross-sections of the beam 

with the attached masses with time. 
 

References: S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. 

Feodos’yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic 

Analysis. Stability. Creep. Moscow, Mashgiz, 1952, p. 153. 
 

Initial data: 

E = 3.0·106 tf/m2  - elastic modulus; 

ν = 0.2 - Poisson’s ratio; 

b = 0.4 m - width of the rectangular cross-section of the beam; 

h = 0.8 m - height of the rectangular cross-section of the beam; 

l = 8.0 m   - beam span length; 

m = 3.0 tf·s2/m - value of the concentrated masses attached to the beam; 

P0 = 76.8 tf - amplitude value of the harmonic exciting force applied to one of the 

masses; 

g = 10.00 m/s2   - gravitational acceleration; 

I = b·h3/12 = 0.017067  - cross-sectional moment of inertia of the beam 

 

The following values of frequencies of the harmonic exciting force ωi depending on the values of natural 

frequencies of the beam pi are considered: 

 

ωj = 0.5·p1; 0.95·p1; 1.05·p1; 0.5·(p1+ p2); 0.95·p2; 1.05·p2; 1.5·p2. 

 

Finite element model: Design model – plane frame, 32 bar elements of type 2. Boundary conditions of the 

simply supported ends of the beam are provided by imposing constraints in the direction of the degree of 

freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node 

of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom X. The 

concentrated masses are specified by transforming the static nodal loads m·g. 

The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are 

determined by the modal analysis, and then the deflections η in the cross-sections of the beam with the 
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attached masses with time are determined by the direct integration of the equations of motion method. The 

action of the transverse harmonic exciting force is described by the graph of the load variation with time 

and is given in the form of a nodal force acting along the Z axis of the global coordinate system with the 

scale factor of 1.0 and the delay time 0.0 s. Intervals between the time points of the load variation graph are 

equal to Δtint = Tj/100, where Tj – period of the harmonic exciting force, and correspond to the integration 

step. When plotting the graph, the action of the transverse harmonic exciting force is taken as Pn = 

P0·cos(ωj·n·Δtint) at the time points n·Δtint. The duration of the process is equal to t = 2·Tj. Critical damping 

ratios for the 1-st and 2-nd natural frequencies are taken with the minimum value ξ = 0.0001. The 

conversion factor for the added static loading is equal to k = 0.981 (mass generation). Number of nodes in 

the design model – 33. The modal integration method is used in the calculation. The determination of the 

natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The 

matrix of concentrated masses is used in the calculation.   

 

Results in SCAD 

 

 

 
 

Design model 

 

 

 

 
1-st and 2-nd natural oscillation modes 
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Graph of the variation of the deflection η1 in the cross-section of the beam with the attached mass subjected to 

 the shear force with time (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force with time (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 
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 Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 
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 Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force with time (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 
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Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 

 

 

 

 

 

 
Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 
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 Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 

 

 

 

 

 
Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 
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 Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 

 

 

 

 

 
Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 
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 Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 

 

 

 

 

 
 

Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 
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 Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 

 

 

 

 

 
Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force with time (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 
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 Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 

 

 

 

 
Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 
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Comparison of solutions: 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω1 = 0.5·p1 

 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω2 = 0.95·p1 
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Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω3 = 1.05·p1 

 

 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 
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Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω5 = 0.95·p2 

 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω6 = 1.05·p2 
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Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω7 = 1.5·p2 

 

 

 

Natural frequencies p, rad/s 

Oscillation mode Theory SCAD Deviations, % 

1 40.000 40.000 0.00 

2 113.137 113.137 0.00 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω1 = 0.5·p1 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0715 0.012129 0.0754 0.011629 4.12 

1 0.0161 -0.023034 0.1634 -0.022804 1.00 

1 0.2497 0.013302 0.2514 0.013543 1.81 

1 0.3230 0.001094 0.3268 0.001423 ─ 

1 0.3714 0.012253 0.3770 0.012156 0.79 

1 0.4700 -0.021344 0.4650 -0.021635 1.36 

1 0.5714 0.012072 0.5718 0.011818 2.10 

2 0.0621 0.012314 0.0628 0.012115 1.62 

2 0.1515 -0.020119 0.1508 -0.020250 0.65 

2 0.2412 0.010905 0.2451 0.011364 4.21 

2 0.3099 -0.001817 0.3142 -0.001890 ─ 

2 0.3845 0.012586 0.3896 0.011918 5.31 

2 0.4716 -0.021331 0.4776 -0.021019 1.46 

2 0.5586 0.012664 0.5656 0.012968 2.40 
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Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω2 = 0.95·p1 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0398 0.006829 0.0397 0.006657 2.52 

1 0.1210 -0.020424 0.1223 -0.020227 0.96 

1 0.2018 0.033848 0.2017 0.033642 0.61 

1 0.2826 -0.046989 0.2843 -0.046665 0.69 

2 0.0547 0.009260 0.0562 0.009000 2.81 

2 0.1303 -0.020792 0.1289 -0.020352 2.12 

2 0.2078 0.032790 0.2083 0.032331 1.40 

2 0.2863 -0.044911 0.2876 -0.044388 1.16 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω3 = 1.05·p1 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0374 0.006369 0.0389 0.006194 2.75 

1 0.1161 -0.018850 0.1167 -0.018642 1.10 

1 0.1938 0.030767 0.1945 0.030458 1.00 

1 0.2710 -0.041915 0.2723 -0.041432 1.15 

2 0.0534 0.008636 0.0539 0.008393 2.81 

2 0.1249 -0.018428 0.1257 -0.018044 1.76 

2 0.1959 0.029186 0.1945 0.028882 1.04 

2 0.2695 -0.041172 0.2693 -0.041014 0.38 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0267 0.003807 0.0263 0.003681 3.31 

1 0.0631 -0.003795 0.0624 -0.003906 2.92 

1 0.0859 -0.002215 0.0870 -0.002164 2.30 

1 0.1016 -0.002783 0.1018 -0.002626 5.64 

1 0.1387 0.004497 0.1396 0.004577 1.78 

2 0.0440 0.004643 0.0443 0.004462 3.90 

2 0.0823 -0.009649 0.0821 -0.009620 0.30 

2 0.1207 0.005968 0.1251 0.006142 2.92 

2 0.1579 -0.000288 0.1576 -0.000339 ─ 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω5 = 0.95·p2 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0216 0.002575 0.0222 0.002477 3.81 

1 0.0492 -0.003347 0.0491 -0.003410 1.88 

1 0.0747 0.002938 0.0749 0.002889 1.67 
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Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.1018 -0.006366 0.1018 -0.006251 1.81 

2 0.0383 0.002731 0.0386 0.002605 4.61 

2 0.0700 -0.005629 0.0702 -0.005627 0.04 

2 0.0991 0.005222 0.0995 0.005254 0.61 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω6 = 1.05·p2 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0203 0.002260 0.0201 0.002174 3.81 

1 0.0460 -0.003028 0.0466 -0.003076 1.59 

1 0.0705 0.003206 0.0709 0.003142 2.00 

1 0.0967 -0.006393 0.0963 -0.006294 1.55 

2 0.0366 0.002273 0.0370 0.002159 5.02 

2 0.0667 -0.004473 0.0667 -0.004479 0.13 

2 0.0942 0.004097 0.0942 0.004112 0.37 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω7 = 1.5·p2 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0157 0.001346 0.0155 0.001289 4.23 

1 0.0356 -0.001671 0.0355 -0.001709 2.27 

1 0.0552 0.001788 0.0555 0.001733 3.08 

2 0.0308 0.001072 0.0303 0.001006 6.16 

2 0.0563 -0.001420 0.0562 -0.001459 2.75 

 

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are 

determined according to the following formulas: 
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In the analytical solution the deflections η in the cross-sections of the beam with the attached masses with 

time of the simply supported beam are determined according to the following formulas: 
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Simply Supported Weightless Beam with Two Concentrated Masses and 

Transverse Harmonic Exciting Force Applied to One of Them Taking into 

Account the Energy Dissipation due to Internal Friction 

 
Objective: Determination of the strain state of a simply supported weightless beam with two concentrated 

masses subjected to a transverse harmonic exciting force applied to one of them taking into account the 

energy dissipation due to internal friction. 
  

Initial data files:  5.12_Harm_L_Damp.SPR 
График_5.12_Harm_L_Forc_Freq_1.txt 

График_5.12_Harm_L_Forc_Freq_2.txt 

График_5.12_Harm_L_Forc_Freq_3.txt 

График_5.12_Harm_L_Forc_Freq_4.txt 

График_5.12_Harm_L_Forc_Freq_5.txt 

График_5.12_Harm_L_Forc_Freq_6.txt 

График_5.12_Harm_L_Forc_Freq_7.txt 

Problem formulation: Two identical loads of mass m are attached to the simply supported beam of constant 

cross-section at a quarter span distance from each support. The mass of the beam is neglected in 

comparison with the masses of the loads. The force P0 is applied to one of the masses at the initial time and 

varies harmonically with the frequency ω. Determine the natural oscillation modes and natural frequencies 

p of the simply supported beam, as well as the deflections η in the cross-sections of the beam with the 

attached masses with time taking into account the energy dissipation due to internal friction. 
 

References: S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. 

Feodos’yev, Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic 

Analysis. Stability. Creep. Moscow, Mashgiz, 1952, p. 153. 
 

Initial data: 

E = 3.0·106 tf/m2  - elastic modulus; 

ν = 0.2 - Poisson’s ratio; 

b = 0.4 m - width of the rectangular cross-section of the beam; 

h = 0.8 m - height of the rectangular cross-section of the beam; 

l = 8.0 m   - beam span length; 

m = 3.0 tf·s2/m - value of the concentrated masses attached to the beam; 

P0 = 76.8 tf - amplitude value of the harmonic exciting force applied to one of the 

masses; 

g = 10.00 m/s2   - gravitational acceleration; 

I = b·h
3
/12 = 0.017067  - cross-sectional moment of inertia of the beam. 

 

The following values of frequencies of the harmonic exciting force ωi depending on the values of natural 

frequencies of the beam pi are considered: 

 

ωj = 0.5·p1; 0.95·p1; 1.05·p1; 0.5·(p1+ p2); 0.95·p2; 1.05·p2; 1.5·p2. 

 

Critical damping ratios for the 1-st and 2-nd natural frequencies are taken with the maximum value: 

 

ξ1,2 = 0.9999. 

 

Finite element model: Design model – plane frame, 32 bar elements of type 2. Boundary conditions of the 

simply supported ends of the beam are provided by imposing constraints in the direction of the degree of 

freedom Z. The dimensional stability of the design model is provided by imposing a constraint in the node 
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of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom X. The 

concentrated masses are specified by transforming the static nodal loads m·g. 

The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are 

determined by the modal analysis, and then the deflections η in the cross-sections of the beam with the 

attached masses with time are determined by the direct integration of the equations of motion method. The 

action of the transverse harmonic exciting force is described by the graph of the load variation with time 

and is given in the form of a nodal force acting along the Z axis of the global coordinate system with the 

scale factor of 1.0 and the delay time 0.0 s. Intervals between the time points of the load variation graph 

are equal to Δtint = Tj/100, where Tj – period of the harmonic exciting force, and correspond to the 

integration step. When plotting the graph, the action of the transverse harmonic exciting force is taken as 

Pn = P0·cos(ωj·n·Δtint) at the time points n·Δtint. The duration of the process is equal to t = 2·Tj. The 

conversion factor for the added static loading is equal to k = 0.981 (mass generation). Number of nodes in 

the design model – 33. The modal integration method is used in the calculation. The determination of the 

natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The 

matrix of concentrated masses is used in the calculation. 

 

Results in SCAD 

 

 
Design model 

 
  

 1-st and 2-nd natural oscillation modes 
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Graph of the variation of the deflection η1 in the cross-section of the beam with the attached mass subjected to the 

shear force, with time (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 
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Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 

 

 

 

 

 

 
 

Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω1 = 0.5·p1 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 
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Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 

 

 

 

 

 

 
Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω2 = 0.95·p1 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 
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 Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 

 

 

 

 

 

 
 

Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω3 = 1.05·p1 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 
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Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 

 

 

 

 

 

 

 
 

Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 
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Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 

 

 

 

 

 

 

 
 

Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω5 = 0.95·p2 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 
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Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 

 

 

 

 

 

 
 

Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω6 = 1.05·p2 
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Amplitude value of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed model at the respective time point (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 

 

 
Graph of the variation of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force, with time (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 
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Amplitude values of the deflection η1 in the cross-section of the beam 

with the attached mass subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 

 

 

 

 

 

 

 
Amplitude values of the deflection η2 in the cross-section of the beam 

with the attached mass not subjected to the shear force 

and the deformed models at the respective time points (m). 

Frequency of the harmonic exciting force ω7 = 1.5·p2 
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Comparison of solutions: 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω1 = 0.5·p1 

 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω2 = 0.95·p1 
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Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω3 = 1.05·p1 

 

 

 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 
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Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω5 = 0.95·p2 

 

 

 
Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω6 = 1.05·p2 
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Graphs of the variation of the deflections η1 and η2 in the cross-sections of the beam 

with the attached masses with time according to the theoretical solution (m) 

Frequency of the harmonic exciting force ω7 = 1.5·p2 

 

 

 

Natural frequencies p, rad/s 
 

Oscillation mode Theory SCAD Deviations, % 

1 40.000 40.000 0.00 

2 113.137 113.137 0.00 

 

 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω1 = 0.5·p1 

 

Nodal mass 

Theory SCAD 

Time, s 
Deflection, 

m 
Time, s Deflection, m Deviations, % 

1 0.0595 0.005054 0.0628 0.004927 2.51 

1 0.1996 -0.007251 0.2011 -0.007248 0.04 

1 0.3569 0.007232 0.3582 0.007229 0.04 

1 0.5139 -0.007232 0.5153 -0.007229 0.04 

2 0.0685 0.003899 0.0691 0.003809 2.31 

2 0.2079 -0.005627 0.2074 -0.005627 0.00 

2 0.3652 0.005613 0.3645 0.005612 0.02 

2 0.5223 -0.005613 0.5216 -0.005612 0.02 
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Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω2 = 0.95·p1 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0401 0.003330 0.0397 0.003235 2.85 

1 0.1181 -0.005009 0.1190 -0.005014 0.10 

1 0.2016 0.004822 0.2017 0.004819 0.06 

1 0.2842 -0.004834 0.2843 -0.004831 0.06 

2 0.0490 0.002478 0.0496 0.002404 2.99 

2 0.1268 -0.003825 0.1256 -0.003828 0.08 

2 0.2103 0.003684 0.2116 0.003677 0.19 

2 0.2929 -0.003692 0.2942 -0.003685 0.19 

 

 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω3 = 1.05·p1 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0375 0.003077 0.0389 0.002985 2.99 

1 0.1088 -0.004609 0.1077 -0.004618 0.19 

1 0.1845 0.004383 0.1855 0.004377 0.14 

1 0.2592 -0.004402 0.2603 -0.004396 0.14 

2 0.0464 0.002267 0.0479 0.002193 3.26 

2 0.1175 -0.003497 0.1167 -0.003504 0.20 

2 0.1932 0.003325 0.1945 0.003318 0.21 

2 0.2679 -0.003339 0.2693 -0.003332 0.21 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω4 = 0.5·(p1+ p2) 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0246 0.001770 0.0246 0.001714 3.16 

1 0.0656 -0.002427 0.0657 -0.002453 1.07 

1 0.1072 0.002082 0.1067 0.002072 0.48 

1 0.1480 -0.002194 0.1478 -0.002196 0.09 

2 0.0324 0.001179 0.0328 0.001136 3.65 

2 0.0742 -0.001664 0.0739 -0.001685 1.26 

2 0.1160 0.001388 0.1166 0.001382 0.43 

2 0.1568 -0.001474 0.1576 -0.001473 0.07 
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Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω5 = 0.95·p2 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0191 0.001221 0.0187 0.001178 3.52 

1 0.0488 -0.001538 0.0491 -0.001564 1.69 

1 0.0783 0.001259 0.0784 0.001247 0.95 

1 0.1073 -0.001408 0.1076 -0.001414 0.43 

2 0.0260 0.000741 0.0257 0.000712 3.91 

2 0.0569 -0.000918 0.0573 -0.000939 2.29 

2 0.0866 0.000689 0.0866 0.000679 1.45 

2 0.1154 -0.000809 0.1158 -0.000813 0.49 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω6 = 1.05·p2 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0177 0.001085 0.0180 0.001046 3.59 

1 0.0447 -0.001329 0.0444 -0.001354 1.88 

1 0.0714 0.001080 0.0709 0.001064 1.48 

1 0.0976 -0.001229 0.0973 -0.001235 0.49 

2 0.0244 0.000638 0.0243 0.000612 4.08 

2 0.0526 -0.000748 0.0529 -0.000769 2.81 

2 0.0793 0.000545 0.0794 0.000534 2.02 

2 0.1054 -0.000667 0.1058 -0.000671 0.60 

 

Amplitude values of the deflections η in the cross-sections of the beam 

 with the attached masses 

at the frequency of the harmonic exciting force ω7 = 1.5·p2 

Nodal mass 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

1 0.0134 0.000692 0.0133 0.000666 3.76 

1 0.0326 -0.000756 0.0326 -0.000778 2.91 

1 0.0511 0.000616 0.0511 0.000599 2.76 

1 0.0695 -0.000734 0.0696 -0.000743 1.23 

2 0.0191 0.000355 0.0192 0.000339 4.51 

2 0.0394 -0.000320 0.0392 -0.000337 5.31 

2 0.0577 0.000219 0.0577 0.000205 6.39 

2 0.0760 -0.000318 0.0740 -0.000311 2.20 

 

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are 

determined according to the following formulas: 

 

31
lm

IE48
p




 ;  

32
lm

IE384
p




 . 

 

In the analytical solution the deflections η in the cross-sections of the beam with the attached masses with 

time taking into account the energy dissipation into internal friction are determined according to the 

following formulas (the Voigt viscous friction hypothesis): 
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Simply Supported Beam with a Distributed Mass Subjected to a Transverse 

Harmonic Exciting Force Applied in the Middle of the Span 

 
 

Objective: Determination of the strain state of a simply supported beam with a distributed mass 

subjected to a transverse harmonic exciting force applied in the middle of the span. 
 

Initial data file:5.13.SPR 
 

Problem formulation: The force P0 is applied in the middle of the span of the simply supported beam of 

constant cross-section with the uniformly distributed mass μ at the initial time and varies harmonically 

with the frequency ω. Determine the natural oscillation modes and natural frequencies p of the simply 

supported beam, as well as the deflection η in the cross-section in the middle of the beam span with time. 
 

References: Timoshenko S.P., Course of the Theory of Elasticity, Kiev, Naukova Dumka, 1972, p. 343. 
 

Initial data: 

E = 3.0·106 tf/m2  - elastic modulus; 

ν = 0.2 - Poisson’s ratio; 

b = 0.4 m - width of the rectangular cross-section of the beam; 

h = 0.8 m - height of the rectangular cross-section of the beam; 

l = 8.0 m   - beam span length; 

γ = 2.5 tf/m3   - specific weight of the beam material; 

P0 = 76.8 tf - amplitude value of the harmonic exciting force applied in the middle of 

the span; 

g = 10.00 m/s2   - gravitational acceleration; 

 

μ = 2.5·0.4·0.8/10.0 = 0.08 tf·s2/m2 - value of the uniformly distributed mass of the beam; 

I = 0.4·(0.8)3/12 = 0.017067 m4  - cross-sectional moment of inertia of the beam.  

 

The frequency of the harmonic exciting force ω is taken depending on the value of the fundamental natural 

frequency of the beam p1: 

 

ω = 0.5·p1. 

 

Finite element model: Design model – grade beam / plate, 32 bar elements of type 3. Boundary conditions 

of the simply supported ends of the beam are provided by imposing constraints in the direction of the 

degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in 

the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom 

UX. The distributed mass is specified by transforming the static load from the self-weight of the beam μ·g. 

The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are 

determined by the modal analysis, and then the deflections η in the cross-section in the middle of the beam 

span with time are determined by the direct integration of the equations of motion method. The action of the 

transverse harmonic exciting force is described by the graph of the load variation with time and is given in 

the form of a nodal force acting along the Z axis of the global coordinate system with the scale factor of 1.0 

and the delay time 0.0 s. Intervals between the time points of the load variation graph are equal to Δtint = 

T/100, where T – period of the harmonic exciting force, and correspond to the integration step. When 

plotting the graph, the action of the transverse harmonic exciting force is taken as Pn = P0·cos(ω·n·Δtint) at 

the time points n·Δtint. The duration of the process is equal to t = 2·T. Critical damping ratios for the 1-st 
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and 2-nd natural frequencies are taken with the minimum value ξ = 0.0001. The conversion factor for the 

added static loading is equal to k = 0.981 (mass generation). Number of nodes in the design model – 33. 

The modal integration method is used in the calculation. The determination of the natural oscillation modes 

and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated 

masses is used in the calculation. 

 

Results in SCAD 

 
 

 
 

Design model 
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1-st -- 16-th natural oscillation modes 
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Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time (m). 
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Amplitude values of the deflection η in the cross-section in the middle of the beam span and the deformed models at 

the respective time points (m). 
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Comparison of solutions: 

 
Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time 

  according to the theoretical solution (m) 

 

 

 

Natural frequencies p, rad/s 

Oscillation mode Theory SCAD Deviations, % 

1 123.370 123.370 0.00 

2 493.480 493.480 0.00 

3 1110.330 1110.325 0.00 

4 1973.921 1973.887 0.00 

5 3084.251 3084.120 0.00 

6 4441.322 4440.919 0.01 

7 6045.133 6044.087 0.02 

8 7895.684 7893.275 0.03 

9 9992.974 9987.907 0.05 

10 12337.005 12327.069 0.08 

11 14927.777 14909.367 0.12 

12 17765.288 17732.721 0.18 

13 20849.539 20794.097 0.27 

14 24180.531 24089.155 0.38 

15 27758.262 27611.778 0.53 

16 31582.734 31353.470 0.73 
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Amplitude values of the deflection η in the cross-section in the middle of the beam span  

at the frequency of the harmonic exciting force ω = 0.5·p1 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

0.0210 0.002474 0.0224 0.002421 2.14 

0.0510 -0.004428 0.0510 -0.004410 0.41 

0.0809 0.002474 0.0815 0.002504 1.21 

0.1017 0.000002 0.1019 0.000040 ─ 

0.1228 0.002474 0.1223 0.002383 3.68 

0.1528 -0.004428 0.1529 -0.004374 1.22 

0.1828 0.002474 0.1834 0.002547 2.95 

 

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are 

determined according to the following formulas: 

 
2 2
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n E I
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 , 

 

 where n = 1, 2, 3, 4, … – natural mode number. 

 

In the analytical solution the deflections η in the cross-sections in the middle of the beam span with time are 

determined according to the following formula: 
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Simply Supported Beam with a Distributed Mass Subjected to a Constant Shear 

Force Moving along the Span of the Beam at a Constant Speed  

 
 

Objective: Determination of the strain state of a simply supported beam with a distributed mass 

subjected to a constant shear force moving along the span of the beam at a constant speed. 
 

Initial data files:  
File name Description 

DIN_B_ML1.SPR 

График_DIN_B_ML1.txt 

The action of the constant shear force moving along the 

beam span is specified in the form of forces applied in all 

nodes of the design model according to the following 

variant: 

The delay time for each nodal force is different. The 

graph describing the load variation with time is the same 

for all nodal forces. 

DIN_B_ML2.SPR 

График_DIN_B_ML2_2.txt 

График_DIN_B_ML2_3.txt 

График_DIN_B_ML2_4.txt 

График_DIN_B_ML2_5.txt 

График_DIN_B_ML2_6.txt 

График_DIN_B_ML2_7.txt 

График_DIN_B_ML2_8.txt 

График_DIN_B_ML2_9.txt 

График_DIN_B_ML2_10.txt 

График_DIN_B_ML2_11.txt 

График_DIN_B_ML2_12.txt 

График_DIN_B_ML2_13.txt 

График_DIN_B_ML2_14.txt 

График_DIN_B_ML2_15.txt 

График_DIN_B_ML2_16.txt 

График_DIN_B_ML2_17.txt 

График_DIN_B_ML2_18.txt 

График_DIN_B_ML2_19.txt 

График_DIN_B_ML2_20.txt 

График_DIN_B_ML2_21.txt 

График_DIN_B_ML2_22.txt 

График_DIN_B_ML2_23.txt 

График_DIN_B_ML2_24.txt 

График_DIN_B_ML2_25.txt 

График_DIN_B_ML2_26.txt 

График_DIN_B_ML2_27.txt 

График_DIN_B_ML2_28.txt 

График_DIN_B_ML2_29.txt 

График_DIN_B_ML2_30.txt 

График_DIN_B_ML2_31.txt 

График_DIN_B_ML2_32.txt 

The action of the constant shear force moving along the 

beam span is specified in the form of forces applied in all 

nodes of the design model according to the following 

variant: 

The delay time is the same for all nodal forces. Each 

nodal force has its corresponding graph describing the 

load variation with time. 

 

Problem formulation: The constant shear force P moves at a constant speed v along the span of the simply 

supported beam with a uniformly distributed mass μ. Determine the natural oscillation modes and natural 

frequencies p of the simply supported beam, as well as the deflection η in the cross-section in the middle of 

the beam span with time. 
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References: Timoshenko S.P., Course of the Theory of Elasticity, Kiev, Naukova Dumka, 1972, p. 345. 
 

Initial data: 

E = 3.0·106 tf/m2  - elastic modulus; 

ν = 0.2 - Poisson’s ratio; 

b = 0.4 m - width of the rectangular cross-section of the beam; 

h = 0.8 m - height of the rectangular cross-section of the beam; 

l = 8.0 m   - beam span length; 

γ = 2.5 tf/m3   - specific weight of the beam material; 

P = 76.8 tf - value of the constant force moving along the beam span; 

g = 10.00 m/s2   - gravitational acceleration; 

 

μ = 2.5·0.4·0.8/10.0 = 0.08 tf·s2/m2 - value of the uniformly distributed mass of the beam; 

I = 0.4·(0.8)3/12 = 0.017067 m4  - cross-sectional moment of inertia of the beam.  

 

The speed of the constant force v is taken depending on the values of the beam span and the fundamental 

natural period of the beam T1: 

 

v = l / T1. 

 

Finite element model: Design model – grade beam / plate, 32 bar elements of type 3. Boundary conditions 

of the simply supported ends of the beam are provided by imposing constraints in the direction of the 

degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in 

the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom 

UX. The distributed mass is specified by transforming the static load from the self-weight of the beam μ·g. 

The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are 

determined by the modal analysis, and then the deflections η in the cross-section in the middle of the beam 

span are determined by the direct integration of the equations of motion method.  

The action of the constant shear force moving along the beam span is specified in the form of forces applied 

in all nodes of the design model along the Z axis of the global coordinate system with the scale factor of 1.0 

according to the following variants: 

 The delay time for each nodal force is different and is determined as t0 = 2·(m-1)·Δtint, where m is 

the number of finite elements counted from the support node of the beam to the node considered 

along the load path. The graph describing the load variation with time is the same for all nodal 

forces. When plotting the graph the nodal force is taken with consecutive values: 0; 0.5·P; P; 0.5·P; 

0 at time points: 0; Δtint; 2·Δtint; 3·Δtint; 4·Δtint; 5·Δtint, measured from the delay time t0, at 

subsequent time points the nodal force is equal to 0. 

 The delay time is the same for all nodal forces and is equal to t0 = 0. Each nodal force has its 

corresponding graph describing the load variation with time. When plotting the graph the nodal 

force at the time points from 0 to 2·(m-1)·Δtint is equal to 0, at the time points from 2·(m-1)·Δtint to 

2·(m+1)·Δtint inclusive is taken with consecutive values: 0; 0.5·P; P; 0.5·P; 0, at subsequent time 

points the nodal force is equal to 0, where m is the number of finite elements counted from the 

support node of the beam to the node considered along the load path. 

In both cases the intervals between the time points of the load variation graphs are equal to the time it takes 

to cover half the distance between the adjacent nodes of the design model at the speed v: Δtint = L / (2·n·v) 

= T1 / (2·n) and correspond to the integration step, where n is the number of finite elements in the design 

model. The duration of the process is equal to the time it takes the load moving at the speed v to cover the 

beam span l: t = l/v =T1. Critical damping ratios for the 1-st and 2-nd natural frequencies are taken with the 

minimum value ξ = 0.0001. The conversion factor for the added static loading is equal to k = 0.981 (mass 

generation). Number of nodes in the design model – 33. The modal integration method is used in the 

calculation. The determination of the natural oscillation modes and natural frequencies is performed by the 

method of subspace iteration. The matrix of concentrated masses is used in the calculation. 
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Results in SCAD 

 

 
 

 
 

Design model 
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1-st -- 16-th natural oscillation modes 
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Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time (m) 

 

 

 
 

 
 

 Amplitude value of the deflection η in the cross-section in the middle of the beam span and the deformed 

models at the respective time point (m) 

 

Comparison of solutions: 

Natural frequencies p, rad/s 

Oscillation mode Theory SCAD Deviations, % 

1 123.370 123.370 0.00 

2 493.480 493.480 0.00 

3 1110.330 1110.325 0.00 

4 1973.921 1973.887 0.00 

5 3084.251 3084.120 0.00 

6 4441.322 4440.919 0.01 

7 6045.133 6044.087 0.02 

8 7895.684 7893.275 0.03 

9 9992.974 9987.907 0.05 

10 12337.005 12327.069 0.08 

11 14927.777 14909.367 0.12 

12 17765.288 17732.721 0.18 

13 20849.539 20794.097 0.27 
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Oscillation mode Theory SCAD Deviations, % 

14 24180.531 24089.155 0.38 

15 27758.262 27611.778 0.53 

16 31582.734 31353.470 0.73 

 
The dashed line shows the value of the static deflection 

Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time 

according to the theoretical solution (m) 

 

Amplitude value of the deflection η in the cross-section in the middle of the beam span, m 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviation, % 

0.0339 0.002842 0.0334 0.002837 0.18 

 

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are 

determined according to the following formula: 
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 where n = 1, 2, 3, 4, … – natural mode number. 

 

In the analytical solution the deflections η in the cross-section in the middle of the beam span with time are 

determined according to the following formula: 
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Simply Supported Beam with a Distributed Mass Subjected to a Uniformly 

Distributed Instantaneous Pulse (Impact of a Beam with Immovable Supports) 

 
 

 
 

Objective: Determination of the stress-strain of a simply supported beam with a distributed mass subjected 

to a uniformly distributed instantaneous pulse. 
 

Initial data file: DIN_B_IL.SPR, График_DIN_B_IL.txt 
 

Problem formulation: The simply supported beam of constant cross-section with the uniformly distributed 

mass μ is subjected to the instantaneous transverse pulse S uniformly distributed over the entire span L 

(impacts the immovable supports at a speed v0 = S / μ). Determine the natural oscillation modes and natural 

frequencies p of the simply supported beam, as well as the deflection η and the bending moment M in the 

cross-section in the middle of the beam span with time.  
 

References: Rabinovich I.M., Sinitsyn A.P., Luzhin O.V., Terenin V.M., Analysis of Structures Subject to 

Pulse Actions, Moscow, Stroyizdat, 1970, p. 83. 

S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. Feodos’yev, 

Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic Analysis. 

Stability. Creep. Moscow, Mashgiz, 1952, p. 364. 

 

Initial data: 

E = 3.0·106 tf/m2 - elastic modulus; 

ν = 0.2   - Poisson’s ratio; 

b = 0.4 m  - width of the rectangular cross-section of the beam; 

h = 0.8 m  - height of the rectangular cross-section of the beam; 

L = 8.0 m  - beam span length; 

γ = 2.5 tf/m3  - specific weight of the beam material; 

S = 0.8· tf∙s/m  - value of the uniformly distributed instantaneous pulse; 

g = 10.00 m/s2  - gravitational acceleration; 

 

μ = 2.5·0.4·0.8/10.0 = 0.08 tf·s2/m2 - value of the uniformly distributed mass of the beam; 

I = 0.4·(0.8)3/12 = 0.017067 m4  - cross-sectional moment of inertia of the beam.  

 

Finite element model: Design model – grade beam / plate, 32 bar elements of type 3. Boundary conditions 

of the simply supported ends of the beam are provided by imposing constraints in the direction of the 

degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in 

the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom 

UX. The distributed mass is specified by transforming the static load from the self-weight of the beam μ·g. 

The calculation is performed in two stages: first the natural oscillation modes and natural frequencies p are 

determined by the modal analysis, and then the deflections η in the cross-section in the middle of the beam 

span with time are determined by the direct integration of the equations of motion method. The action of the 

uniformly distributed instantaneous transverse pulse is described by the graph of the load variation with 

time and is given in the form of nodal forces acting along the Z axis of the global coordinate system with 

the scale factor equal to the length of the bar finite element l / n = 0.25 m (n is the number of finite elements 

in the design model), and the delay time 0.0 s. Intervals between the time points of the load variation graph 

are equal to Δtint = 0.00001 s  and correspond to the integration step. When plotting the graph the pulse 

action is taken with a linear shape function, force value P = S· Δtint = 80000 tf and duration  Δtint = 0.00001 
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s. The duration of the process is equal to t = 0.05094 s, which corresponds to the value of the fundamental 

period T1. Critical damping ratios for the 1-st and 2-nd natural frequencies are taken with the minimum 

value ξ = 0.0001. The conversion factor for the added static loading is equal to k = 0.981 (mass generation). 

Number of nodes in the design model – 33. The modal integration method is used in the calculation. The 

determination of the natural oscillation modes and natural frequencies is performed by the method of 

subspace iteration. The matrix of concentrated masses is used in the calculation. 

 

Results in SCAD 

 

 
 

 
 

 

Design model 
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1-st ─ 16-th natural oscillation modes 
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Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time (m) 

 

 

 

 

 
 

 
 

 
 

 
Amplitude values of the deflection η in the cross-section in the middle of the beam span and the deformed models at 

the respective time points (m) 
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Graph of the variation of the bending moment M 

in the cross-section in the middle of the beam span with time (tm·m) 

 

 

 

 
Amplitude values of the bending moment M 

in the cross-section in the middle of the beam span (tm·m) 

 

 

Comparison of solutions: 

Natural frequencies p, rad/s 

Oscillation mode Theory SCAD Deviations, % 

1 123.370 123.370 0.00 

2 493.480 493.480 0.00 

3 1110.330 1110.325 0.00 

4 1973.921 1973.887 0.00 

5 3084.251 3084.120 0.00 

6 4441.322 4440.919 0.01 

7 6045.133 6044.087 0.02 

8 7895.684 7893.275 0.03 

9 9992.974 9987.907 0.05 

10 12337.005 12327.069 0.08 

11 14927.777 14909.367 0.12 

12 17765.288 17732.721 0.18 

13 20849.539 20794.097 0.27 
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Oscillation mode Theory SCAD Deviations, % 

14 24180.531 24089.155 0.38 

15 27758.262 27611.778 0.53 

16 31582.734 31353.470 0.73 

 

 

 
Graph of the variation of the deflection η in the cross-section in the middle of the beam span with time 

according to the theoretical solution (m) 
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Graph of the variation of the bending moment M 

in the cross-section in the middle of the beam span with time 

according to the theoretical solution (tm·m) 

 

 

Amplitude values of the deflection η 

in the cross-section in the middle of the beam span, m 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviations, % 

0.014617 0.103196 0.014660 0.102998 0.19 

0.036313 -0.103196 0.036330 -0.102825 0.36 

 

Amplitude value of the bending moment M 

in the cross-section in the middle of the beam span, tf·m 

Theory SCAD 

Time, s 
Bending 

moment, tf·m 
Time, s 

Bending 

moment, tf·m 
Deviations, % 

0.015162 -1369.739 0.015240 -1203.795 12.12 

0.035768 1369.739 0.035710 1177.088 14.06 

 

 

Notes: In the analytical solution the natural frequencies of oscillations p of the simply supported beam are 

determined according to the following formula: 
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 , 

 

 where n = 1, 2, 3, 4, … – natural mode number. 
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In the analytical solution the deflection η and the bending moment M in the cross-section in the middle of 

the beam span with time are determined according to the following formula: 
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 Simply Supported Beam with a Distributed Mass Subjected to a Kinematic 

Excitation of Supports (Seismic Action) 

 
 

Objective: Determination of the stress-strain state of a simply supported beam with a distributed mass 

subjected to a kinematic excitation of supports. 

 

Initial data file: DIN_B_SL.SPR, DIN_B_SL.SPC 
 

Problem formulation: The simply supported beam of constant cross-section with the uniformly distributed 

mass μ is subjected to the kinematic excitation of supports according to the specified accelerogram: 
















d
0s

t

t
1z)t(z  . 

Determine the natural oscillation mode and the fundamental natural frequency f of the simply supported 

beam, as well as the maximum amplitude values of the deflection z and the bending moment M in the cross-

section in the middle of the beam span with time t.  
 

References: John M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Companies, New 

York, 1964, p.262. 

 
Initial data: 

E = 3.0·107 psi = 2.1092·107 tf/m2 - elastic modulus; 

I = 333.333 in4 = 138.7448·10-6 m4 - cross-sectional moment of inertia of the beam.  

h = 14 in = 0.3556 m   - height of the cross-section of the beam; 

L = 240 in = 6.0960 m   - beam span length; 

μ = 0.2 lb·sec2/in2 = 0.1406 tf·s2/m2 - value of the uniformly distributed mass of the beam; 

0sz  = ±386.2200 in/sec2 = ±9.81 m/s2 - amplitude values of the acceleration of the supports according to 

       the accelerogram; 

td = 0.10 sec = 0.10 s - half-interval of the kinematic excitation of supports; 

g = 386.2200 in/sec2 =9.81 m/s2  - gravitational acceleration. 

 

Finite element model: Design model – grade beam / plate, 32 bar elements of type 3. Boundary conditions 

of the simply supported ends of the beam are provided by imposing constraints in the direction of the 

degree of freedom Z. The dimensional stability of the design model is provided by imposing a constraint in 

the node of the cross-section along the symmetry axis of the beam in the direction of the degree of freedom 

UX. The distributed mass is specified by transforming the static load from the self-weight of the beam μ·g. 

The kinematic excitation of supports is described by the graph of the acceleration variation with time 

(accelerogram) and is given in the form of the action along the Z axis of the global coordinate system 

(direction cosines to the X, Y, Z axes: 0.00, 0.00, 1.00) with the scale factor to the values of the 

accelerogram equal to 1.00. The height of the beam structure in the model is directed along the Z axis of the 

global coordinate system. The dissipation factor (energy absorption factor) is taken with the minimum value 

of ξ = 0.000001. The intervals between the time points of the graph of the acceleration variation with time 

are equal to Δt = 0.01 s. When plotting the graph the acceleration is taken with the values 

 0( ) 1s dz t z n t t     at the time points n·Δt. The conversion factor for the added static loading is equal 

to k = 1.000 (mass generation). Number of nodes in the design model – 33. The modal integration method is 

used in the calculation. The determination of the natural oscillation modes and natural frequencies is 

performed by the method of subspace iteration. The matrix of concentrated masses is used in the 

calculation. 
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Results in SCAD 

 
 

 
 

Design model and the specified accelerogram 

 

 

 
 

1-st natural oscillation mode 

 

 

 
 

 
 

 Amplitude value of the deflection z in the cross-section in the middle of the beam span and the deformed 

model at the respective time point (m) 

 

 
 

Amplitude value of the bending moment M 

in the cross-section in the middle of the beam span (tm·m) 

 

Comparison of solutions: 
 

Fundamental natural frequency f, Hz 

Oscillation mode Theory SCAD Deviations, % 

1 6.098 6.101 0.05 
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Maximum amplitude value of the deflection z 

in the cross-section in the middle of the beam span, m 

Theory SCAD 

Time, s Deflection, m Deflection, m Deviations, % 

0.0163982 -0.013951 -0.013841 0.80 

 

Maximum amplitude value of the bending moment M 

in the cross-section in the middle of the beam span, tf·m 

 

Theory SCAD 

Time, s Bending moment, tf·m Bending moment, tf·m Deviations, % 

0.0163982 10.843 10.766 0.73 

 
 

Notes: In the analytical solution the fundamental natural frequency f of the simply supported beam is 

determined according to the following formula: 
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In the analytical solution the deflection z and the bending moment M in the cross-section in the middle of 

the beam span with time are determined according to the following formula: 
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Cantilever Weightless Column with a Concentrated Mass at the Free End 

Subjected to a Horizontal Kinematic Displacement of a Support (Seismogram 

Based Analysis) 

 
 

Objective: Determination of the strain state of a cantilever weightless column with a concentrated mass at 

the free end subjected to a horizontal kinematic displacement of a support. 

 

Initial data file: 5.14.SPR 

Seismogram file: 5.14_chart.txt 

 

Problem formulation: The mass m is attached to the free end of the cantilever weightless column with a 

square cross-section. A horizontal kinematic action varying according to the harmonic law Xs = Δ·sin(θ·t) 

is applied to the support of the column at the initial time. Determine the natural oscillation mode and 

frequency ω of the cantilever column, as well as the deflection Xm of the free end of the column with the 

attached mass with time. 
 

References: Kiselev V.A., Structural Mechanics. Special Course. Dynamics and Stability of Structures. 

Moscow, Stroyizdat, 1980, p. 65. 
 

Initial data: 

E = 2.0·108 kN/m2  - elastic modulus of the column material; 

ν = 0.3 - Poisson’s ratio; 

b = 0.04 m - width of the rectangular cross-section of the column; 

h = 0.04 m - height of the rectangular cross-section of the column; 

L = 1.0 m   - length of the column; 

m = 0.08 kN·s2/m - value of the concentrated mass attached to the free end of the column; 

Δ = 0.1 m - amplitude value of the horizontal kinematic harmonic excitation applied 

to the support of the column; 

g = 10.00 m/s2   - gravitational acceleration; 

I = b·h3/12 = 2.133333·10-7 m4 - cross-sectional moment of inertia of the column. 

 

The following value of the frequency of the kinematic harmonic excitation θ depending on the value of the 

natural frequency of the column ω is considered: θ = 0.5·ω. 

 

Finite element model: Design model – general type system, 10 bar elements of type 5. Boundary 

conditions are provided by imposing constraints in the node of the clamped end of the column in the 

directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The concentrated mass is specified by 

transforming the static nodal load on the free end of the column m·g. 
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The calculation is performed in two stages: first the natural oscillation mode and natural frequency ω are 

determined by the modal analysis, and then the deflection Xm of the free end of the column with the 

attached mass with time is determined by the direct integration of the equations of motion method. The 

action of the kinematic harmonic excitation is described by the graph of the variation of the horizontal 

displacement of the support with time and is given in the form of the specified displacement of the 

constraint along the X axis of the global coordinate system with the scale factor of 1.0 and the delay time 

0.0 s. Intervals between the time points of the displacement variation graph are equal to Δtint = Tθ/100, 

where Tθ – period of the kinematic harmonic excitation, and correspond to the integration step. When 

plotting the graph, the action of the specified displacement of the constraint is taken as Xs = Δ·sin(θ· n·Δtint) 

at the time points n·Δtint. The duration of the process is equal to t = 2·Tθ. Critical damping ratios for the 1-st 

and 2-nd natural frequencies are taken with the minimum value ξ = 0.0001. The conversion factor for the 

added static loading is equal to k = 0.981 (mass generation). Number of nodes in the design model – 11. 

The modal integration method is used in the calculation. The determination of the natural oscillation modes 

and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated 

masses is used in the calculation. 

 

Results in SCAD 

 

   
 

Design model and the 1-st oscillation mode 
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Graph of the variation of the horizontal displacement of the constraint Xs with time (mm). 

 

 

 

   

Graph of the variation of the deflection Xm of the free end of the column with the attached mass with time (mm) 
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  V e r i f i c a t i o n  E x a m p l e s  

378 D y n a m i c s  

     
 

 Amplitude values of the deflection Xm of the free end of the column with the attached mass and the 

deformed models at the respective time points (mm). 

Comparison of solutions: 

 

 

 
Graphs of the variation of the horizontal displacement of the constraint Xs  and the deflection Xm 

of the free end of the column with the attached mass with time (m) 

Frequency of the kinematic harmonic excitation θ = 0.5·ω 

 

Natural frequency ω, rad/s 
 

Oscillation mode Theory SCAD Deviations, % 

1 40.000 40.000 0.00 
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Amplitude values of the deflection Xm of the free end of the column with the attached mass  

at the frequency of the kinematic harmonic excitation θ = 0.5·ω, mm 

 

Theory SCAD 

Time, s Deflection, m Time, s Deflection, m Deviation, % 

0.000000 0.00 0.000000 0.00 — 

0.106814 172.90 0.106814 172.77 0.08 

0.157080 0.00 0.157080 0.59 — 

0.207345 -172.90 0.207345 -173.21 0.18 

0.314159 0.00 0.314159 1.10 — 

0.420973 172.90 0.420973 172.22 0.39 

0.471239 0.00 0.471239 1.68 — 

0.521504 -172.90 0.521504 -173.58 0.39 

0.628318 0.00 0.628318 2.20 — 

 

 

Notes: In the analytical solution the natural frequency ω of the cantilever column with the concentrated 

mass on the free end is determined according to the following formula: 
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In the analytical solution the deflection Xm of the free end of the column with the attached mass with time is 

determined according to the following formula: 
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Natural Oscillations of a Simply Supported Circular Plate  

 
 

Objective: Modal analysis of a simply supported circular plate.  
 

Initial data file: 5.7.SPR 

 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported 

circular plate with the density of the material ρ. 
 

References: Chelomei V.N., Vibrations in Technology, Handbook in six volumes: Bolotin V.V., Volume 1,  

Vibrations of Linear Systems, Moscow, Mechanical engineering, 1978, p. 207. 

 

Initial data: 

E = 2.06·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.85 t/m3  - density of the material;  

h = 0.01 m  - thickness of the plate; 

R = 0.5 m  - outer radius of the plate. 

 

Finite element model: Design model – grade beam / plate, 1080 four-node plate elements of type 20 and 72 

three-node plate elements of type 15. The spacing of the finite element mesh in the radial direction is 

0.03125 m and in the tangential direction is 5.0º. Boundary conditions are provided by imposing constraints 

in the direction of the degree of freedom Z along the outer contour of the plate. The distributed mass is 

specified by transforming the static load from the self-weight of the plate ow = γ∙h, where γ = ρ∙g = 77.01 

kN/m3. Number of nodes in the design model – 1153. The determination of the natural oscillation modes 

and natural frequencies is performed by the method of subspace iteration. The matrix of concentrated 

masses is used in the calculation. 
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Results in SCAD 

 

 
 

Design model 
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1-st natural oscillation mode 
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2-nd natural oscillation mode 
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4-th natural oscillation mode 
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6-th natural oscillation mode 
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7-th natural oscillation mode 
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9-th natural oscillation mode 
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13-th natural oscillation mode 
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15-th natural oscillation mode 



  V e r i f i c a t i o n  E x a m p l e s  

390 D y n a m i c s  

 

   
18-th natural oscillation mode 
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22-nd natural oscillation mode 
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28-th natural oscillation mode 
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30-th natural oscillation mode 
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35-th natural oscillation mode 
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37-th natural oscillation mode 
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50-th (47-th theoretical) natural oscillation mode 
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58-th natural oscillation mode 

Comparison of solutions: 

Natural frequencies ω, rad / s 

Oscillation mode 

Number of nodal 

circles m and 

diameters n 

Theory SCAD Deviations, % 

1 0, 0 306.0 305.8 0.07 

2, 3 0, 1 861.8 862.4 0.07 

4, 5 0, 2 1588.2 1590.5 0.14 

6 1, 0 1842.9 1839.3 0.20 

7, 8 0, 3 2477.7 2483.2 0.22 

9, 10 1, 1 3006.1 3011.2 0.17 

11, 12 0, 4 3524.6 3532.7 0.23 

13, 14 1, 2 4347.8 4366.4 0.43 

15 2, 0 4598.3 4582.6 0.34 

16, 17 0, 5 4725.2 4738.1 0.27 

18, 19 1, 3 5862.8 5890.3 0.47 

20, 21 0, 6 6076.4 6097.0 0.34 

22, 23 2, 1 6372.8 6390.0 0.27 

24, 25 0, 7 7546.5 7581.9 0.47 

26, 27 1, 4 7576.1 7607.4 0.41 

28, 29 2, 2 8327.5 8402.9 0.91 

30 3, 0 8576.8 8534.9 0.49 

31, 32 0, 8 9222.3 9267.5 0.49 

33, 34 1, 5 9395.3 9441.9 0.50 

35, 36 2, 3 10459.2 10539.6 0.77 

37, 38 0, 9 10963.1 11004.7 0.38 

39, 40 3, 1 11013.5 11076.0 0.57 
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Oscillation mode 

Number of nodal 

circles m and 

diameters n 

Theory SCAD Deviations, % 

41, 42 1, 6 11406.2 11471.2 0.57 

43, 44 2, 4 12764.4 12865.5 0.79 

45, 46 0, 10 12948.4 13031.2 0.64 

47, 48 3, 2 13530.3 13742.7 1.57 

49, 50 1, 7 13576.7 13667.2 0.67 

51 4, 0 13779.1 13690.3 0.64 

52, 53 0, 11 15025.9 15131.7 0.70 

54, 55 2, 5 15240.2 15359.6 0.78 

56, 57 1, 8 15904.6 16028.2 0.78 

58, 59 3, 3 16276.1 16457.3 1.11 

60, 61 4, 1 16777.2 16859.0 0.49 

 

Notes: In the analytical solution the natural frequencies ω of the simply supported circular plate with the 

density of the material ρ can be determined according to the following equation obtained on the basis of the 

factorization method: 
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 , 3,2,1,0n   - number of nodal diameters, 

 

 RJn  ,  RJ 1n    - values of the Bessel function of the first kind of order n, 

 
 RIn  ,  RI 1n    - values of the modified Bessel function of the first kind of order n. 
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Natural Oscillations of a Clamped Circular Plate 

 

 
 

 

Objective: Modal analysis of a clamped circular plate.  
 

Initial data file: 5.6.SPR 

 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the clamped circular 

plate with the density of the material ρ. 
 

References: Chelomei V.N., Vibrations in Technology, Handbook in six volumes: Bolotin V.V., Volume 1,  

Vibrations of Linear Systems, Moscow, Mechanical engineering, 1978, p. 207. 

 

Initial data: 

E = 2.06·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.85 t/m3  - density of the material;  

h = 0.01 m  - thickness of the plate; 

R = 0.5 m  - outer radius of the plate. 

 

Finite element model: Design model – grade beam / plate, 1080 four-node plate elements of type 20 and 72 

three-node plate elements of type 15. The spacing of the finite element mesh in the radial direction is 

0.03125 m and in the tangential direction is 5.0º. Boundary conditions are provided by imposing constraints 

in the directions of the degrees of freedom Z, UX, UY along the outer contour of the plate. The distributed 

mass is specified by transforming the static load from the self-weight of the plate ow = γ∙h, where γ = ρ∙g = 

77.01 kN/m3. Number of nodes in the design model – 1153. The determination of the natural oscillation 

modes and natural frequencies is performed by the method of subspace iteration. The matrix of 

concentrated masses is used in the calculation. 
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Results in SCAD 
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1-st natural oscillation mode 
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2-nd natural oscillation mode 
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4-th natural oscillation mode 
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6-th natural oscillation mode 
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7-th natural oscillation mode 
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9-th natural oscillation mode 
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13-th natural oscillation mode 



  V e r i f i c a t i o n  E x a m p l e s  

408 D y n a m i c s  

 

   
15-th natural oscillation mode 
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18-th natural oscillation mode 
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22-nd natural oscillation mode 



V e r i f i c a t i o n  E x a m p l e s   

D y n a m i c s  411 

 

   
28-th natural oscillation mode 
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30-th natural oscillation mode 
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35-th natural oscillation mode 
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37-th natural oscillation mode 
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50-th (47-th theoretical) natural oscillation mode 
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58-th natural oscillation mode 

 

Comparison of solutions: 

Natural frequencies ω, rad / s 

Oscillation mode 

Number of 

nodal circles m 

and diameters n 

Theory SCAD Deviations, % 

1 0, 0 633.5 633.8 0.05 

2, 3 0, 1 1318.3 1321.7 0.26 

4, 5 0, 2 2162.7 2170.6 0.37 

6 1, 0 2466.1 2463.8 0.09 

7, 8 0, 3 3164.3 3178.9 0.46 

9, 10 1, 1 3771.9 3784.3 0.33 

11, 12 0, 4 4319.8 4340.1 0.47 

13, 14 1, 2 5244.8 5280.1 0.67 

15 2, 0 5525.2 5511.5 0.25 

16, 17 0, 5 5626.5 5655.5 0.52 

18, 19 1, 3 6884.2 6931.9 0.69 

20, 21 0, 6 7082.1 7123.6 0.59 

22, 23 2, 1 7445.9 7477.9 0.43 

24, 25 0, 7 8684.6 8742.7 0.67 

26, 27 1, 4 8687.8 8748.6 0.70 

28, 29 2, 2 9537.8 9652.0 1.20 

30 3, 0 9808.7 9769.4 0.40 

31, 32 0, 8 10432.5 10511.5 0.76 

33, 34 1, 5 10653.2 10730.3 0.72 

35, 36 2, 3 11800.3 11917.6 0.99 

37, 38 0, 9 12324.5 12429.0 0.85 

39, 40 3, 1 12342.9 12408.9 0.53 
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Oscillation mode 

Number of 

nodal circles m 

and diameters n 

Theory SCAD Deviations, % 

41, 42 1, 6 12778.0 12880.4 0.80 

43, 44 2, 4 14232.0 14378.8 1.03 

45, 46 0, 10 14359.4 14494.1 0.94 

47, 48 3, 2 15050.6 15335.5 1.89 

49, 50 1, 7 15060.4 15196.7 0.91 

51 4, 0 15316.4 15229.9 0.56 

52, 53 0, 11 16536.2 16705.2 1.02 

54, 55 2, 5 16830.7 17001.7 1.02 

56, 57 1, 8 17498.5 17677.4 1.02 

58, 59 3, 3 17931.5 18171.2 1.34 

60, 61 4, 1 18463.5 18580.3 0.63 

 

Notes: In the analytical solution the natural frequencies ω of the clamped circular plate with the density of 

the material ρ can be determined according to the following equation obtained on the basis of the 

factorization method: 
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 , 3,2,1,0n   - number of nodal diameters, 

 

 RJn  ,  RJ 1n    - values of the Bessel function of the first kind of order n, 

 

 RIn  ,  RI 1n    - values of the modified Bessel function of the first kind of order n. 
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Natural Oscillations of a Square Cantilever Plate  

 

Objective: Modal analysis of a square cantilever plate.  
 

Initial data file: 5.5.SPR 

 

Problem formulation: : Determine the natural oscillation modes and frequencies ω of the square cantilever 

plate with the density of the material ρ. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p. 382. 

 

Initial data: 

E = 2.06·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.85 t/m3  - density of the material;  

h = 0.01 m  - thickness of the plate; 

a1 = 1.0 m  - long side of the plate (along the X axis of the global coordinate system); 

a2 = 1.0 m - short side of the plate (along the Y axis of the global coordinate system). 

 

Finite element model: Design model – grade beam / plate, 400 plate elements of type 20. The spacing of 

the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 

0.05 m. Boundary conditions are provided by imposing constraints in the directions of the degrees of 

freedom Z, UX, UY for one of the edges parallel to the Y axis of the global coordinate system. The 

distributed mass is specified by transforming the static load from the self-weight of the plate ow = γ∙h, 

where γ = ρ∙g = 77.01 kN/m3. Number of nodes in the design model – 441. The determination of the natural 

oscillation modes and natural frequencies is performed by the Lanczos method. A consistent mass matrix is 

used in the calculation. 
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Results in SCAD 

  

 
Design model 
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 1-st natural oscillation mode 
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2-nd natural oscillation mode 
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3-rd natural oscillation mode 
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4-th natural oscillation mode 
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5-th natural oscillation mode 

 

 

Comparison of solutions: 

Natural frequencies ω, rad / s 

Oscillation mode Nodal lines Theory SCAD Deviations, % 

1 

 

54.2 53,8 0,71 

2 

 

132.5 131,9 0,43 

3 

 

332.4 330,0 0,72 

4 

 

425.7 421,8 0,91 

5 

 

483.2 480,3 0,61 
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Notes: In the analytical solution the natural frequencies ω of the square cantilever plate with the density of 

the material ρ can be determined according to the following formula obtained on the basis of the Rayleigh-

Ritz method: 
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Natural Oscillations of a Simply Supported Square Plate  

 
 

 

Objective: Modal analysis of a simply supported square plate.  
 

Initial data file: 5.2.SPR 

 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported 

square plate with the density of the material ρ. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p. 375. 

 

Initial data: 

E = 2.06·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.85 t/m3  - density of the material;  

h = 0.01 m  - thickness of the plate; 

a1 = 1.0 m  - long side of the plate (along the X axis of the global coordinate system); 

a2 = 1.0 m  - short side of the plate (along the Y axis of the global coordinate system). 

 

Finite element model: Design model – grade beam / plate, 400 plate elements of type 20. The spacing of 

the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 

0.05 m. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom 

Z for the edges parallel to the X and Y axes of the global coordinate system. The distributed mass is 

specified by transforming the static load from the self-weight of the plate ow = γ∙h, where γ = ρ∙g = 77.01 

kN/m3. Number of nodes in the design model – 441. The determination of the natural oscillation modes and 

natural frequencies is performed by the Lanczos method. A consistent mass matrix is used in the 

calculation. 
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Results in SCAD 
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 1-st natural oscillation mode 
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2-nd natural oscillation mode 
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3-rd natural oscillation mode 
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4-th natural oscillation mode 
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5-th natural oscillation mode 
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6-th natural oscillation mode 
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7-th natural oscillation mode 
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8-th natural oscillation mode 
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9-th natural oscillation mode 
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10-th natural oscillation mode 
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11-th natural oscillation mode 
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12-th natural oscillation mode 
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13-th natural oscillation mode 
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14-th natural oscillation mode 
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15-th natural oscillation mode 
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16-th natural oscillation mode 
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17-th natural oscillation mode 
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18-th natural oscillation mode 
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19-th natural oscillation mode 
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20-th natural oscillation mode 

 

Comparison of solutions: 

Natural frequencies ω, rad / s 

Oscillation mode 
Number of half waves  

m1, m2 
Theory SCAD Deviations, % 

1 1, 1 306.0 306,1 0,05 

2 1, 2 765. 0 765,6 0,08 

3 2, 1 765.0 765,6 0,08 

4 2, 2 1224.0 1226,4 0,19 

5 1, 3 1530.0 1531,4 0,09 

6 3, 1 1530.0 1531,4 0,09 

7 2, 3 1989.0 1994,4 0,27 

8 3, 2 1989.0 1994,4 0,27 

9 1, 4 2601.0 2603,6 0,10 

10 4, 1 2601.0 2603,6 0,10 

11 3, 3 2754.0 2766,2 0,44 

12 2, 4 3060.0 3069,7 0,32 

13 4, 2 3060.0 3069,7 0,32 

14 3, 4 3825.0 3846,8 0,57 

15 4, 3 3825.0 3846,8 0,57 

16 1, 5 3978.0 3982,6 0,12 

17 5, 1 3978.0 3982,6 0,12 

18 2, 5 4437.0 4452,7 0,35 

19 5, 2 4437.0 4452,7 0,35 

20 4, 4 4896.0 4934,7 0,79 

 

Notes: In the analytical solution the natural frequencies ω of the simply supported square plate with the 

density of the material ρ can be determined according to the following formula: 
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Natural Oscillations of a Simply Supported Rectangular Plate  

 
 

Objective: Modal analysis of a simply supported rectangular plate.  
 

Initial data file: 5.3.SPR 
 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported 

rectangular plate with the density of the material ρ. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p. 375. 

 

Initial data: 

E = 2.06·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.85 t/m3  - density of the material;  

h = 0.01 m  - thickness of the plate; 

a1 = 1.5 m  - long side of the plate (along the X axis of the global coordinate system); 

a2 = 1.0 m  - short side of the plate (along the Y axis of the global coordinate system). 

 

Finite element model: Design model – grade beam / plate, 600 plate elements of type 20. The spacing of 

the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 

0.05 m. Boundary conditions are provided by imposing constraints in the direction of the degree of freedom 

Z for the edges parallel to the X and Y axes of the global coordinate system. The distributed mass is 

specified by transforming the static load from the self-weight of the plate ow = γ∙h, where γ = ρ∙g = 77.01 

kN/m3. Number of nodes in the design model – 651. The determination of the natural oscillation modes and 

natural frequencies is performed by the method of subspace iteration. The matrix of concentrated masses is 

used in the calculation. 
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2-nd natural oscillation mode 
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3-rd natural oscillation mode 
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4-th natural oscillation mode 
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5-th natural oscillation mode 
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6-th natural oscillation mode 
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7-th natural oscillation mode 
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8-th natural oscillation mode 
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9-th natural oscillation mode 
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10-th natural oscillation mode 
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11-th natural oscillation mode 
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12-th natural oscillation mode 
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13-th natural oscillation mode 
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14-th natural oscillation mode 
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15-th natural oscillation mode 
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16-th natural oscillation mode 
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17-th natural oscillation mode 
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18-th natural oscillation mode 
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19-th natural oscillation mode 
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20-th natural oscillation mode 

 

Comparison of solutions: 

Natural frequencies ω, rad / s 

Oscillation 

mode 

Number of half 

waves m1, m2 
Theory SCAD Deviations, % 

1 1, 1 221.0 221.1 0.05 

2 2, 1 425.0 425.3 0.07 

3 1, 2 678.0 680.3 0.34 

4 3, 1 765.0 765.6 0.08 

5 2, 2 884.0 885.1 0.12 

6 3, 2 1224.0 1226.4 0.20 

7 4, 1 1241.0 1242.0 0.08 

8 1, 3 1445.0 1445.5 0.03 

9 2, 3 1649.0 1651.4 0.15 

10 4, 2 1700.0 1704.3 0.25 

11 5, 1 1853.0 1854.6 0.09 

12 3, 3 1989.0 1994.5 0.28 

13 5, 2 2312.0 2318.8 0.29 

14 4, 3 2465.0 2474.9 0.40 

15 1, 4 2516.0 2516.8 0.03 

16 6, 1 2601.0 2603.1 0.08 

17 2, 4 2720.0 2724.1 0.15 

18 3, 4 3060.0 3069.7 0.32 

19 6, 2 3060.0 3069.7 0.32 

20 5, 3 3077.0 3092.5 0.50 

 

Notes: In the analytical solution the natural frequencies ω of the simply supported rectangular plate with the 

density of the material ρ can be determined according to the following formula: 
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Natural Oscillations of a Clamped Square Plate 

 

Objective: Modal analysis of a clamped square plate.  
 

Initial data file: 5.4.SPR 

 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the clamped square 

plate with the density of the material ρ. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p. 377. 

 

Initial data: 

E = 2.06·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.85 t/m3  - density of the material;  

h = 0.01 m  - thickness of the plate; 

a1 = 1.0 m  - long side of the plate (along the X axis of the global coordinate system); 

a2 = 1.0 m  - short side of the plate (along the Y axis of the global coordinate system). 

 

Finite element model: Design model – grade beam / plate, 400 plate elements of type 20. The spacing of 

the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) is 

0.05 m. Boundary conditions are provided by imposing constraints in the directions of the degrees of 

freedom Z, UX, UY for the edges parallel to the X and Y axes of the global coordinate system. The 

distributed mass is specified by transforming the static load from the self-weight of the plate ow = γ∙h, 

where γ = ρ∙g = 77.01 kN/m3. Number of nodes in the design model – 441. The determination of the natural 

oscillation modes and natural frequencies is performed by the method of subspace iteration. The matrix of 

concentrated masses is used in the calculation. 
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Results in SCAD 

  

 
Design model 
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1-st natural oscillation mode 

 



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  475 

 

   
2-nd natural oscillation mode 
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3-rd natural oscillation mode 
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4-th natural oscillation mode 
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5-th natural oscillation mode 
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6-th natural oscillation mode 
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7-th natural oscillation mode 
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8-th natural oscillation mode 
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9-th natural oscillation mode 
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10-th natural oscillation mode 
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11-th natural oscillation mode 
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12-th natural oscillation mode 
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13-th natural oscillation mode 
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14-th natural oscillation mode 
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15-th natural oscillation mode 
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16-th natural oscillation mode 
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17-th natural oscillation mode 
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18-th natural oscillation mode 
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19-th natural oscillation mode 

 



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  493 

 

   
20-th natural oscillation mode 

 

 

Comparison of solutions: 

Natural frequencies ω, rad / s 

Oscillation 

mode 

Number of half 

waves m1, m2 
Theory SCAD Deviations, % 

1 1, 1 560.1 558.5 0.29 

2 1, 2 1143.2 1139.4 0.33 

3 2, 1 1143.2 1139.4 0.33 

4 2, 2 1686.6 1683.4 0.19 

5 1, 3 2054.0 2042.8 0.55 

6 3, 1 2054.0 2052.2 0.09 

7 2, 3 2571.5 2569.1 0.09 

8 3, 2 2571.5 2569.1 0.09 

9 1, 4 3276.5 3267.5 0.27 

10 4, 1 3276.5 3267.5 0.27 

11 3, 3 3424.6 3434.5 0.29 

12 2, 4 3782.2 3772.0 0.27 

13 4, 2 3782.2 3786.2 0.11 

14 3, 4 4611.8 4632.3 0.44 

15 4, 3 4611.8 4632.3 0.44 

16 1, 5 4806.6 4793.0 0.28 

17 5, 1 4806.6 4796.7 0.21 

18 2, 5 5307.4 5303.5 0.07 

19 5, 2 5307.4 5303.5 0.07 

20 4, 4 5774.8 5821.8 0.81 
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Notes: In the analytical solution the natural frequencies ω of the clamped square plate with the density of 

the material ρ can be determined according to the following formula obtained on the basis of the Rayleigh-

Ritz method: 
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Natural Oscillations of a Simply Supported Circular Cylindrical Shell  

 
 

 

Objective: Modal analysis of a simply supported circular cylindrical shell.  
 

Initial data file: 5.8_S.SPR 

 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the simply supported 

circular cylindrical shell with the density of the material ρ. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p. 426. 

V. L. Biderman, Theory of Mechanical Oscillations, Moscow, High School, 1980, p. 290. 

 

Initial data: 

E = 1.96·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.70 t/m3  - density of the material;  

h = 0.25·10-3 m  - thickness of the cylindrical shell; 

R = 0.076 m  - radius of the midsurface of the cylindrical shell; 

L = 0.305 m  - length of the cylindrical shell. 

 

Finite element model: Design model – general type system, 6400 four-node shell elements of type 50. The 

spacing of the finite element mesh in the meridian direction is 4.765625·10-3 m (64 elements) and in the 

circumferential is 3.6º (100 elements). Boundary conditions of the simply supported edges are provided by 

imposing constraints in the directions of the linear displacements in their plane (degrees of freedom Y, Z). 

The dimensional stability of the design model is provided by imposing constraints of finite rigidity (100 

elements of type 51) in the nodes of the cross-section on the symmetry plane of the cylindrical shell in the 

meridian direction (kx = 1.0 kN/m). The distributed mass is specified by transforming the static load from 

the self-weight of the cylindrical shell: ow = γ∙h, where γ = ρ∙g = 75.537 kN/m3. Number of nodes in the 

design model – 6500. The determination of the natural oscillation modes and natural frequencies is 

performed by the method of subspace iteration. The matrix of concentrated masses is used in the 

calculation. 
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Results in SCAD 

 
 

Design model 



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  497 

  
 

2-nd (1-st theoretical) natural oscillation mode 
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4-th (3-rd theoretical) natural oscillation mode 
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6-th (5-th theoretical) natural oscillation mode 
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8-th (7-th theoretical) natural oscillation mode 
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10-th (9-th theoretical) natural oscillation mode 
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12-th (11-th theoretical) natural oscillation mode 
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14-th (13-th theoretical) natural oscillation mode 



  V e r i f i c a t i o n  E x a m p l e s  

504 D y n a m i c s  

 

   
16-th (15-th theoretical) natural oscillation mode 
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18-th (17-th theoretical) natural oscillation mode 
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20-th (19-th theoretical) natural oscillation mode 
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22-nd (21-st theoretical) natural oscillation mode 
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24-th (23-rd theoretical) natural oscillation mode 
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26-th (25-th theoretical) natural oscillation mode 
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28-th (27-th theoretical) natural oscillation mode 
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30-th (29-th theoretical) natural oscillation mode 
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32-nd (31-st theoretical) natural oscillation mode 
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34-th (33-rd theoretical) natural oscillation mode 
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36-th (35-th theoretical) natural oscillation mode 
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38-th (37-th theoretical) natural oscillation mode 
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40-th (39-th theoretical) natural oscillation mode 
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42-nd (41-st theoretical) natural oscillation mode 
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44-th (43-rd theoretical) natural oscillation mode 
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46-th (45-th theoretical) natural oscillation mode 
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48-th (47-th theoretical) natural oscillation mode 
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50-th (49-th theoretical) natural oscillation mode 

Comparison of solutions: 

Natural frequencies ω, Hz 

Oscillation 

mode 

Number of nodal 

circles m and 

meridians n 

Theory SCAD Deviations, % 

1, 2 2, 5 354.4 354.9 0.14 

3, 4 2, 6 408.3 408.9 0.15 

5, 6 2, 4 409.5 410.1 0.15 

7, 8 2, 7 522.1 522.9 0.15 
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Oscillation 

mode 

Number of nodal 

circles m and 

meridians n 

Theory SCAD Deviations, % 

9, 10 2, 3 642.1 642.8 0.11 

11, 12 2, 8 671.1 672.0 0.13 

13, 14 3, 7 723.2 724.9 0.24 

15, 16 3, 6 768.5 770.3 0.23 

17, 18 3, 8 784.3 785.9 0.20 

19, 20 2, 9 846.2 847.3 0.13 

21, 22 3, 9 914.9 916.6 0.19 

23, 24 3, 5 962.3 964.5 0.23 

25, 26 2, 10 1044.3 1045.7 0.13 

27, 28 3, 10 1090.7 1092.5 0.17 

29, 30 4, 8 1095.6 1099.3 0.34 

31, 32 4, 9 1115.7 1119.2 0.31 

33, 34 4, 7 1194.2 1198.2 0.33 

35, 36 4, 10 1223.2 1226.5 0.27 

37, 38 2, 2 1241.3 1242.5 0.10 

39, 40 2, 11 1264.3 1265.9 0.13 

41, 42 3, 11 1299.1 1301.2 0.16 

43, 44 3, 4 1368.6 1370.9 0.17 

45, 46 4, 11 1391.6 1395.0 0.24 

47, 48 4, 6 1444.4 1448.8 0.30 

49, 50 5, 9 1470.4 1477.2 0.46 

51, 52 5, 10 1474.4 1480.6 0.42 

53, 54 2, 12 1505.8 1507.5 0.11 

55, 56 3, 12 1534.3 1536.6 0.15 

57, 58 5, 11 1570.6 1576.5 0.38 

59, 60 5, 8 1584.6 1591.9 0.46 

61, 62 4, 12 1603.7 1607.1 0.21 

63, 64 5, 12 1735.5 1741.2 0.33 

65, 66 2, 13 1768.5 1770.3 0.10 

67, 68 3, 13 1793.5 1795.9 0.13 

69, 70 6, 10 1837.2 1848.0 0.59 

71, 72 5, 7 1842.3 1850.1 0.42 

73, 74 6, 11 1844.3 1854.3 0.54 

75, 76 4, 13 1849.2 1852.7 0.19 

77, 78 4, 5 1892.8 1897.7 0.26 

79, 80 6, 12 1942.4 1951.9 0.49 

81, 82 6, 9 1942.8 1954.3 0.59 

83, 84 5, 13 1951.0 1956.7 0.29 

85, 86 2, 14 2052.3 2054.1 0.09 

87, 88 3, 14 2075.2 2077.7 0.12 

89, 90 6, 13 2111.1 2120.1 0.43 

91, 92 4, 14 2122.7 2126.3 0.17 

93, 94 3, 3 2137.0 2140.0 0.14 

95, 96 6, 8 2181.3 2193.4 0.55 

97, 98 5, 14 2205.6 2211.2 0.25 

99, 100 7, 11 2199.6 2215.4 0.72 

101, 102 7, 12 2223.0 2237.8 0.67 

103, 104 5, 6 2275.4 2283.7 0.36 

105, 106 7, 10 2281.7 2298.3 0.73 

107, 108 7, 13 2333.3 2347.3 0.60 

109, 110 6, 14 2333.8 2342.5 0.37 

111, 112 2, 15 2357.2 2358.9 0.07 

113, 114 3, 15 2378.9 2381.2 0.10 

115, 116 4, 15 2421.3 2424.8 0.14 

117, 118 7, 9 2485.9 2503.2 0.70 

119, 120 5, 15 2492.0 2497.5 0.22 

121, 122 7, 14 2512.8 2526.3 0.54 

123, 124 8, 12 2565.0 2586.6 0.84 
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Oscillation 

mode 

Number of nodal 

circles m and 

meridians n 

Theory SCAD Deviations, % 

125, 126 6, 7 2574.4 2586.9 0.49 

127, 128 6, 15 2598.7 2607.3 0.33 

129,130 8, 13 2613.1 2633.7 0.79 

131, 132 8, 11 2614.4 2637.0 0.86 

133, 134 4, 4 2630.0 2635.4 0.21 

135, 136 2, 16 2683.2 2684.5 0.05 

137, 138 3, 16 2704.1 2706.1 0.07 

139, 140 8, 14 2742.8 2762.4 0.71 

141, 142 4, 16 2743.2 2746.5 0.12 

143, 144 7, 15 2747.0 2759.9 0.47 

145, 146 8, 10 2776.0 2799.3 0.84 

147, 148 5, 16 2806.0 2811.3 0.19 

149, 150 2, 1 2832.3 2835.3 0.11 

 

Notes: In the analytical solution the natural frequencies ω of the simply supported circular cylindrical shell 

with the density of the material ρ can be determined from the characteristic equation: 
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4,3,2m   - number of nodal lines in the circumferential direction, taking into account the lines along 

the end support contours, 

 

,2,1,0n   - number of pairs of nodal lines in the meridian direction when each pair is located on one 

diameter. 
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Natural Oscillations of a Clamped Circular Cylindrical Shell 

 
 

Objective: Modal analysis of a clamped circular cylindrical shell.  
 

Initial data file: 5.8_C.SPR 
 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the clamped circular 

cylindrical shell with the density of the material ρ. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p. 437. 

V. S. Gontkevich, Natural Vibrations of Orthotropic Cylindrical Shells, Proceedings of the Conference on 

the Theory of Shells and Plates, Kazan, KFAN, 1961.  

 

Initial data: 

E = 1.96·108 kPa - elastic modulus;  

ν = 0.3   - Poisson’s ratio; 

ρ = 7.70 t/m3  - density of the material;  

h = 0.25·10-3 m  - thickness of the cylindrical shell; 

R = 0.076 m  - radius of the midsurface of the cylindrical shell; 

L = 0.305 m  - length of the cylindrical shell. 

 

Finite element model: Design model – general type system, 6400 four-node shell elements of type 50. The 

spacing of the finite element mesh in the meridian direction is 4.765625·10-3 m (64 elements) and in the 

circumferential is 3.6º (100 elements). Boundary conditions of the simply supported edges are provided by 

imposing constraints in the directions of all linear and angular displacements (degrees of freedom X, Y, Z, 

UX, UY, UZ). The distributed mass is specified by transforming the static load from the self-weight of the 

cylindrical shell: ow = γ∙h, where γ = ρ∙g = 75.537 kN/m3. Number of nodes in the design model – 6500. 

The determination of the natural oscillation modes and natural frequencies is performed by the method of 

subspace iteration. The matrix of concentrated masses is used in the calculation. 
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Results in SCAD 

 
 

Design model 
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1-st (1-st theoretical) natural oscillation mode 
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3-rd (3-rd theoretical) natural oscillation mode 
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5-th (5-th theoretical) natural oscillation mode 
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7-th (7-th theoretical) natural oscillation mode 
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9-th (9-th theoretical) natural oscillation mode 
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11-th (11-th theoretical) natural oscillation mode 
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13-th (13-th theoretical) natural oscillation mode 
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15-th (15-th theoretical) natural oscillation mode 
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17-th (17-th theoretical) natural oscillation mode 
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19-th (19-th theoretical) natural oscillation mode 
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21-st (21-st theoretical) natural oscillation mode 
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23-rd (25-th theoretical) natural oscillation mode 
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25-th (23-rd theoretical) natural oscillation mode 



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  539 

 

   
27-th (27-th theoretical) natural oscillation mode 
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29-th (31-st theoretical) natural oscillation mode 
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31-st (29-th theoretical) natural oscillation mode 
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33-rd (33-rd theoretical) natural oscillation mode 
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35-th (35-th theoretical) natural oscillation mode 
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37-th (37-th theoretical) natural oscillation mode 
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39-th (39-th theoretical) natural oscillation mode 
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41-st (41-st theoretical) natural oscillation mode 
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43-rd (43-rd theoretical) natural oscillation mode 
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45-th (45-th theoretical) natural oscillation mode 
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47-th (47-th theoretical) natural oscillation mode 
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49-th (49-th theoretical) natural oscillation mode 

 

Comparison of solutions: 

Natural frequencies ω, Hz 

Oscillation 

mode 

Number of nodal 

circles m and 

meridians n 

Theory SCAD Deviations, % 

1, 2 2, 6 533 (529.2) 522.2 2.03 

3, 4 2, 5 574 (585.3) 567.0 1.22 

5, 6 2, 7 593 (579.2) 578.9 2.38 
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Oscillation 

mode 

Number of nodal 

circles m and 

meridians n 

Theory SCAD Deviations, % 

7, 8 2, 8 717 (697.2) 700.3 2.33 

9, 10 2, 4 755 (787.9) 751.1 0.52 

11, 12 2, 9 881 (857.8) 862.6 2.09 

13, 14 3, 7 898 (910.0) 888.2 1.09 

15, 16 3, 8 903 (897.8) 889.5 1.50 

17, 18 3, 9 996 (979.9) 979.5 1.66 

19, 20 3, 6 1011 (1047.7) 1004.6 0.63 

21, 22 2, 10 1075 (1048.9) 1054.6 1.90 

23, 24 2, 3 1140 (1209.6) 1136.7 0.29 

25, 26 3, 10 1151 (1127.1) 1131.1 1.73 

27, 28 4, 9 1251 (1251.3) 1238.2 1.02 

29, 30 3, 5 1272 (1344.8) 1267.7 0.34 

31, 32 4, 8 1273 (1293.0) 1264.2 0.69 

33, 34 2, 11 1295 (1265.4) 1271.5 1.81 

35, 36 4, 10 1325 (1310.9) 1308.2 1.27 

37, 38 3, 11 1348 (1319.3) 1325.7 1.65 

39, 40 4, 7 1415 (1460.8) 1409.3 0.40 

41, 42 4, 11 1471 (1446.7) 1450.2 1.41 

43, 44 2, 12 —— (1504.9) 1511.3 ─ 

45, 46 3, 12 —— (1545.3) 1552.9 ─ 

47, 48 5, 10 —— (1611.9) 1597.9 ─ 

49, 50 5, 9 —— (1657.6) 1627.9 ─ 

51, 52 3, 12 —— (1637.7) 1644.9 ─ 

53, 54 5, 11 —— (1666.7) 1663.6 ─ 

55, 56 4, 6 1700 (1781.0) 1696.6 0.20 

57, 58 3, 4 1731 (1863.8) 1728.3 0.16 

59, 60 5, 8 —— (1824.3) 1772.9 ─ 

61, 62 2, 13 —— (1766.4) 1773.0 ─ 

63, 64 5, 12 —— (1800.5) 1804.6 ─ 

65, 66 3, 13 —— (1799.0) 1807.3 ─ 

67, 68 4, 13 —— (1869.9) 1879.4 ─ 

69, 70 2, 2 —— (2045.1) 1889.1 ─ 

71, 72 6, 11 —— (1975.1) 1963.8 ─ 

73, 74 6, 10 —— (2007.8) 1982.0 ─ 

75, 76 5, 13 —— (1994.2) 2002.9 ─ 

77, 78 6, 12 —— (2038.4) 2037.7 ─ 

79, 80 5, 7 —— (2131.6) 2051.4 ─ 

81, 82 2, 14 —— (2049.6) 2056.1 ─ 

83, 84 3, 14 —— (2077.5) 2086.0 ─ 

85, 86 6, 9 —— (2154.2) 2109.1 ─ 

87, 88 4, 14 —— (2135.1) 2145.7 ─ 

89, 90 4, 5 2165 (2295.4) 2163.0 0.09 

91, 92 6, 13 —— (2179.6) 2186.2 ─ 

93, 94 5, 14 —— (2233.9) 2245.5 ─ 

95, 96 7, 11 —— (2352.7) 2334.1 ─ 

97, 98 7, 12 —— (2343.7) 2338.1 ─ 

99, 100 6, 8 —— (2429.8) 2360.2 ─ 

101, 102 2, 15 —— (2354.1) 2360.4 ─ 

103, 104 3, 15 —— (2379.1) 2387.6 ─ 

105, 106 6, 14 —— (2381.8) 2393.2 ─ 

107, 108 7, 13 —— (2425.1) 2429.2 ─ 

109, 110 7, 10 —— (2467.4) 2432.1 ─ 

111, 112 4, 15 —— (2428.2) 2439.5 ─ 

113, 114 5, 6 —— (2606.7) 2488.7 ─ 

115, 116 3, 3 2505 (2740.1) 2502.6 0.10 

117, 118 5, 15 —— (2510.3) 2523.6 ─ 

119, 120 7, 14 —— (2581.1) 2592.0 ─ 

121, 122 7, 14 —— (2700.8) 2644.8 ─ 
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Oscillation 

mode 

Number of nodal 

circles m and 

meridians n 

Theory SCAD Deviations, % 

123, 124 7, 9 —— (2632.0) 2646.5 ─ 

125, 126 6, 15 —— (2679.8) 2685.7 ─ 

127, 128 2, 16 —— (2701.6) 2692.7 ─ 

129,130 8, 12 —— (2702.9) 2711.1 ─ 

131, 132 3, 16 —— (2723.2) 2725.6 ─ 

133, 134 8, 13 —— (2852.2) 2752.7 ─ 

135, 136 6, 7 —— (2777.7) 2754.5 ─ 

137, 138 8, 11 —— (2746.6) 2757.9 ─ 

139, 140 4, 16 —— (2796.9) 2812.5 ─ 

141, 142 5, 16 —— (2817.6) 2831.6 ─ 

143, 144 7, 15 —— (2829.0) 2839.8 ─ 

145, 146 4, 4 2884 (3082.7) 2883.1 0.03 

147, 148 8, 10 —— (2963.2) 2922.5 ─ 

149, 150 6, 16 —— (2921.1) 2937.5 ─ 

The values of the exact solution are given before brackets in the “Theory” column, and the values of the approximate 

solution by the Rayleigh-Ritz method with the displacement components expressed by beam functions are given in 

brackets. 

 

Notes: In the analytical solution by the Rayleigh-Ritz method with the displacement components expressed 

by beam functions the natural frequencies ω of the clamped circular cylindrical shell with the density of the 

material ρ can be determined from the characteristic equation: 
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Eigenvalues of the m-th beam function are determined from the following equation: 

 

    1cosch mm    

 

4,3,2m   - number of nodal lines in the circumferential direction, taking into account the lines along 

the end support contours, 

 

,2,1,0n  - number of pairs of nodal lines in the meridian direction when each pair is located on one 

diameter. 

 

 The deviations from the theory for the initial natural frequencies are due to the fact that the natural 

modes and frequencies are determined by the program for a design model with all degrees of freedom of 

nodal displacements, i.e. tangential inertia forces were taken into account as well. These forces are 

especially noticeable in natural modes with a small number of half waves m in the circumferential direction. 

 The exact solution from the source does not take into account the tangential inertia forces. 

However, the page 440 of this handbook provides a formula for the estimation of the error introduced by 

this assumption. It gives a value of the correction to the square of the natural frequency: 

k=1/(1+z). 

 For the first modes when m=2 the calculations gave the value z=0,042. Therefore, we can expect a 

2% correction to the theoretical value. 

 
 

 



  V e r i f i c a t i o n  E x a m p l e s  

554 D y n a m i c s  

Natural Oscillations of a Cantilever Open Cylindrical Shell  

 

 
 

 

Objective: Modal analysis of a cantilever open cylindrical shell.  
 

Initial data file: 5.9.SPR 

 

Problem formulation: Determine the natural oscillation modes and frequencies ω of the cantilever open 

cylindrical shell with the density of the material ρ. 
 

References: Olson M. D., Lindberg G. M., Vibration analysis of cantilevered curved plates using a new 

cylindrical shell finite element, Second conference on matrix methods in structural mechanics at Wright – 

Patterson Air Force Base in Ohio, AFFDL-TR-68-155, 1969, p. 247-269.  

 

Initial data: 

E = 30.0·106 PSI = 2.0685·108 kPa - elastic modulus;  

ν = 0.3     - Poisson’s ratio; 

ρ = 0.28386 lb/in3 = 7.8572 t/m3 - density of the material;  

h = 0.12 in = 3.048·10-3 m  - thickness of the cylindrical shell; 

R = 24 in = 0.6096 m   - radius of the midsurface of the cylindrical shell; 
L = 12 in = 0.3048 m   - length of the generatrix of the cylindrical shell; 

W =12 in = 0.3048 m   - length of the arc of the director of the cylindrical shell. 

 

Finite element model: Design model – general type system, 400 four-node shell elements of type 50. The 

spacing of the finite element mesh in the meridian and in the circumferential directions is 0.01524 m (20 

elements). Boundary conditions of the clamped curvilinear edge are provided by imposing constraints in the 

directions of all linear and angular displacements (degrees of freedom X, Y, Z, UX, UY, UZ). The 

distributed mass is specified by transforming the static load from the self-weight of the cylindrical shell: ow 

= γ∙h, where γ = ρ∙g = 77.0791 kN/m3. Number of nodes in the design model – 441. The determination of 

the natural oscillation modes and natural frequencies is performed by the Lanczos method. A consistent 

mass matrix is used in the calculation. 
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Results in SCAD 

  
Design model 

 

 

 

 

 

 

  
 

  
1-st natural oscillation mode 
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2-nd natural oscillation mode 

 

 

 

  
 

  
 

3-rd natural oscillation mode 

 

 

   
 

   
 

 4-th natural oscillation mode 
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5-th natural oscillation mode 

  
 

   
 

6-th natural oscillation mode 

 

 

  
 

   
 

7-th natural oscillation mode 
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8-th natural oscillation mode 

  
 

   
 

9-th natural oscillation mode 

 

  
 

   
 

10-th natural oscillation mode 
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11-th natural oscillation mode 

  
 

  
 

12-th natural oscillation mode 

 

Comparison of solutions: 

Natural frequencies ω, Hz 

Oscillation mode Nodal lines Experiment SCAD Deviations, % 

1 

 

85.6 86,2 0,35 

2 

 

135.5 139,2 0,57 

3 

 

258.9 248,2 0,95 
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Oscillation mode Nodal lines Experiment SCAD Deviations, % 

4 

 

350.6 344,2 0,75 

5 

 

395.2 388,2 0,89 

6 

 

531.1 529,9 1,39 

7 

 

743.2 730,9 1,33 

8 

 

751.2 732,9 1,22 

9 

 

792.1 776,5 0,87 

10 

 

809.2 805,4 1,21 

11 

 

996.8 999,1 1,97 

12 

 

1215.0 1210,5 1,85 
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Plane Frame Subjected to a Uniformly Distributed Instantaneous Pulse 
 

 
 

Objective: Determination of the stress-strain state of a plane frame subjected to a uniformly distributed 

instantaneous pulse. 

 

Initial data file: DI_F.SPR 
 

Problem formulation: The three-storey single-span plane frame with clamped columns and mass uniformly 

distributed over the columns m1 and girders m2 is subjected to an instantaneous pulse s uniformly 

distributed along the contour of the first storey. Determine the amplitude values of the bending moment M 

in the girder of the first storey in the section of its connection with the left column taking into account the 

following assumption made when deriving the analytical solution: it is assumed that there are no linear 

displacements of the beam-to-column joints when the symmetric design model is subjected to a symmetric 

loading and the longitudinal deformations of the frame structural members are neglected. 
 

References: Rabinovich I.M., Sinitsyn A.P., Luzhin O.V., Terenin V.M., Analysis of Structures Subject to 

Pulse Actions, Moscow, Stroyizdat, 1970, p. 91; 

Korenev B.G., Rabinovich I.M., Dynamic Analysis of Buildings and Structures (Designer's handbook), 

Moscow, Stroyizdat, 1984, p. 79. 
 

Initial data: 

E = 2.1·107 tf/m2 - elastic modulus; 

h = 6.0 m  - height of the frame columns; 

I1 = 1·10
-4 m4  - cross-sectional moment of inertia of the frame columns; 

F1 = 2·10
-1 m2  - cross-sectional area of the frame columns; 

m1 = 0.0204 tf·s
2/m2 - value of the mass uniformly distributed over the frame columns; 

l = 5.0 m  - length of the span of the frame girders; 

I2 = 2·10
-4 m4  - cross-sectional moment of inertia of the frame girders; 

F2 = 4·10
-1 m2  - cross-sectional area of the frame girders; 

m2 = 0.0510 tf·s2/m2 - value of the mass uniformly distributed over the frame girders; 

s = 0.3· tf∙s/m  - value of the uniformly distributed instantaneous pulse; 

g = 9.81 m/s2  - gravitational acceleration. 
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Finite element model: Design model – plane frame, 102 bar elements of type 2. 

The spacing of the finite element mesh along the longitudinal axes of the columns and girders of the frame 

is 0.5 m. Boundary conditions of the support nodes of the columns of the first storey are provided by 

imposing constraints in the directions of the following degrees of freedom: X, Z, UY. Boundary conditions 

of the beam-to-column joints according to the assumption made when deriving the analytical solution are 

provided by imposing constraints in the directions of the following degrees of freedom: X, Z. Boundary 

conditions of the nodes in the center of the girder spans according to the assumption made when deriving 

the analytical solution are provided by imposing constraints in the directions of the following degrees of 

freedom: X, UY. The distributed mass is specified by transforming the static load on the columns m1·g and 

on the girders m2·g of the frame. The action of the distributed instantaneous pulse is reduced to a number of 

nodal actions with the values 0.5·s. Number of nodes in the design model – 101. The determination of the 

natural oscillation modes and natural frequencies is performed by the method of subspace iteration. The 

matrix of concentrated masses is used in the calculation. 

 

Results in SCAD: 

 

  
 

Design model 
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1-st, 2-nd, 3-rd natural oscillation modes 

 

 

 

   
 

7-th, 8-th, 9-th natural oscillation modes 
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Amplitude values of the angular displacements UYij (rad) 

in the beam-to-column joints 

according to the 1-st, 2-nd, 3-rd natural oscillation modes 

(modal analysis) 

 

   
 

Amplitude values of the angular displacements UYij (rad) 

in the beam-to-column joints 

according to the 7-th, 8-th, 9-th natural oscillation modes 

(modal analysis) 
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Bending moment diagrams at the amplitude values Mi (tf·m)  

according to the 1-st, 2-nd, 3-rd natural oscillation modes 

 

 

 

 

   
Bending moment diagrams at the amplitude values Mi (tf·m)  

according to the 7-th, 8-th, 9-th natural oscillation modes 
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Amplitude values of the bending moments Mi (tf·m) 

in the girder of the first floor in the sections of its connections with the columns 

according to the 1-st, 2-nd, 3-rd natural oscillation modes 

 

 

   
 

Amplitude values of the bending moments Mi (tf·m) 

in the girder of the first floor in the sections of its connections with the columns 

according to the 7-th, 8-th, 9-th natural oscillation modes 
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Bending moment diagram at the amplitude values M (tf·m)  

from the total pulse load 

  

Amplitude values of the bending moments M (tf·m) 

in the girder of the first floor in the sections of its connections with the columns 

from the total pulse load 

 

Comparison of solutions: 
 

Natural periods T, s 
 

Oscillation mode Theory SCAD Deviations, % 

1 0.060607 0.060607 0.00 

2 0.049785 0.049785 0.00 

3 0.040435 0.040436 0.00 

7 0.030924 0.030925 0.00 

8 0.028903 0.028904 0.00 

9 0.027787 0.027788 0.00 

 

Amplitude values of the angular displacements UYij (rad) 

in the beam-to-column joints 

according to the 1-st, 2-nd, 3-rd, 7-th, 8-th, 9-th natural oscillation modes 

(modal analysis) 

 

Oscillation mode Storey Theory SCAD Deviation, % 

1 1 +0.583753 
-0.279605 / -0.478978 = 

= +0.583753 
0.00 

1 2 -0.961520 
+0.460547 / -0.478978 = 

= -0.961520 
0.00 

1 3 +1.000000 
-0.478978 / -0.478978 = 

= +1.000000 
0.00 
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2 1 -1.012550 
-0.588135 / +0.580845 = 

= -1.012551 
0.00 

2 2 +0.112727 
+0.065478 / +0.580845 = 

= +0.112729 
0.00 

2 3 +1.000000 
+0.580845 / +0.580845 = 

= +1.000000 
0.00 

3 1 +0.775708 
-0.319716 / -0.412155 = 

= +0.775718 
0.00 

3 2 +1.173640 
-0.483726 / -0.412155 = 

= +1.173651 
0.00 

3 3 +1.000000 
-0.412155 / -0.412155 = 

= +1.000000 
0.00 

7 1 +0.428722 
+0.044730 / +0.104309 = 

= +0.428822 
0.00 

7 2 +0.782640 
+0.081635 / +0.104309 = 

= +0.782627 
0.00 

7 3 +1.000000 
+0.044730 / +0.104309 = 

= +1.000000 
0.00 

8 1 -1.342142 
+0.172948 / -0.128856 = 

= -1.342180 
0.00 

8 2 -0,677645 
+0.087323 / -0.128856 = 

= -0,677679 
0.00 

8 3 +1.000000 
-0.128856 / -0.128856 = 

= +1.000000 
0.00 

9 1 +2.023786 
+0.133206 / +0.065817 = 

= +2.023884 
0.00 

9 2 -2.473762 
-0.162812 / +0.065817 = 

= -2.473707 
0.00 

9 3 +1.000000 
+0.065817 / +0.065817 = 

= +1.000000 
0.00 

 

 

 

Amplitude values of the bending moments Mi (tf·m) 

in the girder of the first floor in the section of its connection with the left column 

according to the 1-st, 2-nd, 3-rd, 7-th, 8-th, 9-th natural oscillation modes 

 

Oscillation mode Theory SCAD Deviations, % 

1 +0.629 -0.629 0.00 

2 -3.931 +3.930 0.03 

3 -10.611 +10.610 0.01 

7 +19.939 -19.941 0.01 

8 +86.385 -86.385 0.00 

9 +53.755 -53.759 0.01 

 

Parameter Theory SCAD Deviations, % 

Amplitude values of the bending moment M in the 

girder of the first floor in the section of its connection 

with the left column from the total pulse load, tf·m  

+165.576 

(+173.075) 
+175.241 

5.84 

(1.25) 

 

The theoretical value of the bending moment in the girder corresponds to the time point t = 0.036 s from the 

start of the action of the pulse load; 

The theoretical value of the bending moment in the girder given in the brackets was determined taking into 

account the phase shift of the harmonics. 

 

Notes: In the analytical solution the natural periods T, amplitude values of the angular displacements UYij 

in the beam-to-column joints at the modal analysis, amplitude values of the bending moments in the girder 

of the first storey in the section of its connection with the left column according to the natural oscillation 

modes Mi and from the total pulse load M are determined according to the following formulas:  



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  569 

 

i
iT






2
; 

1

1
2

2

m

IE

h

i
i





 ; 

 

λi – are determined from the following expression: 
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Graph of the variation of the bending moments M (tf·m) with time t (s) 

in the girder of the first floor in the sections of its connections with the columns 

from the total pulse load 

taking into account 3 and 6 symmetric natural oscillation modes 

 



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  571 

 The significant deviation of the results (>5%) in the amplitude values of the bending moment is due 

to the fact that the summation over the modes in the source Analysis of Structures Subject to Pulse Actions 

is performed without taking into account the phase shift. Later recommendations contain the requirement to 

take into account the phase shift. In this case the deviation from the theory is 1.25%. 

 

Dynamic Analysis of Buildings and StructuresDynamic Analysis of Buildings and 

StructuresAnalysis of Structures Subject to Pulse ActionsAnalysis of Structures Subject to Pulse 

Actions 
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Seismic Response of a Beam according to the Linear Spectral Theory 

 

 
 

Objective: The linear spectral method (determination of the response of a structure subjected to the seismic 

action given by the accelerogram) 
 

Initial data files: LinSpectral.SPR – design model 

     DIN_B_RS.SPC – accelerogram 

 

Problem formulation: The simply supported beam of constant cross-section with the uniformly distributed 

mass μ is subjected to the kinematic excitation of supports according to the specified accelerogram: 

 














d
0s

t

t
1z)t(z  . 

It is necessary to determine (by the LST) seismic displacements and the corresponding maximum bending 

stress. 
 

References: John M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Companies, New 

York, 1964, p.262; 

 

Initial data: 

E = 3.0·107 psi = 2.1092·107 tf/m2 - elastic modulus; 

I = 333.333 in4 = 138.7448·10-6 m4 - cross-sectional moment of inertia of the beam.  

h = 14 in = 0.3556 m   - height of the cross-section of the beam; 

L = 240 in = 6.0960 m   - beam span length; 

μ = 0.2 lb·sec2/in2 = 0.1406 tf·s2/m2 - value of the uniformly distributed mass of the beam; 

0sz  = ±386.2200 in/sec2 = ±9.81 m/s2 - amplitude values of the acceleration of the supports according to 

       the accelerogram; 

td = 0.10 sec = 0.10 s   - half-interval of the kinematic excitation of supports; 

g = 386.2200 in/sec2 =9.81 m/s2  - gravitational acceleration; 

 

Finite element model: Design model – 32 bar elements of type 3. Boundary conditions of the simply 

supported ends of the beam are provided by imposing constraints in the direction of the degree of freedom 

Z. The dimensional stability of the design model is provided by imposing a constraint in the node of the 

cross-section along the symmetry axis of the beam in the direction of the degree of freedom UX. The 

distributed mass is specified by transforming the static load from the self-weight of the beam μ·g. 

The kinematic excitation of supports is described by the graph of the acceleration variation with time 

(accelerogram) and is given in the form of the action along the Z axis of the global coordinate system 

(direction cosines to the X, Y, Z axes: 0.00, 0.00, 1.00) with the scale factor to the values of the 

accelerogram equal to 1.00. The height of the beam structure in the model is directed along the Z axis of the 

global coordinate system. The dissipation factor is taken as  ξ = 0.000001. The intervals between the time 

points of the graph of the acceleration variation with time are equal to Δt = 0.01 s. When plotting the graph 

the acceleration is taken with the values  d0s ttn1z)t(z    at the time points n·Δt. The conversion 

factor for the added static loading is equal to k = 1.000 (mass generation). Number of nodes in the design 

model – 33. The determination of the natural oscillation modes and natural frequencies is performed by the 

method of subspace iteration. The matrix of concentrated masses is used in the calculation. 

 

 



V e r i f i c a t i o n  E x a m p l e s    

D y n a m i c s  573 

Results in SCAD 

The 1-st natural frequency and the 1-st natural oscillation mode of the beam, seismic bending stresses 

on the bottom face of the beam and displacements are determined in the result of the calculation. 

 
Design and deformed models 

 

 

Normal stresses in the middle of the span 

 

Comparison of solutions: 

 Source SCAD Deviation 
1-st natural frequency (Hz) 6,0979 6.0941 0,06 % 

Displacement of the beam in the middle of the span (m) 0,01422 0,01397  1.75 % 

Maximum normal stress (T/m2) 14172,70 13915,93 1.85 % 
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Non-uniform Damping. Return to the Static Equilibrium Position 

Objective: check that once the load ceases to change with time (we will call this value the static load 

component), the mechanical system subjected to the short-term loads and under damping returns to the 

static equilibrium position corresponding to the static load component. 

a

EI, γ

P(t)

c

 
Cantilever beam with a local damper 

 

Initial data files:  beam_local_damp_1.SPR - design model 

   FileTimeFile.txt - time function 

 

Problem formulation: 

The cantilever beam with a 0.2 × 0.5 m rectangular cross-section, length of a = 3 m, and the elastic modulus 

of E = 23053.5 MN/m2 is considered. The specific weight is γ = 0.0245 MN/m3. The beam is divided into 3 

finite elements. The matrix of concentrated masses is used. The maximum value of the force P is 0.01 MN. 

The load vs. time relationship is given in the figure: 

 
 

Finite element model: Design model – general type system, 6 general type bar elements (type 5) and one 

single-node damper (type 56). Number of nodes in the design model – 8. The matrix of concentrated masses 

is used in the calculation. 

 

Results in SCAD 

The vertical displacement of the cantilever end vs. time relationship at c = 0.01 MN∙s/m is given in the 

figure. 
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Vertical displacement of the cantilever end 

Only the damping caused by the local damper is taken into account. When a load is suddenly applied, 

transverse oscillations of the beam appear and are rapidly damped. The value of the deflection 

corresponding to the state of static equilibrium at the force value of 0.01 MN is circled in the figure. The 

exact solution of the corresponding static problem is wst = Pa3/(3EI) = – 0.0018739 m. When the dynamic 

problem is solved by the Newmark method, the integration step is taken as 0.001 s. The result is accurate to 

3 significant digits. This suggests that after the damping of oscillations we come to a static solution of this 

problem. At 0.4 s < t ≤ 0.5 s the load decreases to zero. Oscillations appear again and are rapidly damped. 

At t = 1 s the value of the normal deflection is w = –1.533∙10–7 m, which is a good approximation of zero, 

the exact value of the no-load static deflection, in comparison with the maximum (absolute value) 

deflection wmax = – 3.024∙10–3 m. 

Thus, the numerical solution obtained by the Newmark method, after the damping of oscillations, 

converges to the static solution of this problem, which confirms the reliability of the obtained results.  
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Non-uniform Damping 

 

Objective: comparison of the solution of the problem (Fig. 1) by the Newmark method (SCAD) with the 

numerical solution obtained in MathCAD. 

 

 
Figure 1. Two rigid weightless bodies are connected to each other and to the rigid support by springs with 

the stiffness k. The inertial properties of the system are represented by concentrated masses m. The local 

damper with the damping ratio c connects the end mass with the support. 

 

Initial data files:  Test_local_damping.SPR- design model 

   TimeHist_1.txt - time function 

   local_damping.xmcd – MathCAD file 

 

Finite element model: Design model – general type system, two finite elements of the elastic constraint 

(type 55), two finite elements of the rigid body (type 100) and one single-node damper (type 56). Number 

of nodes in the design model – 5. The matrix of concentrated masses is used in the calculation. 

 

Solution description: 

A deformed model is shown in Fig. 1. The following kinematic relations follow from it: 

a

ww

a

ww
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w 12
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  ,                                               (1) 

Here w1, w2 – normal deflections, and ψ1, ψ2 – deflection angles of rigid bars. The total potential energy 

of the system is given in the form 
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wPkkWПЭ   ,                                                      (2) 

where П and W – potential energy of elastic deformations and change in the potential of external forces. 

The kinetic energy of the system Т is given below: 
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wmwmT    .                                                                              (3) 
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Applying Hamilton's variational principle 

 

2

1

0

t

t

Ldt  ,                                                                                       (4) 

where L = T – Э, and adding the viscous friction forces we obtain the following equations of motion: 

 tpKxxCxM    ,                                                                         (5) 
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The system of equations (5) is solved by MathCAD using the rkfixed procedure, which implements the 

fourth-order Runge-Kutta method. The function P(t) is given by the following algorithm: 

P t( ) p 1 t 0.01if

p 100 t 2 t 0.01 t 0.02if

p 0 t 0.02if

preturn



.                                                  (7) 

The integration interval is taken as t ∈ [0, 1], a = 1 m, k = 1000 MN∙m/rad, m = 106 kg, c = 10 

MN∙s/m, and the number of points approximating the unknown function is npoint = 1000. The Runge-Kutta 

method is an explicit integration method, therefore, it is conditionally stable. At npoint = 10 the unstable 

behavior of the solution is observed, the results for npoint = 100 and npoint = 1000 are slightly different at 

the right end of the interval, and the results for npoint = 1000 and npoint = 10000 are virtually identical. 

Therefore, we believe that the numerical solution for npoint = 1000 leads to virtually accurate results. 

The SCAD design model is shown in Fig. 2, and the comparison of the above solution with the results 

obtained by the Newmark method (SCAD) is given in Fig. 4. When the Newmark method is used, the 

integration step is taken as Δt = 0.0001 s. 

The load vs. time relationship corresponding to (7) is given in Fig. 3. 
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Figure 2. SCAD design model 

 

 

Figure 3. Load vs. time relationship 
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Figure 4. Vertical displacement of the cantilever end 

At the time point t = 0.1 s the displacement of the cantilever end reaches a value close to the maximum 

(absolute value) one, and the displacement obtained by MathCAD is w2 = – 6.5393∙10–4 (Fig. 1), and the 

displacement obtained by the Newmark method is w3 = – 6.5170∙10–4 (Fig. 3).  

Thus, the results of numerical solutions obtained by MathCAD and the Newmark method (SCAD) are 

virtually identical which confirms the reliability of both these methods. 
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Linear Stabi l i ty  
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Stability of a Simply Supported Beam Subjected to a Concentrated Longitudinal 

Force  
 

 

 
 

Objective: Determination of the critical value of a concentrated longitudinal force acting on a simply 

supported beam corresponding to the moment of its buckling. 

  

Initial data file: CB01_v11.3.SPR 

 

Problem formulation: The beam of square cross-section simply supported on both ends is subjected to a 

concentrated longitudinal force P. Determine the critical value of the concentrated longitudinal force Pcr, 

corresponding to the moment of the buckling of the beam. 

 

References: D. O. Brush and B. O. Almroth, Buckling of Bars, Plates and Shells, New York, McGraw-Hill 

Co., 1975, p. 22. 

  

Initial data: 

E = 3.0·107 Pa  - elastic modulus,  

L = 50.0 m  - beam length; 

h = 1.0 m  - side of the cross-section of the beam; 

P = 1.0·103 N  - initial value of the concentrated longitudinal force. 

 

Finite element model: Design  model – plane frame, 10 elements of type 10. The spacing of the finite 

element mesh along the longitudinal axis (along the X axis of the global coordinate system) is 5.0 m. 

Boundary conditions of the roller supported (left) end are provided by imposing constraints in the directions 

of the degrees of freedom X, Z and those of the simply supported (right) end are provided by imposing 

constraints in the direction of the degree of freedom Z. The action with the initial value of the concentrated 

longitudinal force P is specified on the simply supported (right) end. Number of nodes in the design model 

– 11. 

 

Results in SCAD 

 
Design model 

 

 

 
Buckling mode 
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Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

Critical value of the concentrated longitudinal force Pcr, 

N 
9869.6 

9.8696∙1000 = 

= 9869.6 
0.00 

 

Notes: In the analytical solution the critical value of the concentrated longitudinal force Pcr is determined 

according to the following formula: 
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Stability of a Clamped Beam Subjected to a Concentrated Longitudinal Force  
 

 

 

Objective: Determination of the critical value of a concentrated longitudinal force acting on a clamped 

beam corresponding to the moment of its buckling. 

  

Initial data file: CB02_v11.3.SPR 

 

Problem formulation: The beam of square cross-section clamped on both ends is subjected to a 

concentrated longitudinal force P. Determine the critical value of the concentrated longitudinal force Pcr, 

corresponding to the moment of the buckling of the beam. 

 

References: D. O. Brush and B. O. Almroth, Buckling of Bars, Plates and Shells, New York, McGraw-Hill 

Co., 1975, p. 22. 

  

Initial data: 

E = 3.0·107 Pa  - elastic modulus,  

L = 50.0 m  - beam length; 

h = 1.0 m  - side of the cross-section of the beam; 

P = 1.0·104 N  - initial value of the concentrated longitudinal force. 

 

Finite element model: Design  model – plane frame, 10 elements of type 10. The spacing of the finite 

element mesh along the longitudinal axis (along the X axis of the global coordinate system) is 5.0 m. 

Boundary conditions of the clamped (left) end are provided by imposing constraints in the directions of the 

degrees of freedom X, Z, UY and those of the (right) end with a clamping floating along the beam axis are 

provided by imposing constraints in the directions of the degrees of freedom Z, UY. The action with the 

initial value of the concentrated longitudinal force P is specified on the (right) end with a clamping floating 

along the beam axis. Number of nodes in the design model – 11. 

 

Results in SCAD 

 
Design model 

 
Buckling mode 

 

    

Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

Critical value of the concentrated longitudinal 

force Pcr, N 
39478.4 

3.94783∙1000 = 

=39478.3 
0.00 

Notes: In the analytical solution the critical value of the concentrated longitudinal force Pcr is determined 

according to the following formula: 
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Stability of a Cantilever Column with a Step Change in Cross-Section Subjected to 

Longitudinal Compressive Forces Applied to the Intermediate and End Sections 

 

 
 

Objective: Determination of the critical values of longitudinal compressive forces applied to the 

intermediate and end sections of the cantilever column with a step change in cross-section corresponding to 

the moment of its buckling. Determination of the unsupported lengths of the column steps. 
  

Initial data files: 
File name Description 

Leg_of_varying_section_Beam.SPR Bar model 

Leg_of_varying_section_Shell.SPR Shell element model 

 

 Problem formulation: The cantilever column with a step change in cross-section is subjected to 

longitudinal forces Pi, applied to the intermediate and end sections. Determine the critical values of 

the longitudinal compressive forces Pcri, corresponding to the moment of the buckling of the 

cantilever column. Determine the unsupported lengths of the column steps L0i.   
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 166. 

S.D. Ponomarev, V.L. Biederman, K.K. Likharev, V.M. Makushin, N.N. Malinin, V.I. Feodos’yev, 

Fundamentals of Modern Methods for Strength Analysis in Mechanical Engineering. Dynamic Analysis. 

Stability. Creep. Moscow, Mashgiz, 1952, p. 543, 555. 
  

Initial data: 

L1 = 10.0 m  - length of the first (upper) step of the column; 

L2 = 10.0 m  - length of the second (middle) step of the column; 

L3 = 10.0 m  - length of the third (lower) step of the column; 

D1 = 2.0 m  - outer diameter of the circular hollow section of the first step of the column; 

D2 = 2.0 m  - outer diameter of the circular hollow section of the second step of the column; 

D3 = 2.0 m  - outer diameter of the circular hollow section of the third step of the column; 

t1 = 0.01 m  - thickness of the circular hollow section of the first step of the column; 

t2 = 0.02 m  - thickness of the circular hollow section of the second step of the column; 

t3 = 0.04 m  - thickness of the circular hollow section of the third step of the column; 

E = 2.06·108 kN/m2 - elastic modulus of the column material; 

ν = 0.3   - Poisson’s ratio; 

P1 = 1.0·10
4 kN/m2 - initial value of the compressive longitudinal force applied to the upper edge of the 

first step of the column; 

P2 = 1.0·104 kN/m2 - initial value of the compressive longitudinal force applied to the upper edge of the 

second step of the column; 

P3 = 2.0·10
4 kN/m2 - initial value of the compressive longitudinal force applied to the upper edge of the 

third step of the column. 
 

Finite element model: Two design models are considered: 

Bar model, design model – plane frame, 30 bar elements of the plane frame of type 2. The spacing of the 

finite element mesh along the longitudinal axis of the column (along the X1 axes of the local coordinate 

systems) is 1.0 m. Boundary conditions are provided by imposing constraints on the clamped node of the 
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column in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. Concentrated forces with the 

initial values P1, P2, P3 are specified in the nodes of the upper edges of the column steps. Number of nodes – 

31.  

Shell element model, design model – general type system, 60400 four-node shallow shell elements allowing 

for shear of type 150. The spacing of the finite element mesh of the column in the circumferential direction 

(along the X1 axes of the local coordinate systems) is 3.6°, and along the longitudinal axis (along the Y1 

axes of the local coordinate systems) is 0.0625 m. Horizontal ring stiffeners 0.25 m wide are arranged with 

a vertical spacing of 1.00 m inside the column in order to prevent the local buckling of its shell. The 

spacing of the finite element mesh of the stiffeners in the radial direction (along the Y1 axes of the local 

coordinate systems) is 0.0625 m. Boundary conditions are provided by imposing constraints on the nodes of 

the clamped edge in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. Loads uniformly 

distributed along the line with the initial values P1/(π·D1), P2/(π·D2), P3/(π·D3) are specified in the nodes of 

the upper edges of the column steps. Number of nodes – 60500.  

 

Results in SCAD 

    
 

Bar model 
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Shell element model 

 

 

  
 

1-st buckling mode for the bar model 
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1-st buckling mode for the shell element model 

 

 

 
 

2-nd buckling mode for the shell element model  
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Comparison of solutions: 

Parameter Theory 

SCAD 

Bar model Deviation, % 
Shell element 

model 
Deviation, % 

Critical value of the 

concentrated longitudinal 

force applied to the upper 

edge of the first step Pcr1, kN 

32978 

3.297920∙ 

·10000 = 

= 32979 

0.00 

3.394470∙ 

·10000 = 

= 33945 

2.93 

Critical value of the 

concentrated longitudinal 

force applied to the upper 

edge of the second step Pcr2, 

kN 

32978 

3.297920∙ 

·10000 = 

= 32979 

0.00 

3.394470∙ 

·10000 = 

= 33945 

2.93 

Critical value of the 

concentrated longitudinal 

force applied to the upper 

edge of the third step Pcr3, 

kN 

65957 

3.297920∙ 

·20000 = 

= 65958 

0.00 

3.394470∙ 

·20000 = 

= 67890 

2.93 

Unsupported length of the 

first column step L01, m 
43.680 43.681 0.00 — — 

Unsupported length of the 

second column step L02, m 
43.353 43.353 0.00 — — 

Unsupported length of the 

third column step L03, m 
42.704 42.705 0.00 — — 

 

Notes: In the analytical solution the critical values of the longitudinal compressive forces Pcri, 

corresponding to the moment of the buckling of the cantilever column and unsupported lengths of the 

column steps L0i can be determined according to the following formulas: 
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  , where 

 

k – stability factor of safety of the system is determined on the basis of the condition of equality to zero of 

the determinant of the system of governing equations: 
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Stability of the System of Three Equally Loaded Columns of Different Rigidity 

Hingedly Interconnected by Girders 

 

 
 

Objective: Determination of the critical value of the concentrated longitudinal forces of the same value 

acting on the system of three columns of different rigidity hingedly interconnected by girders corresponding 

to the moment of its buckling. Determination of the unsupported lengths of the columns. 
  

Initial data file: Frame_5a1.spr 
 

Problem formulation: Three columns of different rigidity embedded into the foundation and hingedly 

interconnected into a system by girders are subjected to the action of concentrated longitudinal forces of the 

same value N. The axial stiffness values of the girders and columns are assumed to be significant in order to 

exclude their effect on the solution of the problem. Determine the critical value of the concentrated 

longitudinal forces Ncr, corresponding to the moment of buckling of the system. Determine the unsupported 

lengths of the columns H0.   
 

References: N. P. Melnikov, V. M. Vakhurkin, B. G. Lozhkin, Stability Analysis of Bar Systems. 

Reference data and examples, Moscow, Design Institute of Steel Structures, Issue 1395, 1954, p. 34. 
  

Initial data: 

L = 5.0 m   - length of the girders of the frame; 

H = 7.5 m   - height of the columns of the frame; 

EA = 1.0·109 kN  - axial stiffness of the columns; 

EIС1 = 1.14·10
4 kN∙m2  - bending stiffness of the left column; 

EIС2 = 2.28·10
5 kN∙m2  - bending stiffness of the middle column; 

EIС3 = 4.56·10
5 kN∙m2  - bending stiffness of the right column; 

N = 1.0·103 kN - initial value of the concentrated longitudinal forces on the columns of the 

system. 
 

Finite element model: Design  model – plane frame, columns – 45 elements of type 2 (the spacing of the 

finite element mesh along the longitudinal axes is 0.5 m), girders – 2 elements of type 100 (three-node rigid 

bodies with the constraints in the directions X and Z, master nodes in the middle of the girder spans, and 

slave nodes on the connected columns). Boundary conditions are provided by imposing constraints on the 

support nodes of the columns in the directions of the degrees of freedom X, Z, UY. The action with the 

initial value of the concentrated longitudinal forces N is specified in the beam-to-column joints. Number of 

nodes in the design model – 50. 
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Results in SCAD 

 

 
Design model 

 
 

Buckling mode 

  

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

Critical value of the concentrated  

longitudinal forces Ncr, kN 

1159.2 

(1166.8) 

1.1591∙1000 = 

= 1159.1 

0.01 

(0.66) 

Unsupported length of the left column (С1) H0, m 
9.8522 

(9.8198) 
9.8523 

0.00 

(0.33) 

Unsupported length of the middle column (С2) H0, 

m 

13.9331 

(13.8873) 
13.9332 

0.00 

(0.33) 

Unsupported length of the right column (С3) H0, m 
19.7043 

(19.6396) 
19.7042 

0.00 

(0.33) 

The values of the approximate solution by the equivalent frame method are given in brackets. 

 

Notes: In the exact analytical solution the critical value of the concentrated longitudinal forces Ncr, 

corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H0 can 

be determined according to the following formulas: 

 

,
H
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2

1С2
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where ν (critical load parameter) is determined by solving the transcendental equation: 
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In the approximate analytical solution the critical value of the concentrated longitudinal forces Ncr, 

corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H0 can 

be determined according to the following formulas: 
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Stability of the System of Three Differently Loaded Columns of the Same Rigidity 

Hingedly Interconnected by Girders 

 

 
 

Objective: Determination of the critical values of the concentrated longitudinal forces with different values 

corresponding to the moment of buckling of the system in the structure of three columns of the same 

rigidity hingedly interconnected by girders. Determination of the unsupported lengths of the columns.  
  

Initial data file: Frame_5a2.spr 
 

Problem formulation: Three columns of the same rigidity embedded into the foundation and hingedly 

interconnected into a system by girders are subjected to the action of concentrated longitudinal forces with 

different values k∙N. The axial stiffness values of the girders and columns are assumed to be significant in 

order to exclude their effect on the solution of the problem. Determine the critical values of the 

concentrated longitudinal forces Ncr, corresponding to the moment of buckling of the system. Determine the 

unsupported lengths of the columns H0.  
 

References: N. P. Melnikov, V. M. Vakhurkin, B. G. Lozhkin, Stability Analysis of Bar Systems. 

Reference data and examples, Moscow, Design Institute of Steel Structures, Issue 1395, 1954, p. 36. 
  

Initial data: 

L = 5.0 m   - length of the girders of the frame; 

H = 7.5 m   - height of the columns of the frame; 

EA = 1.0·109 kN  - axial stiffness of the columns; 

EIС = 2.28·105 kN∙m2  - bending stiffness of the columns; 

1∙N = 0.5·103 kN - initial value of the concentrated longitudinal force on the left column; 

2∙N = 1.0·103 kN - initial value of the concentrated longitudinal force on the middle column; 

4∙N = 2.0·103 kN - initial value of the concentrated longitudinal force on the right column. 
 

Finite element model: Design  model – plane frame, columns – 45 elements of type 2 (the spacing of the 

finite element mesh along the longitudinal axes is 0.5 m), girders – 2 elements of type 100 (three-node rigid 

bodies with the constraints in the directions X and Z, master nodes in the middle of the girder spans, and 

slave nodes on the connected columns). Boundary conditions are provided by imposing constraints on the 

support nodes of the columns in the directions of the degrees of freedom X, Z, UY. The action with the 

initial values of the concentrated longitudinal forces k∙N is specified in the beam-to-column joints. Number 

of nodes in the design model – 50. 
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Results in SCAD 

 
Design model 

 
 

Buckling mode 

  

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

Critical value of the concentrated longitudinal force 

on the left column (С1) Ncr, kN 

426.6 

(428.6) 

0.853157∙500 = 

= 426.6 

0.00 

(0.47) 

Critical value of the concentrated longitudinal force 

on the middle column (С2) Ncr, kN 

853.2 

(857.2) 

0.853157∙1000 = 

= 853.2 

0.00 

(0.47) 

Critical value of the concentrated longitudinal force 

on the right column (С3) Ncr, kN 

1706.3 

(1714.5) 

0.853157∙2000 = 

= 1706.3 

0.00 

(0.48) 

Unsupported length of the left column (С1) H0, m 
22.9676 

(22.9129) 
22.9677 

0.00 

(0.24) 

Unsupported length of the middle column (С2) H0, 

m 

16.2405 

(16.2019) 
16.2406 

0.00 

(0.24) 

Unsupported length of the right column (С3) H0, m 
11.4838 

(11.4564) 
11.4839 

0.00 

(0.24) 

The values of the approximate solution by the equivalent frame method are given in brackets  

 

Notes: In the exact analytical solution the critical values of the concentrated longitudinal forces Ncr, 

corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H0 can 

be determined according to the following formulas: 
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where ν (critical load parameter) is determined by solving the transcendental equation: 
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In the approximate analytical solution the critical value of the concentrated longitudinal forces Ncr, 

corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H0 can 

be determined according to the following formulas: 
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Stability of the System of Three Differently Loaded Columns of Different Rigidity 

Interconnected by Girders Infinitely Rigid in Bending 

 

 
 

Objective: Determination of the critical values of the concentrated longitudinal forces with different values 

acting on the system of three columns of different rigidity interconnected by girders infinitely rigid in 

bending, corresponding to the moment of its buckling. Determination of the unsupported lengths of the 

columns. 
  

Initial data file: Frame_5б.spr 
 

Problem formulation: Three columns of different rigidity embedded into the foundation and interconnected 

into a system by girders infinitely rigid in bending are subjected to the action of concentrated longitudinal 

forces with different values k∙N. The axial stiffness values of the girders and columns are assumed to be 

significant in order to exclude their effect on the solution of the problem. Determine the critical values of 

the concentrated longitudinal forces Ncr, corresponding to the moment of buckling of the system. Determine 

the unsupported lengths of the columns H0.   
 

References: N. P. Melnikov, V. M. Vakhurkin, B. G. Lozhkin, Stability Analysis of Bar Systems. 

Reference data and examples, Moscow, Design Institute of Steel Structures, Issue 1395, 1954, p. 37. 
  

Initial data: 

L = 5.0 m   - length of the girders of the frame; 

H = 7.5 m   - height of the columns of the frame; 

EA = 1.0·109 kN  - axial stiffness of the columns; 

EIС1 = 1.14·10
5 kN∙m2  - bending stiffness of the left column; 

EIС2 = 2.28·10
5 kN∙m2  - bending stiffness of the middle column; 

EIС3 = 4.56·10
5 kN∙m2  - bending stiffness of the right column; 

1∙N = 1.0·103 kN - initial value of the concentrated longitudinal force on the left column; 

2∙N = 2.0·103 kN - initial value of the concentrated longitudinal force on the middle column; 

3∙N = 3.0·103 kN - initial value of the concentrated longitudinal force on the right column. 
 

Finite element model: Design  model – plane frame, columns – 45 elements of type 2 (the spacing of the 

finite element mesh along the longitudinal axes is 0.5 m), girders – 2 elements of type 100 (three-node rigid 

bodies with the constraints in the directions X, Z and UY, master nodes in the middle of the girder spans, 

and slave nodes on the connected columns). Boundary conditions are provided by imposing constraints on 

the support nodes of the columns in the directions of the degrees of freedom X, Z, UY. The action with the 

initial values of the concentrated longitudinal forces k∙N is specified in the beam-to-column joints. Number 

of nodes in the design model – 50. 
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Results in SCAD 

 
Design model 

 
 

Buckling mode 

  

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

Critical value of the concentrated longitudinal force 

on the left column (С1) Ncr, kN 

2332.8 

(2333.6) 

2.332764∙1000 = 

= 2332.7 

0.00 

(0.04) 

Critical value of the concentrated longitudinal force 

on the middle column (С2) Ncr, kN 

4665.6 

(4667.2) 

2.332764∙2000 = 

= 4665.5 

0.00 

(0.04) 

Critical value of the concentrated longitudinal force 

on the right column (С3) Ncr, kN 

6998.5 

(7000.8) 

2.332764∙3000 = 

= 6998.3 

0.00 

(0.04) 

Unsupported length of the left column (С1) H0, m 
6.9448 

(6.9437) 
6.9449 

0.00 

(0.02) 

Unsupported length of the middle column (С2) H0, 

m 

6.9448 

(6.9437) 
6.9449 

0.00 

(0.02) 

Unsupported length of the right column (С3) H0, m 
8.0192 

(8.0178) 
8.0193 

0.00 

(0.02) 

The values of the approximate solution by the equivalent frame method are given in brackets 

 

Notes: In the exact analytical solution the critical values of the concentrated longitudinal forces Ncr, 

corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H0 can 

be determined according to the following formulas: 
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where ν (critical load parameter) is determined by solving the transcendental equation: 
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In the approximate analytical solution the critical value of the concentrated longitudinal forces Ncr, 

corresponding to the moment of buckling of the system, and the unsupported lengths of the columns H0 can 

be determined according to the following formulas: 
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 Stability of the Frame of Two Simply Supported Equally Loaded Rigid Columns 

Rigidly Interconnected by a Girder 

 

 
 

Objective: Determination of the critical value of the concentrated longitudinal forces of the same value 

acting on two simply supported equally loaded rigid columns of the frame rigidly interconnected by a girder 

corresponding to the moment of buckling of the frame. 
  

Initial data file:: Frame_leg_hard.SPR 
 

Problem formulation: Two simply supported rigid columns of the frame rigidly interconnected by a girder 

are subjected to the action of concentrated longitudinal forces of the same value N. The axial stiffness of the 

girder is assumed to be significant in order to exclude its effect on the solution of the problem. Determine 

the critical value of the concentrated longitudinal forces Ncr, corresponding to the moment of buckling of 

the frame.   
 

References: A. V. Perelmuter, V. I. Slivker, Handbook of Mechanical Stability in Engineering. Volume 2. 

Stability of Elastically Deformable Mechanical Systems, Moscow, SACD SOFT, 2010, p. 173. 
  

Initial data: 

L = 10.0 m   - length of the girder of the frame; 

H = 6.0 m   - height of the columns of the frame; 

EA = 1.0·108 t   - axial stiffness of the girder; 

EI = 1.0·104 t∙m2  - bending stiffness of the girder; 

N = 1.0·103 t - initial value of the concentrated longitudinal forces on the columns of the 

frame. 
 

Finite element model: Design  model – plane frame, columns – 2 elements of type 100 (two-node rigid 

bodies with the constraints in the directions X, Z, UY, support master nodes and slave nodes on the 

adjacent girder), girder – 10 elements of type 2 (the spacing of the finite element mesh along the 

longitudinal axes is 1.0 m). Boundary conditions are provided by imposing constraints on the support nodes 

of the columns in the directions of the degrees of freedom X and Z. The action with the initial value of the 

concentrated longitudinal forces N is specified in the beam-to-column joints. Number of nodes in the design 

model – 13. 
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Results in SCAD 

 

 
Design model 

 
 

Buckling mode 

  

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

Critical value of the concentrated 

longitudinal forces Ncr, t 
1000 

0.999975∙1000 = 

= 1000 
0.00 

 

Notes: In the exact analytical solution the critical value of the concentrated longitudinal forces Ncr, 

corresponding to the moment of buckling of the frame can be determined according to the following 

formula: 
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Stability of a Three-Span Two-Storey Frame Subjected to Concentrated 

Longitudinal Forces Applied to the Columns in the Joints with Girders 

 

 
 

Objective: Determination of the critical value of the concentrated longitudinal forces acting on the columns 

of a three-span two-storey frame in the joints with the girders corresponding to the moment of its buckling. 
  

Initial data file: 6.1.spr 
 

Problem formulation: The three-span two-storey frame is subjected to the action of concentrated 

longitudinal forces P applied to the columns in the joints with the girders. The beam-to-column and 

column-to-foundation joints are rigid. The axial stiffness values of the girders and columns are assumed to 

be significant in order to exclude their effect on the solution of the problem. Determine the critical value of 

the concentrated longitudinal forces Pcr, corresponding to the moment of buckling of the frame. 
 

References: N. V. Kornoukhov, Strength and Stability of Framework Structures, Moscow, Stroyizdat Publ., 

1949, p. 259. 
  

Initial data: 

L = 8.0 m   - length of the girders of the frame; 

H = 4.0 m   - height of the columns of the frame; 

EA = 1.0·1010 kN  - axial stiffness of the structural members of the frame; 

EIС1 = 8.00·10
5 kN∙m2  - bending stiffness of the columns of the first storey; 

iС1 = EIС1/H = 2.0·10
5 kN∙m - bending stiffness of the columns of the first storey per running meter; 

EIС2 = 4.00·10
5 kN∙m2  - bending stiffness of the columns of the second storey; 

iС2 = EIС2/H = 1.00·10
5 kN∙m - bending stiffness of the columns of the second storey per running meter; 

EIР1 = 13.28·10
5 kN∙m2  - bending stiffness of the girders of the first storey; 

iР1 = EIР1/L = 1.66·10
5 kN∙m - bending stiffness of the girders of the first storey per running meter; 

EIР2 = 8.00·10
5 kN∙m2  - bending stiffness of the girders of the second storey; 

iР2 = EIР2/L = 1.00·10
5 kN∙m - bending stiffness of the girders of the second storey per running meter; 

P = 1.0·105 kN - initial value of the concentrated longitudinal forces on the columns of the 

frame in the joints with the girders. 
 

Finite element model: Design model – plane frame, 80 elements of type 2. The spacing of the finite 

element mesh along the longitudinal axes of the structural members (along the X1 axes of the local 

coordinate systems) is 1.0 m. Boundary conditions are provided by imposing constraints on the support 

nodes of the frame in the directions of the degrees of freedom X, Z, UY. The action with the initial value of 

the concentrated longitudinal forces P is specified in the beam-to-column joints. Number of nodes in the 

design model – 78. 
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Results in SCAD 

 
Design model 

 
 

Buckling mode 

 

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

Critical value of the concentrated 

longitudinal forces Pcr, kN 
156250 

1.5625∙100000 = 

= 156250 
0.00 

 

Notes: In the analytical solution the critical value of the concentrated longitudinal forces Pcr, corresponding 

to the moment of buckling of the frame can be determined according to the following formula: 
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Stability of a Circular Two-Hinged Arch of a Constant Cross-Section Subjected to 

Hydrostatic Pressure 

 

 
 

Objective: Determination of the critical value of the hydrostatic pressure applied to a circular two-hinged 

arch of a constant cross-section corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

Arch_hinged_alfa_30.SPR Design model with the central angle of the arc 2∙ω = 2∙30 ° 

Arch_hinged_alfa_90.SPR Design model with the central angle of the arc 2∙ω = 2∙90 ° 

 

Problem formulation: The circular two-hinged arch of a constant cross-section is subjected to the action of 

the uniformly distributed radial load q. Determine the critical value of the uniformly distributed radial load 

qcr, corresponding to the moment of buckling of the arch. It is assumed that when the arch buckles, the load 

elements follow the axis of the arch staying parallel to their former directions, and therefore the 

displacement of the pressure line takes place at the buckling of the arch. Compare the result of the 

calculation with the solution (S.P. Timoshenko), when the load action lines do not change at the distortion 

of the arch axis and the pressure line does not move at the buckling of the arch. 
 

References: N. V. Kornoukhov, Strength and Stability of Framework Structures, Moscow, Stroyizdat Publ., 

1949, p. 212. 
  

Initial data: 

R = 60.0 m (120.0 m)  - radius of the longitudinal axis of the arch; 

2∙ω = 2∙90 ° (2∙30 °)  - central angle of the arc; 

EA = 2.16·106 kN  - axial stiffness of the arch; 

EI = 2.592·105 kN∙m2  - bending stiffness of the arch; 

q = 1.0 kN/m - initial value of the uniformly distributed radial load on the arch. 
 

Finite element model: Design  model – plane frame, 36 elements of type 2. The arch is divided into finite 

elements along its longitudinal axis (along the X1 axes of the local coordinate systems) by the step of the 

central angle of 5.0 ° (1.667 °). Boundary conditions are provided by imposing constraints on the support 

nodes of the arch in the directions of the degrees of freedom X, Z. The action with the initial value of the 

uniformly distributed radial load q is specified in the directions opposite to the Z1 axes of the local 

coordinate systems of the elements. Number of nodes in the design model – 37. 
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Results in SCAD 

 
 

Design model with the central angle of the arc 2·90 ° 

 
 

Design model with the central angle of the arc 2·30 ° 

 

 

 

 
 

Buckling mode for the model with the central angle of the arc 2·90 ° 

 

 
Buckling mode for the model with the central angle of the arc 2·30 ° 
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Comparison of solutions: 

Critical value of the uniformly distributed radial load on the arch qcr, kN/m 

Design model Theory SCAD Deviation, % 

with the central angle of the arc 2∙90 ° 

3.925 

(3.600) 

[3.932] 

3.933914∙1.0 = 

= 3.934 

0.23 

(9.28) 

[0.05] 

with the central angle of the arc 2∙30 ° 

5.391 

(5.250) 

[5.392] 

5.393093∙1.0 = 

= 5.393 

0.04 

(2.72) 

[0.02] 

Theoretical values calculated according to the conditions of this example (according to N. V. Kornoukhov) are given 

without brackets; 

Theoretical values calculated according to the conditions of S. P. Timoshenko are given in round brackets; 

Theoretical values calculated for a two-hinged frame made up of 2∙m=36 equal chords inscribed in an arc of a circle 

and subjected to the action of equal radial forces in all its nodes are given in square brackets. 

 

Notes: In the analytical solution according to the conditions of N. V. Kornoukhov the critical value of the 

uniformly distributed radial load qcr, corresponding to the moment of buckling of the arch can be 

determined according to the following formula: 
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.0
tg

2cos1
2sin

2

3
2sin

2

1

1

1 3

22

































 





 

 
In the analytical solution according to the conditions of S. P. Timoshenko the critical value of the uniformly 

distributed radial load qcr, corresponding to the moment of buckling of the arch can be determined 

according to the following formula: 
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In the analytical solution for a two-hinged frame made up of equal chords inscribed in an arc of a circle, the 

critical value of the uniformly distributed radial load qcr, corresponding to its moment of buckling can be 

determined according to the following formula: 
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where υ (critical load parameter) is determined by solving the transcendental equation: 
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2∙m - number of chords of the frame, 

A - central angle of one chord of the frame, 

L - length of one chord of the frame: 

  Acos12RL  . 
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Stability of In-Plane Bending of a Cantilever Strip of a Rectangular Cross-Section 

by a Shear Force Applied at the Free End 

 

 
 

Objective: Determination of the critical value of the concentrated shear force applied at the free end of a 

cantilever strip of a rectangular cross-section corresponding to the moment of its buckling. 
  

Initial data files: 

File name Description 

6.2_О_Р_b_0.01.SPR Thickness of the cantilever strip cross-section – 0.01 m 

6.2_О_Р_b_0.1.SPR Thickness of the cantilever strip cross-section – 0.10 m 

6.2_О_Р_b_1.0.SPR Thickness of the cantilever strip cross-section – 1.00 m 

 

Problem formulation: The cantilever strip of a rectangular cross-section is subjected to the action of the 

concentrated shear force P, applied at its free end. Determine the critical value of the concentrated shear 

force Pcr, corresponding to the moment of buckling of the cantilever strip.   
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells. — Moscow. — Nauka. — 1971. — p. 

291. 

A.S. Volmir. Stability of Deformable Systems. — Moscow. — Nauka. — 1967. — p.211; 

A. V. Perelmuter, V. I. Slivker, Handbook of Mechanical Stability in Engineering. — Volume 1. — 

Moscow. — SCAD SOFT. — 2010. — p. 465; 

A. V. Perelmuter, V. I. Slivker, Handbook of Mechanical Stability in Engineering. — Volume 2. — 

Moscow. — SCAD SOFT. — 2010. — p. 17. 
  

Initial data: 

L = 10.0 m   - length of the cantilever strip; 

h = 1.0 m   - height of the cantilever strip cross-section; 

b = 0.01; 0.10; 1.00 m  - thickness of the cantilever strip cross-section; 

E = 3.0·107 kN/m2  - elastic modulus of the cantilever strip material; 

ν = 0.2    - Poisson’s ratio; 

P1 = 1.0; 1.0·10
3; 1.0·105 kN - initial value of the concentrated shear force applied at the free end in the 

plane of the strip; 

P = 1.0; 1.0·103; 1.0·105 kN - initial value of the concentrated shear force applied at the free end out of 

the plane of the strip. 
 

Finite element model: Design model – general type system. Reissner-Mindlin shell element model, 2560 

eight-node elements of type 150, the spacing of the finite element mesh along the longitudinal axis and 

along the height of the strip is 0.0625 m. Boundary conditions are provided by imposing constraints on the 

nodes of the clamped end of the strip in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The 

action with the initial value of the concentrated shear force P is specified in the node of the longitudinal axis 

of the strip on the free end. Number of nodes in the design model – 8033. 

The stability of in-plane bending of the cantilever strip subjected to the shear force applied at the free end in 

the plane of the strip is checked. 
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Results in SCAD 
 

 
Design model. Reissner-Mindlin shell element model  

 

 

 
 

Buckling mode. Reissner-Mindlin shell element model 

 

 

Comparison of solutions: 

The critical value of the concentrated shear force P1cr (kN), 

applied at the free end in the plane of the strip 

Design model Theory SCAD Deviation, % 

Reissner-Mindlin 

shell element 

b = 0.01 m 
0.12901 

(0.12901) 
0.134811∙1 = 0.13481 

4.50 

(4.50) 

b = 0.10 m 
125.28 

(124.66) 
0.130559∙1000 = 130.56 

4.21 

(4.73) 

b = 1.00 m 
84048 

(59431) 
0.821978∙100000 = 82198 

2.20 

(38.31) 

 

Theoretical values calculated taking into account the effect of the bending stiffness in the shear force plane are given 

in brackets 

 

 

Notes: In the analytical solution the critical value of the concentrated shear force Pcr, corresponding to the 

moment of buckling of the cantilever strip can be determined according to the following formulas: 

 

without taking into account the effect of the bending stiffness in the shear force plane 
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taking into account the effect of the bending stiffness in the shear force plane 
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Stability of a Cantilever Beam of a Square Cross-Section Subjected to a 

Concentrated Longitudinal Compressive Force Centrally Applied at the Free End 

(Central Compression) 
 

 
Objective: Determination of the first two critical values of a concentrated longitudinal compressive force 

centrally applied at the free end of a cantilever beam of a square cross-section corresponding to the 

moments of its buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_1_Bar.SPR Bar model 

Stability_Bar_1_Shell.SPR Shell element model 

Stability_Bar_1_Solid.SPR Solid element model 

 

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the 

concentrated longitudinal compressive force P, centrally applied at its free end. Determine the first two 

critical values of the concentrated longitudinal compressive force Pcr1 and Pcr2, corresponding to the 

moments of buckling of the cantilever beam.   
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.23, 193; 
  

Initial data: 

L = 10.0 m   - length of the cantilever beam; 

h = b = 1.0 m   - side of the square cross-section of the cantilever beam; 

E = 3.0·107 kN/m2  - elastic modulus of the cantilever beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 105 kN - initial value of the concentrated longitudinal compressive force centrally 

applied at the free end of the beam. 
 

Finite element model: Design model – general type system. Three design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the node of the clamped end of the 

beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of 

the concentrated longitudinal compressive force P is specified in the node of the free end of the beam. 

Number of nodes in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Boundary 

conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the 

directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the 

concentrated longitudinal compressive force P is specified in the node of the longitudinal axis of the beam 

on the free end. Number of nodes in the design model – 8033. 

Solid element model (S), 5120 twenty-node elements of type 37, the spacing of the finite element mesh 

along the longitudinal axis, width and height of the beam is 0.125 m. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated longitudinal 
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compressive force P is specified as a load uniformly distributed over the external faces of the elements of 

the beam end p = P/(h·b). Number of nodes in the design model – 24705. 

 

 

 

Results in SCAD 

 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 
Design model. Solid element model 
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1-st buckling mode. Bar model 

 

 
2-nd buckling mode. Bar model 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 

 

 
2-nd buckling mode. Reissner-Mindlin shell element model 
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1- st buckling mode. Solid element model 

 

 

 

 
2- nd buckling mode. Solid element model 

 

 

Comparison of solutions: 

 

Critical values of the concentrated longitudinal compressive force Pcr1 and Pcr2 (kN), 

centrally applied at the free end of the beam 
 

Design model Buckling mode Theory SCAD Deviation, % 

Bar 
1-st 61685 0,616821∙100000=61682 0,01 

2-nd 61685 0,616821∙100000= 61682 0,01 

Reissner-Mindlin 

shell element 

1-st 61685 0,613922∙100000=61392 0,48 

2-nd 61685 0,617533∙100000=61753 0,11 

Solid element 
1-st 61685 0,613281∙100000=61328 0,58 

2-nd 61685 0,613281∙100000=61328 0,58 

 

 

Notes: In the analytical solution the critical values of the concentrated longitudinal compressive force Pcr1 

and Pcr2, corresponding to the moments of buckling of the cantilever beam can be determined according to 

the following formulas: 
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Stability of a Cantilever Beam of a Square Cross-Section Subjected to a 

Concentrated Transverse Bending Force Centrally Applied at the Free End 
 

 
Objective: Determination of the critical value of the concentrated transverse bending force centrally applied 

at the free end of a cantilever beam of a square cross-section corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_2_Bar.SPR Bar model 

Stability_Bar_2_Shell.SPR Shell element model 

Stability_Bar_2_Solid.SPR Solid element model 

 

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the 

concentrated transverse bending force P, centrally applied at its free end. Determine the critical value of the 

concentrated transverse bending force Pcr, corresponding to the moment of buckling of the cantilever beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.214; 
  

Initial data: 

L = 10.0 m   - length of the cantilever beam; 

h = b = 1.0 m   - side of the square cross-section of the cantilever beam; 

E = 3.0·107 kN/m2  - elastic modulus of the cantilever beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 105 kN - initial value of the concentrated transverse bending force centrally applied 

at the free end of the beam. 
 

Finite element model: Design model – general type system. Three design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the node of the clamped end of the 

beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of 

the concentrated transverse bending force P is specified in the node of the free end of the beam. Number of 

nodes in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Boundary 

conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the 

directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the 

concentrated longitudinal compressive force P is specified in the node of the longitudinal axis of the beam 

on the free end. Number of nodes in the design model – 8033. 

Solid element model (S), 5120 twenty-node elements of type 37, the spacing of the finite element mesh 

along the longitudinal axis, width and height of the beam is 0.125 m. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated transverse bending 

force P is specified as a load uniformly distributed over the external faces of the elements of the beam end p 

= P/(h·b). Number of nodes in the design model – 24705. 
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Results in SCAD 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 
Design model. Solid element model 

 

 
 

1-st buckling mode. Bar model 
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1-st buckling mode. Reissner-Mindlin shell element model 

 

 
 

1-st buckling mode. Solid element model 

 

Comparison of solutions: 

 

Critical value of the concentrated transverse bending force Pcr (kN), 

centrally applied at the free end of the beam 
 

Design model Theory SCAD Deviation, % 

Bar 84111 0,834694∙100000=83469 0,76 

Reissner-Mindlin 

shell element 
84111 0,821972∙100000=82197 2,28 

Solid element 84111 0,843750∙100000=84375 0,31 

 

 

Notes: In the analytical solution the critical value of the concentrated transverse bending force Pcr, 

corresponding to the moment of buckling of the cantilever beam can be determined according to the 

following formula: 
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  – minimum bending inertia moment (out of the moment plane); 

3
fx bhkI   – free torsional inertia moment, where: 
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Stability of a Cantilever Beam of a Square Cross-Section Subjected to a 

Concentrated Transverse Bending Force Applied to the Upper Edge of the Free 

End 
 

 
Objective: Determination of the critical value of the concentrated transverse bending force applied to the 

upper edge of the free end of a cantilever beam of a square cross-section corresponding to the moment of its 

buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_3_Bar.SPR Bar model 

Stability_Bar_3_Shell.SPR Shell element model 

Stability_Bar_3_Solid.SPR Solid element model 

 

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the 

concentrated transverse bending force P, applied to the upper edge of its free end. Determine the critical 

value of the concentrated transverse bending force Pcr, corresponding to the moment of buckling of the 

cantilever beam.   
 

References: .S. Volmir, Stability of Deformable Systems, Moscow, Nauka, 1967, p.216; 
  

Initial data: 

L = 10.0 m   - length of the cantilever beam; 

h = b = 1.0 m   - side of the square cross-section of the cantilever beam; 

h/2 = 0.5 m - height of the application point of the concentrated transverse bending 

force with respect to the longitudinal axis of the beam (X axis of the global 

coordinate system); 

E = 3.0·107 kN/m2  - elastic modulus of the cantilever beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 105 kN - initial value of the concentrated transverse bending force applied to the 

upper edge of the free end of the beam. 
 

Finite element model: Design model – general type system. Three design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the node of the clamped end of the 

beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. 1 vertical upward two-node 

element of type 100 (3D rigid body) with the length h/2 is adjacent to the node of the free end of the beam. 

The action with the initial value of the concentrated transverse bending force P is specified in the free node 

of the element of the rigid body (elevated application point). Number of nodes in the design model – 12. 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Boundary 

conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the 

directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the 
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concentrated transverse bending force P is specified in the node on the free end at the height h/2 from the 

longitudinal axis of the beam. Number of nodes in the design model – 8033. 

Solid element model (S), 5120 twenty-node elements of type 37, the spacing of the finite element mesh 

along the longitudinal axis, width and height of the beam is 0.125 m. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the concentrated transverse bending 

force P is specified as a group of nodal forces on the upper edge of the free end of the beam Pi = 

P·0.0625/1.0 = 6250 kN (3125 kN for corner nodes). Number of nodes in the design model – 24705. 

 

Results in SCAD 

 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 
Design model. Solid element model 
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1-st buckling mode. Bar model 

 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 

 

 
 

1-st buckling mode. Solid element model 

 

 

Comparison of solutions: 

 

 

Critical value of the concentrated transverse bending force Pcr (kN), 

applied to the upper edge of the free end of the beam 
 

Design model Theory SCAD Deviation, % 

Bar 78305 0,778008∙100000=77801 0,64 

Reissner-Mindlin 

shell element 
78305 0,768958∙100000=76896 1,80 

Solid element 78305 0,816406∙100000=81641 4,26 

 

Notes: In the analytical solution the critical value of the concentrated transverse bending force Pcr, 

corresponding to the moment of buckling of the cantilever beam can be determined according to the 

following formula: 
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  – minimum bending inertia moment (out of the moment plane); 

3
fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in and out of the 

Bending Plane Subjected to Concentrated Bending Moments Applied at the Ends 

and Equal in Value (Pure Bending) 
 

 
Objective: Determination of the critical value of the concentrated bending moments equal in value and 

applied at the ends of a beam of a square cross-section simply supported in and out of the bending plane 

corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_4_Bar.SPR Bar model 

Stability_Bar_4_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in and out of the bending 

plane is subjected to the action of the concentrated bending moments M, equal in value and applied at its 

ends. Determine the critical value of the concentrated bending moments Mcr, corresponding to the moment 

of buckling of the simply supported beam.   
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.204, 213; 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported cantilever beam material; 

ν = 0.2    - Poisson’s ratio; 

M = 106 kN·m - initial value of the concentrated bending moments applied at the ends of 

the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with the initial value 

of the concentrated bending moments M is specified in the nodes of the ends of the beam. Number of nodes 

in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom X, Y, Z and on all other nodes of the ends of 

the beam in the direction of the degree of freedom Y. The action with the initial value of the concentrated 

bending moments M is specified on the nodes of the ends of the beam lying on its longitudinal axis. 

Number of nodes in the design model – 8033. 
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Results in SCAD 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 
 

1-st buckling mode. Bar model 

 

 

 
1- st buckling mode. Reissner-Mindlin shell element model 

 



V e r i f i c a t i o n  E x a m p l e s    

S t a b i l i t y  623 

Comparison of solutions: 

 

Critical value of the concentrated bending moments Mcr (kN·m), 

applied at the ends of the beam simply supported in and out of the bending plane 
 

Design model Theory SCAD Deviation, % 

Bar 658464 0,654602∙1000000=54602 0,59 

Reissner-Mindlin 

shell element 
658464 0,650024∙1000000=650024 1,28 

 

Notes: In the analytical solution the critical value of the concentrated bending moments Mcr, corresponding 

to the moment of buckling of the simply supported beam can be determined according to the following 

formula: 
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fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in the Bending 

Plane and Clamped out of the Bending Plane Subjected to Concentrated Bending 

Moments Applied at the Ends and Equal in Value (Pure Bending) 
 

 
Objective: Determination of the critical value of the concentrated bending moments equal in value and 

applied at the ends of a beam of a square cross-section simply supported in the bending plane and clamped 

out of the bending plane corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_5_Bar.SPR Bar model 

Stability_Bar_5_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in the bending plane and 

clamped out of the bending plane is subjected to the action of the concentrated bending moments M, equal 

in value and applied at its ends. Determine the critical value of the concentrated bending moments Mcr, 

corresponding to the moment of buckling of the simply supported beam. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p.68; 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

M = 106 kN·m - initial value of the concentrated bending moments applied at the ends of 

the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom X, Y, Z, UX, UZ. The action with the initial 

value of the concentrated bending moments M is specified in the nodes of the ends of the beam. Number of 

nodes in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom X, Y, Z and on all other nodes of the ends of 

the beam in the directions of the degrees of freedom Y. The action with the initial value of the concentrated 

bending moments M is specified on the nodes of the ends of the beam lying on its longitudinal axis. 

Number of nodes in the design model – 8033. 
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Results in SCAD 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 
 

1-st buckling mode. Bar model 

 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 

 

 

 

Comparison of solutions: 
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Critical value of the concentrated bending moments Mcr (kN·m), 

applied at the ends of the beam simply supported in the bending plane and clamped out of the 

bending plane 
 

Deseign model Theory SCAD Deviation, % 

Bar 1316928 1,325369∙1000000=1325369 0,64 

Reissner-Mindlin 

shell element 
1316928 1,246357∙1000000=1246357 5,36 

 

 

Notes: In the analytical solution the critical value of the concentrated bending moments Mcr, corresponding 

to the moment of buckling of the simply supported beam can be determined according to the following 

formula: 
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  – minimum bending inertia moment (out of the moment plane); 

3
fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in and out of the 

Bending Plane Subjected to Concentrated Longitudinal Bending Forces Applied 

to the Upper Edges of the Ends and Equal in Value (Longitudinal Bending) 
 

 
Objective: Determination of the first two critical values of concentrated longitudinal bending forces equal 

in value and applied to the upper edges of the ends of a beam of a square cross-section simply supported in 

and out of the bending plane corresponding to the moment of its buckling. 
  

Initial data files: 

File name Description 

Stability_Bar_6_Bar.SPR Bar model 

Stability_Bar_6_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in and out of the bending 

plane is subjected to the action of the concentrated longitudinal bending forces P, equal in value and applied 

to the upper edges of its ends. Determine first two critical values of the concentrated longitudinal bending 

forces Pcr1 and Pcr2, corresponding to the moment of buckling of the simply supported beam.   
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p.291 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 106 kN - initial value of the concentrated longitudinal bending forces applied to the 

upper edges of the ends of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom Y, Z. The dimensional stability is provided by 

imposing constraints on the node in the middle of the beam span in the directions of the degrees of freedom 

X, UX. 2 vertical upward two-node elements of type 100 (3D rigid body) with the length h/2 are adjacent to 

the nodes of the ends of the beam. The action with the initial value of the concentrated longitudinal bending 

forces P is specified in the free nodes of the elements of the rigid bodies (elevated application points). 

Number of nodes in the design model – 13. 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom Y, Z and on all other nodes of the ends of the 

beam in the direction of the degree of freedom Y. The dimensional stability is provided by imposing a 

constraint on the node in the middle of the beam span along its longitudinal axis in the direction of the 

degree of freedom X. The action with the initial value of the concentrated longitudinal bending forces P is 

specified in the nodes on the ends at the height h/2 from the longitudinal axis of the beam. Number of nodes 

in the design model – 8033. 
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Results in SCAD 

 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 
 

1- st buckling mode. Bar model 

 

 

 

 
 

2- nd buckling mode. Bar model 
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1- st buckling mode. Reissner-Mindlin shell element model 

 

 

 
2-nd buckling mode. Reissner-Mindlin shell element model 

 

 

Comparison of solutions: 

 

Critical values of the concentrated longitudinal bending forces Pcr1 and Pcr2 (kN), 

applied to the upper edges of the ends of the beam simply supported in and out of the bending plane 
 

Design model Buckling mode Theory SCAD Deviation, % 

Bar 
1-st 61685 0,616821∙100000=61682 0,01 

2-nd 61685 0,616821∙100000=61682 0,01 

Reissner-Mindlin 

shell element 

1-st 61685 0,613922∙100000=61392 0,48 

2-nd 61685 0,617533∙100000=61753 0,11 

 

 

Notes: In the analytical solution the critical values of the concentrated longitudinal bending forces Pcr1 and 

Pcr2, corresponding to the moments of buckling of the simply supported beam can be determined according 

to the following formulas: 
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  – minimum bending inertia moment (out of the moment plane); 
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  – maximum bending inertia moment (in the moment plane); 

3
fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in the Bending 

Plane and Clamped out of the Bending Plane Subjected to Concentrated 

Longitudinal Bending Forces Applied to the Upper Edges of the Ends and Equal 

in Value (Longitudinal Bending) 
 

 
Objective: Determination of the first two critical values of concentrated longitudinal bending forces equal 

in value and applied to the upper edges of the ends of a beam of a square cross-section simply supported in 

the bending plane and clamped out of the bending plane corresponding to the moment of its buckling. 
  

Initial data files: 

File name Description 

Stability_Bar_7_Bar.SPR Bar model 

Stability_Bar_7_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in the bending plane and 

clamped out of the bending plane is subjected to the action of the concentrated longitudinal bending forces 

P, equal in value and applied to the upper edges of its ends. Determine first two critical values of the 

concentrated longitudinal bending forces Pcr1 and Pcr2, corresponding to the moment of buckling of the 

simply supported beam. 
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p.291 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 106 kN - initial value of the concentrated longitudinal bending forces applied to the 

upper edges of the ends of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom Y, Z, UZ. The dimensional stability is 

provided by imposing constraints on the node in the middle of the beam span in the directions of the 

degrees of freedom X, UX. 2 vertical upward two-node elements of type 100 (3D rigid body) with the 

length h/2 are adjacent to the nodes of the ends of the beam. A constraint in the UZ direction is imposed on 

the upper nodes of the elements of rigid bodies. The action with the initial value of the concentrated 

longitudinal bending forces P is specified in the upper nodes of the elements of the rigid bodies (elevated 

application points). Number of nodes in the design model – 13; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom Y, Z, UZ and on all other nodes of the ends of 

the beam in the directions of the degrees of freedom Y, UZ. The dimensional stability is provided by 

imposing a constraint on the node in the middle of the beam span along its longitudinal axis in the direction 
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of the degree of freedom X. The action with the initial value of the concentrated longitudinal bending forces 

P is specified in the nodes on the ends at the height h/2 from the longitudinal axis of the beam. Number of 

nodes in the design model – 8033. 

 

Results in SCAD 

 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 
 

1-st buckling mode. Bar model 
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2-nd buckling mode. Bar model 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 

 

 

 
2-nd buckling mode. Reissner-Mindlin shell element model 

 

 

Comparison of solutions: 

 

Critical values of the concentrated longitudinal bending forces Pcr1 and Pcr2 (kN), 

applied to the upper edges of the ends of the beam simply supported in the bending plane and 

clamped out of the bending plane 
 

Design model Buckling mode Theory SCAD Deviation, % 

Bar 
1-st 246741 0,246740∙1000000=246740 0,00 

2-nd 877429 0,877630∙1000000=877630 0,02 

Reissner-Mindlin 

shell element 

1-st 246741 0,241230∙1000000=241230 2,23 

2-nd 877429 0,805670∙1000000=61753 8,18 

Notes: In the analytical solution the critical values of the concentrated longitudinal bending forces Pcr1 and 

Pcr2, corresponding to the moments of buckling of the simply supported beam can be determined according 

to the following formulas: 
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  – minimum bending inertia moment (out of the moment plane); 
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  – maximum bending inertia moment (in the moment plane); 

3
fx bhkI   – free torsional inertia moment, where: 
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Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Load 

Uniformly Distributed along Its Longitudinal Axis 
 

 
Objective: Determination of the critical value of the load uniformly distributed along the longitudinal axis 

of a cantilever beam of a square cross-section corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_8_Bar.SPR Bar model 

Stability_Bar_8_Shell.SPR Shell element model 

Stability_Bar_8_Solid.SPR Solid element model 

 

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the load 

q, uniformly distributed along its longitudinal axis. Determine the critical value of the uniformly distributed 

load qcr, corresponding to the moment of buckling of the cantilever beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.217; 
  

Initial data: 

L = 10.0 m   - length of the cantilever beam; 

h = b = 1.0 m   - side of the square cross-section of the cantilever beam; 

E = 3.0·107 kN/m2  - elastic modulus of the cantilever beam material; 

ν = 0.2    - Poisson’s ratio; 

q = 105 kN/m - initial value of the load uniformly distributed along the longitudinal axis 

of the beam. 
 

Finite element model: Design model – general type system. Three design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the node of the clamped end of the 

beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of 

the uniformly distributed load q is specified on all elements of the beam. Number of nodes in the design 

model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Boundary 

conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the 

directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load q 

uniformly distributed along the line is specified on the upper sides of all beam elements located under the 

longitudinal axis of the beam. Number of nodes in the design model – 8033. 

Solid element model (S), 5120 twenty-node elements of type 37, the spacing of the finite element mesh 

along the longitudinal axis, width and height of the beam is 0.125 m. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load uniformly distributed over the 

face qA = q/ b is specified on the upper faces of all beam elements located under the longitudinal axis of the 

beam. Number of nodes in the design model – 24705. 
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Results in SCAD 

 
Design model. Bar model 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 
Design model. Solid element model 
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1-st buckling mode. Bar model 

 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 

 

 
 

1-st buckling mode. Solid element model 

 

 

Comparison of solutions: 

 

Critical value of the load qcr, 

uniformly distributed along the longitudinal axis of the cantilever beam 
 

Design model Theory SCAD Deviation, % 

Bar 26933 0,268111∙100000=26811 0,45 

Reissner-Mindlin 

shell element 
26933 0,260448∙100000=26045 3,30 

Solid element 26933 0,253906∙100000=25391 5,73 

 

 

Notes: In the analytical solution the critical value of the uniformly distributed load qcr, corresponding to the 

moment of buckling of the cantilever beam can be determined according to the following formula: 
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  – minimum bending inertia moment (out of the moment plane); 

3
fx bhkI   – free torsional inertia moment, where: 
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Stability of a Cantilever Beam of a Square Cross-Section Subjected to a Load 

Uniformly Distributed along the Longitudinal Axis of Its Upper Face 
 

 
Objective: Determination of the critical value of the load uniformly distributed along the longitudinal axis 

of the upper face of a cantilever beam of a square cross-section corresponding to the moment of its 

buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_9_Bar.SPR Bar model 

Stability_Bar_9_Shell.SPR Shell element model 

Stability_Bar_9_Solid.SPR Solid element model 

 

Problem formulation: The cantilever beam of a square cross-section is subjected to the action of the load 

q, uniformly distributed along the longitudinal axis of its upper face. Determine the critical value of the 

uniformly distributed load qcr, corresponding to the moment of buckling of the cantilever beam. 
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p.303 
  

Initial data: 

L = 10.0 m   - length of the cantilever beam; 

h = b = 1.0 m   - side of the square cross-section of the cantilever beam; 

E = 3.0·107 kN/m2  - elastic modulus of the cantilever beam material; 

ν = 0.2    - Poisson’s ratio; 

q = 105 kN/m - initial value of the load uniformly distributed along the longitudinal axis 

of the upper face of the beam. 
 

Finite element model: Design model – general type system. Three design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the node of the clamped end of the 

beam in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ. 11 vertical upward two-node 

elements of type 100 (3D rigid body) with the length h/2 are adjacent to the nodes of the beam. The action 

with the initial value of the uniformly distributed load q is specified in the free nodes of the elements of the 

rigid body (elevated application point) as concentrated forces P = q·b·1.0 = 105 kN (0.5·105 kN for the end 

nodes). Number of nodes in the design model – 22; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Boundary 

conditions are provided by imposing constraints on the nodes of the clamped end of the beam in the 

directions of the degrees of freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load q 

uniformly distributed along the line is specified on the upper sides of all beam elements located under the 

upper face of the beam. Number of nodes in the design model – 8033. 

Solid element model (S), 5120 twenty-node elements of type 37, the spacing of the finite element mesh 

along the longitudinal axis, width and height of the beam is 0.125 m. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The action with the initial value of the load uniformly distributed over the 
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face qA = q/ b is specified on the upper faces of all beam elements located under the upper face of the beam. 

Number of nodes in the design model – 24705. 

 

 

 

Results in SCAD 

 

 

 
Design model. Bar model 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 
 

Design model. Solid element model 
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1-st buckling mode. Bar model 

 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 

 

 
 

1-st buckling mode. Solid element model  

 

 

Comparison of solutions: 

 

Critical value of the load qcr, 

uniformly distributed along the longitudinal axis of the upper face of the cantilever beam 
 

Design model Theory SCAD Deviation, % 

Bar 23737 0,236895∙100000=23690 0,20 

Reissner-Mindlin 

shell element 
23737 0,233316∙100000=23332 1,71 

Solid element 23737 0,246094∙100000=24609 3,67 

 

 

Notes: In the analytical solution the critical value of the uniformly distributed load qcr, corresponding to the 

moment of buckling of the cantilever beam can be determined according to the following formula: 
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  – minimum bending inertia moment (out of the moment plane); 

3
fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in and out of the 

Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in 

the Middle of the Span at the Level of the Longitudinal Axis (Transverse Bending) 
 

 
Objective: Determination of the critical value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of a beam of a square cross-section simply supported 

in and out of the bending plane corresponding to the moment of its buckling. 
 

Initial data files: 

File name Description 

Stability_Bar_10_Bar.SPR Bar model 

Stability_Bar_10_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in and out of the bending 

plane is subjected to the action of the concentrated transverse bending force P, applied in the middle of its 

span at the level of the longitudinal axis. Determine the critical value of the concentrated transverse bending 

force P, corresponding to the moment of buckling of the simply supported beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.218 

  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 106 kN - initial value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with the initial value 

of the concentrated transverse bending force P is specified in the node in the middle of the beam span. 

Number of nodes in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom X, Y, Z and on all other nodes of the ends of 

the beam in the direction of the degree of freedom Y. The action with the initial value of the concentrated 

transverse bending force P is specified in the node in the middle of the beam span at the level of the 

longitudinal axis of the beam. Number of nodes in the design model – 8033. 
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Results in SCAD 

 

 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 
 

1-st buckling mode. Bar model 

 

 

 

 
1- st Buckling mode. Reissner-Mindlin shell element model 
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Comparison of solutions: 

 

 

Critical value of the concentrated transverse bending force Pcr (kN), 

applied in the middle of the span at the level of the longitudinal axis of  

the beam simply supported in and out of the bending plane  

 

Design model Theory SCAD Deviation, % 

Bar 355055 0,353193∙1000000=353193 0,52 

Reissner-Mindlin 

shell element 
355055 0,344706∙1000000=344706 2,91 

 

Notes: In the analytical solution the critical value of the concentrated transverse bending force Pcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in and out of the 

Bending Plane Subjected to a Concentrated Transverse Bending Force Applied in 

the Middle of the Span at the Level of the Longitudinal Axis of the Upper Face 

(Transverse Bending) 
 

 
Objective: Determination of the critical value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of the upper face of a beam of a square cross-section 

simply supported in and out of the bending plane corresponding to the moment of its buckling. 
 

Initial data files: 
File name Description 

Stability_Bar_11_Bar.SPR Bar model 

Stability_Bar_11_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in and out of the bending 

plane is subjected to the action of the concentrated transverse bending force P, applied in the middle of its 

span at the level of the longitudinal axis of the upper face. Determine the critical value of the concentrated 

transverse bending force P, corresponding to the moment of buckling of the simply supported beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.219 

  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 106 kN - initial value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of the upper face of 

the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. 1 vertical upward two-node 

element of type 100 (3D rigid body) with the length h/2 is adjacent to the node in the middle of the beam 

span. The action with the initial value of the concentrated transverse bending force P is specified in the free 

node of the element of the rigid body (elevated application point). Number of nodes in the design model – 

12; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom X, Y, Z and on all other nodes of the ends of 

the beam in the direction of the degree of freedom Y. The action with the initial value of the concentrated 

transverse bending force P is specified in the node in the middle of the beam span at the height h/2 from the 

longitudinal axis of the beam. Number of nodes in the design model – 8033. 
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Results in SCAD 

 

 

 
Design model. Bar model 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 
 

1-st buckling mode. Bar model 

 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 

 

 



V e r i f i c a t i o n  E x a m p l e s    

S t a b i l i t y  647 

Comparison of solutions: 

 

 

Critical value of the concentrated transverse bending force Pcr (kN), 

applied in the middle of the span at the level of the longitudinal axis of the upper face of  

the beam simply supported in and out of the bending plane 

 

Design model Theory SCAD Deviation, % 

Bar 317747 0,313904∙1000000=313904 1,21 

Reissner-Mindlin 

shell element 
317747 0,304932∙1000000=304932 4,03 

 

Notes: In the analytical solution the critical value of the concentrated transverse bending force Pcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in the Bending 

Plane and Clamped out of the Bending Plane Subjected to a Concentrated 

Transverse Bending Force Applied in the Middle of the Span at the Level of the 

Longitudinal Axis (Transverse Bending) 
 

 
Objective: Determination of the critical value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of a beam of a square cross-section simply supported 

in the bending plane and clamped out of the bending plane corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_12_Bar.SPR Bar model 

Stability_Bar_12_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in the bending plane and 

clamped out of the bending plane is subjected to the action of the concentrated transverse bending force P, 

applied in the middle of its span at the level of the longitudinal axis. Determine the critical value of the 

concentrated transverse bending force P, corresponding to the moment of buckling of the simply supported 

beam applied in the middle of its span at the level of the longitudinal axis.  
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.220 

  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

P = 106 kN - initial value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom X, Y, Z, UX, UZ. The action with the initial 

value of the concentrated transverse bending force P is specified in the node in the middle of the beam span. 

Number of nodes in the design model – 11. 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom X, Y, Z, UZ and on all other nodes of the ends 

of the beam in the directions of the degrees of freedom Y, UZ. The action with the initial value of the 

concentrated transverse bending force P is specified in the node in the middle of the beam span at the level 

of the longitudinal axis of the beam. Number of nodes in the design model – 8033. 
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Results in SCAD 

 

 
Design model. Bar model 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 
 

1-st buckling mode. Bar model 

 

 

 

 
1-st buckling mode. Reissner-Mindlin shell element model 
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Comparison of solutions: 

 

 

Critical value of the concentrated transverse bending force Pcr (kN), 

applied in the middle of the span at the level of the longitudinal axis of 

the beam simply supported in the bending plane and clamped out of the bending plane 

 

Design model Theory SCAD Deviation, % 

Bar 559620 0,541779∙1000000=541779 3,19 

Reissner-Mindlin 

shell element 
559620 0,506897∙1000000=506897 9,42 

 

Notes: In the analytical solution the critical value of the concentrated transverse bending force Pcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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fx bhkI   – free torsional inertia moment, where: 
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Stability of a Beam of a Square Cross-Section Simply Supported in and out of the 

Bending Plane Subjected to a Transverse Load Uniformly Distributed along Its 

Longitudinal Axis 
 

  
Objective: Determination of the critical value of the transverse load uniformly distributed along the 

longitudinal axis of a beam of a square cross-section simply supported in and out of the bending plane 

corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

Stability_Bar_13_Bar.SPR Bar model 

Stability_Bar_13_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in and out of the bending 

plane is subjected to the action of the transverse load q, uniformly distributed along its longitudinal axis. 

Determine the critical value of the transverse uniformly distributed load qcr, corresponding to the moment 

of buckling of the simply supported beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.220 

  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

q = 105 kN/m - initial value of the transverse load uniformly distributed along the 

longitudinal axis of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with the initial value 

of the transverse uniformly distributed load q is specified on all elements of the beam. Number of nodes in 

the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom X, Y, Z and on all other nodes of the ends of 

the beam in the direction of the degree of freedom Y. The action with the initial value of the transverse load 

q uniformly distributed along the line is specified on the lower sides of all beam elements located above its 

longitudinal axis. Number of nodes in the design model – 8033. 
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Results in SCAD 

 

 

 
Design model. Bar model 

 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 

 
 

1-st buckling mode. Bar model 

 

 

 

 

 
1- st buckling mode. Reissner-Mindlin shell element model 
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Comparison of solutions: 

 

 

Critical value of the transverse load qcr (kN/m), 

uniformly distributed along the longitudinal axis of  

the beam simply supported in and out of the bending plane 

 

Design model Theory SCAD Deviation, % 

Bar 59337 0,590213∙100000=59021 0,53 

Reissner-Mindlin 

shell element 
59337 0,578880∙100000=57888 2,44 

 

Notes: In the analytical solution the critical value of the transverse uniformly distributed load qcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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fx bhkI   – free torsional inertia moment, where: 

 









































 
 


1n
5

2

5f
b2

hn
th

n

1

2

n
sin

h

b192
1

3

1
k




 



  V e r i f i c a t i o n  E x a m p l e s  

654 S t a b i l i t y  

Stability of a Beam of a Square Cross-Section Simply Supported in the Bending 

Plane and Clamped out of the Bending Plane Subjected to a Transverse Load 

Uniformly Distributed along Its Longitudinal Axis 
 

 
Objective: Determination of the critical value of the transverse load uniformly distributed along the 

longitudinal axis of a beam of a square cross-section simply supported in the bending plane and clamped 

out of the bending plane corresponding to the moment of its buckling. 
 

Initial data files: 
File name Description 

Stability_Bar_14_Bar.SPR Bar model 

Stability_Bar_14_Shell.SPR Shell element model 

 

Problem formulation: The beam of a square cross-section simply supported in the bending plane and 

clamped out of the bending plane is subjected to the action of the transverse load q, uniformly distributed 

along its longitudinal axis. Determine the critical value of the transverse uniformly distributed load qcr, 

corresponding to the moment of buckling of the simply supported beam. 
 

References: I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, 

Volume 3, Moscow, Mechanical engineering, 1968, p.72 

  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

h = b = 1.0 m   - side of the square cross-section of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

q = 105 kN/m - initial value of the transverse load uniformly distributed along the 

longitudinal axis of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis is 

1.0 m. Boundary conditions are provided by imposing constraints on the nodes of the simply supported 

ends of the beam in the directions of the degrees of freedom X, Y, Z, UX, UZ. The action with the initial 

value of the transverse uniformly distributed load q is specified on all elements of the beam. Number of 

nodes in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node elements of type 150, the spacing of the finite 

element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. The shell is 

supported by vertical high-rigidity bars (h = b = 1.0 m; E = 3.0·109 kN/m2; ν = 0.2), 64 elements of type 5. 

Boundary conditions are provided by imposing constraints on the nodes of the ends of the beam lying on its 

longitudinal axis in the directions of the degrees of freedom X, Y, Z, UZ and on all other nodes of the ends 

of the beam in the directions of the degrees of freedom Y, UZ. The action with the initial value of the 

transverse load q uniformly distributed along the line is specified on the lower sides of all beam elements 

located above its longitudinal axis. Number of nodes in the design model – 8033. 
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Results in SCAD 

 

 

 
Design model. Bar model 

 

 

 

 

 

 
Design model. Reissner-Mindlin shell element model 

 

 

 

 

 
 

1-st buckling mode. Bar model 
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1- st buckling mode. Reissner-Mindlin shell element model 

 

Comparison of solutions: 

 

Critical value of the transverse load qcr (kN/m), 

uniformly distributed along the longitudinal axis of  

the beam simply supported in the bending plane and clamped out of the bending plane 

 

Design model Theory SCAD Deviation, % 

Bar 101863 0,995488∙100000 = 99549 2,27 

Reissner-Mindlin 

shell element 
101863 0,944805∙100000= 94481 7,25 

 

Notes: In the analytical solution the critical value of the transverse uniformly distributed load qcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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fx bhkI   – free torsional inertia moment, where: 
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Stability of an I-beam Simply Supported in and out of the Bending Plane 

Subjected to Concentrated Bending Moments Applied at the Ends and Equal in 

Value (Pure Bending) 
 

 
Objective: Determination of the critical value of the concentrated bending moments equal in value and 

applied at the ends of an I-beam simply supported in and out of the bending plane corresponding to the 

moment of its buckling. 
  

Initial data files: 
File name Description 

Stability_Flanged_Beam_1_Bar.SPR 

Flanged_Beam.tns 

Bar model 

Thin-walled beam cross-section  

Stability_Flanged_Beam_1_Shell.SPR Shell element model 

 

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the 

action of the concentrated bending moments M, equal in value and applied at its ends. Determine the 

critical value of the concentrated bending moments Mcr, corresponding to the moment of buckling of the 

simply supported beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222; 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

b = bf = 0.5 m - width of the flanges of the cross-section of the simply supported beam;  

t = tf = 0.04 m  - thickness of the flanges of the cross-section of the simply supported beam; 

hw = 1.0 m   - height of the web of the cross-section of the simply supported beam; 

tw = 0.02 m - thickness of the web of the cross-section of the simply supported beam; 

M = 103 kN·m - initial value of the concentrated bending moments applied at the ends of 

the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of 

the beam is 1.0 m. The reduced free torsional stiffness of the cross-section of the simply supported beam 

taking into account the warping effect is calculated according to the following formula: 
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simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with 

the initial value of the concentrated bending moments M is specified in the nodes of the ends of the beam. 

Number of nodes in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150, the spacing of the 

finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Vertical 

stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the 

web and the flanges of the beam (hw = 1.0 m; bw = 0.5  m; tw = 0.02 m; E = 3.0·107 kN/m2; ν = 0.2), 3968 

elements of type 150. Boundary conditions are provided by imposing constraints on the nodes of the ends 
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of the beam lying on its longitudinal axis in the directions of the degrees of freedom X, Y, Z, and on all 

other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial 

value of the concentrated bending moments M is specified as a pair of forces P = M/hw = 103 kN on the 

nodes of the ends of the beam lying on the longitudinal axes of its flanges. Number of nodes in the design 

model – 19793. 

 

Results in SCAD 

 
Design model. Bar model 

 
Design model. Reissner-Mindlin shell element model 

 
 

1-st buckling mode. Bar model 

 
1-st buckling mode. Reissner-Mindlin shell element model 
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Comparison of solutions: 

Critical value of the concentrated bending moments Mcr (kN·m), 

applied at the ends of the beam simply supported in and out of the bending plane 
 

Design model Theory SCAD Deviation, % 

Bar 1493 1,510993∙1000= 1511 1,19 

Reissner-Mindlin 

shell element 
1493 1, 545837∙1000= 1546 3,52 

 

 

Notes: In the analytical solution the critical value of the concentrated bending moments Mcr, corresponding 

to the moment of buckling of the simply supported beam can be determined according to the following 

formula: 
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Stability of an I-beam Simply Supported in and out of the Bending Plane 

Subjected to a Concentrated Transverse Bending Force Applied in the Middle of 

the Span at the Level of the Longitudinal Axis (Transverse Bending) 
 

 
Objective: Determination of the critical value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of an I-beam simply supported in and out of the 

bending plane corresponding to the moment of its buckling. 
  

Initial data files: 

File name Description 

Stability_Flanged_Beam_2_Bar.SPR 

Flanged_Beam.tns 

Bar model 

Thin-walled beam cross-section 

Stability_Flanged_Beam_2_Shell.SPR Shell element model 

 

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the 

action of the concentrated transverse bending force P, applied in the middle of its span at the level of the 

longitudinal axis. Determine the critical value of the concentrated transverse bending force Pcr, 

corresponding to the moment of buckling of the simply supported beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222; 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

b = bf = 0.5 m - width of the flanges of the cross-section of the simply supported beam;  

t = tf = 0.04 m  - thickness of the flanges of the cross-section of the simply supported beam; 

hw = 1.0 m   - height of the web of the cross-section of the simply supported beam; 

tw = 0.02 m - thickness of the web of the cross-section of the simply supported beam; 

P = 103 kN - initial value of the concentrated transverse bending force applied in the 

middle of the span at the level of the longitudinal axis of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of 

the beam is 1.0 m. The reduced free torsional stiffness of the cross-section of the simply supported beam 

taking into account the warping effect is calculated according to the following formula: 
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2

xred_x  . Boundary conditions are provided by imposing constraints on the nodes of the 

simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with 

the initial value of the concentrated transverse bending force P is specified in the node in the middle of the 

beam span. Number of nodes in the design model – 11; 
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Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150, the spacing of the 

finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Vertical 

stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the 

web and the flanges of the beam (hw = 1.0 m; bw = 0.5  m; tw = 0.02 m; E = 3.0·107 kN/m2; ν = 0.2), 3968 

elements of type 150. Boundary conditions are provided by imposing constraints on the nodes of the ends 

of the beam lying on its longitudinal axis in the directions of the degrees of freedom X, Y, Z, and on all 

other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial 

value of the concentrated transverse bending force P is specified in the node in the middle of the beam span 

at the level of the longitudinal axis of the beam. Number of nodes in the design model – 19793. 

 

Results in SCAD 

 
Design model. Bar model 

 
Design model. Reissner-Mindlin shell element model 

 
 

1-st buckling mode. Bar model 

 
1- st buckling mode. Reissner-Mindlin shell element model 
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Comparison of solutions: 

 

Critical value of the concentrated transverse bending force Pcr (kN), 

applied in the middle of the span at the level of the longitudinal axis of  

the beam simply supported in and out of the bending plane 
 

Design model Theory SCAD Deviation, % 

Bar 804 0,815304∙1000= 815 1,38 

Reissner-Mindlin 

shell element 
804 0,817535∙1000= 818 1,65 

 

 

Notes: In the analytical solution the critical value of the concentrated transverse bending force Pcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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  – minimum bending inertia moment (out of the moment plane); 
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Stability of an I-beam Simply Supported in and out of the Bending Plane 

Subjected to a Transverse Load Uniformly Distributed along Its Longitudinal Axis 
 

 
Objective: Determination of the critical value of the transverse load uniformly distributed along the 

longitudinal axis of an I-beam simply supported in and out of the bending plane corresponding to the 

moment of its buckling. 
 

Initial data files: 
File name Description 

Stability_Flanged_Beam_3_Bar.SPR 

Flanged_Beam.tns 

Bar model 

Thin-walled beam cross-section 

Stability_Flanged_Beam_3_Shell.SPR Shell element model 

 

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the 

action of the transverse load q, uniformly distributed along its longitudinal axis. Determine the critical value 

of the transverse uniformly distributed load qcr, corresponding to the moment of buckling of the simply 

supported beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222; 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

b = bf = 0.5 m - width of the flanges of the cross-section of the simply supported beam;  

t = tf = 0.04 m  - thickness of the flanges of the cross-section of the simply supported beam; 

hw = 1.0 m   - height of the web of the cross-section of the simply supported beam; 

tw = 0.02 m - thickness of the web of the cross-section of the simply supported beam; 

q = 102 kN/m - initial value of the transverse load uniformly distributed along the 

longitudinal axis of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of 

the beam is 1.0 m. The reduced free torsional stiffness of the cross-section of the simply supported beam 

taking into account the warping effect is calculated according to the following formula: 
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xred_x  . Boundary conditions are provided by imposing constraints on the nodes of the 

simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. The action with 

the initial value of the transverse uniformly distributed load q is specified on all elements of the beam. 

Number of nodes in the design model – 11; 

Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150, the spacing of the 

finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Vertical 

stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the 

web and the flanges of the beam (hw = 1.0 m; bw = 0.5  m; tw = 0.02 m; E = 3.0·107 kN/m2; ν = 0.2), 3968 

elements of type 150. Boundary conditions are provided by imposing constraints on the nodes of the ends 



  V e r i f i c a t i o n  E x a m p l e s  

664 S t a b i l i t y  

of the beam lying on its longitudinal axis in the directions of the degrees of freedom X, Y, Z, and on all 

other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial 

value of the transverse load q uniformly distributed along the line is specified on the lower sides of all beam 

elements located above the longitudinal axis of the beam. Number of nodes in the design model – 19793. 

 

Results in SCAD 

 
Design model. Bar model 

 
Design model. Reissner-Mindlin shell element model 

 
 

1-st buckling mode. Bar model 

 
1-st buckling mode. Reissner-Mindlin shell element model 
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Comparison of solutions: 

 

Critical value of the transverse load qcr (kN/m), 

uniformly distributed along the longitudinal axis of  

the beam simply supported in and out of the bending plane 
 

Design model Theory SCAD Deviation, % 

Bar 135 1,362356∙100= 136 1,21 

Reissner-Mindlin 

shell element 
135 1,359283∙100= 136 0,98 

 

 

Notes: In the analytical solution the critical value of the transverse uniformly distributed load qcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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  – minimum bending inertia moment (out of the moment plane); 
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Stability of an I-beam Simply Supported in and out of the Bending Plane 

Subjected to a Load Uniformly Distributed along the Longitudinal Axis of Its 

Upper Flange 
 

 
Objective: Determination of the critical value of the load uniformly distributed along the longitudinal axis 

of the upper flange of an I-beam simply supported in and out of the bending plane corresponding to the 

moment of its buckling. 
  

Initial data files: 

File name Description 

Stability_Flanged_Beam_4_Bar.SPR 

Flanged_Beam.tns 

Bar model 

Thin-walled beam cross-section 

Stability_Flanged_Beam_4_Shell.SPR Shell element model 

 

Problem formulation: The I-beam simply supported in and out of the bending plane is subjected to the 

action of the load q, uniformly distributed along the longitudinal axis of its upper flange. Determine the 

critical value of the uniformly distributed load qcr, corresponding to the moment of buckling of the simply 

supported beam. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p.222; 
  

Initial data: 

L = 10.0 m   - length of the simply supported beam; 

E = 3.0·107 kN/m2  - elastic modulus of the simply supported beam material; 

ν = 0.2    - Poisson’s ratio; 

b = bf = 0.5 m - width of the flanges of the cross-section of the simply supported beam;  

t = tf = 0.04 m   - thickness of the flanges of the cross-section of the simply supported 

beam; 

hw = 1.0 m   - height of the web of the cross-section of the simply supported beam; 

tw = 0.02 m - thickness of the web of the cross-section of the simply supported beam; 

q = 102 kN/m - initial value of the transverse load uniformly distributed along the 

longitudinal axis of the upper flange of the beam. 
 

Finite element model: Design model – general type system. Two design models are considered: 

Bar model (B), 10 elements of type 5, the spacing of the finite element mesh along the longitudinal axis of 

the beam is 1.0 m. The reduced free torsional stiffness of the cross-section of the simply supported beam 

taking into account the warping effect is calculated according to the following formula: 
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xred_x  . Boundary conditions are provided by imposing constraints on the nodes of the 

simply supported ends of the beam in the directions of the degrees of freedom X, Y, Z, UX. 11 vertical 

upward two-node elements of type 100 (3D rigid body) with the length h/2 are adjacent to the nodes of the 

beam. The action with the initial value of the uniformly distributed load q is specified in the free nodes of 
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the elements of the rigid bodies (elevated application points) as concentrated forces P = q·1.0 = 102 kN 

(0.5·102 kN for end nodes). Number of nodes in the design model – 22; 

Reissner-Mindlin shell element model (P), 2560 eight-node beam elements of type 150, the spacing of the 

finite element mesh along the longitudinal axis and along the height of the beam is 0.0625 m. Vertical 

stiffeners are arranged with a spacing of 1.0 m along the length in order to prevent the local buckling of the 

web and the flanges of the beam (hw = 1.0 m; bw = 0.5  m; tw = 0.02 m; E = 3.0·107 kN/m2; ν = 0.2), 3968 

elements of type 150. Boundary conditions are provided by imposing constraints on the nodes of the ends 

of the beam lying on its longitudinal axis in the directions of the degrees of freedom X, Y, Z, and on all 

other nodes of the ends of the beam in the direction of the degree of freedom Y. The action with the initial 

value of the load q uniformly distributed along the line is specified on the upper sides of all elements of the 

beam web located under the upper flange of the beam. Number of nodes in the design model – 19793. 

 

Results in SCAD 

 
Design model. Bar model 

 
Design model. Reissner-Mindlin shell element model 

 
 

1-st buckling mode. Bar model 
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1-st buckling mode. Reissner-Mindlin shell element model 

 

Comparison of solutions: 

 

Critical value of the load qcr (kN/m), 

uniformly distributed along the longitudinal axis of  

the upper flange of the beam simply supported in and out of the bending plane 
 

Design model Theory SCAD Deviation, % 

Bar 93 0,943201∙100= 94 1,54 

Reissner-Mindlin 

shell element 
93 0,949310∙100= 95 1,87 

 

 

Notes: In the analytical solution the critical value of the transverse uniformly distributed load qcr, 

corresponding to the moment of buckling of the simply supported beam can be determined according to the 

following formula: 
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  – minimum bending inertia moment (out of the moment plane); 
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Stability of a Simply Supported Rectangular Plate Uniformly Compressed in One 

Direction 

 

 
 

Objective: Determination of the critical value of the compressive forces uniformly distributed along two 

opposite sides of a simply supported rectangular plate corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

6.6_a_4_n_4.SPR 
Design model with the ratios of the sides of the plate a/b = 0.5 from four-node shell 

elements of type 44 

6.6_a_4_n_8.SPR 
Design model with the ratios of the sides of the plate a/b = 0.5 from eight- node shell 

elements of type 50 

6.6_a_8_n_4.SPR 
Design model with the ratios of the sides of the plate a/b = 1.0 from four-node shell 

elements of type 44 

6.6_a_8_n_8.SPR 
Design model with the ratios of the sides of the plate a/b = 1.0 from eight- node shell 

elements of type 50 

6.6_a_12_n_4.SPR 
Design model with the ratios of the sides of the plate a/b = 1.5 from four-node shell 

elements of type 44 

6.6_a_12_n_8.SPR 
Design model with the ratios of the sides of the plate a/b = 1.5 from eight- node shell 

elements of type 50 

 

Problem formulation: The simply supported rectangular plate is subjected to the action of compressive 

forces σ, uniformly distributed along two opposite sides. Determine the critical value of the compressive 

forces σcr, corresponding to the moment of buckling of the rectangular plate. 
 

References:  

S. P. Timoshenko, Stability of Bars, Plates and Shells. — Moscow. Nauka. — 1971. — p. 621. 

A.S. Volmir. Stability of Deformable Systems. — Moscow. — Nauka. — 1967. — p. 328. 
  

Initial data: 

a = 4.0; 8.0; 12.0 m - side of the rectangular plate free from forces (along the X axis of the 

global coordinate system); 

b = 8.0 m - side of the rectangular plate subjected to the compressive forces (along 

the Y axis of the global coordinate system); 

h = 0.08 m   - thickness of the rectangular plate; 

E = 1.0·107 kN/m2  - elastic modulus of the rectangular plate material; 

ν = 1/3    - Poisson’s ratio; 

σ = 1.25·103 kN/m2 - initial value of the compressive forces. 
 

Finite element model: Design model – general type system. Two design models with four-node shell 

elements of type 44 and eight-node shell elements of type 50 are considered for three cases with the ratios 
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of the sides of the plate a/b = 0.5; 1.0; 1.5. The spacing of the finite element mesh along the sides of the 

plate (along the X and Y axes of the global coordinate system) is 1.0 m. Number of elements in the models 

– 32; 64; 96. Boundary conditions are provided by imposing constraints on the nodes of the support contour 

of the plate in the direction of the degree of freedom Z. A load uniformly distributed along the line with the 

initial value p = σ∙h = 100 kN/m is specified on one of the two opposite sides of the plate subjected to the 

compressive forces, and the constraints in the respective direction (along the X axis of the global coordinate 

system) are imposed on the nodes of the other one. The dimensional stability of the design model is 

provided by imposing constraints in the normal direction (along the Y axis of the global coordinate system) 

on the nodes of one of the two opposite sides of the plate free from forces, and by imposing constraints in 

the UZ direction of the global coordinate system on the node of one of the corners of the plate. Number of 

nodes in the models – 45 (121); 81 (225); 117 (329). 

 

Results in SCAD 

 

  
Design models with the ratio of the sides of the plate a/b = 0.5 

 

 

 
Design models with the ratio of the sides of the plate a/b = 1.0 

 

 

 
 

Design models with the ratio of the sides of the plate a/b = 1.5 
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Buckling modes for the design models with the ratio of the sides of the plate a/b = 0.5 

 

 
Buckling modes for the design models with the ratio of the sides of the plate a/b = 1.0 

 

 

 
Buckling modes for the design models with the ratio of the sides of the plate a/b = 1.5 

 

    

Comparison of solutions: 

 

Critical value of the compressive forces σcr, kN/m
2
 

 

Plate sides 

ratio 
Design model Theory SCAD Deviation, % 

a/b = 0.5 

Member type 44 

n = 4 nodes 
5783 

4.716991∙100/0.08 = 

= 5896 
1.95 

Member type 50 

n = 8 nodes 

4.626558∙100/0.08 = 

= 5783 
0.00 

a/b = 1.0 

Member type 44 

n = 4 nodes 
3701 

2.998497∙100/0.08 = 

= 3748 
1.27 

Member type 50 

n = 8 nodes 

2.960899∙100/0.08 = 

= 3701 
0.00 

a/b = 1.5 

Member type 44 

n = 4 nodes 
4016 

3.264680∙100/0.08 = 

= 4081 
1.62 

Member type 50 

n = 8 nodes 

3.212803∙100/0.08 = 

= 4016 
0.00 

 

Notes: In the analytical solution the critical value of the compressive forces σcr, corresponding to the 

moment of buckling of the rectangular plate can be determined according to the following formula: 
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m = 1, 2, 3 … – number of half waves of the buckling mode in the direction of the compression of the plate; 

its minimum value is determined from the following expression: 
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Stability of a Simply Supported Square Plate Uniformly Compressed in One 

Direction 

 
 

Objective: Determination of the critical value of the compressive forces uniformly distributed along two 

opposite sides of a simply supported square plate corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

6.7_n_4.SPR Design model with four-node shell elements of type 44 

6.7_n_8.SPR Design model with eight-node shell elements of type 50 

 

Problem formulation: The square plate is subjected to the action of compressive forces σ, uniformly 

distributed along two opposite roller supported sides. Two other opposite sides of the plate free from forces 

are pinned. Determine the critical value of the compressive forces σcr, corresponding to the moment of 

buckling of the square plate.   
 

References:  

J.H. Argyris, P.C. Dunne, G.A. Malejannakis, E. Schelkle. A simple triangular facet shell element with 

applications to linear and non-linear equilibrium and elastic stability problems. Computer methods in 

applied mechanics and engineering, 11. — 1977.— p. 97-131. 

S.P. Timoshenko, J.M. Gere. Theory of elastic stability. McGraw-Hill. — New York. — 1963. — p. 356. 
  

Initial data: 

a = 8.0 m - side of the square plate; 

h = 0.08 m   - thickness of the square plate; 

E = 1.0·107 kN/m2  - elastic modulus of the square plate material; 

ν = 1/3    - Poisson’s ratio; 

σ = 1.25·103 kN/m2 - initial value of the compressive forces. 
 

Finite element model: Design model – general type system. Two design models with four-node shell 

elements of type 44 and eight-node shell elements of type 50 are considered. The spacing of the finite 

element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 1.0 m. 

Number of elements in the models – 64. Boundary conditions are provided by imposing constraints on the 

nodes of the support contour of the plate in the direction of the degree of freedom Z, and by imposing 

constraints in the normal direction along the Y axis of the global coordinate system on the nodes of one of 

the two opposite sides of the plate free from forces. A load uniformly distributed along the line with the 

initial value p = σ∙h = 100 kN/m is specified on one of the two opposite sides of the plate subjected to the 

compressive forces, and the constraints in the respective direction (along the X axis of the global coordinate 

system) are imposed on the nodes of the other one. The dimensional stability of the design model is 

provided by imposing a constraint in the UZ direction of the global coordinate system on the node of the 

support contour of the plate. Number of nodes in the models – 81; 225. 
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Results in SCAD 

 
 

Design model. Model with four-node shell elements 

 

 

 
 

Design model. Model with eight-node shell elements 

 

 

  
Buckling mode. Model with four-node shell elements 
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Buckling mode. Model with eight-node shell elements 

 

    

Comparison of solutions: 

 

Critical value of the compressive forces σcr, kN/m
2
 

Design model Theory SCAD Deviation, % 

Member type 44 

n = 4 nodes 
2776 

2.248923∙100/0.08 = 

= 2811 
1.26 

Member type 50 

n = 8 nodes 

2.220676∙100/0.08 = 

= 2776 
0.00 

 

Notes: In the analytical solution the critical value of the compressive forces σcr, corresponding to the 

moment of buckling of the square plate can be determined according to the following formula: 
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Stability of a Simply Supported Square Plate Uniformly Compressed in One 

Direction under Kinematic Action 

 

 
 

Objective: Determination of the critical value of the approach of two opposite sides of a simply supported 

square plate corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

6.8_n_4.SPR Design model with four-node shell elements of type 44 

6.8_n_8.SPR Design model with eight-node shell elements of type 50 

 

Problem formulation: The square plate is subjected to the action of the approach Δ of two opposite roller 

supported sides. Two other opposite sides of the plate free from actions are pinned. Determine the critical 

value of the approach Δcr, corresponding to the moment of buckling of the square plate. 
 

References: J.H. Argyris, P.C. Dunne, G.A. Malejannakis, E. Schelkle, A simple triangular facet shell 

element with applications to linear and non-linear equilibrium and elastic stability problems, Computer 

methods in applied mechanics and engineering, 11 (1977), p. 97-131. 

S.P. Timoshenko, J.M. Gere, Theory of elastic stability, McGraw-Hill, New York, 1963, p. 356. 
  

Initial data: 

a = 8.0 m - side of the square plate; 

h = 0.08 m   - thickness of the square plate; 

E = 1.0·107 kN/m2  - elastic modulus of the square plate material; 

ν = 1/3    - Poisson’s ratio; 

Δ = 1.0·10-3 m - initial value of the approach. 
 

Finite element model: Design model – general type system. Two design models with four-node shell 

elements of type 44 and eight-node shell elements of type 50 are considered. The spacing of the finite 

element mesh along the sides of the plate (along the X and Y axes of the global coordinate system) is 1.0 m. 

Number of elements in the models – 64. Boundary conditions are provided by imposing constraints on the 

nodes of the support contour of the plate in the direction of the degree of freedom Z, and by imposing 

constraints in the normal direction along the Y axis of the global coordinate system on the nodes of one of 

the two opposite sides of the plate free from actions. Constraints in the respective direction (along the X 

axis of the global coordinate system) are imposed on the nodes of two opposite sides of the plate subjected 

to the kinematic action. The action is specified by the displacement of the constraints of one of these sides 

with the initial value Δ = 1.0·10-3 m. The dimensional stability of the design model is provided by imposing 

a constraint in the UZ direction of the global coordinate system on the node of the support contour of the 

plate. Number of nodes in the models – 81; 225. 
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Results in SCAD 

 
Design model. Model with four-node shell elements 

 

 

 
 

Design model. Model with eight-node shell elements 

 

 

  
Buckling mode. Model with four-node shell elements 
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Buckling mode. Model with eight-node shell elements 

 

 

Comparison of solutions: 

Critical value of the compressive forces σcr, kN/m
2
 

Design model Theory SCAD Deviation, % 

Member type 44 

n = 4 nodes 
1.974∙10-3 

1.999043∙1.0∙10-3 = 

= 1.999∙10-3 
1.27 

Member type 50 

n = 8 nodes 

1.973935∙1.0∙10-3 = 

= 1.974∙10-3 
0.00 

 

Notes: In the analytical solution the critical value of the approach Δcr of two opposite sides of the simply 

supported square plate corresponding to the moment of its buckling can be determined according to the 

following formula: 
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Stability of a Rectangular Simply Supported Plate under Pure Shear 

 

 
 

Objective: Determination of the critical value of the shear forces uniformly distributed along two opposite 

sides of a simply supported rectangular plate corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

6.9_a_8_n_4.SPR 
Design model with the ratios of the sides of the plate a/b = 1.0 5 from four-node 

shell elements of type 44 

6.9_a_8_n_8.SPR 
Design model with the ratios of the sides of the plate a/b = 1.0 from eight- node 

shell elements of type 50 

6.9_a_16_n_4.SPR 
Design model with the ratios of the sides of the plate a/b = 2.0 5 from four-node 

shell elements of type 44 

6.9_a_16_n_8.SPR 
Design model with the ratios of the sides of the plate a/b = 2.0 from eight- node 

shell elements of type 50 

 

Problem formulation: The simply supported rectangular plate is subjected to the action of shear forces τ, 

uniformly distributed along two opposite sides. Determine the critical value of the shear forces τcr, 

corresponding to the moment of buckling of the rectangular plate.   
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 626. 

A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 344. 
  

Initial data: 

a = 8.0; 16.0 m - side of the rectangular plate along the X axis of the global coordinate 

system; 

b = 8.0 m - side of the rectangular plate along the Y axis of the global coordinate 

system; 

h = 0.08 m   - thickness of the rectangular plate; 

E = 1.0·107 kN/m2  - elastic modulus of the rectangular plate material; 

ν = 1/3    - Poisson’s ratio; 

σ = 1.25·103 kN/m2 - initial value of the shear forces. 
 

Finite element model: Design model – general type system. Two design models with four-node shell 

elements of type 44 and eight-node shell elements of type 50 are considered for two cases with the ratios of 

the sides of the plate a/b = 1.0; 2.0. The spacing of the finite element mesh along the sides of the plate 

(along the X and Y axes of the global coordinate system) is 1.0 m. Number of elements in the models – 64; 

128. Boundary conditions are provided by imposing constraints on the nodes of the support contour of the 

plate in the direction of the degree of freedom Z. A load uniformly distributed along the line with the initial 

value p = -τ∙h = -100 kN/m is specified on one of the two opposite sides of the plate parallel to the X axis of 

the global coordinate system, and the constraints in the directions of the degrees of freedom X and Y are 

imposed on the nodes of the other one (lying on the X axis). A load uniformly distributed along the line 

with the initial value p = -τ∙h = -100 kN/m is specified on one of the two opposite sides of the plate parallel 

to the Y axis of the global coordinate system, and a load uniformly distributed along the line with the initial 

value p = τ∙h = 100 kN/m is specified on the other one (lying on the Y axis). The dimensional stability of 
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the design model is provided by imposing a constraint in the UZ direction of the global coordinate system 

on the node of one of the corners of the plate. Number of nodes in the models – 81 (225); 153 (433). 

 

Results in SCAD 

 

 
 

Design models with the ratio of the sides of the plate a/b = 1.0 

 

 

 
 

Design models with the ratio of the sides of the plate a/b = 2.0 

 

  
 

 

   
Buckling modes for the design models with the ratio of the sides of the plate a/b = 1.0 
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Buckling modes for the design models with the ratio of the sides of the plate a/b = 2.0 

 

    

Comparison of solutions: 

Critical value of the shear forces τcr, kN/m
2
 

Plate sides 

ratio 
Design model Theory SCAD Deviation, % 

a/b = 1.0 

Member type 44 

n = 4 nodes 
8631 

7.129409∙100/0.08 = 

= 8912 
3.26 

Member type 50 

n = 8 nodes 

6.903095∙100/0.08 = 

= 8629 
0.02 

a/b = 2.0 

Member type 44 

n = 4 nodes 
6060 

4.930113∙100/0.08 = 

= 6163 
1.70 

Member type 50 

n = 8 nodes 

4.845765∙100/0.08 = 

= 6057 
0.05 

 

Notes: In the analytical solution the critical value of the shear forces τcr, corresponding to the moment of 

buckling of the rectangular plate can be determined according to the following formula: 
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Parameter λ is determined on the basis of the condition of equality to zero of the determinant of the system 

of equations: 
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At m, n, i, j = 1, 2, 3, 4, 5, 6, 7, 8 (the determinant dimension is 32∙32) we have: 

 

.549.6k0.2
b

a

328.9k0.1
b

a




 

 

 

 



V e r i f i c a t i o n  E x a m p l e s    

S t a b i l i t y  683 

Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners 

Uniformly Compressed in the Longitudinal Direction (Model 1) 

 

 
 

Objective: Determination of the critical value of the compressive forces uniformly distributed along two 

opposite transverse sides of a rectangular simply supported plate reinforced by longitudinal stiffeners 

corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

6.10_shell_beam_lambda_1.SPR Design model with the ratios of the sides of the plate a/b = 1.0 

6.10_shell_beam_lambda_4.SPR Design model with the ratios of the sides of the plate a/b = 4.0 

 

Problem formulation: The rectangular simply supported plate reinforced by longitudinal stiffeners is 

subjected to the action of compressive forces σ, uniformly distributed along two opposite transverse sides. 

Determine the critical value of the compressive forces σcr, corresponding to the moment of buckling of the 

rectangular reinforced plate taking into account the following assumptions made when deriving the 

analytical solution: 

 The stiffeners are symmetric with respect to the midplane of the reinforced plate; 

 Torsional stiffness of the stiffeners is not taken into account; 

 The stiffeners and the plate are subjected to the uniform compression.   
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka, 1971, p. 507. 

A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 377. 
  

Initial data: 

a = 0.6; 2.4 m - side of the rectangular plate free from forces (along the X axis of the 

global coordinate system); 

b = 0.6 m - side of the rectangular plate subjected to the compressive forces (along 

the Y axis of the global coordinate system); 

h = 0.01 m   - thickness of the rectangular plate; 

F = 0.01∙0.03 = 3∙10-4 m2 - cross-sectional area of the stiffeners; 

I = 0.01∙0.033/12 = 2.25∙10-8 m4 - cross-sectional moment of inertia of the stiffeners; 

s = 3    - number of stiffeners arranged uniformly along the width of the plate; 

E = 2.0·108 kN/m2  - elastic modulus of the material of the plate and stiffeners; 

ν = 0.3    - Poisson’s ratio; 

σ = 1.0·105 kN/m2 - initial value of the compressive forces. 
 

Finite element model: Design model – general type system. Two design models with the ratios of the sides 

of the plate a/b = 1.0; 4.0 are considered. The plate is modeled by eight-node shell elements of type 50. The 

spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global 

coordinate system) is 0.075 m. Number of plate elements in the models – 64; 256. The stiffeners are 

modeled by spatial bar elements of type 5. The spacing of the finite element mesh along the longitudinal 

axes of the stiffeners (along the X1 axes of the local coordinate systems) is 0.0375 m. Number of stiffener 

elements in the models – 48; 192. Boundary conditions are provided by imposing constraints on the nodes 
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of the support contour of the plate in the direction of the degree of freedom Z. The load uniformly 

distributed along the line on the plate with the initial value p = σ∙h = 1000 kN/m and nodal loads on the 

stiffeners with the initial value P = σ∙F = 30 kN are specified on one of the two opposite transverse sides of 

the plate subjected to the compressive forces, and constraints in the respective direction (along the X axis of 

the global coordinate system) are imposed on the nodes of the other one. The dimensional stability of the 

design model is provided by imposing constraints in the normal direction (along the Y axis of the global 

coordinate system) on the nodes of one of the two opposite longitudinal sides of the plate free from forces, 

and by imposing a constraint in the UZ direction of the global coordinate system on the node of one of the 

corners of the plate. Number of nodes in the models – 225; 849. 

 

Results in SCAD 

 

  
 

 
 

Design model with the ratio of the sides of the plate a/b = 1.0 
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Design model with the ratio of the sides of the plate a/b = 4.0 

 

 

  
 

1-st buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 

 

 

 
 

2-nd buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 
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3-rd buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 

 

 
  1-st buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 

 

 
  2-nd buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 

 
   3-rd buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 

 

Comparison of solutions: 

Critical value of the compressive forces σcr, kN/m
2
 

Plate sides 

ratio 

Buckling 

mode 

Number of half 

waves in the 

transverse n and 

in the 

longitudinal m 

directions 

Theory SCAD Deviation, % 

a/b = 1.0 

1 1; 1 
235900 

(235911) 

2.359001∙1000/0.01 = 

= 235900 
0.00 

2 1; 2 
533934 

(535675) 

5.339341∙1000/0.01 = 

= 533934 
0.01 

3 2; 2 
942681 

(943645) 

9.426809∙1000/0.01 = 

= 942681 
0.10 

a/b = 4.0 1 1; 3 
220165 

(220164) 

2.201645∙1000/0.01 = 

= 220165 
0.00 
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Plate sides 

ratio 

Buckling 

mode 

Number of half 

waves in the 

transverse n and 

in the 

longitudinal m 

directions 

Theory SCAD Deviation, % 

2 1; 4 
235900 

(235911) 

2.359002∙1000/0.01 = 

= 235900 
0.00 

3 1; 2 
278652 

(278654) 

2.786517∙1000/0.01 = 

= 278652 
0.00 

Theoretical values calculated in the fourth approximation are given without brackets; 

Theoretical values calculated in the first approximation are given in brackets 

 

Notes: In the analytical solution the critical value of the compressive forces σcr1 in the first approximation 

corresponding to the moment of buckling of the rectangular reinforced plate can be determined according to 

the following formula: 

 

,

1s

i
sin21

1s

i
sin2

m

n
1

hb

mD
s

1i

2

s

1i

2

2
2

22

22

1cr

























































 



















   

 

at s =3 ,
41

4
m

n
1

hb

mD

2
2

22

22

1cr

































 






  where: 

 

 
,

112

hE
D

2

3




  ,

b

a
   ,

Db

IE




  ,

hb

F


  

 

n, m = 1, 2, 3 … – number of half waves of the buckling mode in the transverse and longitudinal directions 

with respect to the compression of the plate. 

 

In the analytical solution the critical value of the compressive forces σcr1 in the fourth approximation 

corresponding to the moment of buckling of the rectangular reinforced plate is determined on the basis of 

the condition of equality to zero of the determinant of the system of governing equations: 
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Stability of a Rectangular Simply Supported Plate with Longitudinal Stiffeners 

Uniformly Compressed in the Longitudinal Direction (Model 2) 

 

 
 

Objective: Determination of the critical value of the compressive forces uniformly distributed along two 

opposite transverse sides of a rectangular simply supported plate reinforced by longitudinal stiffeners 

corresponding to the moment of its buckling. 
  

Initial data files: 
File name Description 

6.10_shell_shell_lambda_1.SPR Design model with the ratios of the sides of the plate a/b = 1.0 

6.10_shell_shell_lambda_4.SPR Design model with the ratios of the sides of the plate a/b = 4.0 

 

Problem formulation: The rectangular simply supported plate reinforced by longitudinal stiffeners is 

subjected to the action of compressive forces σ, uniformly distributed along two opposite transverse sides. 

Determine the critical value of the compressive forces σcr, corresponding to the moment of buckling of the 

rectangular reinforced plate taking into account the following assumptions made when deriving the 

analytical solution: 

 The stiffeners are symmetric with respect to the midplane of the reinforced plate; 

 Torsional stiffness of the stiffeners is not taken into account 

 The stiffeners and the plate are subjected to the uniform compression   
 

References: S. P. Timoshenko, Stability of Bars, Plates and Shells, Moscow, Nauka 1971, p. 507. 

A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 377. 
  

Initial data: 

a = 0.6; 2.4 m - side of the rectangular plate free from forces (along the X axis of the 

global coordinate system) 

b = 0.6 m - side of the rectangular plate subjected to the compressive forces (along 

the Y axis of the global coordinate system); 

h = 0.01 m   - thickness of the rectangular plate; 

F = 0.01∙0.03 = 3∙10-4 m2 - cross-sectional area of the stiffeners; 

I = 0.01∙0.033/12 = 2.25∙10-8 m4 - cross-sectional moment of inertia of the stiffeners; 

s = 3    - number of stiffeners arranged uniformly along the width of the plate; 

E = 2.0·108 kN/m2  - elastic modulus of the material of the plate and stiffeners; 

ν = 0.3    - Poisson’s ratio; 

σ = 1.0·105 kN/m2 - initial value of the compressive forces. 
 

Finite element model: Design model – general type system. Two design models with the ratios of the sides 

of the plate a/b = 1.0; 4.0 are considered. The plate is modeled by eight-node shell elements of type 50. The 

spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global 

coordinate system) is 0.075 m. Number of plate elements in the models – 64; 256. The stiffeners are 

modeled by eight-node shell elements of type 50. The spacing of the finite element mesh along the 

longitudinal axes of the stiffeners (along the X1 axes of the local coordinate systems) is 0.075 m, and along 

the height of the stiffeners (along the Y1 axes of the local coordinate systems) is 0.015 m. Number of 
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stiffener elements in the models – 48; 192. Boundary conditions are provided by imposing constraints on 

the nodes of the support contour of the plate in the direction of the degree of freedom Z. The load uniformly 

distributed along the line on the plate and on the stiffeners with the initial value p = σ∙h = 1000 kN/m is 

specified on one of the two opposite transverse sides of the plate subjected to the compressive forces, and 

constraints in the respective direction on the plate (along the X axis of the global coordinate system) are 

imposed on the nodes of the other one, and the load uniformly distributed along the line on the stiffeners 

with the initial value p = σ∙h = 1000 kN/m is specified on it. The dimensional stability of the design model 

is provided by imposing constraints in the normal direction (along the Y axis of the global coordinate 

system) on the nodes of one of the two opposite longitudinal sides of the plate free from forces, and by 

imposing a constraint in the UZ direction of the global coordinate system on the node of one of the corners 

of the plate. Number of nodes in the models – 381; 1437. 

 

Results in SCAD 

 

  
 

 
 

Design model with the ratio of the sides of the plate a/b = 1.0 

 

 



  V e r i f i c a t i o n  E x a m p l e s  

690 S t a b i l i t y  

 
 

 
 

Design model with the ratio of the sides of the plate a/b = 4.0 

 

 

  
 

1-st buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 
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2-nd buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 

 

 

 
 

3-rd buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 

 

 
  1-st buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 

 

 
  2-nd buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 
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   3-rd buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 

 

Comparison of solutions: 

Critical value of the compressive forces σcr, kN/m
2
 

Plate sides ratio Buckling mode 

Number of half 

waves in the 

transverse n and 

in the 

longitudinal m 

directions 

Theory SCAD Deviation, % 

a/b = 1.0 

1 1; 1 
235900 

(235911) 

2.410318∙1000/0.01 = 

= 241032 
2.18 

2 1; 2 
533934 

(535675) 

5.369516∙1000/0.01 = 

= 536952 
0.57 

3 2; 2 
942681 

(943645) 

9.604025∙1000/0.01 = 

= 960403 
1.88 

a/b = 4.0 

1 1; 3 
220165 

(220164) 

2.257856∙1000/0.01 = 

= 225786 
2.55 

2 1; 4 
235900 

(235911) 

2.414278∙1000/0.01 = 

= 241428 
2.34 

3 1; 2 
278652 

(278654) 

2.842984∙1000/0.01 = 

= 284298 
2.03 

Theoretical values calculated in the fourth approximation are given without brackets; 

Theoretical values calculated in the first approximation are given in brackets 

 

Notes: In the analytical solution the critical value of the compressive forces σcr1 in the first approximation 

corresponding to the moment of buckling of the rectangular reinforced plate can be determined according to 

the following formula: 
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n, m = 1, 2, 3 … – number of half waves of the buckling mode in the transverse and longitudinal directions 

with respect to the compression of the plate. 
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In the analytical solution the critical value of the compressive forces σcr1 in the fourth approximation 

corresponding to the moment of buckling of the rectangular reinforced plate is determined on the basis of 

the condition of equality to zero of the determinant of the system of governing equations: 
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Stability of a Rectangular Simply Supported Orthotropic Plate Uniformly 

Compressed in One Direction 

 

 
 

Objective: Determination of the critical value of the compressive forces uniformly distributed along two 

opposite transverse sides of a rectangular simply supported orthotropic plate corresponding to the moment 

of its buckling. 
  

Initial data files: 
File name Description 

6.10_shell_orthotropic_lambda_1.SPR Design model with the ratios of the sides of the plate a/b = 1.0 

6.10_shell_orthotropic_lambda_4.SPR Design model with the ratios of the sides of the plate a/b = 4.0 

 

Problem formulation: The rectangular simply supported orthotropic plate is subjected to the action of 

compressive forces σ, uniformly distributed along two opposite transverse sides. Determine the critical 

value of the compressive forces σcrort, corresponding to the moment of buckling of the rectangular 

orthotropic plate. 
 

References: A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 374. 
  

Initial data: 

a = 0.6; 2.4 m - side of the rectangular plate free from forces (along the X axis of the 

global coordinate system); 

b = 0.6 m - side of the rectangular plate subjected to the compressive forces (along 

the Y axis of the global coordinate system); 

h = 0.01 m   - thickness of the rectangular plate; 

Ex = 5.600·10
8 kN/m2 - elastic modulus of the plate material corresponding to longitudinal 

deformations along the X axis of the global coordinate system; 

νyx = 0.300 - Poisson’s ratio corresponding to transverse deformations along the Y axis 

of the global coordinate system; 

Ey = 2.123·10
8 kN/m2 - elastic modulus of the plate material corresponding to longitudinal 

deformations along the Y axis of the global coordinate system; 

νxy = 0.114 - Poisson’s ratio corresponding to transverse deformations along the X axis 

of the global coordinate system; 

Gxy = 0.769·10
8 kN/m2 - shear modulus of the plate material; 

σ = 1.0·105 kN/m2 - initial value of the compressive forces. 
 

Finite element model: Design model – general type system. Two design models with the ratios of the sides 

of the plate a/b = 1.0; 4.0 are considered. The plate is modeled by eight-node shell elements of type 50. The 

spacing of the finite element mesh along the sides of the plate (along the X and Y axes of the global 

coordinate system) is 0.075 m. Number of plate elements in the models – 64; 256. Boundary conditions are 

provided by imposing constraints on the nodes of the support contour of the plate in the direction of the 

degree of freedom Z. A load uniformly distributed along the line with the initial value p = σ∙h = 1000 kN/m 

is specified on one of the two opposite sides of the plate subjected to the compressive forces, and the 

constraints in the respective direction (along the X axis of the global coordinate system) are imposed on the 
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nodes of the other one. The dimensional stability of the design model is provided by imposing constraints in 

the normal direction (along the Y axis of the global coordinate system) on the nodes of one of the two 

opposite sides of the plate free from forces, and by imposing a constraint in the UZ direction of the global 

coordinate system on the node of one of the corners of the plate. The dimensional stability of the design 

model is provided by imposing constraints in the normal direction (along the Y axis of the global 

coordinate system) on the nodes of one of the two opposite longitudinal sides of the plate free from forces, 

and by imposing a constraint in the UZ direction of the global coordinate system on the node of one of the 

corners of the plate. Number of nodes in the models – 225; 849. 

 

 

Results in SCAD 

 

 

 
 

Design model with the ratio of the sides of the plate a/b = 1.0 

 

 

 
 

Design model with the ratio of the sides of the plate a/b = 4.0 

 

 

 

  
 

1-st buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 
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2-nd buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 

 

 

 
 

3-rd buckling mode for the design model with the ratio of the sides of the plate a/b = 1.0 

 

 
  1-st buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 

 

 
  2-nd buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 

 
   3-rd buckling mode for the design model with the ratio of the sides of the plate a/b = 4.0 
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Comparison of solutions: 

Critical value of the compressive forces σcrort, kN/m
2
 

Plate sides 

ratio 

Buckling 

mode 

Number of half 

waves in the 

transverse n and 

in the longitudinal 

m directions 

Theory SCAD Deviation, % 

a/b = 1.0 

1 1; 1 283093 
2.831349 ∙1000/0.01 = 

= 283135 
0.01 

2 1; 2 642810 
6.428985 ∙1000/0.01 = 

= 642899 
0.01 

3 2; 2 1132373 
11.326625 ∙1000/0.01= 

= 1132663 
0.03 

a/b = 4.0 

1 1; 3 264196 
2.642394 ∙1000/0.01 = 

= 264239 
0.02 

2 1; 4 283093 
2.831351 ∙1000/0.01 = 

= 283135 
0.01 

3 1; 2 334385 
3.344432 ∙1000/0.01 = 

= 334443 
0.02 

 

Notes: In the analytical solution the critical value of the compressive forces σcr, corresponding to the 

moment of buckling of the rectangular orthotropic plate can be determined according to the following 

formula: 

 

,
bm

an

D

D

DD

nD2

a

bm

D

D

hb

DD
2

2

1

2

21

2
3

2

2

1
2

21
2

crort












































 








  where: 

 

 
,

112

hE
D

xyyx

3
x

1
 


  

 
,

112

hE
D

xyyx

3
y

2
 


  

 ,D4DD
2

1
D tyx2xy13     ,

12

hG
D

3
xy

t


  

 

n, m = 1, 2, 3 … – number of half waves of the buckling mode in the transverse and longitudinal directions 

with respect to the compression of the plate. 

 

Stiffness properties of the orthotropic plate were taken on the basis of the conditions of equivalence to the 

stiffness properties of the reinforced plate from the Example 6.10 a: 
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and were determined according to the following formulas: 
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The critical values of the compressive forces σcr for the reinforced plate have to be reduced by a factor k 

with respect to the critical values of the compressive forces σcr for the orthotropic plate, because when 

determining the latter the component acting on the stiffeners of the reinforced plate is not taken into 

account: 

 

0.869565
b h

k
b h F s


 

  
, 

where F is stiffener’s area, s is the quantity of stiffeners. 

 

 

Critical value of the compressive forces σcr, kN/m
2
 

Plate sides 

ratio 

Buckling 

mode 

Number of half 

waves in the 

transverse n and in 

the longitudinal m 

directions 

Theory SCAD Deviation, % 

a/b = 1.0 

1 1; 1 235900 
283135∙0.869565 = 

= 246204 
4.37 

2 1; 2 533934 
642899∙0.869565  = 

= 559043 
4.70 

3 2; 2 942681 
1132663∙0.869565 = 

= 984924 
4.48 

a/b = 4.0 

1 1; 3 220165 
264239∙0.869565  = 

= 229773 
4.36 

2 1; 4 235900 
283135∙0.869565  = 

= 246204 
4.37 

3 1; 2 278652 
334443∙0.869565  = 

= 290820 
4.37 
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Stability of a Cylindrical Thin-Walled Shell with Simply Supported Edges 

Subjected to Uniform External Pressure 

 
 

Objective: Determination of the critical value of the external pressure uniformly distributed over the lateral 

surface of a cylindrical thin-walled shell with simply supported edges corresponding to the moment of its 

buckling. 
  

Initial data file: 6.11_S.SPR 
 

Problem formulation: The cylindrical thin-walled shell with simply supported edges is subjected to the 

action of the uniform external pressure q. Determine the critical value of the uniform external pressure qcr, 

corresponding to the moment of buckling of the cylindrical thin-walled shell. 
 

References: E.I. Grigolyuk, V.V. Kabanov, Stability of Shells, Moscow, Nauka, 1978, p. 137. 

A.S. Volmir. Stability of Deformable Systems, Moscow, Nauka, 1967, p. 545. 
  

Initial data: 

E = 2.0·108 kPa  - elastic modulus of the shell material;  

ν = 0.3   - Poisson’s ratio;  

h = 0.005 m  - thickness of the shell; 

R = 0.5 m  - radius of the midsurface of the shell; 

L = 1.0 m  - length of the shell; 

q = 1.0·103 kPa  - initial value of the external pressure. 
 

Finite element model: Design model – general type system, 1200 four-node shell elements of type 50. The 

spacing of the finite element mesh in the meridian direction is 0.05 m (20 elements) and in the 

circumferential is 6.0º (60 elements). Boundary conditions of the simply supported edges are provided by 

imposing constraints in the directions of the linear displacements in their plane (degrees of freedom Y, Z). 

The dimensional stability of the design model is provided by imposing constraints of finite rigidity (60 

elements of type 51) in the nodes of the cross-section on the symmetry plane of the cylindrical shell in the 

meridian direction (kx = 1.0 kN/m). The uniformly distributed load (along the Z1 axis of the local 

coordinate system) with the initial value q = 1.0·103 kPa is specified on the lateral surface of the cylindrical 

shell. Number of nodes in the design model – 1260. 
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Results in SCAD 

  

 
Design model 
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1-st buckling mode 

 

Comparison of solutions: 

Critical value of the uniform external pressure qcr, kPa 

Buckling mode 

Number of half waves 

in the meridian 

direction m and 

number of waves in the 

circumferential n 

direction 

Theory SCAD Deviation, % 

1 1; 6 
981 

(917) 

0.999898 ∙1000 = 

= 1000 

1.94 

(9.05) 

Theoretical values calculated according to the shallow shell theory for the membrane initial state are given without 

brackets; 

Theoretical values calculated according to the general shell theory for the membrane initial state are given in round 

brackets. 

 

Notes: In the analytical solution the critical value of the uniform external pressure qcr, corresponding to the 

moment of buckling of the cylindrical thin-walled shell is determined in accordance with the shallow shell 

theory by the following formula: 
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In the analytical solution the critical value of the uniform external pressure qcr, corresponding to the 

moment of buckling of the cylindrical thin-walled shell is determined in accordance with the general shell 

theory on the basis of the condition of equality to zero of the determinant of the system of governing 

equations: 
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Nonlinear  Stat ics  
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Three-Span Beam with One Clamped End and Three Rigid One-Sided Supports 

Subjected to Concentrated Forces above Them 

 

 
 

 

 
Objective: Determination of the reactions of one-sided supports of a three-span beam or deflections of the 

beam in the direction of installation of the supports in the structurally nonlinear formulation. 

  

Initial data file: Contact_1.SPR 

 

Problem formulation: The three-span beam with one clamped end and three rigid one-sided supports 

working in compression is subjected to concentrated shear forces above them.  

Determine the reactions of the one-sided supports Ri or the deflections of the beam Zi in the direction of 

installation of the supports. 

 

References: A.V. Perelmuter, V.I. Slivker, Design Models of Structures and a Possibility of Their Analysis, 

Moscow, SCAD SOFT, 2011, p. 146  

 

Initial data: 

EF = 1.00·108 kN  - axial stiffness of the beam cross-section; 

EI = 44.50 kN∙m2  - bending stiffness of the beam cross-section; 

L = 2.00 m   - beam span length; 

k = 1.00·106 kN/m  - axial stiffness of the one-sided supports; 

P1 = 0.7071 kN - value of the concentrated force applied above the first (from the clamping) 

intermediate one-sided support and stretching it; 

P2 = 4.3597 kN - value of the concentrated force applied above the second (from the clamping) 

intermediate one-sided support and stretching it; 

P3 = 2.1155 kN - value of the concentrated force applied above the third (from the clamping) end 

one-sided support and compressing it. 

 

Finite element model: Design model – plane frame. Elements of the beam – 24 bar elements of type 2. The 

spacing of the finite element mesh along the beam length (along the X1 axes of the local coordinate 

systems) is 0.25 m. Elements of the one-sided supports – 3 two-node elements of unilateral constraints of 

type 352. Boundary conditions are provided by imposing constraints on the support node of the clamped 

end of the beam in the directions of the degrees of freedom X, Z, UY and on the support nodes of the one-

sided supports in the directions of the degrees of freedom X, Z. The actions are specified as transverse 

nodal loads P (in the direction of the Z axis of the global coordinate system). The nonlinear loading was 

generated for the incremental-iterative method with a loading factor - 1, number of steps - 1, number of 

iterations - 10 for the linear loading P. Number of nodes in the design model – 28. 
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Results in SCAD 

 
Design model 

 

  
 

 
Deformed model 

 

 
Values of deflections of the beam Zi, m 

 

 

 

 
Values of reactions of the one-sided supports, kN 

 

 

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

R1, kN 3.7872 3.8506 1.67 

R3, kN 0.5302 0.5301 0.02 

Z2, m 0.0772 0.0772 0.00 

 

Notes: In the analytical solution the reactions of the one-sided supports Ri or the deflections of the beam Zi 

in the direction of installation of the supports are determined by the quadratic programming method. 
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Rigid Body Restrained by Five Springs of the Same Rigidity Working Only in 

Tension Subjected to a Concentrated Force  

 
 

Objective: Determination of the reactions of springs of the same rigidity working only in tension and 

restraining a rigid body from the action of a concentrated force applied to it in the structurally nonlinear 

formulation. 

  

Initial data file: Contact_2.SPR 

 

Problem formulation: The rigid body in the shape of a square with the sides parallel to the coordinate axes 

is restrained at the corners by five springs of the same rigidity working only in tension as follows: 

two springs (1 and 5) are installed in the lower left corner of the square, the angles between their 

longitudinal axes and the lower side of the square are 150° and 30° respectively; 

one spring is installed in the upper left corner of the square (2), the angle between its longitudinal axis and 

the upper side of the square is 30°; 

springs (4 and 3) are installed in the lower right and in the upper right corners of the square, the angle 

between their longitudinal axes and the lower and upper sides of the square respectively is 90°. 

The concentrated force P is applied perpendicular to the middle of the left side of the square of the rigid 

body.  

Determine the reactions in the springs Ri. 

 

References: A.V. Perelmuter, V.I. Slivker, Design Models of Structures and a Possibility of Their Analysis, 

Moscow, SCAD SOFT, 2011, p. 147  

 

Initial data: 

L = 20 m  - side of the square of the rigid body; 

α1 = 150°  - angle between the axis of the spring 1 and the lower side of the square; 

α2 = 30°  - angle between the axis of the spring 2 and the upper side of the square; 

α3 = 90°  - angle between the axis of the spring 3 and the upper side of the square; 

α4 = 90°  - angle between the axis of the spring 4 and the lower side of the square; 

α5 = 30°  - angle between the axis of the spring 5 and the lower side of the square; 

k = 1.00·106 kN/m - axial stiffness of the springs; 

P = 10.0 kN - value of the concentrated force acting perpendicular to the middle of the left side 

of the square. 

 

Finite element model: Design model – plane frame. Element of the rigid body – 1 3D six-node rigid body 

element of type 100 (one master node lying at the intersection of the diagonals of the square, four slave 

nodes lying at the corners of the square, one slave node lying in the middle of the left side of the square). 

Elements of the springs – 5 two-node elements of unilateral constraints of type 352. Boundary conditions 

are provided by imposing constraints on the support nodes of the springs in the directions of the degrees of 

freedom X, Z. An element of the constraint of finite rigidity (type 51) of small value 0.001 kN/m in the 

direction of the X axis of the global coordinate system is introduced in the master node of the rigid body to 

provide the dimensional stability of the system during the nonlinear calculation. The results of the 
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calculation are correct if there are no reactions in this constraint. The action is specified as a nodal load P 

(in the direction of the X axis of the global coordinate system). The nonlinear loading was generated for the 

incremental-iterative method with a loading factor - 1, number of steps - 1, number of iterations - 10 for the 

linear loading P. Number of nodes in the design model – 17. 

 

Results in SCAD 

 
Design model 

 

  
 

 
Values of reactions in the support nodes of the springs along the X axis of the global coordinate system Rx, kN 
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Values of reactions in the support nodes of the springs along the Z axis of the global coordinate system Rz, kN 

 

Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

R1, kN 12.440 -10.7735∙cos150° + 6.2201∙sin150° = 12.440 0.00 

R2, kN 0.893 0.7735∙cos30° + 0.4466∙sin30° = 0.893 0.00 

R3, kN 5.770 5.7735∙sin90° = 5.774 0.07 

R4, kN 0.000 0.000 0.00 

R5, kN 0.000 0.000 0.00 

Notes: In the analytical solution the reactions in the springs Ri are determined by the quadratic 

programming method. 
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Circular Tunnel Lining Subjected to the Given Active Vertical And Horizontal 

Earth Pressure  and Passive Lateral Earth Pressure in the Contact Area 

   
 

 

Objective: Determination of the internal forces in the structure of a circular tunnel lining and the elastic 

reactions of soil in the contact area from the action of the given vertical and horizontal earth pressure in the 

structurally nonlinear formulation. 

  

Initial data file: Tunnel_lining.SPR 

 

Problem formulation: The circular tunnel lining is subjected to the action of the given active vertical p and 

horizontal q arching earth pressure and passive lateral earth pressure in the contact area. Determine the 

internal forces (longitudinal forces N and bending moments M) in the structure of the circular tunnel lining 

and the elastic reactions of soil R in the contact area. 

 

References: M.M. Archangelsky, D.I. Jincharadze, A.S. Kurisko, Calculation of Tunnel Lining, Moscow, 

TRANSZHELDORIZDAT, 1960, p. 217  

 

Initial data: 

E = 3.4·106 t/m2  - elastic modulus of the tunnel lining material; 

γb = 2.6 t/m3  - specific weight of the tunnel lining material; 

dint = 7.1 m  - inner diameter of the tunnel lining ring; 

h = 0.4   - thickness of the rectangular cross-section of the tunnel lining; 

b = 1.0   - width of the rectangular cross-section of the tunnel lining; 

α = π/8 rad - central angle of the side of the regular polygon of the frame replacing the circle of 

the design radius r of the tunnel lining; 

k = 5.0·103 t/m3 - coefficient of lateral earth pressure in the area of contact with the tunnel lining; 

f = 0.8 - Protodyakonov hardness coefficient; 

φ = 2∙π/9 rad - angle of internal friction of soil; 

γg = 1.9 t/m3 - specific weight of soil; 

dext = dint + 2∙h = 7.9 m   - outer diameter of the tunnel lining ring; 

r = (dext + dint)/4 = 3.75 m  - design radius of the tunnel lining; 

S = 2∙r∙sin(0.5∙α) = 1.463177 m  - side of the regular polygon of the replacement frame; 

I = b∙h3/12 = 0.005333 m4  - cross-sectional moment of inertia of the tunnel lining; 

F = b∙h = 0.4 m2    - cross-sectional area of the tunnel lining; 
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D = k∙S∙b = 7315.887 t/m  - stiffness of the elastic supports modeling the lateral earth pressure 

and radially arranged at the vertices of the polygon of the 

replacement frame; 

Larch = dext∙(1+ tg(π/4 – φ/2)) = 11.584 m - span of the earth pressure arch; 

Harch = Larch/(2∙f) = 7.240 m   - height of the earth pressure arch above the excavation; 

p = Harch∙γg + h∙ γb =14.796 t/m2  - vertical uniformly distributed active earth pressure; 

q = (Harch + dext/2)∙ γg∙tg
2(π/4 – φ/2) = 4.623 t/m2 - horizontal uniformly distributed active earth 

pressure. 

 

Vertical concentrated forces in the nodes of the polygon of the frame 

replacing the distributed load 

P1 = (S/2)∙p∙(cos(– 0.5∙α) + cos(0.5∙α)) = 21.2329 t; P2 = (S/2)∙p∙(cos(0.5∙α) + cos(1.5∙α)) = 19.6166 t; 

P3 = (S/2)∙p∙(cos(1.5∙α) + cos(2.5∙α)) = 15.0139 t; P4 = (S/2)∙p∙(cos(2.5∙α) + cos(3.5∙α)) = 8.1255 t; 

P5 = (S/2)∙p∙cos(3.5∙α) = 2.1117 t. 

 

Horizontal concentrated forces in the nodes of the polygon of the frame 

replacing the distributed load 

Q1 = (S/2)∙q∙sin(0.5∙α) = 0.6598 t;   Q2 = (S/2)∙q∙(sin(0.5∙α) + sin(1.5∙α)) = 2.5388 t; 

Q3 = (S/2)∙q∙(sin(1.5∙α) + sin(2.5∙α)) = 4.6911 t;  Q4 = (S/2)∙q∙sin(2.5∙α) =2.8121 t. 

 

Finite element model: Design model – general type system. Elements of the tunnel lining – 16 bar elements 

of type 5. The tunnel lining is divided into finite elements along the circle of radius r = 3.75 m, lying in the 

XOZ plane of the global coordinate system by the step of the central angle of α = π/8 rad. The origin of the 

global coordinate system is in the center of the circle. The X1 axes of the local coordinate systems of the 

elements are directed along the chords of the circle in the clockwise direction around the Y axis of the 

global coordinate system when viewed from the origin. The Z1 axes of the local coordinate systems of the 

elements are directed from the center of the circle. Elements modeling the lateral earth pressure – 16 two-

node elements of unilateral constraints working in compression of type 352. Finite elements are directed 

along the radii of the circle from the center and are adjacent to the nodes between the elements of the tunnel 

lining. Boundary conditions are provided by imposing constraints on the support nodes of the elements 

modeling the lateral earth pressure in the directions of the degrees of freedom X, Y, Z, and on the elements 

of the tunnel lining in the direction of the degree of freedom Y. The dimensional stability of the design 

model is provided by imposing constraints in the direction of the degree of freedom X on the nodes of the 

elements of the tunnel lining located along the vertical axis of symmetry. The action of the active vertical 

and horizontal earth pressure is specified as vertical Pi and horizontal Qi concentrated forces in the nodes 

between the elements of the tunnel lining. The nonlinear loading was generated by the simple incremental 

method with a loading factor – 0.01 and a number of steps – 100 for the linear loading. Number of nodes in 

the design model – 32. 

 



V e r i f i c a t i o n  E x a m p l e s    

N o n l i n e a r i t y  711 

Results in SCAD 

 
Design model 
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Deformed model 

 

 

 

 

 
Longitudinal force diagram N, т 
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Bending moment diagram M, t·m 

 

 

 

 

 
Values of reactions in the support nodes along the X axis of the global coordinate system Rx, т 

 

 

 



  V e r i f i c a t i o n  E x a m p l e s  

714 N o n l i n e a r i t y   

 
 

Values of reactions in the support nodes along the Z axis of the global coordinate system Rz, т 

 

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

N12, t -29.4660 -29.4659 0.00 

N23, t -37.9098 -37.9098 0.00 

N34, t -49.1226 -49.1226 0.00 

N45, t -56.4742 -56.4742 0.00 

N56, t -56.5793 -56.5792 0.00 

N67, t -54.5971 -54.5971 0.00 

N78, t -53.6637 -53.6636 0.00 

N89, t -53.4191 -53.4191 0.00 

M1, t∙m 18.6263 18.6263 0.00 

M2, t∙m 11.3641 11.3641 0.00 

M3, t∙m -4.7755 -4.7755 0.00 

M4, t∙m -16.3715 -16.3715 0.00 

M5, t∙m -10.6215 -10.6214 0.00 

M6, t∙m -1.3066 -1.3065 0.01 

M7, t∙m 3.9589 3.9589 0.00 

M8, t∙m 5.5598 5.5598 0.00 

M9, t∙m 5.7581 5.7580 0.00 

R1, t 0.0000 0.0000 0.00 

R2, t 0.0000 0.0000 0.00 

R3, t 0.0000 0.0000 0.00 

R4, t -3.2661 -3.0175∙cos(π/8) - 1.2499∙sin(π/8) = -3.2661 0.00 

R5, t -19.6660 -19.6661 0.00 

R6, t -24.4038 -22.5462∙cos(π/8) - 9.3389∙sin(π/8) = -24.4038 0.00 

R7, t -23.5771 -16.6715∙cos(π/4) – 16.6715∙sin(π/4) = -23.5770 0.00 

R8, t -21.8310 -8.3544∙cos(3∙π/8) - 20.1692∙sin(3∙π/8) = -21.8310 0.00 

R9, t -21.1089 -21.1089 0.00 
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Notes: The method of calculating tunnel linings proposed by the Metroproject, which takes into account the 

dependence of the stress state of the structure on the elastic properties of the continuum, is used in the 

analytical solution. The calculation procedure is as follows: 

 The area of contact of the structure with the soil is specified; the circular contour of the lining is 

replaced by a regular polygon; all the active loads reduced to the nodal ones and the necessary 

geometric properties are calculated. 

 The assumed primary system of the force method has the form of a polygon with hinges in all 

nodes with elastic supports, and also in the central angle of the detachment area, and as a result the 

upper part of the polygon turns into a three-hinged arch; moments which have to be applied in the 

hinges to eliminate the possibility of the relative rotation of the sides of the polygon are taken as the 

unknowns; unit moments are applied in all hinges (the action of the pairs of unknowns acting in the 

symmetric nodes is considered for a symmetric system); forces in the elements of the hinged chain 

and reactions of the elastic supports in all unit states are determined by successively cutting out the 

nodes and projecting forces in the directions of the bars, and on the bisector of the angle. 

 The upper part of the polygon in the detachment area is considered as a three-hinged arch, and its 

support vertical and horizontal pressures from the external load on the rest of the hinged polygon 

are determined; forces for all elements of the hinged chain and reactions of the elastic supports 

caused by the support forces and the active loads applied in other nodes are determined by 

successively cutting out the nodes. 

 The unit and loading displacements are determined by the Maxwell-Mohr formulas using the 

approximate summation methods. 

 A system of canonical equations is compiled and solved using the Gauss algorithm in order to 

determine the redundants. 

 The longitudinal forces, bending moments and reactions of the elastic constraints are determined. 

 The correctness of the specification of the contact area between the structure and the soil is checked 

based on the values of the reactions of the elastic supports. 

The formulas for the calculation are given below. 

 

   
Primary system of the force method 
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Determination of forces in the primary system from the external loads 

 

Determination of forces in the three-hinged arch from the vertical loads 

 

 
 

Design model for the determination of forces in the three-hinged arch from the vertical loads 

 

     

            
1 2 3

1 2 3

sin 3 ; sin ; sin 2 ;

1 cos 3 ; cos cos 3 ; cos 2 cos 3 ;

L r L r L r

F r F r F r

  

    

       

            

 

321 PPP5.0V  ;       
1

33221

F

LPLPLV
H


 ; 

  331p3 FHLLVM  ;       233231p2 LLPFHLLVM  ; 

     5.0sin
2

P
5.0cosHN 1

p12 ;      







 5.1sinP

2

P
5.1cosHN 2

1
p23 ; 

    







 5.2sinPP

2

P
5.2cosHN 32

1
p34 . 

 

Determination of forces in the hinged chain from the vertical loads 

 

     
  

Design model for the determination of forces in the hinged chain from the vertical loads 

 

     
 








5.0cos

sinH3sinPV
N 4

p45 ;   
 


5.0cos

P
NN 5

p45p56 ; 

p56p89p78p67 NNNN  ; 

         3cosPV5.0sinNcosHR 4p45p4 ; 
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    5.0sinNNR p56p45p5 ;       5.0sinNNR p67p56p6 ; 

p6p9p8p7 RRRR  . 

 

Determination of forces in the three-hinged arch from the horizontal loads 

 

1

332211
cr

F

FQFQFQ
H


 ;    

   

1

313212
sk

F

FFQFFQ
H


 ; 

   211crq2 FFQHM  ;     3skq3 FHM  ; 

    5.0cosQHN 1crq12 ;        5.1cosQQHN 21crq23 ; 

  5.2cosHN skq34 . 

 

Determination of forces in the hinged chain from the horizontal loads 

 

   
 








5.0cos

3cosQH
N 4sk

q45 ;    q45q89q78q67q56 NNNNN  ; 

       5.0sinN3sinQHR q454skq4 ;      5.0sinNNR q56q45q5 ; 

q5q9q8q7q6 RRRRR  . 

 

Determination of forces in the primary system from the unit moments 

 

Determination of forces in the three-hinged arch from the unit moment applied in the point 1 

 

1M11  ;      
1

11
1

F

M
H  ; 

2121 FHM  ;      3131 FHM  ; 

  5.0cosHN 1121 ;    5.1cosHN 1231 ;    5.2cosHN 1341 . 

 

Determination of forces in the hinged chain from the unit moment applied in the point 1 

 

 
 








5.0cos

sinH
N 1

451 ;     451891781671561 NNNNN  ; 

    cosH5.0sinNR 145141  ;   5.0sinN2R 45151 ; 5191817161 RRRRR  . 

 

Determination of forces in the three-hinged arch from the unit moment applied in the point 4 

 

1M 44   ;     
1

44
4

F

M
H  ; 

244424 FHMM  ;     344434 FHMM  ; 

  5.0cosHN 4124 ;    5.1cosHN 4234 ;    5.2cosHN 4344 . 

 

Determination of forces in the hinged chain from the unit moment applied in the point 4 

 

 
 

 
 

















5.0cosS

5.0sinM

5.0cos

sinH
N 444

454 ;    
 
 








5.0cosS

5.0sinM
NN 44

454564 ; 

564894784674 NNNN  ; 
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S

cosM
cosH5.0sinNR 44

445141





 ;

 
   





 5.0sinNN

S

5.0cosM
R 564454

44
51 ; 

  5.0sinN2R 56464 ;      64948474 RRRR  . 

 

Determination of forces in the hinged chain from the unit moment applied in the point 5 

 

1M55  ; 

 
 








5.0cosS

5.0sinM
N 55

455 ;  455565 NN  ; 

 


5.0cosS

M
R 55

45 ;

 
 

 





 5.0sinN2
S

5.0cosM2
R 455

55
55 ;

 


5.0cosS

M
R 55

65 . 

 

Determination of forces in the hinged chain from the unit moment applied in the point 6 

 

1M66  ; 

 
 








5.0cosS

5.0sinM
N 66

566 ;  566676 NN  ; 

 


5.0cosS

M
R 66

56 ;  
 

 





 5.0sinN2
S

5.0cosM2
R 566

66
66 ;

 
 


5.0cosS

M
R 66

76 . 

 

Determination of forces in the hinged chain from the unit moment applied in the point 7 

 

1M77  ; 

 
 








5.0cosS

5.0sinM
N 77

677 ;  677787 NN  ; 

 


5.0cosS

M
R 77

67 ;  
 

 





 5.0sinN2
S

5.0cosM2
R 677

77
77 ;

 
 


5.0cosS

M
R 77

87 . 

 

Determination of forces in the hinged chain from the unit moment applied in the point 8 

 

1M 88  ; 

 
 








5.0cosS

5.0sinM
N 88

788 ;  788898 NN  ; 

 


5.0cosS

M
R 88

78 ; 
 

 





 5.0sinN2
S

5.0cosM2
R 788

88
88 ;

 
 




5.0cosS

M2
R 88

98 . 

 

Determination of forces in the hinged chain from the unit moment applied in the point 9 
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1M99  ; 

 
 








5.0cosS

5.0sinM
N 99

899 ;  

 


5.0cosS

M
R 99

89 ; 
 

 





 5.0sinN2
S

5.0cosM2
R 899

99
99 . 

 

Determination of displacements 

 

 5.0RRRRRR
D

1
2

2

91

2

81

2

71

2

61

2

51

2

41R11  ; 

 2

313121

2

212111

2

11M11 M2MMM2MMM
IE3

S
2 


 ; 

 2

891

2

781

2

671

2

561

2

451

2

341

2

231

2

121N11 NNNNNNNN
FE

S
2 


 ; 

N11M11R1111   ; 

 5.0RRRRRRRRRRRR
D

1
2 949184817471646154514441R14  ; 

 443134312431342124212411M14 MMMM4MMMMMM4MM
IE6

S
2 


 ; 





14 121 124 231 234 341 344 451 454

561 564 671 674 781 784 891 894

2

;

N

S
N N N N N N N N

E F

N N N N N N N N

           


      

 

N14M14R1414   ; 

 656155514541R15 RRRRRR
D

1
2  ; 0M15  ; 

 565561455451N15 NNNN
FE

S
2 


 ;  N15M15R1515   ; 

 767166615651R16 RRRRRR
D

1
2  ; 0M16  ; 

 676671566561N16 NNNN
FE

S
2 


 ; N16M16R1616   ; 

 878177716761R17 RRRRRR
D

1
2  ; 0M17  ;  

 787781677671N17 NNNN
FE

S
2 


 ; N17M17R1717   ; 

 5.0RRRRRR
D

1
2 989188817871R18  ; 0M18  ; 

 898891788781N18 NNNN
FE

S
2 


 ; N18M18R1818   ; 

 5.0RRRR
D

1
2 99918981R19  ;  0M19  ; 899891N19 NN

FE

S
2 


 ; 

N19M19R1919   ; 

 5.0RRRRRR
D

1
2

2

94

2

84

2

74

2

64

2

54

2

44R44  ; 

 4434

2

443424

2

34

2

24M44 MMM2MMM2M2
IE3

S
2 


 ; 
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 2

894

2

784

2

674

2

564

2

454

2

344

2

234

2

124N44 NNNNNNNN
FE

S
2 


 ; 

N44M44R4444   ; 

 656455544544R45 RRRRRR
D

1
2  ;  5544M45 MM

IE6

S
2 


 ; 

 565564455454N45 NNNN
FE

S
2 


 ; 

N45M45R4545   ; 

 767466645654R46 RRRRRR
D

1
2  ;  0M46  ; 

 676674566564N46 NNNN
FE

S
2 


 ; 

N46M46R4646   ; 

 878477746764R47 RRRRRR
D

1
2  ;  0M47  ; 

 787784677674N47 NNNN
FE

S
2 


 ; 

N47M47R4747   ; 

 5.0RRRRRR
D

1
2 989488847874R48  ; 0M48  ; 

 898894788784N48 NNNN
FE

S
2 


 ; 

N48M48R4848   ; 

 5.0RRRR
D

1
2 99948984R49  ;  0M49  ; 899894N49 NN

FE

S
2 


 ; 

N49M49R4949   ; 

 2

65

2

55

2

45R55 RRR
D

1
2  ; 

2

55M55 M2
IE3

S
2 


 ;  2

565

2

455N55 NN
FE

S
2 


 ; 

N55M55R5555   ; 

 66655655R56 RRRR
D

1
2  ; 6655M56 MM

IE6

S
2 


 ; 566565N56 NN

FE

S
2 


 ; 

N56M56R5656   ; 

6765R57 RR
D

1
2  ;    0M57  ;   0N57  ; 

N57M57R5757   ; 

0R58  ;  0M58  ;  0N58  ; 

N58M58R5858   ; 

0R59  ;    0M59  ;    0N59  ; 

N59M59R5959   ; 

 2

76

2

66

2

56R66 RRR
D

1
2  ; 

2

66M66 M2
IE3

S
2 


 ;  2

676

2

566N66 NN
FE

S
2 


 ; 

N66M66R6666   ; 

 77766766R67 RRRR
D

1
2  ; 7766M67 MM

IE6

S
2 


 ; 677676N67 NN

FE

S
2 


 ; 
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N67M67R6767   ; 

7876R68 RR
D

1
2  ;   0M68  ;   0N68  ; 

N68M68R6868   ; 

0R69  ;     0M69  ;     0N69  ; 

N69M69R6969   ; 

 2

87

2

77

2

67R77 RRR
D

1
2  ; 

2

77M77 M2
IE3

S
2 


 ;  2

787

2

677N77 NN
FE

S
2 


 ; 

N77M77R7777   ; 

 88877877R78 RRRR
D

1
2  ; 8877M78 MM

IE6

S
2 


 ; 788787N78 NN

FE

S
2 


 ; 

N78M78R7878   ; 

8987R79 RR
D

1
2  ;   0M79  ;   0N79  ; 

N79M79R7979   ; 

 5.0RRR
D

1
2

2

98

2

88

2

78R88  ; 
2

88M88 M2
IE3

S
2 


 ;  2

898

2

788N88 NN
FE

S
2 


 ; 

N88M88R8888   ; 

 5.0RRRR
D

1
2 99988988R89  ; 9988M89 MM

IE6

S
2 


 ;

 899898N89 NN
FE

S
2 


 ; 

N89M89R8989   ; 

 5.0RR
D

1
2

2

99

2

89R99  ; 
2

99M99 M
IE3

S
2 


 ;  

2

899N99 N
FE

S
2 


 ; 

N99M99R9999   ; 

 5.0RRRRRRRRRRRR
D

1
2 p991p881p771p661p551p441pR1  ; 

 
31p221p331p311p221p2pM1 MMMMMM4MMMM4

IE6

S
2 


 ; 





1 12 121 23 231 34 341 45 451

56 561 67 671 78 781 89 891

2

;

pN p p p p

p p p p

S
N N N N N N N N

E F

N N N N N N N N

           


      

 

pN1pM1pR1p1   ; 

 5.0RRRRRRRRRRRR
D

1
2 p994p884p774p664p554p444pR4  ; 

 
44p334p224p334p324p2pM4 MMMMMMMM4MM4

IE6

S
2 


 ; 





4 12 124 23 234 34 344 45 454

56 564 67 674 78 784 89 894

2

;

pN p p p p

p p p p

S
N N N N N N N N

E F

N N N N N N N N

           


      

 

pN4pM4pR4p4   ; 
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p665p555p445pR5 RRRRRR

D

1
2  ; 0pM5  ;

  565p56455p45pN5 NNNN
FE

S
2 


 ; 

pN5pM5pR5p5   ; 

 
p776p666p556pR6 RRRRRR

D

1
2  ; 0pM6  ;

  676p67566p56pN6 NNNN
FE

S
2 


 ; 

pN6pM6pR6p6   ; 

 
p887p777p667pR7 RRRRRR

D

1
2  ; 0pM7  ;

  787p78677p67pN7 NNNN
FE

S
2 


 ; 

pN7pM7pR7p7   ; 

 5.0RRRRRR
D

1
2 p998p888p778pR8  ; 0pM8  ;

  
898p89788p78pN8 NNNN

FE

S
2 


 ; 

pN8pM8pR8p8   ; 

 5.0RRRR
D

1
2 p999p889pR9  ; 0pM9  ; 899p89pN9 NN

FE

S
2 


 ; 

pN9pM9pR9p9   ; 

 5.0RRRRRRRRRRRR
D

1
2 q991q881q771q661q551q441qR1  ; 

 
31q221q331q311q221q2qM1 MMMMMM4MMMM4

IE6

S
2 


 ; 
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2

;

qN q q q q

q q q q

S
N N N N N N N N

E F

N N N N N N N N

           


      

 

qN1qM1qR1q1   ; 

 

 5.0RRRRRRRRRRRR
D

1
2 q994q884q774q664q554q444qR4  ; 

 
44q334q224q334qp24qpqM4 MMMMMMMM4MM4

IE6

S
2 


 ; 
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;

qN q q q q

q q q q

S
N N N N N N N N

E F
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qN4qM4qR4q4   ; 

 
q665q555q445qR5 RRRRRR

D

1
2  ;  0qM5  ;

  565q56455q45qN5 NNNN
FE

S
2 


 ; 

qN5qM5qR5q5   ; 



V e r i f i c a t i o n  E x a m p l e s    

N o n l i n e a r i t y  723 

 
q776q666q556qR6 RRRRRR

D

1
2  ;  0qM6  ;

  676q67566q56qN6 NNNN
FE

S
2 


 ; 

qN6qM6qR6q6   ; 

 
q887q777q667qR7 RRRRRR

D

1
2  ;  0qM7  ;

  
787q78677q67qN7 NNNN

FE

S
2 


 ; 

qN7qM7qR7q7   ; 

 5.0RRRRRR
D

1
2 q998q888q778qR8  ; 0qM8  ;

  898q89788q78qN8 NNNN
FE

S
2 


 ; 

qN8qM8qR8q8   ; 

 5.0RRRR
D

1
2 q999q889qR9  ;  0qM9  ; 899q89qN9 NN

FE

S
2 


 ; 

qN9qM9qR9q9   . 

Determination of redundants 
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Determination of internal forces 

1111 XMM  ;     q12p124124112112 NNXNXNN  ; 

q2p24241212 MMXMXMM  ;  q23p234234123123 NNXNXNN  ; 

q3p34341313 MMXMXMM  ;  q34p344344134134 NNXNXNN  ; 

4444 XMM  ;    q45p4554554454145145 NNXNXNXNN  ; 

5555 XMM  ;  q56p56656655654564156156 NNXNXNXNXNN  ; 

6666 XMM  ;  q67p67767766764674167167 NNXNXNXNXNN  ; 

7777 XMM  ;  q78p78878877874784178178 NNXNXNXNXNN  ; 

8888 XMM  ;  q89p89989988984894189189 NNXNXNXNXNN  ; 

9999 XMM  . 

Determination of elastic reactions 

0RRR 321  ; 

q4p45454441414 RRXRXRXRR  ; 

q5p56565554541515 RRXRXRXRXRR  ; 

q6p67676665654641616 RRXRXRXRXRXRR  ; 
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q7p78787776764741717 RRXRXRXRXRXRR  ; 

q8p89898887874841818 RRXRXRXRXRXRR  ; 

q9p99998984941919 RRXRXRXRXRR  . 

 
 



V e r i f i c a t i o n  E x a m p l e s    

N o n l i n e a r i t y  725 

Contact with Detachment for a Layer and Subgrade with a Concentrated Shear 

Force Applied to the Layer 

 
 

 
 

Objective: Determination of the size of a contact area of a layer with the subgrade, when a concentrated 

shear force is applied to the layer, in the structurally nonlinear formulation. 

  

Initial data file: Contact_3_731.SPR 

 

Problem formulation: The elastic layer of height b lies on the elastic subgrade with the possibility of 

slipping and is subjected to the action of the concentrated shear force P applied to the upper surface. 

Determine the size of the area of contact of the layer with the subgrade 2∙c. 

 

References: K. Johnson, Mechanics of Contact Interaction, Moscow, Mir, 1989, p. 163  

 

Initial data: 

E1 = 21.0·10
7 kN/m2  - elastic modulus of the layer material; 

ν1 = 0.3    - Poisson’s ratio of the layer material; 

E3 = 3.0·10
7 kN/m2  - elastic modulus of the subgrade material; 

ν3 = 0.2    - Poisson’s ratio of the subgrade material; 

b = 1.00 m   - height of the layer; 

L = 10.00 m   - length of the layer and subgrade in the model; 

H = 10.00 m   - height of the subgrade in the model; 

P = 1000 kN   - value of the concentrated force applied to the upper surface of the layer. 

 

Finite element model: Design model – plane frame. Elements of the layer – 1000 eight-node grade beam 

elements of type 30. The spacing of the finite element mesh along the height and length of the layer is 0.1 

m. Elements of the subgrade – 10000 eight-node grade beam elements of type 30. The spacing of the finite 

element mesh along the height and length of the subgrade is 0.1 m. 201 two-node elements of unilateral 

constraints of type 352 of increased stiffness k = 1.0·109 kN/m are introduced to model the contact with 

detachment between the lower surface of the layer and the upper surface of the subgrade. Each element 

vertically joins the nodes of the layer and the subgrade. Boundary conditions are provided by imposing 

constraints on the lower surface of the subgarde in the direction of the degree of freedom Z. The 

dimensional stability of the design model is provided by imposing constraints in the direction of the degree 

of freedom X along the vertical axis of symmetry of the layer and the subgrade (along the force P). The 

action is specified as a transverse nodal load P (in the direction of the Z axis of the global coordinate 

system). The nonlinear loading was generated for the incremental-iterative method with a loading factor 

- 1, number of steps - 1, number of iterations - 10 for the linear loading P. Number of nodes in the 

design model – 33622. 
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Results in SCAD 

 
Design model 

 

 

 

 

 
Deformed model 
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Area of contact with the subgrade, contact stresses 

 

 
Area of contact with the subgrade, contact stresses 

(fragment of the model) 

 

 

Comparison of solutions: 
 

Area of contact with the subgrade 2∙c, m 

Theory SCAD Deviation, % 

4.78 4.60 3.77 

 

Notes: In the analytical solution the area of contact with the subgrade 2∙c can be determined according to 

the following formula: 
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Flexible Thread with Supports in One Level Subjected to a Uniformly Distributed 

Transverse Load  

 
 

Objective: Determination of the stress-strain state of a flexible thread with supports in one level subjected 

to a uniformly distributed transverse load q. 

 

Initial data file: NL_CANAT_v11.3.SPR 

 

Problem formulation: The flexible thread with supports in one level is subjected to the uniformly 

distributed transverse load q from the self-weight γ. Determine the sag f and the strain σ of the flexible 

thread. 

 

References: S.P. Fesik, Reference Book on Strength of Materials, 2-nd, Kiev, Budivelnik, 1982, p. 33. 

   

Initial data: 

E = 1.0·107 tf/m2 - elastic modulus of the thread; 

l = 40.0 m  - length of the span of the flexible thread; 

d = 0.04 m  - diameter of the cross-section of the flexible thread; 

γ = 8.0 tf/m3  - value of the specific weight of the flexible thread material. 

 

Finite element model: Design model – plane frame, 40 elements of type 302. Boundary conditions are 

provided by imposing constraints in the support nodes of the flexible thread in the directions of the degrees 

of freedom X, Z. The action of the uniformly distributed transverse load is specified as q = γ·F, where F = 

π·d2/4. Number of nodes in the design model – 41. The calculation is performed in the geometrically 

nonlinear formulation by the simple incremental method with the following parameters: loading factor – 

0.01, number of steps – 100. 

 

Results in SCAD 

 

 
Design model 

 

 
Deformed model 
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Values of vertical displacements Z (m) 

 

 
Longitudinal force diagram N (tf) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Sag f of the flexible thread, m -0.4579 -0.4580 0.02 

Strain σ of the flexible thread, 

tf/m2 
3494.3 4.3761 / (3.1416 · 0.042/4) = 3482.4 0.34 

 

Notes: In the analytical solution the sag f and the strain σ of the flexible thread are determined according to 

the following formulas: 
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Flexible Ring Subjected to Two Mutually Balanced Radially Compressive Forces  

 
 

Objective: Determination of maximum displacements and bending moments in a flexible ring subjected to 

two mutually balanced radially compressive forces in the geometrically nonlinear formulation. 

  

Initial data files: 
File name Description 

Кольцо_Q_50.SPR The flexible ring is subjected to the radially compressive forces Q = 50 kN 

 

Problem formulation: The flexible ring of constant cross-section is subjected to two mutually balanced 

radially compressive forces Q. Determine: the transverse displacements w and the bending moments M in 

the compressive force application points. 

 

References: E. P. Popov, Theory and Calculation of Flexible Elastic Bars, Moscow, Nauka, 1986, p. 154 

 

Initial data: 

EF = 1.5·107 kN   - axial stiffness of the cross-section of the ring;  

EIy = 3.125·10
5 kN∙m2  - bending stiffness of the cross-section of the ring in its plane; 

EIz = 1.250·10
6 kN∙m2  - bending stiffness of the cross-section of the ring out of its plane; 

GIx = 3.533·10
5 kN∙m2   - torsional stiffness of the cross-section of the ring; 

R = 50.0 m    - radius of the ring; 

Q = 50 kN    - value of the compressive forces. 

 

Finite element model: Design model – general type system. Elements of the plate - 180 bar elements taking 

into account the geometric nonlinearity of type 310. The spacing of the finite element mesh along the 

longitudinal axis of the ring is 2.0º. The dimensional stability of the design model is provided by imposing 

constraints according to its symmetry conditions. The nonlinear loading was generated for the incremental-

iterative method with a loading factor - 1, number of steps - 1, number of iterations - 7 for the linear loading 

Q. Number of nodes in the design model – 180. 
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Results in SCAD 

  
Design model 

 

 
Deformed model 

 

  
 

Values of transverse displacements w (m) 



  V e r i f i c a t i o n  E x a m p l e s  

732 N o n l i n e a r i t y   

 
 

Bending moment diagrams M (kN·m) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

The transverse displacement of the ring section w, m 

in the points of the application of the compressive 

forces Q = 50 kN  

±1.6060 ±1.5532 3.29 

The bending moment for the ring section M, kN∙m in 

the points of the application of the compressive 

forces Q = 50 kN 

809.37 809.81 0.05 

 

Notes: In the analytical solution the transverse displacements w and the bending moments M in the 

compressive force application points can be determined according to the following formulas: 
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where k and Ψ are determined by solving the system of equations: 
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Flexible Long Rectangular Plate Simply Supported along the Longitudinal Edges 

Subjected to a Uniformly Distributed Transverse Load 

 

 
 

Objective: Determination of the stress-strain state of a flexible long rectangular plate simply supported 

along the longitudinal edges subjected to a uniformly distributed transverse load. 

 

Initial data file: NEL.SPR 

 

Problem formulation: The flexible long rectangular plate simply supported along the longitudinal edges is 

subjected to the transverse load q uniformly distributed over its area. Determine the transverse displacement 

Z of the deformed midsurface, as well as the maximum yd and minimum yt normal stresses over the 

cross-section in the half of the plate span. 
 

References: S. Timoshenko, S. Woinowsky-Krieger, Theory of Plates and Shells, Moscow, Fizmatgis, 

1963, p. 20. 

 

Initial data: 

E = 2.1·106 kgf/cm2 - elastic modulus;  

ν = 0.3   - Poisson’s ratio;  

h = 1.3 cm  - thickness of the plate; 

l = 130.0 cm  - short side of the plate 

(along the Y axis of the global coordinate system); 

b = 260.0 cm  - size of the elementary strip of the long side of the plate 

(along the X axis of the global coordinate system); 

q = 1.4 kgf/cm 2  - value of the uniformly distributed transverse load. 

 
Finite element model: Design model  – general type system, 1352 plate elements of type 341. The spacing 

of the finite element mesh along the sides of the plate (along the X, Y axes of the global coordinate system) 

is 5.0 cm. Boundary conditions are provided by imposing constraints in the directions of the degrees of 

freedom X, Y, Z for the long edges parallel to the X axis of the global coordinate system based on the 

simply supported conditions, and in the directions of the degrees of freedom X, UY for the short edges 

parallel to the Y axis of the global coordinate system based on the conditions of cylindrical bending of the 

elementary strip of the long side of the plate. Number of nodes in the design model 1431. The calculation is 

performed in the geometrically nonlinear formulation by the incremental-iterative method with the 

following parameters: loading factor – 0.1, number of steps – 10, . number of iterations – 30. 
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Results in SCAD 

 
Design model 

 

 

 
Deformed model 
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Values of transverse displacements Z (cm) 

 

 

 

 

  
 

Values of longitudinal stresses Ny (kgf/cm2) 

 

 

 

 

 

 

 

 
  

 

Longitudinal stress diagram Ny (kgf/cm2) 
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Values of bending moments My (kgf·cm/cm) 

 

 

 

 

 

 
Bending moment diagram My (kgf·cm/cm) 

 

 

 

 

 

  
 

Values of normal stresses syd (kgf/cm2) 
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Values of normal stresses syt (kgf/cm2) 

 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Transverse displacement Z 

of the deformed midsurface 

in the half of the plate span, cm 

-1.782 -1.781 0.06 

maximum normal stresses 

over the cross-section in the half of the plate span syd, 

kgf/cm2 

2503 2498.7 0,17 

minimum normal stresses 

over the cross-section in the half of the plate span syt, 

kgf/cm2 

-287 -294.0 2.44 

 

 

Notes: In the analytical solution the displacement Z of the deformed midsurface, as well as the maximum 

syd and minimum syt normal stresses over the cross-section in the half of the plate span can be calculated 

according to the following formulas: 
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The value u is determined from the following expression:
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Flexible Square Plate Simply Supported along the Perimeter Subjected to a 

Uniformly Distributed Transverse Load  

 
Objective: Determination of maximum displacements and longitudinal stresses in a flexible square plate 

simply supported along the perimeter and subjected to a uniformly distributed transverse load in the 

geometrically nonlinear formulation. 
  

Initial data file: 7.6.SPR 

 

Problem formulation: The flexible square isotropic plate of constant thickness is simply supported 

along the perimeter and subjected to the uniformly distributed transverse load p. Determine: the 

transverse displacements w and longitudinal stresses Nx and Ny for the center of the plate. 
 

References: S. Levy, Bending of rectangular plates with large deflections, Washington, National advisory 

committee for aeronautics, Technical note No 846, May 1942. 

H. Hencky, Die berechnung dünner rechteckiger platten mit verschwindender biegungsteifigkeit, Dresden, 

Zeitschrift für angewandte mathematic und mechanic, April 1921. 

I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 1, 

Moscow, Mechanical engineering, 1968, p. 606 

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus of the plate material;  

ν = 0.3   - Poisson’s ratio; 

h = 0.01 m  - thickness of the plate; 

a = 10.0 m  - side of the plate; 

p = 10 kPa  - value of the uniformly distributed load. 

 
Finite element model: Design model – general type system. Plate elements - 10000 four-node shell 

elements taking into account the geometric nonlinearity of type 344. The spacing of the finite element mesh 

along the sides of the plate (along the X, Y axes of the global coordinate system) is 0.10 m. Boundary 

conditions are provided by imposing constraints on the nodes of the support contour of the plate in the 

direction of the degree of freedom Z, and by imposing constraints on the nodes of the sides of the plate in 

the direction normal to them (for two opposite sides parallel to the X axis of the global coordinate system – 

along the Y axis, for two opposite sides parallel to the Y axis of the global coordinate system – along the X 

axis). The dimensional stability of the design model is provided by imposing a constraint in the node of the 

center of the plate in the UZ direction of the global coordinate system. The nonlinear loading was generated 

for the incremental-iterative method with a loading factor - 1, number of steps - 1, number of 

iterations - 100 for the linear loading p. Number of nodes in the design model – 10201. 
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Results in SCAD 

 

 
Design model 

 

 

 

 

 
 

Deformed model 
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Values of transverse displacements w (m) 

 

 

  
Values of longitudinal stresses Nx (kN/m2) 
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Values of longitudinal stresses Ny (kN/m2) 

 

 

 

Comparison of solutions: 
 

Parameter Theory SCAD Deviation, % 

Transverse displacement in the center of the 

plate w, m 

0.1050 

(0.1067) 
0.1047 

0.29 

(1.87) 

Longitudinal stress in the center of the plate 

Nx, kN/m2 

74963 

(75830) 
74480 

0.64 

 (1,7) 

Longitudinal stress in the center of the plate 

Ny, kN/m2 

74963 

(75830) 
74480 

0.64 

 (1,7) 

The values of the approximate Hencky solution for the Karman theory are given without brackets; 

The values of the refined Levy solution for the Karman theory are given in brackets 

 

 

Notes: In the analytical approximate Hencky solution the transverse displacements w and the longitudinal 

stresses Nx and Ny for the center of the plate can be determined according to the following formulas 
(Poisson’s ratio ν = 0.3): 
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Simply Supported Flexible Circular Plate Subjected to a Uniformly Distributed 

Transverse Load 

 
Objective: Determination of maximum displacements and longitudinal radial tangential stresses in a 

flexible circular plate simply supported along the contour and subjected to a uniformly distributed 

transverse load in the geometrically nonlinear formulation. 
  

Initial data file: 7.7.SPR 

 

Problem formulation: The flexible circular isotropic plate of constant thickness is simply supported 

along the contour and subjected to the uniformly distributed transverse load p. Determine: the 

transverse displacements w and longitudinal radial tangential stresses Nr and Nt for the center of the 

plate. 
 

References: S. Way, Bending of circular plates with large deflections, New York, ASME, v.56 N 8, 1934, 

p. 627-636. 

H. Hencky, Uber den spannungsztand in kreisrunden platten mit verschwindender biegungssteifigkeit, 

Dresden, Zeitschrift für angewandte mathematic und physik, v.63, 1915, p. 311-317. 

I.A. Birger, Ya.G. Panovko, Strength, Stability, Vibrations, Handbook in three volumes, Volume 1, 

Moscow, Mechanical engineering, 1968, p. 614 

 

Initial data: 

E = 2.0·108 kPa  - elastic modulus of the plate material;  

ν = 0.3   - Poisson’s ratio; 

h = 0.01 m  - thickness of the plate; 

R = 5.0 m  - outer radius of the plate; 

p = 10 kPa  - value of the uniformly distributed load. 

 
Finite element model: Design model – general type system. Elements of the plate - 8820 four-node shell 

elements taking into account the geometric nonlinearity of type 344 and 180 three-node shell elements 

taking into account the geometric nonlinearity of type 342. The spacing of the finite element mesh in the 

radial direction is 0.10 m and in the tangential direction is 2.0º. The direction of the output of internal forces 

is radial tangential. Boundary conditions are provided by imposing constraints in the directions of the 

degrees of freedom X, Y and Z along the external contour of the plate. The dimensional stability of the 

design model is provided by imposing a constraint in the node of the center of the plate in the UZ direction 

of the global coordinate system. The nonlinear loading was generated for the incremental-iterative method 

with a loading factor - 1, number of steps - 1, number of iterations - 100 for the linear loading p. Number of 

nodes in the design model – 9001. 
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Results in SCAD 

 

 
Design model 

 

 
 

Deformed model 
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Values of transverse displacements w (m) 

 

 

  
 

Values of longitudinal radial stresses Nr (kN/m2) 
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Values of longitudinal tangential stresses Nt (kN/m2) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

Transverse displacement in the center of the 

plate w, m 
0.0968 0.0957 1.14 

Longitudinal radial stress in the center of the 

plate Nr, kN/m2 
72316 73540 1.69 

Longitudinal tangential stress in the center of 

the plate Nt, kN/m2 
72316 73540 1.69 

 

 

Notes: In the analytical approximate Hencky solution according to the Karman theory the transverse 

displacements w and the longitudinal radial tangential stresses Nr and Nt for the center of the plate can 

be determined according to the following formulas (Poisson’s ratio ν = 0.3): 
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Double-Guyed Mast Subjected to Static Loads and Prestressing Forces 

 
 

Objective: Determination of the stress state of a double-guyed mast subjected to static loads and 

prestressing forces in the physically nonlinear formulation. 
  

Initial data file: Mast.spr 
 

Problem formulation: The double-guyed mast with a trunk clamped in the support and cable stays 

symmetrically descending from its top at an angle α to the horizon is subjected to the following actions (in 

the plane of the mast structure): 

 In the initial state the cable stays are subjected to the uniformly distributed shear load qlg0 = qrg0 and are 

prestressed with the force H0; 

 In the operating state the mast trunk is subjected to the uniformly distributed load qm and to the moment 

Mm applied at its top, the windward and leeward cable stays are subjected to the uniformly distributed 

loads qlg and qrg, the temperature of the system does not change. 

Determine the longitudinal forces Nlg, Nrg and Nm in the windward and leeward cable stays and in the mast 

trunk, as well as the bending moments Mm in the cross-sections of the mast trunk. 
 

References: A. V. Perelmuter, Principles of Analysis of Cable-Bar Systems, Stroyizdat, 1969, p. 61  

 

Initial data: 

EFg = 0.58·10
5 t    - axial stiffness of the cable stays; 

EIm = 0.92·107 t∙m2    - bending stiffness of the mast trunk; 

S = 93.0 m     - height of the mast trunk; 

L = 115.5 m     - length of the chord of the cable stays; 

α = 45°      - angle of the cable stays to the horizon; 

qlg0 = qrg0 = 22.75∙10
-3∙cos(α) = 16.087 t/m - uniformly distributed shear load on the cable stays in the 

initial state; 

qlg = 37.40∙10
-3 - qlg0/ cos(α) = 14.650 t/m - uniformly distributed shear load on the windward cable 

stay in the operating state; 

qrg = qrg0/ cos(α) - 8.10∙10
-3 = 14.650 t/m - uniformly distributed shear load on the leeward cable stay 

in the operating state; 

qm = 950.00∙10-3 t/m - uniformly distributed shear load on the mast trunk in the 

operating state; 

Mm = 401.00 t∙m  - moment at the top of the mast trunk; 

H0 = 19.40 t  - prestressing forces of the cable stays. 

 

Finite element model: Design model – general type system. Elements of the mast trunk – 93 bar elements 

of type 5. The spacing of the finite element mesh along the height of the mast trunk (along the X1 axes of 

the local coordinate systems) is 1.0 m. Stiffness properties of the elements of the mast trunk: 

EF = 1.00·108 t; EIy = EIz = GIx = 0.92·10
7 t∙m2. 
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Elements of the cable stays – 2 cable-stayed elements of type 308. Boundary conditions are provided by 

imposing constraints on the support nodes of the cable stays in the directions of the degrees of freedom X, 

Z and on the support node of the mast trunk in the directions of the degrees of freedom X, Z, UY. 

Actions in the initial state are defined by the stiffness properties of the cable-stayed elements: 

γ =  7.84483 t/m3 - specific weight of the cable stays; 

E = 2.00·107 t/m2 - elastic modulus of the material of the cable stays; 

ν = 0.3   - Poisson’s ratio; 

H0 = 19.40 t  - prestressing forces of the cable stays; 

D = 6.0675 cm  - outer diameter of the ring cross-section of the cable stays; 

d = 0.0001 cm  - inner diameter of the ring cross-section of the cable stays. 

A separate loading with a vertical concentrated load of the minimum value P0 = 1.00∙10-4 t applied at the 

top of the mast trunk is created to control the values of the internal forces in the initial state.  

The actions in the operating state are specified as the following loads: 

uniformly distributed shear load in the local coordinate system along the Z1 axis applied to the cable-stayed 

elements; 

uniformly distributed shear load in the global coordinate system along the X axis applied to the elements of 

the mast trunk; 

concentrated moment about the Y axis of the global coordinate system applied to the top node of the mast 

trunk. 

The nonlinear loading was generated for the simple incremental method with a loading factor – 0.1 and a 

number of steps – 10 for the actions of the initial state, with a loading factor – 0.01 and a number of steps – 

100 for the actions of the operating state.  

Number of nodes in the design model – 96. 

 

Results in SCAD 

 
Design model in the initial state 
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  Design model in the operating state 

 

 
Deformed model in the initial state 

 

 

 
Deformed model in the operating state 
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Longitudinal force diagrams in the initial state (т) 

 

 
Bending moment diagrams in the initial state (t·m) 

 

 

 
Longitudinal force diagrams in the operating state (t) 
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Bending moment diagrams in the operating state (t·m) 

 

Comparison of solutions: 

Parameter Theory SCAD Deviation, % 

Nlg, t 52.769 52.774 0.01 

Nrg, t 1.171 1.170 0.09 

Nm, t -38.142 -38.147 0.01 

Mm(0), t∙m 1227.376 1224.539 0.23 

Mm(S), t∙m 401.000 401.000 0.00 

Sextr, m 55.853 56.000 ― 

Mm(Sextr), t∙m -254.437 -251.868 1.01 

 

Notes: In the analytical solution the internal forces in the twice statically indeterminate mast structure are 

determined by the force method, and the thrust reactions X1 and X2 of the support nodes of the cable stays 

are taken as the unknowns. 
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The values of the unknowns X1 and X2 are determined by solving the system of linear equations: 
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Square Membrane with a Compliant Contour 

 

Objective: Comparison of the results of the geometrically nonlinear analysis with the experimental studies. 
  

Initial data file: Плита-мембрана 4.SPR 
 

Problem formulation:   
The behavior of a square membrane with a support contour compliant in its plane subjected to the load 

uniformly distributed over the surface. It is necessary to compare the calculated data with the experimental 

one, when the deflection in the center and the overall picture are known. 

  

References: G.L. Anikeev, A.Ya. Pritsker, I.N. Lebedich, Experience in Designing, Manufacturing and 

Testing Roofing Panels of Aluminum Alloys // Building Structures from Aluminum Alloys (Design, 

Research, Production) - M.: Stroyizdat, 1963 

 
Initial data: 

A membrane structure 33 m made of AMG-6M alloy was tested. The thickness of the membrane sheet is 1 

mm, the contour is made of a bent channel 803003 mm. The measurement of the prototype was 

performed before the tests, the initial sag of the membrane center was 1,5 mm. The test load is 100 kgf/m2. 

The displacements in the center were measured by the Maximov deflectometer. A very characteristic 

deflection pattern was noted, in which the level lines deviate far from the oval shape and are closer to a 

rectangular form in the vicinity of the contour. 
 

Finite element model: The design model is assembled from shell finite elements (FE 341), the model 

contains 832 elements. Constraints in the Z direction were provided at the corners of the structure, and 

constraints along X and along Y were provided at the centers of the sides of the support contour parallel to 

the X and Y axes respectively. 

The initial imperfection of the membrane is taken into account in the design model. 

 
Design model 
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The nonlinear problem was solved by the incremental method with the steps shown in the following 

screenshot: 

 
 

Results in SCAD 

The qualitative picture of the deformation completely repeated that observed in the experiment 

 
 

Isofields of displacements 

 
Comparison of solutions: 

Parameter Experiment SCAD Deviation, % 

Maximum displacement in the vertical direction 

(mm) 
59,1  55,65 5,84 
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Pathological  Tests  
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Rectangular Plate under the Constant Stresses on the Midsurface  

 
 

Objective: Check of the obtained values of the constant stresses on the midsurface of a rectangular plate at 

an irregular coarse finite element mesh. 

  

Initial data files: 
File name Description 

Patch_test_Constant_stress_Shell_42.SPR Design model with the elements of type 42 

Patch_test_Constant_stress_Shell_44.SPR Design model with the elements of type 44 

Patch_test_Constant_stress_Shell_45.SPR Design model with the elements of type 45 

Patch_test_Constant_stress_Shell_50.SPR Design model with the elements of type 50 

 

Problem formulation: The rectangular isotropic plate of constant thickness is subjected to the 

displacements of the outer edges providing the conditions of constant stresses on the midsurface. Check that 

the conditions of constant normal σx, σy and tangential τxy stresses on the midsurface are provided.  

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

J. Robinson, S. Blackham, An evaluation of lower order membranes as contained in MSC/NASTRAN, 

ASAS and PARFEC FEM system, Dorset, Robinson and associates, 1979. 

 

Initial data: 

E = 1.0·106 kPa  - elastic modulus of the plate material;  

ν = 0.25  - Poisson’s ratio; 

t = 0.001 m  - thickness of the plate; 

a = 0.12 m  - short side of the plate; 

b = 0.24 m  - long side of the plate; 

 

Boundary conditions: 

u = 10-3∙(x + y/2) - displacement of the outer edges along the long side of the plate; 

v = 10-3∙(x/2 + y) - displacement of the outer edges along the short side of the plate; 

 

Location of internal nodes of the finite element mesh: 
Numbers of nodes 

in the Figure 1 
x y 

1 0.04 0.02 

2 0.18 0.03 

3 0.16 0.08 

4 0.08 0.08 

 
Finite element model: Design model – general type system. Four design models are considered: 

Model 1 - 10 three-node shell elements of type 42. Boundary conditions are provided by imposing 

constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ and their displacement in accordance with the specified values u and v. Number of nodes in 

the model – 8. 
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Model 2 - 5 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints 

on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ and their displacement in accordance with the specified values u and v. Number of nodes in the model – 

8. 

Model 3 - 10 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints 

on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ and their displacement in accordance with the specified values u and v. Number of nodes in the model – 

25. 

Model 4 - 5 eight-node shell elements of type 50. Boundary conditions are provided by imposing 

constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ and their displacement in accordance with the specified values u and v. Number of nodes in 

the model – 20. 

 

Results in SCAD 

 

 
 

Model 1. Design model 

 

 

 
Model 1. Deformed model 
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Model 1. Values of normal stresses σx (kN/m2) 

 

  
Model 1. Values of normal stresses σy (kN/m2) 

 
Model 1. Values of tangential stresses τxy (kN/m2) 
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Model 2. Design model 

 

  
Model 2. Deformed model 

 

 
Model 2. Values of normal stresses σx (kN/m2) 
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Model 2. Values of normal stresses σy (kN/m2) 

 

 
Model 2. Values of tangential stresses τxy (kN/m2) 

 

 
Model 3. Design model 
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Model 3. Deformed model 

 

 
Model 3. Values of normal stresses σx (kN/m2) 

 

 
Model 3. Values of normal stresses σy (kN/m2) 
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Model 3. Values of tangential stresses τxy (kN/m2) 

 

 
Model 4. Design model 

 
Model 4. Deformed model 
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Model 4. Values of normal stresses σx (kN/m2) 

 

 
Model 4. Values of normal stresses σy (kN/m2) 

 

 
Model 4. Values of tangential stresses τxy (kN/m2) 
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Comparison of solutions: 

Model Parameter Theory SCAD Deviation, % 

1 

Normal stresses 

σx, kN/m2 
1333 1333 0.00 

Normal stresses 

σy, kN/m2 
1333 1333 0.00 

Tangential stresses 

τxy, kN/m2 
400 400 0.00 

2 

Normal stresses 

σx, kN/m2 
1333 1333 0.00 

Normal stresses 

σy, kN/m2 
1333 1333 0.00 

Tangential stresses 

τxy, kN/m2 
400 400 0.00 

3 

Normal stresses 

σx, kN/m2 
1333 1333 0.00 

Normal stresses 

σy, kN/m2 
1333 1333 0.00 

Tangential stresses 

τxy, kN/m2 
400 400 0.00 

4 

Normal stresses 

σx, kN/m2 
1333 1333 0.00 

Normal stresses 

σy, kN/m2 
1333 1333 0.00 

Tangential stresses 

τxy, kN/m2 
400 400 0.00 

 

Notes: In the analytical solution the normal σx, σy and tangential τxy stresses on the midsurface of the plate 

are determined according to the following formulas: 
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Rectangular Plate with Constant Curvature  

 
 

Objective: Check of the obtained values of the stresses on the external surface for a rectangular plate at an 

irregular coarse finite element mesh. 
  

Initial data files: 

File name Description 

Patch_test_Constant_curvature_Shell_42.SPR Design model with the elements of type 42 

Patch_test_Constant_curvature_Shell_44.SPR Design model with the elements of type 44 

Patch_test_Constant_curvature_Shell_45.SPR Design model with the elements of type 45 

Patch_test_Constant_curvature_Shell_50.SPR Design model with the elements of type 50 

 

Problem formulation: The rectangular isotropic plate of constant thickness is subjected to the 

displacements and rotations of the outer edges providing the constant curvature (stresses on the external 

surface). Check that the constant curvature κx, κy, κxy (stresses on the external surface σx, σy, τxy) is 

provided.  

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

J. Robinson, S. Blackham, An evaluation of plate bending elements: MSC/NASTRAN, ASAS, PARFEC, 

ANSYS and SAP4, Dorset, Robinson and associates, 1981. 

 

Initial data: 

E = 1.0·106 kPa  - elastic modulus of the plate material;  

ν = 0.25  - Poisson’s ratio; 

t = 0.001 m  - thickness of the plate; 

a = 0.12 m  - short side of the plate; 

b = 0.24 m  - long side of the plate; 

 

Boundary conditions: 

w = 10-3∙(x2 + x∙y + y2)/2 - displacement of the outer edges along the normal to the surface of the 

plate; 

θx = 10-3∙(x/2 + y)  - rotation of the outer edges about the short sides of the plate; 

θy = 10
-3
∙( – x – y/2)  - rotation of the outer edges about the long sides of the plate. 

 

Location of internal nodes of the finite element mesh: 
Numbers of nodes 

in the Figure 1 
x y 

1 0.04 0.02 

2 0.18 0.03 

3 0.16 0.08 

4 0.08 0.08 

 
Finite element model: Design model – general type system. Four design models are considered: 

Model 1 - 10 three-node shell elements of type 42. Boundary conditions are provided by imposing 

constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, 
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UX, UY, UZ and their displacement (rotation) in accordance with the specified values w,  θx and θy. 

Number of nodes in the model – 8. 

Model 2 - 5 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints 

on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ and their displacement (rotation) in accordance with the specified values w,  θx and θy.. Number of 

nodes in the model – 8. 

Model 3 – 10 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints 

on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ and their displacement (rotation) in accordance with the specified values w,  θx and θy. Number of 

nodes in the model – 25. 

Model 4 - 5 eight-node shell elements of type 50. Boundary conditions are provided by imposing 

constraints on the nodes of the outer edges of the plate in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ and their displacement (rotation) in accordance with the specified values w,  θx and θy. 

Number of nodes in the model – 20. 

 

Results in SCAD 

 
Model 1. Design model 

 

 

 
 

Model 1. Deformed model 
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Model 1. Values of the bending moment Mx (kN·m/m) 

 

  
Model 1. Values of the bending moment My (kN·m/m) 

 

 
Model 1. Values of the torque Mxy (kN·m/m) 
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Model 2. Design model 

 

  
Model 2. Deformed model 

 

 
Model 2. Values of the bending moment Mx (kN·m/m) 



V e r i f i c a t i o n  E x a m p l e s    

 P a t h o l o g i c a l  T e s t s  769 

 
Model 2. Values of the bending moment My (kN·m/m) 

 

 
Model 2. Values of the torque Mxy (kN·m/m) 

 

 
Model 3. Design model 
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Model 3. Deformed model 

 

 
Model 3. Values of the bending moment Mx (kN·m/m) 

  

 
Model 3. Values of the bending moment My (kN·m/m) 
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Model 3. Values of the torque Mxy (kN·m/m) 

 

 
Model 4. Design model 

 

 
 

Model 4. Deformed model 
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Model 4. Values of the bending moment Mx (kN·m/m) 

 

 
Model 4. Values of the bending moment My (kN·m/m) 

 

 
Model 4. Values of the torque Mxy (kN·m/m) 
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Comparison of solutions: 
 

Model Parameter Theory SCAD Deviation, % 

1 

Normal stresses 

σx, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Normal stresses 

σy, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Tangential stresses 

τxy, kN/m2 
0.200 

6∙0.333∙10-7/0.0012 = 

= 0.200 
0.00 

2 

Normal stresses 

σx, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Normal stresses 

σy, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Tangential stresses 

τxy, kN/m2 
0.200 

6∙0.333∙10-7/0.0012 = 

= 0.200 
0.00 

3 

Normal stresses 

σx, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Normal stresses 

σy, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Tangential stresses 

τxy, kN/m2 
0.200 

6∙0.333∙10-7/0.0012 = 

= 0.200 
0.00 

4 

Normal stresses 

σx, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Normal stresses 

σy, kN/m2 
0.667 

6∙1.111∙10-7/0.0012 = 

= 0.667 
0.00 

Tangential stresses 

τxy, kN/m2 
0.200 

6∙0.333∙10-7/0.0012 = 

= 0.200 
0.00 

 

Notes: In the analytical solution the normal σx, σy and tangential τxy stresses on the external surface of the 

plate are determined according to the following formulas: 
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Cube under the Constant Stresses throughout the Volume  

 

  
 

 

Objective: Check of the obtained values of the constant stresses throughout the volume of the cube at an 

irregular coarse finite element mesh. 

  

Initial data files: 
File name Description 

Patch_test_Constant_stress_Solid_32.SPR Design model with the elements of type 32 

Patch_test_Constant_stress_Solid_34.SPR Design model with the elements of type 34 

Patch_test_Constant_stress_Solid_36.SPR Design model with the elements of type 36 

Patch_test_Constant_stress_Solid_37.SPR Design model with the elements of type 37 

 

Problem formulation: The unit isotropic cube is subjected to the displacements of the external surfaces 

providing the conditions of the constant stresses throughout the volume. Check that the conditions of 

constant normal σx, σy, σz and tangential τxy, τxz, τyz stresses throughout the volume are provided.  

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

 

Initial data: 

E = 1.0·106 kPa   - elastic modulus of the plate material;  

ν = 0.25   - Poisson’s ratio; 

a = 1.00 m   - side of the cube; 

 

Boundary conditions: 

u = 10-3∙(2∙x + y + z)/2  - displacement of the external surfaces along the X axis of the global 

coordinate system; 

v = 10-3∙(x + 2∙y + z)/2  - displacement of the external surfaces along the Y axis of the global 

coordinate system; 

w = 10-3∙(x + y + 2∙z)/2  - displacement of the external surfaces along the Z axis of the global 

coordinate system; 

 

Location of internal nodes of the finite element mesh: 
Numbers of nodes 

in the Figure 1 
x y z 

1 0.35 0.35 0.35 

2 0.75 0.25 0.25 

3 0.85 0.85 0.15 

4 0.25 0.75 0.25 

5 0.35 0.35 0.65 

6 0.75 0.25 0.75 
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Numbers of nodes 

in the Figure 1 
x y z 

7 0.85 0.85 0.85 

8 0.25 0.75 0.75 

 

Finite element model: Design model – general type system. Four design models are considered: 

Model 1 - 42 four-node pyramid elements of type 32. Boundary conditions are provided by imposing 

constraints on the nodes of the external surfaces of the cube in the directions of the degrees of freedom X, 

Y, Z and their displacement in accordance with the specified values u, v, w. Number of nodes in the model 

– 16. 

Model 2 - 14 six-node isoparametric solid elements of type 34. Boundary conditions are provided by 

imposing constraints on the nodes of the external surfaces of the cube in the directions of the degrees of 

freedom X, Y, Z and their displacement in accordance with the specified values u, v, w.  Number of nodes 

in the model – 16. 

Model 3 - 7 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by 

imposing constraints on the nodes of the external surfaces of the cube in the directions of the degrees of 

freedom X, Y, Z and their displacement in accordance with the specified values u, v, w.  Number of nodes 

in the model – 16. 

Model 4 - 7 twenty-node isoparametric solid elements of type 37. Boundary conditions are provided by 

imposing constraints on the nodes of the external surfaces of the cube in the directions of the degrees of 

freedom X, Y, Z and their displacement in accordance with the specified values u, v, w.  Number of nodes 

in the model – 48. 

 

Results in SCAD 

 
Model 1. Design and deformed models 
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Model 2. Design and deformed models 

 

 
Model 3. Design and deformed models 

 
Model 4. Design and deformed models 
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Values of normal stresses for all models σx, σy σz (kN/m2)  

 

 
Values of tangential stresses for all models τxz, τxy, τyz (kN/m2) 

 

 

Comparison of solutions: 
 

Model Parameter Theory SCAD Deviation, % 

1-4 

Normal stresses 

σx, kN/m2 
2000 2000 0.00 

Normal stresses 

σy, kN/m2 
2000 2000 0.00 

Normal stresses 

σz, kN/m2 
2000 2000 0.00 

Tangential stresses 

τxy, kN/m2 
400 400 0.00 

Tangential stresses 

τxz, kN/m2 
400 400 0.00 

Tangential stresses 

τyz, kN/m2 
400 400 0.00 

 

Notes: In the analytical solution the normal σx, σy, σz and tangential τxy, τxz, τyz stresses throughout the 

volume of the cube are determined according to the following formulas: 
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Rectilinear Cantilever Beam with Concentrated Longitudinal and Shear Forces 

and a Torque at Its Free End 

 
 

Objective: Check of the obtained values of the longitudinal and transverse displacements and the torsional 

angle of the free end of a rectilinear cantilever beam subjected to concentrated longitudinal and shear forces 

and a torque under different distortions of the finite element mesh. 

  

Initial data files: 
File name Description 

Straight_cantilever_beam_Regular_shape_Shell_42.SPR 
Design model with the elements of type 42 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_Shell_142.SPR 
Design model with the elements of type 142 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_Shell_44.SPR 
Design model with the elements of type 44 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_Shell_144.SPR 
Design model with the elements of type 144 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_Shell_45.SPR 
Design model with the elements of type 45 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_Shell_145.SPR 
Design model with the elements of type 145 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_Shell_50.SPR 
Design model with the elements of type 50 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_Shell_150.SPR 
Design model with the elements of type 150 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_ Solid _36.SPR 
Design model with the elements of type 36 at a 

regular mesh 

Straight_cantilever_beam_Regular_shape_ Solid _37.SPR 
Design model with the elements of type 37 at a 

regular mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_42.SPR 
Design model with the elements of type 42 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_142.SPR 
Design model with the elements of type 142 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_44.SPR 
Design model with the elements of type 44 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_144.SPR 
Design model with the elements of type 144 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_45.SPR 
Design model with the elements of type 45 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_145.SPR 
Design model with the elements of type 145 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_50.SPR 
Design model with the elements of type 50 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_Shell_150.SPR 
Design model with the elements of type 150 at a 

trapezoidal mesh 
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File name Description 

Straight_cantilever_beam_Trapezoidal_shape_ Solid _36.SPR 
Design model with the elements of type 36 at a 

trapezoidal mesh 

Straight_cantilever_beam_Trapezoidal_shape_ Solid _37.SPR 
Design model with the elements of type 37 at a 

trapezoidal mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_42.SPR 
Design model with the elements of type 42 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_142.SPR 
Design model with the elements of type 142 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_44.SPR 
Design model with the elements of type 44 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_144.SPR 
Design model with the elements of type 144 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_45.SPR 
Design model with the elements of type 45 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_145.SPR 
Design model with the elements of type 145 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_50.SPR 
Design model with the elements of type 50 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_Shell_150.SPR 
Design model with the elements of type 150 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_ Solid _36.SPR 
Design model with the elements of type 36 at a 

parallelogram mesh 

Straight_cantilever_beam_Parallelogram_shape_ Solid _37.SPR 
Design model with the elements of type 37 at a 

parallelogram mesh 

 

 

Problem formulation: The rectilinear isotropic cantilever beam of a rectangular cross-section is subjected 

to the concentrated longitudinal Px and shear Py, Pz forces and the torque Mx applied at its free end. Check 

the obtained values of the longitudinal X and transverse displacements Y, Z and the torsional angle UX of 

the free end of the rectilinear cantilever beam from the respective actions. 

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

 

Initial data: 

E = 1.0·107 kPa  - elastic modulus of the beam material;  

ν = 0.30  - Poisson’s ratio; 

b = 0. 1 m  - width of the beam; 

h = 0. 2 m  - height of the beam; 

L = 6.0 m  - length of the beam; 

Px = 1.0 kN  - value of the longitudinal force;  

Py = 1.0 kN  - value of the shear force acting along the height of the beam; 

Pz = 1.0 kN  - value of the shear force acting along the width of the beam; 

Mx = 1.0 kN∙m  - value of the torque. 

 

Finite element model: Design models – general type systems. Ten design models with regular, trapezoidal 

and parallelogram finite element meshes are considered: 

Model 1 - 12 three-node shell elements of type 42. Boundary conditions are provided by imposing 

constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx are given in the 

form of two nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 kN∙m). Number of 

nodes in the model – 14. 

Model 2 - 12 three-node shell elements allowing for shear of type 142. Boundary conditions are provided 

by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx 

are given in the form of two nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 

kN∙m). Number of nodes in the model – 14. 
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Model 3 - 6 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints 

on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx are given in the form of two 

nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 kN∙m). Number of nodes in the 

model – 14. 

Model 4 - 6 four-node shell elements allowing for shear of type 144. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx 

are given in the form of two nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 

kN∙m). Number of nodes in the model – 14. 

Model 5 - 12 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints 

on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx are given in the form of two 

nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 kN∙m). Number of nodes in the 

model – 39. 

Model 6 - 12 six-node shell elements allowing for shear of type 145. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx 

are given in the form of two nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 

kN∙m). Number of nodes in the model – 39. 

Model 7 - 6 eight-node shell elements of type 50. Boundary conditions are provided by imposing 

constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx are given in the 

form of two nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 kN∙m). Number of 

nodes in the model – 33. 

Model 8 - 6 eight-node shell elements allowing for shear of type 150. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx 

are given in the form of two nodal forces (Px = 2∙0.5 kN, Py = 2∙0.5 kN, Pz = 2∙0.5 kN, Mx = 2∙5.0∙0.2/2 

kN∙m). Number of nodes in the model – 33. 

Model 9 - 6 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx 

are given in the form of four nodal forces (Px = 4∙0.25 kN, Py = 4∙0.25 kN, Pz = 4∙0.25 kN, Mx = 4∙2.5∙0.2/2 

kN∙m). Number of nodes in the model – 28. 

Model 10 - 6 twenty-node isoparametric solid elements of type 37. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated longitudinal Px and shear Py, Pz forces and the torque Mx 

are given in the form of four nodal forces (Px = 4∙0.25 kN, Py = 4∙0.25 kN, Pz = 4∙0.25 kN, Mx = 4∙2.5∙0.2/2 

kN∙m). Number of nodes in the model – 80. 
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Results in SCAD 

 

 

 

 

 
 

Models 1 and 2. 

Design model with a regular finite element mesh 

 

 

 

 

 

 
 

Models 1 and 2. 

Deformed model with a regular finite element mesh 

 

 

 

 

 

 

 

 
Model 1. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Model 2. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

  
 

Models 3 and 4. 

Design model with a regular finite element mesh 

 

 

 

 

 

 

 
Models 3 and 4. 

Deformed model with a regular finite element mesh 
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Model 3. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 

 

 
 

Model 4. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 
 

Models 5 and 6. 

Design model with a regular finite element mesh 
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Models 5 and 6. 

Deformed model with a regular finite element mesh 

 

 

 

 

 

 
 

Model 5. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 
 

Model 6. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Models 7 and 8. 

Design model with a regular finite element mesh 

 

 

 

 

 

 

 

 
Models 7 and 8. 

Deformed model with a regular finite element mesh 

 

 

 

 

 

 

 
Model 7. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Model 8. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 
Model 9. 

Design model with a regular finite element mesh 

 

 

 

 

 
Model 9. 

Deformed model with a regular finite element mesh 
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Model 9. 

Values of the longitudinal displacement X from the action Px, 

transverse displacements Y, Z from the actions Py, Pz 

and transverse displacements Y, Z from the action Mx 

of the free end of the rectilinear cantilever beam (m, m, m, m, m) 

 

 

 

 

 
Model 10. 

Design model with a regular finite element mesh 

 

 

 

 

 

 
Model 10. 

Deformed model with a regular finite element mesh 
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Model 10. 

Values of the longitudinal displacement X from the action Px, 

transverse displacements Y, Z from the actions Py, Pz 

and transverse displacements Y, Z from the action Mx 

of the free end of the rectilinear cantilever beam (m, m, m, m, m) 

 

 

 

 

 
Models 1 and 2. 

Design model with a trapezoidal finite element mesh 

 

 

 

 

 

 

 
Models 1 and 2. 

Deformed model with a trapezoidal finite element mesh 
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Model 1. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 

 
 

Model 2. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 
 

Models 3 and 4. 

Design model with a trapezoidal finite element mesh 
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Models 3 and 4. 

Deformed model with a trapezoidal finite element mesh 

 

 

 

 

 

 

 
Model 3. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 
 

Model 4. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Models 5 and 6. 

Design model with a trapezoidal finite element mesh 

 

 

 

 

 

 

 

 

 

 

 
Models 5 and 6. 

Deformed model with a trapezoidal finite element mesh 

 

 

 

 

 

 

 

 
Model 5. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Model 6. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 
 

Models 7 and 8. 

Design model with a trapezoidal finite element mesh 

 

 

 

 

 

 

 

 
 

Models 7 and 8. 

Deformed model with a trapezoidal finite element mesh 
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Model 7. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 
 

Model 8. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 
 

Model 9. 

Design model with a trapezoidal finite element mesh 
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Model 9. 

Deformed model with a trapezoidal finite element mesh 

 

 

 

 

 

 

 
Model 9. 

Values of the longitudinal displacement X from the action Px, 

transverse displacements Y, Z from the actions Py, Pz 

and transverse displacements Y, Z from the action Mx 

of the free end of the rectilinear cantilever beam (m, m, m, m, m) 

 

 

 

 

 

 

 
Model 10. 

Design model with a trapezoidal finite element mesh 
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Model 10. 

Deformed model with a trapezoidal finite element mesh 

 

 

 
 

 

 

 

 
Model 10. 

Values of the longitudinal displacement X from the action Px, 

transverse displacements Y, Z from the actions Py, Pz 

and transverse displacements Y, Z from the action Mx 

of the free end of the rectilinear cantilever beam (m, m, m, m, m) 

 

 

 

 

 

 
Models 1 and 2. 

Design model with a parallelogram finite element mesh 
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Models 1 and 2. 

Deformed model with a parallelogram finite element mesh 

 

 

 

 

 

 
 

Model 1. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 
 

Model 2. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Models 3 and 4. 

Design model with a parallelogram finite element mesh 

 

 

 

 

 

 

 

 

 
 

Models 3 and 4. 

Deformed model with a parallelogram finite element mesh 

 

 

 

 

 

 

 

 
 

Model 3. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Model 4. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 
 

Models 5 and 6. 

Design model with a parallelogram finite element mesh 

 

 

 

 

 

 

 
 

Models 5 and 6. 

Deformed model with a parallelogram finite element mesh 
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Model 5. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 

 

 
 

Model 6. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 
 

Models 7 and 8. 

Design model with a parallelogram finite element mesh 
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Models 7 and 8. 

Deformed model with a parallelogram finite element mesh 

 

 

 

 

 

 

 

 

 
 

 

Model 7. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 

 

 

 

 

 

 

 

 
 

Model 8. 

Values of the longitudinal displacement X, transverse displacements Y, Z and the torsional angle UX 

of the free end of the rectilinear cantilever beam (m, m, m, rad) 
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Model 9. 

Design model with a parallelogram finite element mesh 

 

 

 

 

 

 
 

Model 9. 

Deformed model with a parallelogram finite element mesh 

 

 

 

 

 

 

 
Model 9. 

Values of the longitudinal displacement X from the action Px, 

transverse displacements Y, Z from the actions Py, Pz 

and transverse displacements Y, Z from the action Mx 

of the free end of the rectilinear cantilever beam (m, m, m, m, m) 
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Model 10. 

Design model with a parallelogram finite element mesh 

 

 

 

 

 
 

Model 10. 

Deformed model with a parallelogram finite element mesh 

 

 

 

 

 

 
 

Model 10. 

Values of the longitudinal displacement X from the action Px, 

transverse displacements Y, Z from the actions Py, Pz 

and transverse displacements Y, Z from the action Mx 

of the free end of the rectilinear cantilever beam (m, m, m, m, m) 
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Comparison of solutions: 
 

Design model with a regular finite element mesh 
 

Model Parameter Theory SCAD Deviation, % 

1 

(Member type 42) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002972 0.93 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0034 96.85 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4212 2.50 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.018560 20.68 

2 

(Member type 142) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002972 0.93 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0034 96.85 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4198 2.82 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032096 5.90 

3 

(Member type 44) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002986 0.47 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0101 90.65 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4250 1.62 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.019692 15.85 

4 

(Member type 144) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002987 0.43 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0104 90.37 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4235 1.97 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032759 3.96 

5 

(Member type 45) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003032 1.07 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1070 0.92 

Transverse displacement Z 

of the free end 
0.4320 0.4276 1.02 
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Model Parameter Theory SCAD Deviation, % 

of the cantilever beam, m 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.022631 3.29 

6 

(Member type 145) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003032 1.07 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1070 0.92 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4259 1.41 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032719 4.08 

7 

(Member type 50) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003026 0.87 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1070 0.92 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4276 1.02 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.022813 2.51 

8 

(Member type 150) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003026 0.87 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1070 0.92 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4264 1.30 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032959 3.37 

9 

(Member type 36) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002957 1.43 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0100 90.74 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.0109 97.48 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.028974 15.05 

10 

(Member type 37) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003024 0.80 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1072 0.74 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4287 0.76 



  V e r i f i c a t i o n  E x a m p l e s  

806 P a t h o l o g i c a l  T e s t s  

Model Parameter Theory SCAD Deviation, % 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.028974 15.05 

 

 

 

Design model with a trapezoidal finite element mesh 
 

Model Parameter Theory SCAD Deviation, % 

1 

(Member type 42) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002970 1.00 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0016 98.52 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4207 2.62 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.018771 19.78 

2 

(Member type 142) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002970 1.00 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0016 98.52 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4117 4.70 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.031948 6.34 

3 

(Member type 44) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002980 0.67 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0029 97.31 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4254 1.53 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.020509 12.35 

4 

(Member type 144) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002980 0.67 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0030 97.22 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4166 3.56 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032724 4.06 

5 

(Member type 45) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003029 0.97 

Transverse displacement Y 0.1080 0.1059 1.94 
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of the free end 

of the cantilever beam, m 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4272 1.11 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.022536 3.69 

6 

(Member type 145) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003029 0.97 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1059 1.94 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4214 2.45 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032659 4.25 

7 

(Member type 50) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003026 0.87 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1057 2.13 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4278 0.97 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.022746 2.79 

8 

(Member type 150) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003026 0.87 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1057 2.13 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4226 2.18 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032906 3.53 

9 

(Member type 36) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002950 1.67 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0028 97.41 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.0045 98.96 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.016146 52.66 

10 

(Member type 37) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003095 3.17 

Transverse displacement Y 

of the free end 
0.1080 0.0837 22.50 
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of the cantilever beam, m 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.3248 24.81 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.027779 18.56 

 

 

 

Design model with a parallelogram finite element mesh 
 

Model Parameter Theory SCAD Deviation, % 

1 

(Member type 42) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002975 0.83 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0024 97.78 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4216 2.41 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.019384 17.16 

2 

(Member type 142) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002975 0.83 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0024 97.78 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4177 3.31 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032089 5.92 

3 

(Member type 44) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002981 0.63 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0037 96.57 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4254 1.53 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.020563 12.12 

4 

(Member type 144) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002980 0.67 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0042 96.11 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4208 2.59 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032743 4.00 
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5 

(Member type 45) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003034 1.13 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1062 1.67 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4278 0.97 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.022704 2.97 

6 

(Member type 145) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003034 1.13 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1062 1.67 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4221 2.29 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032700 4.13 

7 

(Member type 50) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003026 0.87 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1058 2.04 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4278 0.97 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.023400* 0.022749 2.78 

8 

(Member type 150) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00003026 0.87 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1058 2.04 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4224 2.22 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.032938 3.43 

9 

(Member type 36) 

Longitudinal displacement X 

of the free end 

of the cantilever beam, m 

0.00003000 0.00002950 1.67 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.0034 96.85 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.0061 98.59 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.011007 67.73 

10 Longitudinal displacement X 0.00003000 0.00003026 0.87 
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(Member type 37) of the free end 

of the cantilever beam, m 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.1080 0.1055 2.31 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.4320 0.4220 2.31 

Torsional angle UX 

of the free end 

of the cantilever beam, rad 

0.034109 0.028963 15.09 

* The values of the torsional angles UX for thin plates (not allowing for shear) are determined at the free torsional 

inertia moment calculated with the value of the coefficient kf, equal to 1/3 (h/b = ∞).  

 

Notes: In the analytical solution the values of the longitudinal X and transverse displacements Y, Z and the 

torsional angle UX of the free end of the rectilinear cantilever beam from the respective actions are 

determined according to the following formulas: 
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Curvilinear Cantilever Beam with Concentrated Shear Forces at Its Free End 

 
 

Objective: Check of the obtained values of the transverse displacements of the free end of a curvilinear 

cantilever beam subjected to concentrated shear forces. 

  

Initial data files: 
File name Description 

Curved_cantilever_beam_Shell_42.SPR Design model with the elements of type 42 

Curved_cantilever_beam_Shell_142.SPR Design model with the elements of type 142 

Curved_cantilever_beam_Shell_44.SPR Design model with the elements of type 44 

Curved_cantilever_beam_Shell_144.SPR Design model with the elements of type 144 

Curved_cantilever_beam_Shell_45.SPR Design model with the elements of type 45 

Curved_cantilever_beam_Shell_145.SPR Design model with the elements of type 145 

Curved_cantilever_beam_Shell_50.SPR Design model with the elements of type 50 

Curved_cantilever_beam_Shell_150.SPR Design model with the elements of type 150 

Curved_cantilever_beam_ Solid _36.SPR Design model with the elements of type 36 

Curved_cantilever_beam_ Solid _37.SPR Design model with the elements of type 37 

 

Problem formulation: The curvilinear isotropic cantilever beam of a rectangular cross-section is subjected 

to the concentrated shear forces Py, Pz (bending in and out of the plane of the longitudinal axis of the beam) 

applied at its free end. Check the obtained values of the transverse displacements Y, Z of the free end of the 

curvilinear cantilever beam from the respective actions. 

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

 

Initial data: 

E = 1.0·107 kPa  - elastic modulus of the beam material;  

ν = 0.25  - Poisson’s ratio; 

b = 0. 1 m  - width of the beam; 

h = 0. 2 m  - height of the beam; 

R = 4.22 m  - radius of the arc of the longitudinal axis of the beam; 

α = π/2 rad  - central angle of the arc of the longitudinal axis of the beam; 

Py = 1.0 kN  - value of the shear force acting along the height of the beam 

(in the plane of the longitudinal axis); 
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Pz = 1.0 kN  - value of the shear force acting along the width of the beam 

(out of the plane of the longitudinal axis). 

 

Finite element model: Design model – general type system. Ten design models with a trapezoidal finite 

element mesh are considered: 

Model 1 - 12 three-node shell elements of type 42. Boundary conditions are provided by imposing 

constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, 

Pz = 2∙0.5 kN). Number of nodes in the model – 14. 

Model 2 - 12 three-node shell elements allowing for shear of type 142. Boundary conditions are provided 

by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 14. 

Model 3 - 6 four-node shell elements of type 44. Boundary conditions are provided by imposing constraints 

on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, Pz = 2∙0.5 

kN).. Number of nodes in the model – 14. 

Model 4 - 6 four-node shell elements allowing for shear of type 144. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 14. 

Model 5 - 12 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints 

on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, Pz = 2∙0.5 

kN). Number of nodes in the model – 39. 

Model 6 - 12 six-node shell elements allowing for shear of type 145. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 39. 

Model 7 - 6 eight-node shell elements of type 50. Boundary conditions are provided by imposing 

constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, 

Pz = 2∙0.5 kN). Number of nodes in the model – 33. 

Model 8 - 6 eight-node shell elements allowing for shear of type 150. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 33. 

Model 9 - 6 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of four nodal 

forces (Py = 4∙0.25 kN, Pz = 4∙0.25 kN). Number of nodes in the model – 28. 

Model 10 - 6 twenty-node isoparametric solid elements of type 37. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of four nodal 

forces (Py = 4∙0.25 kN, Pz = 4∙0.25 kN). Number of nodes in the model – 80. 
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Results in SCAD 

 
Models 1 and 2. Design model 

 
Models 1 and 2. Deformed model 
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Model 1. Values of the transverse displacements Y, Z 

of the free end of the curvilinear cantilever beam (m, m) 
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Model 2. Values of the transverse displacements Y, Z 

of the free end of the curvilinear cantilever beam (m, m) 
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Models 3 and 4. Design model 

 
Models 3 and 4. Deformed model 
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Model 3. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 
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Model 4. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 

 
Models 5 and 6. Design model 
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Models 5 and 6. Deformed model 

 
Model 5. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 
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Model 6. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 

 
Models 7 and 8. Design model 
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Mоdels 7 and 8. Deformed model 

 
Model 7. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 
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Model 8. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 

 
Model 9. Design model 
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Model 9. Deformed model 

 

 
 

Model 9. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 
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Model 10. Design model 

 

 
 

Model 10. Deformed model 
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Model 10. Values of the transverse displacements Y, Z of the free end of the curvilinear cantilever beam (m, m) 

 

Comparison of solutions: 
Model Parameter Theory SCAD Deviation, % 

1 

(Member type 42) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.002213 97.50 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.454527* 0.308152 32.20 

2 

(Member type 142) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.02213 97.50 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.500466 0.474844 5.12 

3 

(Member type 44) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.006411 92.76 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.454527* 0.334655 26.37 

4 

(Member type 144) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.006563 92.59 

Transverse displacement Z 0.500466 0.487387 2.61 
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of the free end 

of the cantilever beam, m 

5 

(Member type 45) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.088299 0.27 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.454527* 0.442069 2.74 

6 

(Member type 145) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.088299 0.27 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.500466 0.487623 2.57 

7 

(Member type 50) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.088111 0.48 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.454527* 0.448137 1.41 

8 

(Member type 150) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.088111 0.48 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.500466 0.490701 1.95 

9 

(Member type 36) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.006397 92.77 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.500466 0.114607 77.10 

10 

(Member type 37) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.088536 0.087111 1.61 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.500466 0.470384 6.01 

* The values of the transverse displacements Z for thin plates (not allowing for shear) are determined at the free 

torsional inertia moment calculated with the value of the coefficient kf, equal to 1/3 (h/b = ∞). 

 

Notes: In the analytical solution the values of the transverse displacements Y, Z of the free end of the 

curvilinear cantilever beam from the respective actions are determined according to the following formulas: 
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Twisted Cantilever Beam with Concentrated Shear Forces at Its Free End 

 

 
 

Objective: Check of the obtained values of the transverse displacements of the free end of a twisted 

cantilever beam subjected to concentrated shear forces. 

  

Initial data files: 

File name Description 

Twisted_cantilever_beam_Shell_42.SPR Design model with the elements of type 42 

Twisted_cantilever_beam_Shell_142.SPR Design model with the elements of type 142 

Twisted_cantilever_beam_Shell_44.SPR Design model with the elements of type 44 

Twisted_cantilever_beam_Shell_144.SPR Design model with the elements of type 144 

Twisted_cantilever_beam_Shell_45.SPR Design model with the elements of type 45 

Twisted_cantilever_beam_Shell_145.SPR Design model with the elements of type 145 

Twisted_cantilever_beam_Shell_50.SPR Design model with the elements of type 50 

Twisted_cantilever_beam_Shell_150.SPR Design model with the elements of type 150 

Twisted_cantilever_beam_ Solid _36.SPR Design model with the elements of type 36 

Twisted_cantilever_beam_ Solid _37.SPR Design model with the elements of type 37 

 

Problem formulation: The isotropic cantilever beam of a rectangular cross-section twisted along the 

longitudinal axis is subjected to the concentrated shear Py, Pz forces (bending in and out of the plane of the 

beam height at the free end). Check the obtained values of the transverse displacements Y, Z of the free end 

of the twisted cantilever beam from the respective actions.  

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

 

Initial data: 

E = 2.9·107 kPa  - elastic modulus of the beam material;  

ν = 0.22  - Poisson’s ratio; 

b = 0. 32 m  - width of the beam; 

h = 1. 10 m  - height of the beam; 

L = 12.0 m  - length of the longitudinal axis of the beam; 

α = π/2 rad  - twist angle of the longitudinal axis of the beam; 

Py = 1.0 kN  - value of the shear force acting along the height of the beam at the free end; 

Pz = 1.0 kN  - value of the shear force acting along the width of the beam at the free end. 

 

Finite element model: Design model – general type system. Ten design models with a regular finite 

element mesh 12x2 are considered: 

Model 1 - 48 three-node shell elements of type 42. Boundary conditions are provided by imposing 

constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, 

Pz = 2∙0.5 kN). Number of nodes in the model – 39. 

Model 2 - 48 three-node shell elements allowing for shear of type 142. Boundary conditions are provided 

by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 39. 

Model 3 - 24 four-node shell elements of type 44. Boundary conditions are provided by imposing 

constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, 

Pz = 2∙0.5 kN). Number of nodes in the model – 39. 

Model 4 - 24 four-node shell elements allowing for shear of type 144. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 
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freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 39. 

Model 5 - 48 six-node shell elements of type 45. Boundary conditions are provided by imposing constraints 

on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, UX, UY, 

UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, Pz = 2∙0.5 

kN). Number of nodes in the model – 125. 

Model 6 - 48 six-node shell elements allowing for shear of type 145. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 125. 

Model 7 - 24 eight-node shell elements of type 50. Boundary conditions are provided by imposing 

constraints on the nodes of the clamped end of the beam in the directions of the degrees of freedom X, Y, Z, 

UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal forces (Py = 2∙0.5 kN, 

Pz = 2∙0.5 kN). Number of nodes in the model – 101. 

Model 8 - 24 eight-node shell elements allowing for shear of type 150. Boundary conditions are provided 

by imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of two nodal 

forces (Py = 2∙0.5 kN, Pz = 2∙0.5 kN). Number of nodes in the model – 101. 

Model 9 - 24 eight-node isoparametric solid elements of type 36. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of four nodal 

forces (Py = 4∙0.25 kN, Pz = 4∙0.25 kN). Number of nodes in the model – 78. 

Model 10 - 24 twenty-node isoparametric solid elements of type 37. Boundary conditions are provided by 

imposing constraints on the nodes of the clamped end of the beam in the directions of the degrees of 

freedom X, Y, Z, UX, UY, UZ. The concentrated shear Py, Pz forces are given in the form of four nodal 

forces (Py = 4∙0.25 kN, Pz = 4∙0.25 kN). Number of nodes in the model – 241. 

 

Results in SCAD 

 
 

Models 1 and 2. Design model 

 
Models 1 and 2. Deformed model 
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Model 1. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 

 

 
Model 2. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 

 

 
Models 3 and 4. Design model 

 
Models 3 and 4. Deformed model 

 

 
Model 3. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 
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Model 4. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 

 

 
Models 5 and 6. Design model 

 
Models 5 and 6. Deformed model 

 

 
Model 5. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 

 

 
Model 6. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 
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Models 7 and 8. Design model 

 
 

Models 7 and 8. Deformed model 

 

 
 

Model 7. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 

 

 
 

Model 8. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 
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Model 9. Design model 

 

 
 

Model 9. Deformed model 

 
 

Model 9. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 

 
 

Model 10. Design model 
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Model 10. Deformed model 

 

 
 

Model 10. Values of the transverse displacements Y, Z 

of the free end of the twisted cantilever beam (m, m) 

 

Comparison of solutions: 

Model Parameter Theory SCAD Deviation, % 

1 

(Member type 42) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.005314 2.06 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.001463 16.21 

2 

(Member type 142) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.006220 14.63 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.001710 2.06 

3 

(Member type 44) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.001899 65.00 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.000906 48.11 

4 

(Member type 144) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.002158 60.23 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.000961 44.96 
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Model Parameter Theory SCAD Deviation, % 

5 

(Member type 45) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.005388 0.70 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.001750 0.23 

6 

(Member type 145) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.006588 21.42 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.002178 24.74 

7 

(Member type 50) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.003948 27.24 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.001481 15.18 

8 

(Member type 150) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.004094 24.55 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.001505 13.80 

9 

(Member type 36) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.001119 79.38 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.000583 66.61 

10 

(Member type 37) 

Transverse displacement Y 

of the free end 

of the cantilever beam, m 

0.005426 0.005403 0.42 

Transverse displacement Z 

of the free end 

of the cantilever beam, m 

0.001746 0.001757 0.63 

 

Notes: In the analytical solution the values of the transverse displacements Y, Z of the free end of the 

twisted cantilever beam from the respective actions are determined according to the following formulas: 
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Simply Supported Flat Square Plate Subjected to a Transverse Load Uniformly 

Distributed over the Entire Area and a Concentrated Shear Force Applied in the 

Center  

 

 
 

Objective: Check of the obtained values of the transverse displacements in the center of a simply supported 

flat square plate subjected to a transverse load uniformly distributed over the entire area and a concentrated 

shear force applied in the center. 

  

Initial data files: 
File name Description 

Bending_of_square_flat_plate_Simply_supported_Shell_42_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_42_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_42_Mesh_8x8.SPR 

Design model with the 

elements of type 42 for meshes 

2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Simply_supported_Shell_44_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_44_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_44_Mesh_8x8.SPR 

Design model with the 

elements of type 44 for meshes 

2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_8x8.SPR 

Design model with the 

elements of type 45 for meshes 

2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Simply_supported_Shell_50_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_50_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Simply_supported_Shell_50_Mesh_8x8.SPR 

Design model with the 

elements of type 50 for meshes 

2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_8x8.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_16x16.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_32x32.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_64x64.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_36_Mesh_128x128.SPR 

Design model with the 

elements of type 36 for meshes 

2x2, 4x4, 8x8, 16x16, 32x32, 

64x64, 128x128 

Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_8x8.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_16x16.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_32x32.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_64x64.SPR 

Bending_of_square_flat_plate_Simply_supported_Solid_37_Mesh_128x128.SPR 

Design model with the 

elements of type 37 for meshes 

2x2, 4x4, 8x8, 16x16, 32x32, 

64x64, 128x128 

 

Problem formulation: The simply supported flat square plate is subjected to the transverse load q uniformly 

distributed over the entire area and the concentrated shear force P applied in the center. Check the obtained 

values of the transverse displacements in the center of the simply supported flat square plate wq and wP 

from the respective actions. 
 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 

143, 202, 206. 
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Initial data: 

E = 1.7472·107 kPa - elastic modulus of the plate material;  

ν = 0.30  - Poisson’s ratio; 

a = 2.00 m  - width of the plate; 

b = 2.00 m  - length of the plate; 

h = 10-4 (10-2) m - thickness of the plate; 

q = 1.0·10-4 kN/m2 - value of the transverse load uniformly distributed over the entire area of the plate; 

P = 4.0·10-4 kN  - value of the concentrated shear force in the center of the plate. 

 
Finite element model: Design model – general type system. Six design models of a quarter of the plate 

according to the symmetry conditions are considered: 

Model 1 – 8, 32, 128 three-node shell elements of type 42 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 2 – 4, 16, 64 four-node shell elements of type 44 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 3 – 8, 32, 128 six-node shell elements of type 45 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 4 – 4, 16, 64 eight-node shell elements of type 50 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 5 – 4, 16, 64, 256, 1024, 4096, 16384 eight-node isoparametric solid elements of type 36 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the 

lower surface of the plate in the direction of the degree of freedom Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 18, 50, 162, 578, 2178, 8450, 33282. 

Model 6 – 4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the 

lower surface of the plate in the direction of the degree of freedom Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 51, 155, 531, 1955, 7491, 29315, 115971. 

 

Results in SCAD 
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Model 1. Design model 

 

 

 
Model 1. Deformed model 
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Model 1. Values of the transverse displacements in the center of the simply supported square plate wq and wP (m, m) 
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Model 2. Design model 
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Model 2. Deformed model 

 

 

 
Model 2. Values of the transverse displacements in the center of the simply supported square plate wq and wP (m, m) 
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Model 3. Design model 

 

 

 
Model 3. Deformed model 
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Model 3. Values of the transverse displacements in the center of the simply supported square plate wq and wP (m, m) 

 

 

 
Model 4. Design model 
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Model 4. Deformed model 

 

 

 
Model 4. Values of the transverse displacements in the center of the simply supported square plate wq and wP (m, m) 
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Model 5. Design model 
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Model 5. Deformed model 
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Model 5. Values of the transverse displacements in the center of the simply supported square plate wq and wP (m, m) 
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Model 6. Design model 
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Model 6. Deformed model 
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Model 6. Values of the transverse displacements in the center of the simply supported square plate wq and wP (m, m) 

 

 

 

Comparison of solutions: 
 

Transverse displacements in the center of the simply supported flat square plate wq 

from the transverse load q uniformly distributed over the entire area 
 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

4.062 

3.808 6.25 

4x4 3.998 1.58 

8x8 4.046 0.39 

2 

(Member type 44) 

2x2 

4.062 

3.885 4.36 

4x4 4.012 1.23 

8x8 4.049 0.32 

3 

(Member type 45) 

2x2 

4.062 

4.062 0.00 

4x4 4.062 0.00 

8x8 4.062 0.00 

4 

(Member type 50) 

2x2 

4.062 

4.062 0.00 

4x4 4.062 0.00 

8x8 4.062 0.00 

5 

(Member type 36) 

2x2 

4.062∙10-6 

0.009∙10-6 99.78 

4x4 0.037∙10-6 99.09 

8x8 0.144∙10-6 96.45 

16x16 0.509∙10-6 87.47 

32x32 1.308∙10-6 67.80 

64x64 2.471∙10-6 39.17 

128x128 3.061∙10-6 24.64 

6 

(Member type 37) 

2x2 

4.062∙10-6 

3.003∙10-6 26.07 

4x4 4.025∙10-6 0.91 

8x8 4.060∙10-6 0.05 

16x16 4.068∙10-6 0.15 

32x32 4.073∙10-6 0.27 

64x64 4.077∙10-6 0.37 

128x128 4.078∙10-6 0.39 

 

 

Transverse displacements in the center of the simply supported flat square plate wP 

from the concentrated shear force P applied in the center 
 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

11.600 

10.236 11.76 

4x4 11.205 3.41 

8x8 11.490 0.95 

2 

(Member type 44) 

2x2 

11.600 

10.907 5.97 

4x4 11.383 1.87 

8x8 11.537 0.54 

3 

(Member type 45) 

2x2 

11.600 

11.574 0.22 

4x4 11.594 0.05 

8x8 11.599 0.01 
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Model Finite element mesh Theory SCAD Deviation, % 

4 

(Member type 50) 

2x2 

11.600 

11.540 0.52 

4x4 11.586 0.12 

8x8 11.597 0.02 

5 

(Member type 36) 

2x2 

11.600∙10-6 

0.028∙10-6 99.76 

4x4 0.104∙10-6 99.10 

8x8 0.394∙10-6 96.60 

16x16 1.393∙10-6 87.98 

32x32 3.595∙10-6 69.01 

64x64 6.935∙10-6 40.21 

128x128 8.691∙10-6 25.08 

6 

(Member type 37) 

2x2 

11.600∙10-6 

7.487∙10-6 35.46 

4x4 11.009∙10-6 5.09 

8x8 11.467∙10-6 1.15 

16x16 11.586∙10-6 0.12 

32x32 11.623∙10-6 0.20 

64x64 11.637∙10-6 0.32 

128x128 11.644∙10-6 0.38 

Notes: In the analytical solution the values of the transverse displacements in the center of the simply 

supported flat square plate wq and wP from the respective actions are determined according to the following 

formulas: 
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Flat Square Plate Clamped along the Outer Edges and Subjected to a Transverse 

Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force 

Applied in the Center  

 

 
 

Objective: Check of the obtained values of the transverse displacements in the center of a flat square plate 

clamped along the outer edges and subjected to a transverse load uniformly distributed over the entire area 

and a concentrated shear force applied in the center. 
  

Initial data files: 

File name Description 

Bending_of_square_flat_plate_Clamped_supported_Shell_42_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_42_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_42_Mesh_8x8.SPR 

Design model with the 

elements of type 42 for 

meshes 2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Clamped_supported_Shell_44_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_44_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_44_Mesh_8x8.SPR 

Design model with the 

elements of type 44 for 

meshes 2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Simply_supported_Shell_45_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_45_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_45_Mesh_8x8.SPR 

Design model with the 

elements of type 45 for 

meshes 2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Clamped_supported_Shell_50_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_50_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Clamped_supported_Shell_50_Mesh_8x8.SPR 

Design model with the 

elements of type 50 for 

meshes 2x2, 4x4, 8x8 

Bending_of_square_flat_plate_Clamped_supported_Solid_36_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_36_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_36_Mesh_8x8.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_36_Mesh_16x16.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_36_Mesh_32x32.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_36_Mesh_64x64.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_36_Mesh_128x128.SPR 

Design model with the 

elements of type 36 for 

meshes 2x2, 4x4, 8x8, 16x16, 

32x32, 64x64, 128x128 

Bending_of_square_flat_plate_Clamped_supported_Solid_37_Mesh_2x2.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_37_Mesh_4x4.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_37_Mesh_8x8.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_37_Mesh_16x16.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_37_Mesh_32x32.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_37_Mesh_64x64.SPR 

Bending_of_square_flat_plate_Clamped_supported_Solid_37_Mesh_128x128.SPR 

Design model with the 

elements of type 37 for 

meshes 2x2, 4x4, 8x8, 16x16, 

32x32, 64x64, 128x128 

 

Problem formulation: The flat square plate clamped along the outer edges is subjected to the transverse load 

q uniformly distributed over the entire area and the concentrated shear force P applied in the center. Check 

the obtained values of the transverse displacements in the center of the flat square plate clamped along the 

outer edges wq and wP from the respective actions.  
 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 

143, 202, 206. 
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Initial data: 

E = 1.7472·107 kPa - elastic modulus of the plate material;  

ν = 0.30  - Poisson’s ratio; 

a = 2.00 m  - width of the plate; 

b = 2.00 m  - length of the plate; 

h = 10-4 (10-2) m - thickness of the plate; 

q = 1.0·10-4 kN/m2 - value of the transverse load uniformly distributed over the entire area of the plate; 

P = 4.0·10-4 kN  - value of the concentrated shear force in the center of the plate. 

 
Finite element model: Design model – general type system. Six design models of a quarter of the plate 

according to the symmetry conditions are considered: 

Model 1 – 8, 32, 128 three-node shell elements of type 42 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 2 – 4, 16, 64 four-node shell elements of type 44 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 3 – 8, 32, 128 six-node shell elements of type 45 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 4 – 4, 16, 64 eight-node shell elements of type 50 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 5 – 4, 16, 64, 256, 1024, 4096, 16384 eight-node isoparametric solid elements of type 36 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the 

lower surface of the plate in the directions of the degrees of freedom X, Y, Z, on the nodes of the clamped 

sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction 

of the degree of freedom X, on the nodes of the clamped sides of the upper surface of the plate parallel to 

the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints 

according to the symmetry conditions. Number of nodes in the model – 18, 50, 162, 578, 2178, 8450, 

33282. 

Model 6 – 4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the 

lower surface of the plate in the directions of the degrees of freedom X, Y, Z, on the nodes of the clamped 

sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction 

of the degree of freedom X, on the nodes of the clamped sides of the upper surface of the plate parallel to 

the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints 

according to the symmetry conditions. Number of nodes in the model – 51, 155, 531, 1955, 7491, 29315, 

115971. 
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Results in SCAD 

 

 

 

 

 
 

Model 1.Design model 
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Model 1. Deformed model 

 
Model 1. Values of the transverse displacements in the center of the square plate  

clamped along the outer edges  wq and wP (m, m) 
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Model 2. Design model 
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Model 2. Deformed model 

 

 

 
Model 2. Values of the transverse displacements in the center of the square plate  

clamped along the outer edges  wq and wP (m, m) 
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Model 3. Design model 
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Model 3. Deformed model 

 

 

 
Model 3. Values of the transverse displacements in the center of the square plate  

clamped along the outer edges  wq and wP (m, m) 
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Model 4. Design model 

 

 

 
Model 4. Deformed model 
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Model 4. Values of the transverse displacements in the center of the square plate  

clamped along the outer edges  wq and wP (m, m) 
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Model 5. Design model 
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Model 5. Deformed model 
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Model 5. Values of the transverse displacements in the center of the square plate  

clamped along the outer edges  wq and wP (m, m) 
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Model 6. Design model 
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Model 6. Deformed model 
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Model 6. Values of the transverse displacements in the center of the square plate  

clamped along the outer edges  wq and wP (m, m) 

 

 

Comparison of solutions: 
 

Transverse displacements in the center of the flat square plate clamped along the outer edges wq 

from the transverse load q uniformly distributed over the entire area 

 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

1.265 

1.107 12.49 

4x4 1.221 3.48 

8x8 1.256 0.71 

2 

(Member type 44) 

2x2 

1.265 

1.166 7.83 

4x4 1.232 2.61 

8x8 1.257 0.63 

3 

(Member type 45) 

2x2 

1.265 

1.262 0.24 

4x4 1.265 0.00 

8x8 1.265 0.00 

4 

(Member type 50) 

2x2 

1.265 

1.263 0.16 

4x4 1.265 0.00 

8x8 1.265 0.00 

5 

(Member type 36) 

2x2 

1.265∙10-6 

0.002∙10-6 99.84 

4x4 0.008∙10-6 99.37 

8x8 0.030∙10-6 97.63 

16x16 0.109∙10-6 91.38 

32x32 0.295∙10-6 76.68 

64x64 0.674∙10-6 46.72 

128x128 0.912∙10-6 27.91 

6 

(Member type 37) 

2x2 

1.265∙10-6 

0.125∙10-6 90.12 

4x4 1.114∙10-6 11.94 

8x8 1.246∙10-6 1.50 
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Model Finite element mesh Theory SCAD Deviation, % 

16x16 1.262∙10-6 0.24 

32x32 1.265∙10-6 0.00 

64x64 1.266∙10-6 0.08 

128x128 1.266∙10-6 0.08 

 

Transverse displacements in the center of the flat square plate clamped along the outer edges wP 

from the concentrated shear force P applied in the center 

 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

5.612 

4.508 19.67 

4x4 5.267 6.15 

8x8 5.516 1.71 

2 

(Member type 44) 

2x2 

5.612 

5.040 10.19 

4x4 5.409 3.62 

8x8 5.553 1.05 

3 

(Member type 45) 

2x2 

5.612 

5.579 0.59 

4x4 5.605 0.12 

8x8 5.610 0.04 

4 

(Member type 50) 

2x2 

5.612 

5.554 1.03 

4x4 5.596 0.29 

8x8 5.608 0.07 

5 

(Member type 36) 

2x2 

5.612∙10-6 

0.010∙10-6 99.82 

4x4 0.036∙10-6 99.36 

8x8 0.136∙10-6 97.58 

16x16 0.496∙10-6 91.16 

32x32 1.334∙10-6 76.23 

64x64 3.017∙10-6 46.24 

128x128 4.060∙10-6 27.66 

6 

(Member type 37) 

2x2 

5.612∙10-6 

0.497∙10-6 91.14 

4x4 4.719∙10-6 15.91 

8x8 5.445∙10-6 2.98 

16x16 5.580∙10-6 0.57 

32x32 5.612∙10-6 0.00 

64x64 5.618∙10-6 0.11 

128x128 5.622∙10-6 0.18 

Notes: In the analytical solution the values of the transverse displacements in the center of the flat square 

plate clamped along the outer edges wq and wP from the respective actions are determined according to the 

following formulas: 
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The values of the coefficients Em and Fm are determined by solving the system of 2∙M equations: 
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The values of the coefficients Em and Fm are determined by solving the system of 2∙M equations: 
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 The accuracy of the solution has decreased for the coarse meshes (64x64, 128x128) due to the 

accumulation of computational errors. 
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Simply Supported Flat Rectangular Plate Subjected to a Transverse Load 

Uniformly Distributed over the Entire Area and a Concentrated Shear Force 

Applied in the Center 

 

 
 

Objective: Check of the obtained values of the transverse displacements in the center of a simply supported 

flat rectangular plate subjected to a transverse load uniformly distributed over the entire area and a 

concentrated shear force applied in the center. 

  

Initial data files: 
File name Description 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_8x8.SPR 

Design model with the 

elements of type 42 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_44_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_44_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_44_Mesh_8x8.SPR 

Design model with the 

elements of type 44 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_45_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_45_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_45_Mesh_8x8.SPR 

Design model with the 

elements of type 45 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_50_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_50_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Shell_50_Mesh_8x8.SPR 

Design model with the 

elements of type 50 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_8x8.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_16x16.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_32x32.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_64x64.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_128x128.SPR 

Design model with the 

elements of type 36 for 

meshes 2x2, 4x4, 8x8, 

16x16, 32x32, 64x64, 

128x128 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_8x8.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_16x16.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_32x32.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_64x64.SPR 

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_128x128.SPR 

Design model with the 

elements of type 37 for 

meshes 2x2, 4x4, 8x8, 

16x16, 32x32, 64x64, 

128x128 

 

Problem formulation: The simply supported flat rectangular plate is subjected to the transverse load q 

uniformly distributed over the entire area and the concentrated shear force P applied in the center. Check 

the obtained values of the transverse displacements in the center of the simply supported flat rectangular 

plate wq and wP from the respective actions. 

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 

143, 202, 206. 
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Initial data: 

E = 1.7472·107 kPa - elastic modulus of the plate material;  

ν = 0.30  - Poisson’s ratio; 

a = 2.00 m  - width of the plate; 

b = 10.00 m  - length of the plate; 

h = 10-4 (10-2) m - thickness of the plate; 

q = 1.0·10-4 kN/m2 - value of the transverse load uniformly distributed over the entire area of the plate; 

P = 4.0·10-4 kN  - value of the concentrated shear force in the center of the plate. 

 

Finite element model: Design model – general type system. Six design models of a quarter of the plate 

according to the symmetry conditions are considered: 

Model 1 – 8, 32, 128 three-node shell elements of type 42 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 2 – 4, 16, 64 four-node shell elements of type 44 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 3 – 8, 32, 128 six-node shell elements of type 45 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 4 – 4, 16, 64 eight-node shell elements of type 50 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support 

edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 5 – 4, 16, 64, 256, 1024, 4096, 16384 eight-node isoparametric solid elements of type 36 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the 

lower surface of the plate in the direction of the degree of freedom Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 18, 50, 162, 578, 2178, 8450, 33282. 

Model 6 – 4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the 

lower surface of the plate in the direction of the degree of freedom Z and constraints according to the 

symmetry conditions. Number of nodes in the model – 51, 155, 531, 1955, 7491, 29315, 115971. 
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Model 6. Values of the transverse displacements in the center of the simply supported rectangular plate wq and wP (m, 

m) 

 

Comparison of solutions: 

Transverse displacements in the center of the simply supported flat rectangular plate wq 

from the transverse load q uniformly distributed over the entire area 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

12.971 

11.804 9.00 

4x4 12.847 0.96 

8x8 12.958 0.10 

2 

(Member type 44) 

2x2 

12.971 

12.528 3.42 

4x4 13.093 0.94 

8x8 13.030 0.45 

3 

(Member type 45) 

2x2 

12.971 

13.029 0.45 

4x4 12.973 0.02 

8x8 12.971 0.00 

4 

(Member type 50) 

2x2 

12.971 

13.020 0.38 

4x4 12.971 0.00 

8x8 12.971 0.00 

5 

(Member type 36) 

2x2 

12.971∙10-6 

0.017∙10-6 99.87 

4x4 0.067∙10-6 99.48 

8x8 0.264∙10-6 97.96 

16x16 0.983∙10-6 92.42 

32x32 3.099∙10-6 76.11 

64x64 6.656∙10-6 48.69 

128x128 9.234∙10-6 28.81 

6 

(Member type 37) 

2x2 

12.971∙10-6 

9.000∙10-6 30.61 

4x4 13.308∙10-6 2.60 

8x8 12.931∙10-6 0.31 

16x16 12.963∙10-6 0.06 

32x32 12.971∙10-6 0.00 

64x64 12.972∙10-6 0.01 

128x128 12.973∙10-6 0.02 
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Transverse displacements in the center of the simply supported flat rectangular plate wP 

from the concentrated shear force P applied in the center 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

16.960 

7.771 54.18 

4x4 11.983 29.34 

8x8 14.833 12.54 

2 

(Member type 44) 

2x2 

16.960 

12.674 25.27 

4x4 14.768 12.92 

8x8 15.657 7.68 

3 

(Member type 45) 

2x2 

16.960 

15.383 9.30 

4x4 16.539 2.48 

8x8 16.849 0.65 

4 

(Member type 50) 

2x2 

16.960 

15.862 6.47 

4x4 16.553 2.40 

8x8 16.845 0.68 

5 

(Member type 36) 

2x2 

16.960∙10-6 

0.014∙10-6 99.92 

4x4 0.051∙10-6 99.70 

8x8 0.197∙10-6 98.84 

16x16 0.737∙10-6 95.65 

32x32 2.426∙10-6 85.70 

64x64 5.859∙10-6 65.45 

128x128 9.654∙10-6 43.08 

6 

(Member type 37) 

2x2 

16.960∙10-6 

4.494∙10-6 73.50 

4x4 10.523∙10-6 37.95 

8x8 15.480∙10-6 8.73 

16x16 16.572∙10-6 2.29 

32x32 16.866∙10-6 0.55 

64x64 16.952∙10-6 0.05 

128x128 16.976∙10-6 0.09 

 

Notes: In the analytical solution the values of the transverse displacements in the center of the simply 

supported flat rectangular plate wq and wP from the respective actions are determined according to the 

following formulas: 
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Flat Rectangular Plate Clamped along the Outer Edges and Subjected to a 

Transverse Load Uniformly Distributed over the Entire Area and a Concentrated 

Shear Force Applied in the Center  

 

 
 

Objective: Check of the obtained values of the transverse displacements in the center of a flat rectangular 

plate clamped along the outer edges and subjected to a transverse load uniformly distributed over the entire 

area and a concentrated shear force applied in the center. 
  

Initial data files: 
File name Description 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_42_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_42_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_42_Mesh_8x8.SPR 

Design model with the 

elements of type 42 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_44_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_44_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_44_Mesh_8x8.SPR 

Design model with the 

elements of type 44 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_45_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_45_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_45_Mesh_8x8.SPR 

Design model with the 

elements of type 45 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_50_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_50_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Shell_50_Mesh_8x8.SPR 

Design model with the 

elements of type 50 for 

meshes 2x2, 4x4, 8x8 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_8x8.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_16x16.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_32x32.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_64x64.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_36_Mesh_128x128.SPR 

Design model with the 

elements of type 36 for 

meshes 2x2, 4x4, 8x8, 

16x16, 32x32, 64x64, 

128x128 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_2x2.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_4x4.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_8x8.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_16x16.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_32x32.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_64x64.SPR 

Bending_of_rectangular_flat_plate_Clamped_supported_Solid_37_Mesh_128x128.SPR 

Design model with the 

elements of type 37 for 

meshes 2x2, 4x4, 8x8, 

16x16, 32x32, 64x64, 

128x128 

 

Problem formulation: The flat rectangular plate clamped along the outer edges is subjected to the 

transverse load q uniformly distributed over the entire area and the concentrated shear force P applied in the 

center. Check the obtained values of the transverse displacements in the center of the flat rectangular plate 

clamped along the outer edges wq and wP from the respective actions. 

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 

143, 202, 206. 
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Initial data: 

E = 1.7472·107 kPa - elastic modulus of the plate material;  

ν = 0.30  - Poisson’s ratio; 

a = 2.00 m  - width of the plate; 

b = 10.00 m  - length of the plate; 

h = 10-4 (10-2) m - thickness of the plate; 

q = 1.0·10-4 kN/m2 - value of the transverse load uniformly distributed over the entire area of the plate; 

P = 4.0·10-4 kN  - value of the concentrated shear force in the center of the plate. 

 

Finite element model: Design model – general type system. Six design models of a quarter of the plate 

according to the symmetry conditions are considered: 

Model 1 – 8, 32, 128 three-node shell elements of type 42 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 2 – 4, 16, 64 four-node shell elements of type 44 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 9, 25, 81. 

Model 3 – 8, 32, 128 six-node shell elements of type 45 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 4 – 4, 16, 64 eight-node shell elements of type 50 with a regular mesh 2x2, 4x4, 8x8. The thickness 

of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the 

clamped edges of the plate in the directions of the degrees of freedom X, Y, Z, UX, UY, UZ and constraints 

according to the symmetry conditions. Number of nodes in the model – 25, 81, 289. 

Model 5 – 4, 16, 64, 256, 1024, 4096, 16384 в eight-node isoparametric solid elements of type 36 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the 

lower surface of the plate in the directions of the degrees of freedom X, Y, Z, on the nodes of the clamped 

sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction 

of the degree of freedom X, on the nodes of the clamped sides of the upper surface of the plate parallel to 

the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints 

according to the symmetry conditions. Number of nodes in the model – 18, 50, 162, 578, 2178, 8450, 

33282. 

Model 6 – 4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 

10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the clamped sides of the 

lower surface of the plate in the directions of the degrees of freedom X, Y, Z, on the nodes of the clamped 

sides of the upper surface of the plate parallel to the Y axis of the global coordinate system in the direction 

of the degree of freedom X, on the nodes of the clamped sides of the upper surface of the plate parallel to 

the X axis of the global coordinate system in the direction of the degree of freedom Y and constraints 

according to the symmetry conditions. Number of nodes in the model – 51, 155, 531, 1955, 7491, 29315, 

115971. 
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Model 6. Deformed model 

 

 

 

 

 

 
 

 

 



V e r i f i c a t i o n  E x a m p l e s     

 P a t h o l o g i c a l  T e s t s  927 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 



  V e r i f i c a t i o n  E x a m p l e s  

928 P a t h o l o g i c a l  T e s t s  

 
 

 

 

 

 

 
 

 

 

 

 

 
Model 6. Values of the transverse displacements in the center of the rectangular plate  

clamped along the outer edges  wq and wP (m, m) 
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Comparison of solutions: 
Transverse displacements in the center of the flat rectangular plate clamped along the outer edges wq 

from the transverse load q uniformly distributed over the entire area 

 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

2.605 

2.299 11.75 

4x4 2.670 2.50 

8x8 2.640 1.34 

2 

(Member type 44) 

2x2 

2.605 

2.607 0.08 

4x4 2.612 0.27 

8x8 2.606 0.04 

3 

(Member type 45) 

2x2 

2.605 

2.615 0.38 

4x4 2.605 0.00 

8x8 2.604 0.04 

4 

(Member type 50) 

2x2 

2.605 

2.593 0.46 

4x4 2.604 0.04 

8x8 2.604 0.04 

5 

(Member type 36) 

2x2 

2.605∙10-6 

0.003∙10-6 99.88 

4x4 0.013∙10-6 99.50 

8x8 0.050∙10-6 98.08 

16x16 0.186∙10-6 92.86 

32x32 0.589∙10-6 77.39 

64x64 1.281∙10-6 50.83 

128x128 1.816∙10-6 30.29 

6 

(Member type 37) 

2x2 

2.605∙10-6 

0.419∙10-6 83.92 

4x4 2.679∙10-6 2.84 

8x8 2.560∙10-6 1.73 

16x16 2.596∙10-6 0.35 

32x32 2.604∙10-6 0.04 

64x64 2.605∙10-6 0.00 

128x128 2.605∙10-6 0.00 

 

Transverse displacements in the center of the flat rectangular plate clamped along the outer edges wP 

from the concentrated shear force P applied in the center 

 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

7.260 

2.239 69.16 

4x4 4.194 42.23 

8x8 5.751 20.79 

2 

(Member type 44) 

2x2 

7.260 

4.430 38.98 

4x4 5.829 19.71 

8x8 6.386 12.04 

3 

(Member type 45) 

2x2 

7.260 

5.989 17.51 

4x4 6.864 5.45 

8x8 7.113 2.02 

4 

(Member type 50) 

2x2 

7.260 

6.122 15.67 

4x4 6.797 6.38 

8x8 7.126 1.85 

5 

(Member type 36) 

2x2 

7.260∙10-6 

0.005∙10-6 99.93 

4x4 0.020∙10-6 99.72 

8x8 0.076∙10-6 98.95 

16x16 0.283∙10-6 96.10 

32x32 0.940∙10-6 87.05 

64x64 2.319∙10-6 68.06 

128x128 3.928∙10-6 45.90 

6 

(Member type 37) 

2x2 

7.260∙10-6 

0.337∙10-6 95.36 

4x4 2.788∙10-6 61.60 

8x8 5.735∙10-6 21.01 

16x16 6.876∙10-6 5.29 

32x32 7.147∙10-6 1.56 

64x64 7.224∙10-6 0.50 
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Model Finite element mesh Theory SCAD Deviation, % 

128x128 7.245∙10-6 0.21 

 

Notes: In the analytical solution the values of the transverse displacements in the center of the flat 

rectangular plate clamped along the outer edges wq and wP from the respective actions are determined 

according to the following formulas: 
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The values of the coefficients Em and Fm are determined by solving the system of 2∙M equations: 
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The values of the coefficients Em and Fm are determined by solving the system of 2∙M equations: 



V e r i f i c a t i o n  E x a m p l e s     

 P a t h o l o g i c a l  T e s t s  931 

;

2

m
sin

m

i

a

b

1

m

1
E

a

bi8

b2

ai
th

b2

ai
ch

b2

ai

i

F

2

i
sin

b2

ai
ch

b2

ai
sh

b2

ai

i

1P

2

m
sin

m

i

b

a

1

m

1
F

b

ai8

a2

bi
th

a2

bi
ch

a2

bi

i

E

2

i
sin

a2

bi
ch

a2

bi
sh

a2

bi

i

1P

M

1m

2

2

2

2

2

2
3m

2

i

2
2

M

1m

2

2

2

2

2

2
3m

2

i

2
2




















































 















































































 
































































 















































































 















































































 

 

 
.

112

hE
D

2

3




  



  V e r i f i c a t i o n  E x a m p l e s  

932 P a t h o l o g i c a l  T e s t s  

Open Cylindrical Shell Rectangular in Plan and Simply Supported along the 

Curvilinear Edges Subjected to a Transverse Load Uniformly Distributed over the 

Entire Area  

 
Objective: Check of the obtained values of the transverse displacements in the middle of the free rectilinear 

edges of an open cylindrical shell rectangular in plan and simply supported along the curvilinear edges 

subjected to a transverse load uniformly distributed over the entire area. 

  

Initial data files: 

File name Description 

Scordelis-Lo_roof _Shell_42_Mesh_2x2.SPR 

Scordelis-Lo_roof _Shell_42_Mesh_4x4.SPR 

Scordelis-Lo_roof _Shell_42_Mesh_8x8.SPR 

Design model with the elements of type 42 for 

meshes 2x2, 4x4, 8x8 

Scordelis-Lo_roof _Shell_44_Mesh_2x2.SPR 

Scordelis-Lo_roof _Shell_44_Mesh_4x4.SPR 

Scordelis-Lo_roof _Shell_44_Mesh_8x8.SPR 

Design model with the elements of type 44 for 

meshes 2x2, 4x4, 8x8 

Scordelis-Lo_roof _Shell_45_Mesh_2x2.SPR 

Scordelis-Lo_roof _Shell_45_Mesh_4x4.SPR 

Scordelis-Lo_roof _Shell_45_Mesh_8x8.SPR 

Design model with the elements of type 45 for 

meshes 2x2, 4x4, 8x8 

Scordelis-Lo_roof _Shell_50_Mesh_2x2.SPR 

Scordelis-Lo_roof _Shell_50_Mesh_4x4.SPR 

Scordelis-Lo_roof _Shell_50_Mesh_8x8.SPR 

Design model with the elements of type 50 for 

meshes 2x2, 4x4, 8x8 

Scordelis-Lo_roof _ Solid _36.SPR _Mesh_2x2.SPR 

Scordelis-Lo_roof _ Solid _36.SPR _Mesh_4x4.SPR 

Scordelis-Lo_roof _ Solid _36.SPR _Mesh_8x8.SPR 

Scordelis-Lo_roof _ Solid _36.SPR _Mesh_16x16.SPR 

Scordelis-Lo_roof _ Solid _36.SPR _Mesh_32x32.SPR 

Scordelis-Lo_roof _ Solid _36.SPR _Mesh_64x64.SPR 

Scordelis-Lo_roof _ Solid _36.SPR _Mesh_128x128.SPR 

Design model with the elements of type 36 for 

meshes 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 

128x128 

Scordelis-Lo_roof _ Solid _37.SPR _Mesh_2x2.SPR 

Scordelis-Lo_roof _ Solid _37.SPR _Mesh_4x4.SPR 

Scordelis-Lo_roof _ Solid _37.SPR _Mesh_8x8.SPR 

Scordelis-Lo_roof _ Solid _37.SPR _Mesh_16x16.SPR 

Scordelis-Lo_roof _ Solid _37.SPR _Mesh_32x32.SPR 

Scordelis-Lo_roof _ Solid _37.SPR _Mesh_64x64.SPR 

Scordelis-Lo_roof _ Solid _37.SPR _Mesh_128x128.SPR 

Design model with the elements of type 37 for 

meshes 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 

128x128 

 

Problem formulation: The open cylindrical shell rectangular in plan and simply supported along the 

curvilinear edges by ideal end diaphragms rigid in their plane and compliant out of their plane is subjected 

to the transverse load q uniformly distributed over the entire area. Check the obtained values of the 

transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell wq. 
 



V e r i f i c a t i o n  E x a m p l e s    

 P a t h o l o g i c a l  T e s t s  933 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

A. C. Scordelis, K. S. Lo, Computer analysis of cylindrical shells, Journal of the American concrete 

institute,  Title No 61-33, May 1964, p. 539-561. 

Design of cylindrical concrete shell roofs, New York, Manual No 31 American society of civil engineers, 

1952. 

 

Initial data: 

E = 4.32·108 kPa - elastic modulus of the material of the cylindrical shell;  

ν = 0.00  - Poisson’s ratio; 

L = 50.00 m  - length of the generatrix of the cylindrical shell; 

R = 25.00 m  - radius of the midsurface of the cylindrical shell; 
2∙θ = 2∙40°  - central angle of the arc of the director of the cylindrical shell; 

h = 0.25 m  - thickness of the cylindrical shell; 

q = 90.0 kN/m2 - value of the transverse load uniformly distributed over the entire area of the 

cylindrical shell. 
 

 
Finite element model: Design model – general type system. Six design models of a quarter of the 

cylindrical shell according to the symmetry conditions are considered: 

Model 1 – 8, 32, 128 three-node shell elements of type 42 with a regular mesh 2x2, 4x4, 8x8. Boundary 

conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the 

cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry 

conditions. Number of nodes in the model – 9, 25, 81. 

Model 2 – 4, 16, 64 four-node shell elements of type 44 with a regular mesh 2x2, 4x4, 8x8. Boundary 

conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the 

cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry 

conditions. Number of nodes in the model – 9, 25, 81. 

Model 3 – 8, 32, 128 six-node shell elements of type 45 with a regular mesh 2x2, 4x4, 8x8. Boundary 

conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the 

cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry 

conditions. Number of nodes in the model – 25, 81, 289. 

Model 4 – 4, 16, 64 eight-node shell elements of type 50 with a regular mesh 2x2, 4x4, 8x8. Boundary 

conditions are provided by imposing constraints on the nodes of the support curvilinear edges of the 

cylindrical shell in the directions of the degrees of freedom X, Z and constraints according to the symmetry 

conditions. Number of nodes in the model – 25, 81, 289. 

Model 5 – 4, 16, 64, 256, 1024, 4096, 16384 eight-node isoparametric solid elements of type 36 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. Boundary conditions are 

provided by imposing constraints on the nodes of the support curvilinear sides of the cylindrical shell in the 

directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of 

nodes in the model – 18, 50, 162, 578, 2178, 8450, 33282. 

Model 6 – 4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. Boundary conditions are 

provided by imposing constraints on the nodes of the support curvilinear sides of the cylindrical shell in the 

directions of the degrees of freedom X, Z and constraints according to the symmetry conditions. Number of 

nodes in the model – 51, 155, 531, 1955, 7491, 29315, 115971. 
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Results in SCAD 

 

 

 
 

Model 1. Design model 
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Model 1. Deformed model 
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Model 1. Values of the transverse displacements in the middle of the free rectilinear edges of  

the open cylindrical shell wq (m) 
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Model 2. Design model 
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Model 2. Deformed model 
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Model 2. Values of the transverse displacements in the middle of the free rectilinear edges of  

the open cylindrical shell wq (m) 
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Model 3. Design model 
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Model 3. Deformed model 
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Model 3. Values of the transverse displacements in the middle of the free rectilinear edges of  

the open cylindrical shell wq (m) 
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Model 4. Design mode 
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Model 4. Deformed model 
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Model 4. Values of the transverse displacements in the middle of the free rectilinear edges of  

the open cylindrical shell wq (m) 
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Model 5. Design model 
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Model 5. Deformed model 
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Model 5. Values of the transverse displacements in the middle of the free rectilinear edges of  

the open cylindrical shell wq (m) 
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Model 6. Design model 
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Model 6. Deformed model 
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Model 6. Values of the transverse displacements in the middle of the free rectilinear edges of  

the open cylindrical shell wq (m) 

 

 

 

Comparison of solutions: 
 

Transverse displacements in the middle of the free rectilinear edges of the open cylindrical shell wq from the 

transverse load q uniformly distributed over the entire area 

 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

0.3086 

0.2294 25.66 

4x4 0.2069 32.95 

8x8 0.2622 15.04 

2 

(Member type 44) 

2x2 

0.3086 

0.3104 0.58 

4x4 0.2821 8.59 

8x8 0.2941 4.70 

3 

(Member type 45) 

2x2 

0.3086 

0.3673 19.02 

4x4 0.3107 0.68 

8x8 0.3057 0.94 

4 

(Member type 50) 

2x2 

0.3086 

0.3693 19.67 

4x4 0.3114 0.91 

8x8 0.3059 0.87 

5 

(Member type 36) 

2x2 

0.3086 

0.0077 97.50 

4x4 0.0191 93.81 

8x8 0.0378 87.75 

16x16 0.0806 73.88 

32x32 0.1673 45.79 

64x64 0.2532 17.95 

128x128 0.2936 4.86 

6 

(Member type 37) 

2x2 

0.3086 

0.4783 54.99 

4x4 0.3142 1.81 

8x8 0.3105 0.62 

16x16 0.3102 0.52 

32x32 0.3104 0.58 

64x64 0.3103 0.55 

128x128 0.3104 0.58 
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Free Hemispherical Shell with a Circular Pole Hole Subjected to Two Orthogonal 

Pairs of Mutually Balanced Radial Tensile and Compressive Forces Applied at the 

Equator 

 
 

Objective: Check of the obtained values of the transverse displacements of a free hemispherical shell with a 

circular pole hole in the direction of action of two orthogonal pairs of mutually balanced radial tensile and 

compressive forces applied at the equator. 

  

Initial data files: 
File name Description 

Quadrant_of_a_spherical_shell _Shell_42_Mesh_2x2.SPR 

Quadrant_of_a_spherical_shell _Shell_42_Mesh_4x4.SPR 

Quadrant_of_a_spherical_shell _Shell_42_Mesh_8x8.SPR 

Quadrant_of_a_spherical_shell _Shell_42_Mesh_16x16.SPR 

Quadrant_of_a_spherical_shell _Shell_42_Mesh_32x32.SPR 

Design model with the elements 

of type 42 for meshes 2x2, 4x4, 

8x8, 16x16, 32x32 

Quadrant_of_a_spherical_shell _Shell_44_Mesh_2x2.SPR 

Quadrant_of_a_spherical_shell _Shell_44_Mesh_4x4.SPR 

Quadrant_of_a_spherical_shell _Shell_44_Mesh_8x8.SPR 

Quadrant_of_a_spherical_shell _Shell_44_Mesh_16x16.SPR 

Quadrant_of_a_spherical_shell _Shell_44_Mesh_32x32.SPR 

Design model with the elements 

of type 44 for meshes 2x2, 4x4, 

8x8, 16x16, 32x32 

Quadrant_of_a_spherical_shell _Shell_45_Mesh_2x2.SPR 

Quadrant_of_a_spherical_shell _Shell_45_Mesh_4x4.SPR 

Quadrant_of_a_spherical_shell _Shell_45_Mesh_8x8.SPR 

Quadrant_of_a_spherical_shell _Shell_45_Mesh_16x16.SPR 

Quadrant_of_a_spherical_shell _Shell_45_Mesh_32x32.SPR 

Design model with the elements 

of type 45 for meshes 2x2, 4x4, 

8x8, 16x16, 32x32 

Quadrant_of_a_spherical_shell _Shell_50_Mesh_2x2.SPR 

Quadrant_of_a_spherical_shell _Shell_50_Mesh_4x4.SPR 

Quadrant_of_a_spherical_shell _Shell_50_Mesh_8x8.SPR 

Quadrant_of_a_spherical_shell _Shell_50_Mesh_16x16.SPR 

Quadrant_of_a_spherical_shell _Shell_50_Mesh_32x32.SPR 

Design model with the elements 

of type 50 for meshes 2x2, 4x4, 

8x8, 16x16, 32x32 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_2x2.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_4x4.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_8x8.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_16x16.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_32x32.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_64x64.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_128x128.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_256x256.SPR 

Quadrant_of_a_spherical_shell _ Solid _36.SPR _Mesh_512x512.SPR 

Design model with the elements 

of type 36 for meshes 2x2, 4x4, 

8x8, 16x16, 32x32, 64x64, 

128x128, 256x256, 512x512 
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File name Description 

Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_2x2.SPR 

Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_4x4.SPR 

Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_8x8.SPR 

Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_16x16.SPR 

Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_32x32.SPR 

Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_64x64.SPR 

Quadrant_of_a_spherical_shell _ Solid _37.SPR _Mesh_128x128.SPR 

Design model with the elements 

of type 37 for meshes 2x2, 4x4, 

8x8, 16x16, 32x32, 64x64, 

128x128 

 

Problem formulation: The free hemispherical shell with a circular pole hole is subjected to two orthogonal 

pairs of mutually balanced radial tensile and compressive forces F applied at the equator. Check the 

obtained values of the transverse displacements of the free hemispherical shell wFX and wFY in the direction 

of the action of forces applied at the equator.  

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

L. S. D. Morley, A. J. Morris, Conflict between finite elements and shell theory, London, Royal aircraft 

establishment report, 1978. 

 

Initial data: 

E = 6.825·107 kPa - elastic modulus of the material of the hemispherical shell;  

ν = 0.30  - Poisson’s ratio; 

R = 10.00 m  - radius of the midsurface of the hemispherical shell; 

2∙θ = 2∙18°  - central angle of the surface of the circular hole of the hemispherical shell; 

h = 0.04 m  - thickness of the hemispherical shell; 

FX = + 2.0 kN - values of the concentrated radial tensile forces applied at the equator of the 

hemispherical shell; 

FY = – 2.0 kN - values of the concentrated radial compressive forces applied at the equator of the 

hemispherical shell. 

 

 

Finite element model: Design model – general type system. Six design models of a quarter of the 

hemispherical shell according to the symmetry conditions are considered: 

Model 1 – 8, 32, 128, 512, 2048 three-node shell elements of type 42 with a regular mesh 2x2, 4x4, 8x8, 

16x16, 32x32. Boundary conditions and the dimensional stability are provided by imposing constraints 

according to the symmetry conditions. Number of nodes in the model – 9, 25, 81, 289, 1089. 

Model 2 – 4, 16, 64, 256, 1024 four-node shell elements of type 44 with a regular mesh 2x2, 4x4, 8x8, 

16x16, 32x32. Boundary conditions and the dimensional stability are provided by imposing constraints 

according to the symmetry conditions. Number of nodes in the model – 9, 25, 81, 289,1089. 

Model 3 – 8, 32, 128, 512, 2048 six-node shell elements of type 45 with a regular mesh 2x2, 4x4, 8x8, 

16x16, 32x32. Boundary conditions and the dimensional stability are provided by imposing constraints 

according to the symmetry conditions. Number of nodes in the model – 25, 81, 289, 1089, 4225. 

Model 4 – 4, 16, 64, 256, 1024 eight- node shell elements of type 50 with a regular mesh 2x2, 4x4, 8x8, 

16x16, 32x32. Boundary conditions and the dimensional stability are provided by imposing constraints 

according to the symmetry conditions. Number of nodes in the model – 21, 65, 225, 833, 3201. 

Model 5 – 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144 eight-node isoparametric solid elements of 

type 36 with a regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1, 256x256x1, 

512x512x1. Boundary conditions and the dimensional stability are provided by imposing constraints 

according to the symmetry conditions. Number of nodes in the model – 18, 50, 162, 578, 2178, 8450, 

33282, 132149, 526338. 

Model 6 – 4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a 

regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. Boundary conditions and the 

dimensional stability are provided by imposing constraints according to the symmetry conditions. Number 

of nodes in the model – 51, 155, 531, 1955, 7491, 29315, 115971. 

 

 

 

Results in SCAD 
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Model 1. Deformed model 
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Model 1. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces 

along the X and Y axes of the global coordinate system respectively wFX  and wFY (m, m) 
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Model 2. Design model 
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Model 2. Deformed model 
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Model 2. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces 

along the X and Y axes of the global coordinate system respectively wFX and wFY (m, m) 
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Model 4. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces 
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Model 5. Design model 
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Model 6. Values of the displacements in the direction of the pairs of tensile forces and the pairs of compressive forces 

along the X and Y axes of the global coordinate system respectively wFX  and wFY (m, m) 

 

Comparison of solutions: 

Displacements in the direction of the pairs of radial tensile forces and the pairs of radial compressive forces FX 

and FY along the X and Y axes of the global coordinate system respectively wFX  and wFY (m, m) 

 

Model Finite element mesh Theory SCAD Deviation, % 

1 

(Member type 42) 

2x2 

+0.0940 

–0.0940 

+0.0828 

–0.0862 

11.91 

8.30 

4x4 
+0.0902 

–0.0919 

4.04 

2.23 

8x8 
+0.0917 

–0.0922 

2.45 

1.91 

16x16 
+0.0920 

–0.0922 

2.13 

1.91 

32x32 
+0.0927 

–0.0928 

1.38 

1.28 

2 

(Member type 44) 

2x2 

+0.0940 

–0.0940 

+0.0924 

–0.0924 

1.70 

1.70 

4x4 
+0.0938 

–0.0938 

0.21 

0.21 

8x8 
+0.0930 

–0.0930 

1.06 

1.06 

16x16 
+0.0928 

–0.0928 

1.28 

1.28 

32x32 
+0.0932 

–0.0932 

0.85 

0.85 

3 

(Member type 45) 

2x2 

+0.0940 

–0.0940 

+0.0506 

–0.0510 

46.17 

45.74 

4x4 
+0.0389 

–0.0395 

58.62 

57.98 

8x8 
+0.0484 

–0.0489 

48.51 

47.98 

16x16 
+0.0834 

–0.0835 

11.28 

11.17 

32x32 
+0.0927 

–0.0927 

1.38 

1.38 

4 

(Member type 50) 

2x2 +0.0940 

–0.0940 

+0.0526 

–0.0526 

44.04 

44.04 

4x4 +0.0459 51.17 
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Model Finite element mesh Theory SCAD Deviation, % 

–0.0459 51.17 

8x8 
+0.0651 

–0.0651 

30.74 

30.74 

16x16 
+0.0899 

–0.0899 

4.36 

4.36 

32x32 
+0.0932 

–0.0932 

0.85 

0.85 

5 

(Member type 36) 

2x2 

+0.0940 

–0.0940 

+0.0000 

–0.0000 

100.00 

100.00 

4x4 
+0.0001 

–0.0001 

99.89 

99.89 

8x8 
+0.0003 

–0.0003 

99.68 

99.68 

16x16 
+0.0010 

–0.0010 

98.94 

98.94 

32x32 
+0.0036 

–0.0036 

96.17 

96.17 

64x64 
+0.0126 

–0.0126 

86.60 

86.60 

128x128 
+0.0350 

–0.0350 

62.77 

62.77 

256x256 
+0.0654 

–0.0654 

30.43 

30.43 

512x512 
+0.0842 

–0.0842 

10.43 

10.43 

6 

(Member type 37) 

2x2 

+0.0940 

–0.0940 

+0.0014 

–0.0014 

98.51 

98.51 

4x4 
+0.0100 

–0.0100 

89.36 

89.36 

8x8 
+0.0589 

–0.0590 

37.34 

37.23 

16x16 
+0.0900 

–0.0900 

4.26 

4.26 

32x32 
+0.0933 

–0.0933 

0.74 

0.74 

64x64 
+0.0936 

–0.0936 

0.43 

0.43 

128x128 
+0.0937 

–0.0937 

0.32 

0.32 
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Nearly Incompressible Thick-Walled Cylinder under Plane Deformation 

Subjected to Uniformly Distributed Internal Pressure  

 
 

Objective: Check of the obtained values of radial displacements of the internal surface of a nearly 

incompressible thick-walled cylinder under plane deformation subjected to uniformly distributed internal 

pressure. 

  

Initial data files: 

File name Description 

Nearly_incompressible_thick_cylinder_Shell_42_ 

Poisson_ratio_049_.SPR 

Nearly_incompressible_thick_cylinder_Shell_42_ 

Poisson_ratio_0499_.SPR 

Nearly_incompressible_thick_cylinder_Shell_42_ 

Poisson_ratio_04999_.SPR 

Design model with the elements of type 42 for a 

material with Poisson's ratio 0.49, 0.499, 0.4999 

Nearly_incompressible_thick_cylinder_Shell_44_ 

Poisson_ratio_049_.SPR 

Nearly_incompressible_thick_cylinder_Shell_44_ 

Poisson_ratio_0499_.SPR 

Nearly_incompressible_thick_cylinder_Shell_44_ 

Poisson_ratio_04999_.SPR 

Design model with the elements of type 44 for a 

material with Poisson's ratio 0.49, 0.499, 0.4999 

Nearly_incompressible_thick_cylinder_Shell_45_ 

Poisson_ratio_049_.SPR 

Nearly_incompressible_thick_cylinder_Shell_45_ 

Poisson_ratio_0499_.SPR 

Nearly_incompressible_thick_cylinder_Shell_45_ 

Poisson_ratio_04999_.SPR 

Design model with the elements of type 45 for a 

material with Poisson's ratio 0.49, 0.499, 0.4999 

Nearly_incompressible_thick_cylinder_Shell_50_ 

Poisson_ratio_049_.SPR 

Nearly_incompressible_thick_cylinder_Shell_50_ 

Poisson_ratio_0499_.SPR 

Nearly_incompressible_thick_cylinder_Shell_50_ 

Poisson_ratio_04999_.SPR 

Design model with the elements of type 50 for a 

material with Poisson's ratio 0.49, 0.499, 0.4999 

Nearly_incompressible_thick_cylinder_ Solid _36_ 

Poisson_ratio_049_.SPR 

Nearly_incompressible_thick_cylinder_ Solid _36_ 

Poisson_ratio_0499_.SPR 

Nearly_incompressible_thick_cylinder_ Solid _36_ 

Poisson_ratio_04999_.SPR 

Design model with the elements of type 36 for a 

material with Poisson's ratio 0.49, 0.499, 0.4999 

Nearly_incompressible_thick_cylinder_ Solid _37_ 

Poisson_ratio_049_.SPR 

Nearly_incompressible_thick_cylinder_ Solid _37_ 

Poisson_ratio_0499_.SPR 

Nearly_incompressible_thick_cylinder_ Solid _37_ 

Poisson_ratio_04999_.SPR 

Design model with the elements of type 37 for a 

material with Poisson's ratio 0.49, 0.499, 0.4999 
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Problem formulation: The nearly incompressible thick-walled cylinder is under plane deformation and is 

subjected to the uniformly distributed internal pressure p. Check the obtained values of the radial 

displacements of the internal surface u.  

 

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element 

accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20. 

 

Initial data: 

E = 1000 kPa   - elastic modulus of the material of the thick-walled cylinder;  

ν = 0.49; 0.499; 0.4999  - Poisson’s ratio; 

Ri = 3.00 m   - radius of the internal surface of the thick-walled cylinder; 

Re = 9.00 m   - radius of the external surface of the thick-walled cylinder; 

p = 1.0 kPa   - values of the uniformly distributed internal pressure. 

 

Finite element model: Design model – general type system. Six design models of a sector of the thick-

walled cylinder with the thickness of 1.00 m and a central angle θ = 10° according to the symmetry 

conditions are considered: 

Model 1 – 10 three-node shell elements of type 42 of unequal sizes with the spacing of the mesh in the 

radial direction 3.00 m, 3.50 m, 4.20 m, 5.20 m, 6.75 m, 9.00 m . Boundary conditions are provided by 

introducing 12 space truss bar elements of type 4 of high axial stiffness (EF = 106 kN) in the tangential 

direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of 

freedom X, Y, Z are imposed on the support nodes of the bar elements. The dimensional stability is 

provided by imposing constraints on the lateral surfaces of the sector in the directions of the degrees of 

freedom Z, UZ. The load uniformly distributed along the line p = 1.0 kN/m is applied to the element on the 

internal surface of the cylinder. Number of nodes in the model – 24. 

Model 2 – 5 four-node shell elements of type 44 of unequal sizes with the spacing of the mesh in the radial 

direction 3.00 m, 3.50 m, 4.20 m, 5.20 m, 6.75 m, 9.00 m . Boundary conditions are provided by 

introducing 12 space truss bar elements of type 4 of high axial stiffness (EF = 106 kN) in the tangential 

direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of 

freedom X, Y, Z are imposed on the support nodes of the bar elements. The dimensional stability is 

provided by imposing constraints on the lateral surfaces of the sector in the directions of the degrees of 

freedom Z, UZ. The load uniformly distributed along the line p = 1.0 kN/m is applied to the element on the 

internal surface of the cylinder. Number of nodes in the model – 24. 

Model 3 – 10 six-node shell elements of type 45 of unequal sizes with the spacing of the mesh in the radial 

direction 3.00 m, 3.50 m, 4.20 m, 5.20 m, 6.75 m, 9.00 m. Boundary conditions are provided by introducing 

22 space truss bar elements of type 4 of high axial stiffness (EF = 106 kN) in the tangential direction 

(orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom X, 

Y, Z are imposed on the support nodes of the bar elements. The dimensional stability is provided by 

imposing constraints on the lateral surfaces of the sector in the directions of the degrees of freedom Z, UZ. 

The load uniformly distributed along the line p = 1.0 kN/m is applied to the element on the internal surface 

of the cylinder.  Number of nodes in the model – 55. 

Model 4 – 5 eight-node shell elements of type 50 of unequal sizes with the spacing of the mesh in the radial 

direction 3.00 m, 3.50 m, 4.20 m, 5.20 m, 6.75 m, 9.00 m. Boundary conditions are provided by introducing 

22 space truss bar elements of type 4 of high axial stiffness (EF = 106 kN) in the tangential direction 

(orthogonal to the lateral surfaces of the sector). Constraints in the directions of the degrees of freedom X, 

Y, Z are imposed on the support nodes of the bar elements. The dimensional stability is provided by 

imposing constraints on the lateral surfaces of the sector in the directions of the degrees of freedom Z, UZ. 

The load uniformly distributed along the line p = 1.0 kN/m is applied to the element on the internal surface 

of the cylinder. Number of nodes in the model – 50. 

Model 5 – 5 eight-node isoparametric solid elements of type 36 of unequal sizes with the spacing of the 

mesh in the radial direction 3.00 m, 3.50 m, 4.20 m, 5.20 m, 6.75 m, 9.00 m. Boundary conditions are 

provided by introducing 24 space truss bar elements of type 4 of high axial stiffness (EF = 106 kN) in the 

tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the 

degrees of freedom X, Y, Z are imposed on the support nodes of the bar elements. The dimensional stability 

is provided by imposing constraints on the lateral surfaces of the sector in the direction of the degree of 

freedom Z. The load uniformly distributed over the face p = 1.0 kN/m2 is applied to the element on the 

internal surface of the cylinder. Number of nodes in the model – 50. 
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Model 6 – 5 twenty-node isoparametric solid elements of type 37 of unequal sizes with the spacing of the 

mesh in the radial direction 3.00 m, 3.50 m, 4.20 m, 5.20 m, 6.75 m, 9.00 m. Boundary conditions are 

provided by introducing 56 space truss bar elements of type 4 of high axial stiffness (EF = 106 kN) in the 

tangential direction (orthogonal to the lateral surfaces of the sector). Constraints in the directions of the 

degrees of freedom X, Y, Z are imposed on the support nodes of the bar elements. The dimensional stability 

is provided by imposing constraints on the lateral surfaces of the sector in the direction of the degree of 

freedom Z. The load uniformly distributed over the face p = 1.0 kN/m2 is applied to the element on the 

internal surface of the cylinder. Number of nodes in the model – 124. 

 

Results in SCAD 

 

 

 

 
 

Model 1. Design model 

 

 

 

 
 

Model 1. Deformed model 
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Model 1. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the 

materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999 

 

 

 

 
 

Model 2. Design model 

 

 

 

 

 
 

Model 2. Deformed model 
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Model 2. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the 

materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999 

 

 

 

 

 

 

 
Model 3. Design model 

 

 

 

 
 

Model 3. Deformed model 
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Model 3. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the 

materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999 

 

 

 

 

 

 
 

Model 4. Design model 

 

 

 

 
 

Model 4. Deformed model 

 

 

 

 

 

 
 

 

 

 
 

 

  

 



  V e r i f i c a t i o n  E x a m p l e s  

1010 P a t h o l o g i c a l  T e s t s  

   
  

Model 4. Values of the displacements in the direction of the X axis of the global coordinate system (m) for the 

materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999 

 

 
 

Model 5. Design model 

 

 

 

 

 
 

Model 5. Deformed model 
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Model 5. Values of the displacements in the directions of the X and Y axes of the global coordinate system (m, m) for 

the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999 

 

 

 
 

Model 6.Design model 

 

 
 

Model 6. Deformed model 
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Model 6. Values of the displacements in the directions of the X and Y axes of the global coordinate system (m, m) for 

the materials of the thick-walled cylinder with Poisson's ratio 0.49; 0.499; 0.4999 

 

 

 

 

 

 

 

 

 

Comparison of solutions: 

 

Radial displacements of the internal surface of the thick-walled cylinder u (m) for the materials with Poisson's 

ratios 0.49; 0.499; 0.4999 

 

Model Poisson’s ratio Theory SCAD Deviation, % 

1 

(Member type 42) 

0.49 0.005040 0.005093 1.05 

0.499 0.005060 0.005118 1.15 

0.4999 0.005062 0.005121 1.17 

2 

(Member type 44) 

0.49 0.005040 0.005138 1.94 

0.499 0.005060 0.005163 2.04 

0.4999 0.005062 0.005166 2.05 

3 

(Member type 45) 

0.49 0.005040 0.005195 3.08 

0.499 0.005060 0.005222 3.20 

0.4999 0.005062 0.005225 3.22 

4 

(Member type 50) 

0.49 0.005040 0.005193 3.04 

0.499 0.005060 0.005222 3.20 

0.4999 0.005062 0.005223 3.18 

5 

(Member type 36) 

0.49 0.005040 

√(0.0042442 + 

+ 0.0003712) = 

= 0.004260 

15.48 

0.499 0.005060 

√(0.0018112 + 

+ 0.0001582) = 

= 0.001818 

64.07 

0.4999 0.005062 

√(0.0002702 + 

+ 0.0000242) = 

= 0.000271 

94.65 

6 

(Member type 37) 

0.49 0.005040 

√(0.0050482 + 

+ 0.0004412) = 

= 0.005067 

0.54 

0.499 0.005060 

√(0.0049812 + 

+ 0.0004352) = 

= 0.005000 

1.19 

0.4999 0.005062 

√(0.0044702 + 

+ 0.0003912) = 

= 0.004487 

11.36 
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Notes: In the analytical solution the radial displacements of the internal surface of the nearly 

incompressible thick-walled cylinder under the plane deformation u from the uniformly distributed internal 

pressure are determined according to the following formulas:  
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Energy Analys is  
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 Frame Subjected to Various Vertical Forces 

 

Objective: Verification of the determination of elements with forced or constricted deformation at buckling. 

 

Initial data file:  Energy94A.SPR 

 

Problem formulation: The plane frame is subjected to different vertical nodal forces. Find elements with 

positive and negative energy for the first buckling mode. 

 

References: Perelmuter A.V., Slivker V.I., Design Models of Structures and Possibilities of Their Analysis. 

— M, DMK-Press, 2007, § 9.4. 

 

Initial data: 

E = 2.1·107  t/m2 - elastic modulus,  

Р = 1 t   - value of the concentrated force. 

Bar cross-sections - I-beams No. 40 (bending in the plane of the frame occurs with respect to the axis 

with the minimum moment I = 667 cm4, А = 72,6 cm2, iy = 3,03 cm, Wy = 86,1 cm3). 

 

Finite element model: Design model – general type system, 6 bar elements of type 2, 7 nodes. 

1 2 3

456

4
12

 
Design model (with the numbers of elements and loads) 
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Results in SCAD: 

1 0,824 0,04

0
,0

0
3

0
,0

2

-1
,8

8
7

Распределение энергии   
 < 0  = 0  > 0  

Values of the energy 

 

 
Comparison of solutions: 

 

Parameter Theory SCAD 

Numbers of finite elements with the positive energy 1÷5 1÷5 
Numbers of finite elements with the negative energy 6 6 
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Frame Subjected to Vertical Forces 

 

Objective: Verification of the determination of elements with forced or constricted deformation at buckling. 

 

Initial data file:  Energy94B.SPR 

 

Problem formulation: The plane frame is subjected to vertical nodal forces. Find elements with positive 

and negative energy for the first buckling mode. 

 

References: Perelmuter A.V., Slivker V.I., Design Models of Structures and Possibilities of Their Analysis. 

— M, DMK-Press, 2007, § 9.4. 

 

Initial data: 

E = 2.1·107  t/m2 - elastic modulus,  

Р = 1 t   - value of the concentrated force. 

Bar cross-sections - I-beams No. 40 (bending in the plane of the frame occurs with respect to the axis 

with the minimum moment I = 667 cm4, А = 72,6 cm2, iy = 3,03 cm, Wy = 86,1 cm3). 

 

Finite element model: Design model – general type system, 6 bar elements of type 2, 7 nodes. 

1 2 3

456

1 1 1

 
Design model (with the numbers of elements and loads) 
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Results in SCAD: 

0,04 0,21 1

-1
,0

2

-0
,2

1

-0
,0

3

Распределение энергии   
 < 0  = 0  > 0  

Values of the energy 

 

 

Comparison of solutions: 

 

Parameter Theory SCAD 

Numbers of finite elements with the positive energy 1÷3 1÷3 

Numbers of finite elements with the negative energy 4÷6 4÷6 
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Symmetric Frame Subjected to Vertical Forces — Detection of “Weak” Elements 

 

Objective: Verification of the determination of elements with forced or constricted deformation at buckling. 

 

Initial data file:  Energy.SPR 

 

Problem formulation: The plane frame is subjected to different vertical nodal forces. Find the “weakest” 

elements in terms of the loss of stability of the system as a whole for the first buckling mode. 

 

References: Perelmuter A.V., Slivker V.I., Design Models of Structures and Possibilities of Their Analysis. 

— M, DMK-Press, 2007, § 9.4. 

 

Initial data: 

Р1 = 4 t, P2 = 6 t  - values of the concentrated forces. 

Bar sections have the following ratios of the stiffnesses per running meter 2:4:6. 

 

Finite element model: Design model – general type system, 9 bar elements of type 2, 10 nodes. 

1 2

1

2

2 1

1

2

3
4 4

6 6

 
Design model (with the numbers of the rigidity type and loads) 
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Results in SCAD: 

0,17 1
-1

,2
3

0
,0

1

1 0,17

-1
,2

3

0
,0

1

0,1

Распределение энергии   
 < 0  = 0  > 0  

Values of the energy 

 

 

Comparison of solutions: 

 

Parameter Theory SCAD 

Elements with the negative energy edge columns edge columns 
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Erect ion  
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Static Analysis of Stress-Strain State of a Building Taking into Account Genetic 

Nonlinearity 

Objective: Comparison of the results of the calculations of the stress-strain state of a multi-storey building 

taking into account genetic nonlinearity performed by SCAD and ANSYS. 

 

Initial data file:  Test-01.MPR 

Problem formulation: Design model – 11-storey building fragment rectangular in plan — spatial model 

consisting of columns, walls, piers, floor slabs on the rigid subgrade (all linear and angular nodal degrees 

of freedom are constrained). The model is subjected to the uniformly distributed load (1,5 t/m2) applied to 

all floor slabs.  

 

References: O.V. Kabantsev, Verification of calculation technology “Mounting” from software 

complex SCAD, International Journal for Computational Civil and Structural Engineering , 2011, 7 (3), 

103-109. 

 

Initial data: 

Physical properties – material of elements of the design model: concrete of the compressive strength 

class В25; elastic modulus E = 3 106 t/m2 ; Poisson’s ratio ν = 0,2. 

Geometric properties: 

Storey height – 3 m, 

Column spacing – 7 m along X and 6 m along Y, 

Column section – 5050 cm. 

Floor slab thickness – 20 cm 

Wall and pier thickness – 40 cm, pier width – 100 cm. 

Boundary conditions: columns, piers and walls are clamped in the plane z = 0 m 

Loads: 

1) Vertical pressure on the floor slabs q1 = 1,5 t/m2 is applied to the newly erected fragments-storeys; 

2) Vertical pressure on the floor slabs q2 = 1 t/m2 is applied after the erection of the entire building. 

 

Finite element model:  

ANSYS 

Slabs, walls and piers are modeled by shell finite elements of the SHELL63 type, columns are modeled 

by beam finite elements of the BEAM44 type. 

Stage 1. Resetting the stiffness of all FE to zero (the “element death” function), except for the 1-st floor, 

and constraining all nodes not belonging to the elements of the 1-st floor in the directions of all degrees of 

freedom with the application of the load q1 to the slab of the 1-st floor and the subsequent SSS analysis; 

Stage 2. Restoring the previous stiffness of the FE (the “element birth” function) of the 2-nd floor and 

removing the constraints of the nodes belonging to the elements of the 2-nd floor in the directions of all 

degrees of freedom with the application of the load q1 to the slab of the 2-nd floor and the subsequent SSS 

analysis; 

……. 

Stage 11. Restoring the previous stiffness of the FE (the “element birth” function) of the 11-th floor and 

removing the constraints of the nodes belonging to the elements of the 11-th floor in the directions of all 

degrees of freedom with the application of the load q1 to the slab of the 11-th floor (roof) and the 

subsequent SSS analysis; 

Stage 12. Application of the load q2 to all floor slabs of the building with the subsequent SSS analysis. 

 

Nodes not belonging to the “born” elements are constrained in order to fix the structural elements of the 

building at the design elevations to take into account the actual building erection process. 

 

SCAD 

Slabs, walls and piers are modeled by shell finite elements of type 44, columns are modeled by bar 

elements of general type 5. 

The dimension of the complete model is 5608 nodes and 5456 finite elements. 

Modeling of the building erection process consists of the following stages: 
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Stage 1. Selection of the set of elements at the level of the 1-st floor which are considered at the stage 

No.1 with the application of the load q1 to the slab of the 1-st floor and the subsequent SSS analysis; 

Stage 2. Selection of the set of elements at the level of the 1-2-nd floors which are considered at the stage 

No.2 with the application of the load q1 to the slabs included in the 2-nd stage and the subsequent SSS 

analysis; 

………… 

Stage 11. Selection of the set of elements at the level of the 1-11-th floors which are considered at the 

stage No.11 with the application of the load q1 to the slabs included in the 11-th stage and the subsequent 

SSS analysis; 

Stage 12. Application of the load q2 to all floor slabs of the building with the subsequent SSS analysis. 

 

 

General view of the ANSYS design model. General view of the SCAD design model. 

 

ANSYS and SCAD design models for different calculation stages 

Stage 

No. 
ANSYS SCAD 

1 

 

 

2 
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11 

 

 

12 

 

 Loads q2 have been added  

Loads q2 have been added 

Comparison of solutions: 

Parameter 
Accounting for the 12 erection 

stages Deviations, % 

ANSYS SCAD 
Maximum vertical displacement, mm -24,8 -24,19 2,46 

Longitudinal force in a column (1st floor), t -870,6 -865,1 (FE 386) 0,63 

Longitudinal force in a column (10th floor), t -3,2 -2,99 (FE 4679) 6,56 
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Determination of Stress-Strain State Taking into Account Genetic Nonlinearity 

(“Erection” Mode) 

Objective: Comparison of the results of the calculations of the stress-strain state of a bar structure taking 

into account genetic nonlinearity performed by SCAD and the analytical solution. 

 

Initial data file:  Truss.MPR 

Problem formulation:  

 

References: A.V.Perelmuter, Control of the Behavior of Load-Bearing Structures (2-nd edition revised 

and supplemented) , Moscow: ASV, 2011, § 5.2. 

 

Initial data: 

The final model of the analyzed structure is given in the figure (linear dimensions in meters), and 

some additional information is given in the table. Element 11 shown with a dotted line in this 

figure was added temporarily and was not included in the final configuration. 

 
 

Bar Stiffness 

numbers ЕА, t 

1 10 

2 10 

3 10 

4 10 

5 10 

6 2 

7 2 

8 4 

9 5 

10 5 

11 25 

12 10 

13 10 

 

 The sequence of operations for achieving the prestressing is shown in the figure below. 
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Finite element model:  

The structure is modeled by bar elements of general type 1. 

The dimension of the complete model is 8 nodes and 13 finite elements. 

Modeling of the building erection process consists of the following stages: 

Stage Description of operations 

1 Forced shortening of the bar 6 (dislocation d6= 0,001 m) and suspension of the ballast 

weight G6=10 t in the node 6. 

2 Attachment of the bar 12 to the system 

3 Removal of the bar 11 performed by the program in two stages: replacement of the effect 

of the bar by forces S11, which it transfers to the rest of the system (see. 3а), and 

application of the “compensating” load to the system     S11 (see. 3b). Installation of the 

ballast weight G1=10 t in the node 1. 

4 Attachment of the bar 13 to the system 

Working Removal of the ballast weights G1 and G6 and loading the system by the live load 

Q1=Q3=Q5=2. 

 

 

 

 
Comparison of solutions: 
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Parameter 
Results 

Deviations, % 

Theory SCAD 
Stage 1:  

     Vertical displacement of the node 6, cm -17,078 -17,042 0,21 

     Force in the element 2, t -2,510 -2,500 0,40 

Stage 2:  

     Vertical displacement of the node 6, cm -17,078 -17,042 0,21 

     Force in the element 2, t -2,510 -2,500 0,40 

Stage 3:  

     Vertical displacement of the node 6, cm -28,220 -28,185 0,12 

     Force in the element 2, t 4,990 5,000 -0,20 

Stage 4:  

     Vertical displacement of the node 6, cm -28,220 -28,185 0,12 

     Force in the element 2, t 4,990 5,000 -0,20 

Working stage   

     Vertical displacement of the node 6, cm 1,257 1,293 0,21 

     Force in the element 2, t 5,559 5,61 0,91 

 
Note: There are arithmetic errors in the source. The comparison of solutions was made on the basis of the 

corrected calculations reported by the author. 
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Replacement of a Column of a Two-Span Single-Storey Frame Subjected to a 

Constant Load  

 
Objective: Determination of the internal forces in the elements of a two-span single-storey frame before 

and after the replacement of a column subjected to a constant load. 

  

Initial data file: Rearrange_Frame.MPR 

 

Problem formulation: The two-span girder of the frame simply supported at the ends with a middle 

support in the form of a hinged column is subjected to the constant uniformly distributed load. During the 

reconstruction the column is replaced by a column of the same rigidity in the following order: the 

replacing column is installed and then the original one is dismantled. Determine the maximum bending 

moments in the girder of the frame MI, MII and the longitudinal forces in the columns NI, NII before and 

after the replacement. 

Initial data: 

EF = 2.0·107 t  - axial stiffness of the girder and column cross-section;  

EI = 1.2·108 t·m2 - bending stiffness of the girder and column cross-section;  

L = 6.0 m  - girder span length and column height; 

q = 4.0 t/m - uniformly distributed constant vertical load applied to the girder spans. 

 

Finite element model: Design  model – plane frame, elements of the girder – 24 bar elements of type 2, 

elements of the columns – 24 bar elements of type 2. The spacing of the finite element mesh along the 

longitudinal axes of the structural members is 0.5 m. The node of the left end of the girder is constrained 

in the directions of the degrees of freedom X, Z. The node of the right end of the girder is constrained in 

the direction of the degree of freedom Z. The nodes of the lower ends of the columns are constrained in 

the directions of the degrees of freedom X, Z. The elements of the upper ends of the columns have a 

hinge in the direction of the degree of freedom UY. Number of nodes in the design model – 37. Elements 

of the girder 1 – 24 and of the original column 25 – 36 are included in the first erection stage. Elements of 

the girder 1 – 24 and of the replacing column 37 – 48 are included in the second erection stage. The 

accumulated loading q is acting in both stages.  
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Results in SCAD 

 
Design models in the first and second erection stages 

 

 

 

 
 

Deformed models in the first and second erection stages 
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Longitudinal force diagrams NI, NII in the first and second erection stages (t) 

 

 

 
Bending moment diagrams MI, MII in the first and second erection stages (t∙m) 
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Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Maximum bending moment in the girder of the 

frame in the first erection stage MI, t∙m 
34.03 34.03 0.00 

Longitudinal force in the column of the frame in the 

first erection stage NI, t 
-15.0 -15.0 0.00 

Maximum bending moment in the girder of the 

frame in the second erection stage MII, t∙m 
51.26 51.25 0.02 

Longitudinal force in the column of the frame in the 

second erection stage NII, t 
-7.5 -7.5 0.00 

 

Notes: In the analytical solution the maximum bending moments in the girder of the frame MI, MII and 

the longitudinal forces in the columns NI, NII before and after the replacement are determined according 

to the following formulas: 
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Sequential Erection of a Steel Reinforced Concrete Single-Span Beam 

 

 
 

 
 

Objective: Determination of the deflections of the steel reinforced concrete single-span beam for the 

erection stages. 

  

Problem formulation: The erection of the steel reinforced concrete single-span beam is performed in the 

following order: 

 A steel I-beam is installed on the supports, the formwork for the reinforced concrete slab is 

arranged on the props from the bottom chord of the beam, the reinforcement cage is installed on 

the formwork, and the monolithic concrete is laid in the first erection stage. The steel beam is 

subjected to the load from the self-weight q11 and from the weight of the fresh concrete q12 at this 

stage. 

 The formwork is dismantled, and the reinforced concrete slab starts to bend across the 

steel beam in the second erection stage. 

 The serviceability loads from the weight of the roof structure q2 and the transport load P2 are 

applied to the steel reinforced concrete beam in the third erection stage.  

Determine the maximum deflections of the steel reinforced concrete beam in the first w1 and third w2 

erection stages. 

 

Initial data file: Wiring_Girder.MPR 

 

Initial data: 

Est = 2.1·10
6 kgf/cm2  - elastic modulus of the material of the steel beam;  

Eb = 3.06·10
5 kgf/cm2  - elastic modulus of the material of the reinforced concrete slab; 

υst = 0.3   - Poisson’s ratio of steel; 

υb = 0.2    - Poisson’s ratio of reinforced concrete;  

L = 1365.0 cm   - steel reinforced concrete beam span length; 

bs1 = 40.0 cm   - width of the bottom chord of the steel beam; 
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ts1 = 2.4 cm   - thickness of the bottom chord of the steel beam; 

bs2 = 30.0 cm   - width of the top chord of the steel beam; 

ts2 = 1.6 cm   - thickness of the top chord of the steel beam; 

hw = 80.0 cm   - height of the web of the steel beam; 

tw = 1.2 cm   - thickness of the web of the steel beam; 

bsl = 280.0 cm   - width of the reinforced concrete slab; 

tsl = 22.0 cm   - thickness of the reinforced concrete slab; 

q11 = 0.2072 t/m - vertical load from the self-weight of the steel beam uniformly 

distributed along a line; 

q12 = 0.6050 t/m2 - vertical load from the self-weight of the reinforced concrete slab 

uniformly distributed over an area; 

q2 = 0.3770 t/m2 - vertical load from the self-weight of the roof structure uniformly 

distributed over an area and applied to the reinforced concrete slab; 

P2 = 39.60 t/m - vertical transport load uniformly distributed along a line. 

 

Finite element model: Design model – general type system, elements of the steel beam – 68 bar elements 

of type 5, elements of the reinforced concrete slab – 952 shell elements of type 44, elements of the joint 

between the steel beam and the reinforced concrete slab – 69 elements of type 100, elements of the 

formwork props – 1035 elements of type 100. The spacing of the finite element mesh of the steel beam 

along the longitudinal axis is 0.2 m. The spacing of the finite element mesh of the reinforced concrete 

slab in the longitudinal and transverse directions is 0.2 m. The node of the left end of the beam is 

constrained in the directions of the degrees of freedom X,Y, Z, UX. The node of the right end of the beam 

is constrained in the directions of the degrees of freedom Y, Z, UX. Number of nodes in the design model 

– 1173. Elements of the steel beam, elements of the reinforced concrete slab with the reduced elastic 

modulus Eb∙10
-3, elements of the joint and elements of the props are included in the first erection stage. 

Elements of the steel beam, elements of the reinforced concrete slab with the normal elastic modulus Eb 

and elements of the joint are included in the second and third erection stages. The loads q11 and q12 of the 

accumulated loading q1 are acting in all stages. The loads q2 and P2 of the independent loading q2 are 

acting in the third erection stage. 

 

Results in SCAD: 

 

 
Design models in the first, second and third erection stages 
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Deformed models in the first and third erection stages 

 

 

 

 

  
Deflections in the first w1 and third w2 erection stages (mm) 

 

 

Comparison of solutions: 

Parameter Theory SCAD Deviations, % 

Maximum deflection of the steel reinforced concrete beam 

in the first erection stage w1, mm 
-14.75 -14,56 1.29 

Maximum deflection of the steel reinforced concrete beam 

in the third erection stage w2, mm 
-44.51 -44,90 0.88 

 

Notes: In the analytical solution the maximum deflections of the steel reinforced concrete beam in the 

first w1 and third w2 erection stages are determined according to the following formulas: 
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Response Spectra  
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Response Spectrum of Absolute Response Accelerations of a Linear Oscillator 

Installed in the Middle of the Span of a Simply Supported Beam with a 

Distributed Mass Subjected to a Kinematic Excitation of Supports (Seismic 

Action) 

 
 

Objective: Determination of the response spectrum of response accelerations of a linear oscillator 

installed in the middle of the span of a simply supported beam with a distributed mass subjected to a 

kinematic excitation of supports. 
 

Initial data files:  DIN_B_RS.SPR – design model 

   DIN_B_RS.SPC – accelerogram 

 

Problem formulation: The simply supported beam of constant cross-section with the uniformly 

distributed mass μ is subjected to the kinematic excitation of the supports according to the specified 

accelerogram: 

 














d
0s

t

t
1z)t(z  . 

Determine the response spectrum of the absolute response accelerations of the linear oscillator installed in 

the middle of the span.  
 

References: John M. Biggs, Introduction to Structural Dynamics, McGraw-Hill Book Companies, New 

York, 1964, p.256-263; 

Kiselev V.A., Structural Mechanics. Special Course. Dynamics and Stability of Structures. Moscow, 

Stroyizdat, 1980, p. 65-67. 

 

Initial data: 

E = 3.0·107 psi = 2.1092·107 tf/m2 - elastic modulus; 

I = 333.333 in4 = 138.7448·10-6 m4 - cross-sectional moment of inertia of the beam.  

h = 14 in = 0.3556 m   - height of the cross-section of the beam; 

L = 240 in = 6.0960 m   - beam span length; 

μ = 0.2 lb·sec2/in2 = 0.1406 tf·s2/m2 - value of the uniformly distributed mass of the beam; 

0sz  = ±386.2200 in/sec2 = ±9.81 m/s2 - amplitude values of the acceleration of the supports according 

to the accelerogram; 

td = 0.10 sec = 0.10 s   - half-interval of the kinematic excitation of supports; 

g = 386.2200 in/sec2 =9.81 m/s2  - gravitational acceleration; 

 

Finite element model: Design model – grade beam / plate, 32 bar elements of type 3. Boundary 

conditions of the simply supported ends of the beam are provided by imposing constraints in the direction 

of the degree of freedom Z. The dimensional stability of the design model is provided by imposing a 

constraint in the node of the cross-section along the symmetry axis of the beam in the direction of the 

degree of freedom UX. The distributed mass is specified by transforming the static load from the self-

weight of the beam μ·g. 

The kinematic excitation of supports is described by the graph of the acceleration variation with time 

(accelerogram) and is given in the form of the action along the Z axis of the global coordinate system 

(direction cosines to the X, Y, Z axes: 0.00, 0.00, 1.00) with the scale factor to the values of the 

accelerogram equal to 1.00. The height of the beam structure in the model is directed along the Z axis of 

the global coordinate system. The dissipation factor (energy absorption factor) is taken with the minimum 

value ξ = 0.000001 for the oscillator and for the structure. The intervals between the time points of the 

graph of the acceleration variation with time are equal to Δt = 0.01 s. When plotting the graph the 
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acceleration is taken with the values  d0s ttn1z)t(z    at the time points n·Δt. The conversion factor 

for the added static loading is equal to k = 1.000 (mass generation). Number of nodes in the design model 

– 33. 

 

Results in SCAD 
 

 
 

Design model and the given accelerogram 

 

Comparison of solutions: 
The comparison was performed with the solution of the problem obtained in Abaqus (the solution was 

provided by A.I. Popov — Atomproekt). 

 

 

Frequency Acceleration 

Hz g 

Abaqus SCAD 

0 0,0000 0,0000 

0,05 0,0000 0,0007 

0,1 0,0000 0,0029 

0,15 0,0000 0,0064 

0,2 0,0000 0,0114 

0,25 0,0038 0,0178 

0,3 0,0027 0,0256 

0,35 0,0216 0,0347 

0,4 0,0200 0,0452 

0,45 0,0490 0,0569 

0,5 0,0503 0,0700 

0,55 0,0832 0,0842 

0,6 0,0881 0,0997 

0,65 0,1218 0,1163 

0,7 0,1312 0,1340 

0,75 0,1642 0,1528 

0,8 0,1799 0,1726 

0,85 0,2096 0,1934 

0,9 0,2310 0,2152 

0,95 0,2565 0,2378 

1 0,2824 0,2613 

1,05 0,3045 0,2855 

1,1 0,3338 0,3105 

1,15 0,3625 0,3362 

1,2 0,3876 0,3626 

Frequency Acceleration 

Hz g 

Abaqus SCAD 

1,25 0,4182 0,3895 

1,3 0,4481 0,4171 

1,35 0,4758 0,4453 

1,4 0,5043 0,4739 

1,45 0,5395 0,5030 

1,5 0,5690 0,5325 

1,55 0,5964 0,5625 

1,6 0,6324 0,5928 

1,65 0,6656 0,6235 

1,7 0,6953 0,6545 

1,75 0,7270 0,6857 

1,8 0,7628 0,7171 

1,85 0,7932 0,7487 

1,9 0,8267 0,7804 

1,95 0,8572 0,8121 

2 0,8939 0,8441 

2,05 0,9265 0,8760 

2,1 0,9559 0,9079 

2,15 0,9913 0,9398 

2,2 1,0234 0,9717 

2,25 1,0561 1,0035 

2,3 1,0887 1,0353 

2,35 1,1193 1,0669 

2,4 1,1498 1,0984 

2,45 1,1855 1,1298 

Frequency Acceleration 

Hz g 

Abaqus SCAD 

2,5 1,2171 1,1611 

2,55 1,2467 1,1923 

2,6 1,2762 1,2234 

2,65 1,3048 1,2544 

2,7 1,3405 1,2853 

2,75 1,3721 1,3160 

2,8 1,4027 1,3465 

2,85 1,4312 1,3769 

2,9 1,4597 1,4071 

2,95 1,4862 1,4370 

3 1,5158 1,4667 

3,05 1,5454 1,4963 

3,1 1,5749 1,5255 

3,15 1,6045 1,5546 

3,2 1,6320 1,5832 

3,25 1,6595 1,6115 

3,3 1,6860 1,6395 

3,35 1,7115 1,6671 

3,4 1,7370 1,6943 

3,45 1,7604 1,7211 

3,5 1,7829 1,7476 

3,55 1,8084 1,7736 

3,6 1,8318 1,7994 

3,65 1,8583 1,8247 

3,7 1,8838 1,8499 
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Frequency Acceleration 

Hz g 

Abaqus SCAD 

3,75 1,9093 1,8744 

3,8 1,9337 1,8989 

3,85 1,9541 1,9226 

3,9 1,9776 1,9629 

3,95 2,0000 2,0807 

4 2,0224 2,1999 

4,05 2,0438 2,3202 

4,1 2,1244 2,4415 

4,15 2,1713 2,5635 

4,2 2,2895 2,6862 

4,25 2,4088 2,8092 

4,3 2,5291 2,9324 

4,35 2,6493 3,0555 

4,4 2,7696 3,1784 

4,45 2,8899 3,3009 

4,5 2,7768 3,4226 

4,55 2,8960 3,5434 

4,6 3,0143 3,6631 

4,65 3,1325 3,7815 

4,7 3,2497 3,8982 

4,75 3,3660 4,0132 

4,8 3,4811 4,1262 

4,85 3,5953 4,2370 

4,9 3,8267 4,3453 

4,95 3,9368 4,4509 

5 4,0449 4,5537 

5,05 4,1519 4,6535 

5,15 4,3568 4,8429 

5,25 4,5515 5,0178 

5,35 4,7339 5,1765 

5,45 5,1580 5,3179 

5,55 5,2915 5,4406 

5,65 5,4057 5,5436 

5,75 5,5025 5,6259 

5,85 5,5800 5,6867 

5,95 5,6371 5,7255 

6,05 5,6799 5,7418 

6,15 5,6922 5,7467 

6,25 5,6840 5,7459 

6,35 5,6667 5,7410 

6,45 5,6616 5,7305 

6,55 5,6381 5,7172 

6,65 5,6106 5,7002 

6,75 5,5933 5,6823 

Frequency Acceleration 

Hz g 

Abaqus SCAD 

6,85 5,5596 5,6593 

6,95 5,5260 5,6326 

7,05 5,4760 5,6019 

7,15 5,4475 5,5663 

7,25 5,4027 5,5263 

7,35 5,3435 5,4817 

7,45 5,3058 5,4330 

7,55 5,2548 5,3803 

7,65 5,1906 5,3244 

7,75 5,1366 5,2659 

7,85 5,0856 5,2063 

7,95 5,0214 5,1456 

8,05 4,9541 5,0832 

8,15 4,8970 5,0199 

8,25 4,8298 4,9568 

8,35 4,7533 4,8934 

8,45 4,6942 4,8276 

8,55 4,6259 4,7590 

8,65 4,5484 4,6880 

8,75 4,4791 4,6150 

8,85 4,4108 4,5400 

8,95 4,3354 4,4637 

9,05 4,2538 4,3856 

9,15 4,1876 4,3056 

9,25 4,1121 4,2230 

9,35 4,0306 4,1386 

9,45 3,9602 4,0539 

9,55 3,8858 3,9697 

9,65 3,8063 3,8864 

9,75 3,7278 3,8045 

9,85 3,6565 3,7235 

9,95 3,5800 3,6425 

10,05 3,5005 3,5625 

10,25 3,3517 3,4065 

10,45 3,1978 3,2517 

10,65 3,0510 3,0950 

10,85 2,9021 2,9342 

11,05 2,7554 2,8493 

11,25 2,6320 2,8338 

11,45 2,6188 2,8165 

11,65 2,6045 2,7987 

11,85 2,5851 2,7780 

12,05 2,5668 2,7555 

12,25 2,5525 2,7311 

Frequency Acceleration 

Hz g 

Abaqus SCAD 

12,45 2,5352 2,7038 

12,65 2,5138 2,6768 

12,85 2,4954 2,6496 

13,05 2,4791 2,6235 

13,25 2,4608 2,6008 

13,45 2,4393 2,5794 

13,65 2,4190 2,5580 

13,85 2,4200 2,5829 

14,05 2,4669 2,6253 

14,25 2,5025 2,6754 

14,45 2,5321 2,7204 

14,65 2,5545 2,7508 

14,85 2,5668 2,7680 

15,05 2,5770 2,7730 

15,25 2,5780 2,7656 

15,45 2,5708 2,7468 

15,65 2,5627 2,7165 

15,85 2,5433 2,6732 

16,05 2,5270 2,6209 

16,25 2,4995 2,5750 

16,45 2,4730 2,5384 

16,65 2,4383 2,5071 

16,85 2,4037 2,4806 

17,05 2,3629 2,4496 

17,25 2,3221 2,4087 

17,45 2,2742 2,3604 

17,65 2,2294 2,3022 

17,85 2,1774 2,2363 

18,05 2,1284 2,1646 

18,25 2,0724 2,0879 

18,45 2,0204 2,0594 

18,65 1,9602 2,1352 

18,85 1,9215 2,1977 

19,05 1,9541 2,2423 

19,25 2,0071 2,2704 

19,45 2,0530 2,2876 

19,65 2,0968 2,2987 

19,85 2,1356 2,3222 

20,05 2,1672 2,3682 

20,55 2,2365 2,5018 

21,05 2,2783 2,5673 

21,55 2,3028 2,5700 

22,05 2,3007 2,5106 

22,55 2,2854 2,3830 
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Frequency Acceleration 

Hz g 

Abaqus SCAD 

23,05 2,2528 2,3421 

23,55 2,2039 2,3615 

24,05 2,1427 2,3313 

24,55 2,0734 2,2381 

25,05 1,9949 2,2560 

25,55 1,9888 2,2237 

26,05 2,0601 2,3334 

26,55 2,1142 2,4863 

27,05 2,1580 2,5792 

27,55 2,1865 2,6055 

28,05 2,1988 2,5678 

28,55 2,1978 2,4566 

29,05 2,1876 2,2866 

29,55 2,1702 2,3166 

30,05 2,1386 2,4101 

30,55 2,0989 2,4521 

31,05 2,0520 2,4243 

31,55 1,9980 2,3600 

32,05 2,0071 2,3904 

32,55 2,0520 2,5854 

33,05 2,0907 2,7152 
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Response Spectra 

 

 Abaqus SCAD Deviation 

Frequency at which the maximum acceleration occurs (Hz) 6.15  6.15  0 % 

Maximum acceleration (g) 5,6921 5.7467  0.95 % 

Spectra correlation coefficient 0.995 
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Amplitude-Frequency 

Characterist ics  
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Amplitude-Frequency Characteristic of a System with One Degree of Freedom 

 

Objective: Plotting the amplitude-frequency characteristic of a single-mass elastic system under harmonic 

excitation. 

 

Initial data files:  TestАЧХ.SPR 

 

Problem formulation: The behavior of a single-mass elastic system subjected to an excitation by a harmonic time-

varying force with different excitation frequencies. 

 

References: Panovko Ya.G. Introduction to the Theory of Mechanical Oscillations — M.: Nauka, 1991, § II.6. 

 

Initial data: 

М = 10 kN - weight of the mass;  

С = 100 kN - stiffness;  

Р = 10 kN - amplitude value of the force; 

 = 0.025 - damping parameter (in fractions of the critical value). 

 

Finite element model: One node where a point mass is specified is supported by a single-node elastic constraint 

(finite element of type 51). 

 

Results in SCAD 

 
Amplitude-frequency characteristics 
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Comparison of solutions: 

 

Frequen

cy 

Displacement of the 

node  

 SCAD Theory 

Hz m 

0, 0,1000 0,1000 

0,01 0,1000 0,1000 

0,02 0,1000 0,1000 

0,03 0,1000 0,1000 

0,04 0,1001 0,1001 

0,05 0,1001 0,1001 

0,06 0,1001 0,1001 

0,07 0,1002 0,1002 

0,08 0,1003 0,1003 

0,09 0,1003 0,1003 

0,1 0,1004 0,1004 

0,11 0,1005 0,1005 

0,12 0,1006 0,1006 

0,13 0,1007 0,1007 

0,14 0,1008 0,1008 

0,15 0,1009 0,1009 

0,16 0,1010 0,1010 

0,17 0,1012 0,1012 

0,18 0,1013 0,1013 

0,19 0,1015 0,1015 

0,2 0,1016 0,1016 

0,21 0,1018 0,1018 

0,22 0,1020 0,1020 

0,23 0,1022 0,1022 

0,24 0,1024 0,1024 

0,25 0,1026 0,1026 

0,26 0,1028 0,1028 

0,27 0,1030 0,1030 

0,28 0,1033 0,1032 

0,29 0,1035 0,1035 

0,3 0,1038 0,1037 

0,31 0,1040 0,1040 

0,32 0,1043 0,1043 

0,33 0,1046 0,1046 

0,34 0,1049 0,1048 

0,35 0,1052 0,1052 

0,36 0,1055 0,1055 

0,37 0,1058 0,1058 

0,38 0,1062 0,1061 

0,39 0,1065 0,1065 

0,4 0,1069 0,1068 

0,41 0,1072 0,1072 

0,42 0,1076 0,1076 

0,43 0,1080 0,1080 

0,44 0,1084 0,1084 

0,45 0,1089 0,1088 

0,46 0,1093 0,1092 

0,47 0,1097 0,1097 

0,48 0,1102 0,1102 

0,49 0,1107 0,1106 

0,5 0,1112 0,1111 

0,51 0,1117 0,1116 

Frequen

cy 

Displacement of the 

node  

 SCAD Theory 

Hz m 

0,52 0,1122 0,1121 

0,53 0,1127 0,1127 

0,54 0,1133 0,1132 

0,55 0,1138 0,1138 

0,56 0,1144 0,1143 

0,57 0,1150 0,1149 

0,58 0,1156 0,1155 

0,59 0,1163 0,1162 

0,6 0,1169 0,1168 

0,61 0,1176 0,1175 

0,62 0,1183 0,1182 

0,63 0,1190 0,1189 

0,64 0,1197 0,1196 

0,65 0,1204 0,1203 

0,66 0,1212 0,1211 

0,67 0,1220 0,1219 

0,68 0,1228 0,1227 

0,69 0,1237 0,1235 

0,7 0,1245 0,1244 

0,71 0,1254 0,1253 

0,72 0,1263 0,1262 

0,73 0,1272 0,1271 

0,74 0,1282 0,1280 

0,75 0,1292 0,1290 

0,76 0,1302 0,1300 

0,77 0,1313 0,1311 

0,78 0,1324 0,1322 

0,79 0,1335 0,1333 

0,8 0,1346 0,1344 

0,81 0,1358 0,1356 

0,82 0,1370 0,1368 

0,83 0,1383 0,1380 

0,84 0,1396 0,1393 

0,85 0,1409 0,1406 

0,86 0,1423 0,1420 

0,87 0,1437 0,1434 

0,88 0,1452 0,1449 

0,89 0,1467 0,1464 

0,9 0,1482 0,1479 

0,91 0,1498 0,1495 

0,92 0,1515 0,1512 

0,93 0,1532 0,1529 

0,94 0,1550 0,1546 

0,95 0,1569 0,1564 

0,96 0,1588 0,1583 

0,97 0,1607 0,1603 

0,98 0,1628 0,1623 

0,99 0,1649 0,1644 

1, 0,1671 0,1666 

1,01 0,1694 0,1689 

1,02 0,1718 0,1712 

1,03 0,1742 0,1736 

Frequen

cy 

Displacement of the 

node  

 SCAD Theory 

Hz m 

1,04 0,1768 0,1762 

1,05 0,1794 0,1788 

1,06 0,1822 0,1815 

1,07 0,1851 0,1844 

1,08 0,1881 0,1873 

1,09 0,1912 0,1904 

1,1 0,1945 0,1936 

1,11 0,1979 0,1970 

1,12 0,2014 0,2005 

1,13 0,2051 0,2042 

1,14 0,2090 0,2080 

1,15 0,2131 0,2120 

1,16 0,2174 0,2162 

1,17 0,2219 0,2207 

1,18 0,2266 0,2253 

1,19 0,2316 0,2302 

1,2 0,2368 0,2354 

1,21 0,2424 0,2408 

1,22 0,2482 0,2465 

1,23 0,2544 0,2526 

1,24 0,2609 0,2590 

1,25 0,2679 0,2658 

1,26 0,2752 0,2731 

1,27 0,2831 0,2808 

1,28 0,2915 0,2890 

1,29 0,3004 0,2977 

1,3 0,3100 0,3071 

1,31 0,3203 0,3172 

1,32 0,3314 0,3280 

1,33 0,3434 0,3396 

1,34 0,3563 0,3522 

1,35 0,3704 0,3659 

1,36 0,3857 0,3807 

1,37 0,4024 0,3970 

1,38 0,4207 0,4147 

1,39 0,4409 0,4342 

1,4 0,4633 0,4558 

1,41 0,4881 0,4797 

1,42 0,5159 0,5064 

1,43 0,5471 0,5364 

1,44 0,5824 0,5702 

1,45 0,6226 0,6086 

1,46 0,6688 0,6525 

1,47 0,7222 0,7032 

1,48 0,7845 0,7621 

1,49 0,8578 0,8312 

1,5 0,9449 0,9130 

1,51 1,0490 1,0106 

1,52 1,1740 1,1276 

1,53 1,3230 1,2675 

1,54 1,4965 1,4323 

1,55 1,6863 1,6178 
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Frequen

cy 

Displacement of the 

node  

 SCAD Theory 

Hz m 

1,56 1,8651 1,8048 

1,57 1,9824 1,9508 

1,58 1,9869 2,0000 

1,59 1,8746 1,9270 

1,6 1,6930 1,7643 

1,61 1,4959 1,5684 

1,62 1,3140 1,3792 

1,63 1,1575 1,2132 

1,64 1,0264 1,0732 

1,65 0,9174 0,9565 

1,66 0,8265 0,8594 

1,67 0,7501 0,7780 

1,68 0,6854 0,7092 

1,69 0,6301 0,6506 

1,7 0,5824 0,6003 

1,71 0,5409 0,5566 

1,72 0,5045 0,5184 

1,73 0,4724 0,4848 

1,74 0,4439 0,4550 

1,75 0,4184 0,4284 

1,76 0,3956 0,4046 

1,77 0,3749 0,3831 

1,78 0,3561 0,3636 

1,79 0,3390 0,3459 

1,8 0,3234 0,3297 

1,81 0,3091 0,3149 

1,82 0,2959 0,3013 

1,83 0,2837 0,2887 

1,84 0,2724 0,2771 

1,85 0,2619 0,2663 

1,86 0,2521 0,2562 

1,87 0,2430 0,2468 

1,88 0,2344 0,2381 

1,89 0,2264 0,2299 

1,9 0,2189 0,2222 

1,91 0,2119 0,2149 

1,92 0,2052 0,2081 

1,93 0,1989 0,2017 

1,94 0,1930 0,1956 

1,95 0,1873 0,1898 

1,96 0,1820 0,1844 

1,97 0,1769 0,1792 

1,98 0,1721 0,1743 

1,99 0,1675 0,1696 

2, 0,1631 0,1651 

2,01 0,1590 0,1609 

2,02 0,1550 0,1568 

2,03 0,1512 0,1529 

2,04 0,1475 0,1492 

2,05 0,1440 0,1457 

2,06 0,1407 0,1423 

2,07 0,1375 0,1390 

2,08 0,1344 0,1359 

2,09 0,1314 0,1329 

Frequen

cy 

Displacement of the 

node  

 SCAD Theory 

Hz m 

2,1 0,1286 0,1300 

2,11 0,1259 0,1272 

2,12 0,1232 0,1245 

2,13 0,1207 0,1219 

2,14 0,1182 0,1194 

2,15 0,1159 0,1170 

2,16 0,1136 0,1147 

2,17 0,1114 0,1125 

2,18 0,1093 0,1103 

2,19 0,1072 0,1082 

2,2 0,1052 0,1062 

2,21 0,1033 0,1043 

2,22 0,1014 0,1024 

2,23 0,0996 0,1005 

2,24 0,0979 0,0988 

2,25 0,0962 0,0971 

2,26 0,0945 0,0954 

2,27 0,0929 0,0938 

2,28 0,0914 0,0922 

2,29 0,0899 0,0907 

2,3 0,0884 0,0892 

2,31 0,0870 0,0877 

2,32 0,0856 0,0863 

2,33 0,0842 0,0850 

2,34 0,0829 0,0836 

2,35 0,0817 0,0823 

2,36 0,0804 0,0811 

2,37 0,0792 0,0799 

2,38 0,0780 0,0787 

2,39 0,0769 0,0775 

2,4 0,0757 0,0764 

2,41 0,0747 0,0753 

2,42 0,0736 0,0742 

2,43 0,0725 0,0731 

2,44 0,0715 0,0721 

2,45 0,0705 0,0711 

2,46 0,0696 0,0701 

2,47 0,0686 0,0692 

2,48 0,0677 0,0682 

2,49 0,0668 0,0673 

2,5 0,0659 0,0664 

2,51 0,0650 0,0655 

2,52 0,0642 0,0647 

2,53 0,0634 0,0639 

2,54 0,0626 0,0630 

2,55 0,0618 0,0622 

2,56 0,0610 0,0615 

2,57 0,0602 0,0607 

2,58 0,0595 0,0599 

2,59 0,0588 0,0592 

2,6 0,0581 0,0585 

2,61 0,0574 0,0578 

2,62 0,0567 0,0571 

2,63 0,0560 0,0564 

Frequen

cy 

Displacement of the 

node  

 SCAD Theory 

Hz m 

2,64 0,0553 0,0557 

2,65 0,0547 0,0551 

2,66 0,0541 0,0545 

2,67 0,0535 0,0538 

2,68 0,0528 0,0532 

2,69 0,0522 0,0526 

2,7 0,0517 0,0520 

2,71 0,0511 0,0514 

2,72 0,0505 0,0509 

2,73 0,0500 0,0503 

2,74 0,0494 0,0498 

2,75 0,0489 0,0492 

2,76 0,0484 0,0487 

2,77 0,0479 0,0482 

2,78 0,0473 0,0477 

2,79 0,0469 0,0472 

2,8 0,0464 0,0467 

2,81 0,0459 0,0462 

2,82 0,0454 0,0457 

2,83 0,0449 0,0452 

2,84 0,0445 0,0448 

2,85 0,0440 0,0443 

2,86 0,0436 0,0439 

2,87 0,0432 0,0435 

2,88 0,0427 0,0430 

2,89 0,0423 0,0426 

2,9 0,0419 0,0422 

2,91 0,0415 0,0418 

2,92 0,0411 0,0414 

2,93 0,0407 0,0410 

2,94 0,0403 0,0406 

2,95 0,0399 0,0402 

2,96 0,0396 0,0398 

2,97 0,0392 0,0394 

2,98 0,0388 0,0391 

2,99 0,0385 0,0387 

3, 0,0381 0,0384 
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 Theory SCAD Deviation 

Frequency at which the maximum displacement occurs (Hz) 1.58  1.58 0 % 

Maximum displacement (m) 2,0000 1,9869 0.65 % 

 

Notes: In the analytical solution the vertical displacement is described by the following transfer function: 

 

 
2

2
2

2

1

1 2 /
 
    
 

, 

where  — natural frequency of the undamped system. 
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Steel  Structural  Members  
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Strength and Stiffness Analysis of a Welded I-beam 

 

 

a – cross-section variation along the beam length; b – beam section and stress diagrams. 

 

Objective: Check of the Resistance of Sections mode in the “Steel” postprocessor of SCAD 

 

Task: Check the design section of a welded I-beam for the main beams with a span of 18 m in a normal 

stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing 

of 1,125 m. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p 195. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

4.1 SectionResistance_Example_4.1.spr;  

report – 4.1 SectionResistance _Example_4.1.doc 

 

Initial data: 

M1 = 3469,28 kNm = 353,6473 Tm Design bending moment; 

Q1 = 925 kN = 94,29 T Design shear force; 

Ry = 23 kN/cm2, Rs = 0,58*23=13,3 kN/cm2 Steel grade C255 with thickness t>20 mm; 

l = 18 m Beam span; 

15187,794yW  cm3 Geometric properties for a welded 

1290962,5yI  cm4 I-section with flanges 240×25 mm and a web 

1650×12 mm. 

9108,75yS  cm3 

63,715yi  cm, 4,265zi  cm 
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SCAD Parameters. STEEL Postprocessor: 

 
[Element No. 1] Forces 

N 
Max. 0 Т 
Snap 0 m 

 
Max. 0 Т 
Snap 0 m 

My 
Max. 0 T*m 
Snap 0 m 

 
Max. 353,65 T*m 
Snap 3,75 m 

Mz 
Max. 0 T*m 
Snap 0 m 

 
Max. 0 T*m 
Snap 0 m 

Mk 
Max. 0 T*m 
Snap 0 m 

 
Max. 0 T*m 
Snap 0 m 

Qz 
Max. 94,31 Т 
Snap 0 m 

 
 
 

Qy 
Max. 0 Т 
Snap 0 m 

 
Max. 0 Т 
Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 3,75 m 
Length of the flexible part 3,75 m 
Loading L1  

240

240

12

1
7
0
0

8
5
0

8
5
0

2
5

2
5

Y1

Z1

 
 

Analysis complies with SNiP II-23-81* 

Structural member Section 

Steel: C255 

Member length 3,75 m 

Limit slenderness for members in compression: 220 

Limit slenderness for members in tension: 300 

Service factor 1 

Importance factor 1 

Effective length factor in the XoY plane 1,125 m 

Effective length factor in the XoZ plane 18 m 
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Length between out-of-plane restraints 1,125 m 

 

Section 

2
5

1
6
5
0

2
5

8
2
5

240

120 120

12

Z1

Y1

 
 

Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 0,99 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,41 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,99 

Sec. 5.14* Strength for reduced stresses at the simultaneous action 

of the bending moment and the lateral force 

0,86 

Sec.5.15 Stability of in-plane bending 0,99 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,09 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,09 

 

Utilization factor 0,99 - Strength under action of bending moment My 

 

Manual calculation (SNiP II-23-81*): 

1. Necessary beam section modulus: 

max 3469,28 100
15083,826

23
nes

y c

M
W

R 


   cm3. 

2. Maximum tangential stresses in support sections of the beam: 

max

max

925 9108,75
5,4388

1290962,5 1,2

y

y w

Q S

I t



  


kN/cm2. 

3. Reduced stresses in the considered beam section: 

3469,28 100 165
22,1707

2 1290962,5 2

y w
y

y

M h

I


 
  


 kN/cm2 

  925 24 2,5 0,5 165 0,5 2,5
3,00

1290962,5 1,2

z yf

yz

y w

Q S

I t


     
  


 kN/cm2 

2 2 2 23 22,1707 3 3,00 22,7715red y yz         kN/cm2 

4. Slenderness of the member in the moment plane: 

18 100
28,2508

63,715
y

y

l

i





   . 

5. Slenderness of the member out of the moment plane: 

1,125 100
26,3775

4,265
y

y

l

i





   . 
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Comparison of solutions: 

Factor Manual calculation SCAD Deviation, % 

Strength under action of 

bending moment Му 
15083,826/15187,794  = 0,993 0,993 0,0 

Strength under action of lateral 

force Qz 

5,4388/13,3 = 0,4089 0,408 0,0 

Strength for reduced stresses 22,7715/1,15/23 = 0,861 0,86 0,0 

Strength under combined 

action of longitudinal force and 

bending moments, no plasticity 

– 0,993 0,0 

Stability of in-plane bending – 0,993 0,0 

Limit slenderness in XoY plane 26,3775/300 = 0,088 0,088 0,0 

Limit slenderness in XoZ plane 28,2508/300 = 0,094 0,094 0,0 
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Strength and Stiffness Analysis of a Rolled I-beam 

 

1 – stringer 

Objective: Check of the Resistance of Sections mode in the “Steel” postprocessor of SCAD. 

 

Task: Check the design section of a rolled I-beam for the stringers with a span of 6 m in a normal stub 

girder system. The top chord of the stringers is continuously restrained by the floor plate. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

4.2 SectionResistance_Example_4.2.spr;  

report – 4.2 SectionResistance _Example_4.2.doc 

 

Initial data: 

а = 1,125 m      Spacing of stringers; 

Ry = 23 kN/cm2,     Steel grade C235; 

M = 125,55 kNm = 12,798 Tm Design bending moment; 

γc = 1 Service factor; 

l = 6 m Beam span; 

сх = 1,1  Coefficient allowing for plastic deformations; 

Wx = 597 cm3 Selected I-beam No.33 GOST 8239-89. 

13,524yi  cm, 2,791zi  cm 
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SCAD Parameters. STEEL Postprocessor: 
 

[Element No. 1] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 12,8 T*m 

Snap 6 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 2,13 T 

Snap 0 m 

 
 

 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 6 m 

Length of the flexible part 6 m 

Loading L1  

3
3
0

1
6
5

1
6
5

1
1
,2

140

70 70

7

Z1

Y1

 
 

Analysis complies with SNiP II-23-81* 

Structural member section 

Steel: C235 

Member length 6 m 

Limit slenderness for members in compression: 250 

Limit slenderness for members in tension: 250 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 
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Length between out-of-plane restraints 1,125 m 

Section 

3
3
0

1
6
5

1
6
5

1
1
,2

140

70 70

7

Z1

Y1

 
Profile: I-beam with sloped inner flange surfaces GOST 8239-89  33 

 

Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 0,92 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,08 

Sec.5.24,5.25 Strength under combined action of longitudinal force and 

bending moments, no plasticity 

0,92 

Sec.5.15 Stability of in-plane bending 0,92 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,86 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,18 

 

Utilization factor 0,92 - Strength under action of bending moment My 

 
Manual calculation (SNiP II-23-81*): 

1. Necessary beam section modulus: 

max 125,55 100
545,8696

23
nes

y c

M
W

R 


   cm3. 

2. Slenderness of the member in the moment plane: 

6 100
44,3656

13,524
y

y

l

i





   . 

3. Slenderness of the member out of the moment plane: 

, 6 100
214,9767

2,791

ef z

z

z

l

i



   . 

Comparison of solutions: 

Factor Manual calculation SCAD Deviation, % 

Strength under action of bending moment Му 545,8696 /597 = 0,914 0,915 – 

Strength under combined action of longitudinal 

force and bending moments, no plasticity 

– 0,915 – 

Stability of in-plane bending – 0,915 – 

Limit slenderness in XoY plane 214,9767/250 = 0,86 0,86 – 

Limit slenderness in XoZ plane 44,3656/250 = 0,177 0,177 – 

 
Comments: 

The check of the beam strength taking into account the development of the limited plastic deformations 

was not performed in the manual calculation, because according to the codes this calculation is possible 

only when the beam web has stiffeners. In the initial data of the example the stringer was specified 

without any intermediate stiffeners. 
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Strength and Stiffness Analysis of a Rolled I-beam 

 

 
1 – stringer; 2 – secondary beam 

 

Objective: Check of the Resistance of Sections mode in the “Steel” postprocessor of SCAD. 

 

Task: Check the design section of a rolled I-beam for the stringers with a span of 4,5 m in a normal stub 

girder system. The top chord of the stringers is continuously restrained by the floor plate. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

4.3 SectionResistance_Example_4.3.spr; 

report – 4.3 SectionResistance _Example_4.3.doc 

 

Initial data: 

Ry = 23 kN/cm2      Steel grade C235; 

M = 62,78 kNm= 6,4 Tm Design bending moment; 

γc = 1 Service factor; 

l = 4,5 m Beam span; 

сх = 1,1 Coefficient allowing for plastic deformations; 

Wx = 288,33 cm3 Selected I-beam No.24 GOST 8239-89. 

9,971yi  cm, 2,385zi  cm 
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 SCAD Parameters. STEEL Postprocessor: 
 
[Element No. 1] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 6,4 T*m 

Snap 4,5 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 1,42 T 

Snap 0 m 

 
 

 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 4,5 m 

Length of the flexible part 4,5 m 

Loading L1  

2
4
0

1
2
0

1
2
0

9
,5

115

57,5 57,5

5,6

Z1

Y1

 

 
Analysis complies with SNiP II-23-81* 

Structural member section 

Steel: C235 

Member length 4,5 m 

Limit slenderness for members in compression: 250 

Limit slenderness for members in tension: 250 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 
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Length between out-of-plane restraints 1,125 m 

Section 

2
4
0

1
2
0

1
2
0

9
,5

115

57,5 57,5

5,6

Z1

Y1

 
Profile: I-beam with sloped inner flange surfaces GOST 8239-89  24 

 

Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 0,95 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,09 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,95 

Sec.5.15 Stability of in-plane bending 0,95 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,75 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,18 

 

Utilization factor 0,95 - Strength under action of bending moment My 

 

Manual calculation (SNiP II-23-81*): 

1.  Necessary beam section modulus: 

max 62,78 100
272,9565

23
nes

y c

M
W

R 


   cm

3
. 

2. Slenderness of the member in the moment plane: 

4,5 100
45,131

9,971
y

y

l

i





   . 

3. Slenderness of the member out of the moment plane: 

4,5 100
188,679

2,385
z

z

l

i





   . 

Comparison of solutions: 

Factor Manual calculation SCAD Deviation, % 

Strength under action of bending moment Му 272,9565 /288,33 = 0,9467 0,947 0.0 

Strength under combined action of longitudinal 

force and bending moments, no plasticity 

– 0,947 0.0 

Stability of in-plane bending – 0,947 0.0 

Limit slenderness in XoY plane 188,679/250 = 0,755 0,755 0.0 

Limit slenderness in XoZ plane 45,131/250 = 0,1805 0,181 0.0 

Comments: 

1. The check of the beam strength taking into account the development of the limited plastic deformations 

was not performed in the manual calculation, because according to the codes this calculation is possible 

only when the beam web has stiffeners. In the initial data of the example the stringer was specified 

without any intermediate stiffeners. 

2. The check for the stability of in-plane bending was performed in the computer-aided calculation 

according to the codes at 1,0b  . 
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Strength and Stiffness Analysis of a Rolled I-beam 

 
1 – stringer; 

2 – secondary beam 

 

Objective: Check of the Resistance of Sections mode in the “Steel” postprocessor of SCAD. 

 

Task: Check the design section of a rolled I-beam for the secondary beams with a span of 6 m in a 

complex stub girder system. The top chord of the secondary beams is restrained by the stringers arranged 

with a spacing of 1 m. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

4.4 SectionResistance_Example_4.4.spr; 

report – 4.4 SectionResistance _Example_4.4.doc 

 

Initial data: 

Ry = 23 kN/cm2,     Steel grade C235; 

M = 508,5 kNm = 51,83486 Tm Design bending moment; 

γc = 1 Service factor; 

l = 6 m Beam span; 

сх = 1,1 Coefficient allowing for plastic deformations; 

Wx = 2034,982 cm3 Selected I-beam No.55 GOST 8239-89 

21,777yi  cm, 3,39zi  cm. 
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SCAD Results. STEEL Postprocessor: 
 
[Element No. 1] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 51,83 T*m 

Snap 6 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 8,64 T 

Snap 0 m 

 
 

 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 6 m 

Length of the flexible part 6 m 

Loading L1  

5
5
0

2
7
5

2
7
5

1
6
,5

180

90 90

11

Z1

Y1

 

Analysis complies with SNiP II-23-81* 

Structural member section 

Steel: C235 

Member length 6 m 

Limit slenderness for members in compression: 250 

Limit slenderness for members in tension: 250 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 

Length between out-of-plane restraints 1,125 m 
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Section 

5
5
0

2
7
5

2
7
5

1
6
,5

180

90 90

11

Z1

Y1

 
Profile: I-beam with sloped inner flange surfaces GOST 8239-89  55 

 

Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 1,09 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,12 

Sec.5.24,5.25 Strength under combined action of longitudinal force and bending 

moments, no plasticity 

1,09 

Sec.5.15 Stability of in-plane bending 1,09 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,71 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,11 

 

Utilization factor 1,09 - Strength under action of bending moment My 

 
Manual calculation (SNiP II-23-81*): 

1. Necessary beam section modulus: 

max 508,5 100
2210,8696

23
nes

y c

M
W

R 


   cm3. 

2. Slenderness of the member in the moment plane and out of the moment plane: 

6,0 100
27,552

21,777
y

y

l

i





   ; 

6,0 100
176,99

3,39
z

z

l

i





   . 

Comparison of solutions: 

Factor Manual calculation SCAD Deviation, % 

Strength under action of bending moment Му 2210,8696/2034,982 = 

1,086 

1,086 0,0 

Strength under combined action of longitudinal 

force and bending moments, no plasticity 

– 1,086 0,0 

Stability of in-plane bending – 1,086 0,0 

Limit slenderness in XoY plane 176,99/250 = 0,708 0,708 0,0 

Limit slenderness in XoZ plane 27,552/250 = 0,110 0,11 0,0 

Comments: 

1. The check of the beam strength taking into account the development of the limited plastic deformations 

was not performed in the manual calculation, because according to the codes this calculation is possible 

only when the beam web has stiffeners. In the initial data of the example the stringer was specified 

without any intermediate stiffeners. 

2. The check for the stability of in-plane bending was performed in the computer-aided calculation 

according to the codes at 1,0b   for the effective length 1efl  m. 
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Strength and Stiffness Analysis of a Welded I-beam 

 

 
a – floor plan; b – design model of the main beam; c – beam section; 

1 – load area 

 

Objective: Check of the Resistance of Sections mode in the “Steel” postprocessor of SCAD. 

 

Task: Check the design section of a welded I-beam for the main beams with a span of 18 m in a normal 

stub girder system. The top chord of the main beams is restrained by secondary beams arranged with a 

spacing of 1,0 m. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

4.5 SectionResistance_Example_4.5.spr; 

report – 4.5 SectionResistance _Example_4.5.doc 

 

Initial data: 

Ry = 23 kN/cm 2, Rs = 0,58*23=13,3 kN/cm2 Steel grade C255 with thickness t>20 mm; 

M = 6245 kNm = 636,595  Tm Design bending moment; 

γc = 1 Service factor; 

l = 18 m Beam span; 

yI  2308077,083cm4 Geometric properties for a welded 

yW  27153,848cm3  I-section with flanges 1650×12 mm and a web

 530×25 mm. 

yi  70,605cm, zi 11,577 cm 
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SCAD Results. STEEL Postprocessor: 

 
[Element No. 1] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 Т 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 636,6 T*m 

Snap 18 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 35,37 T 

Snap 0 m 

 
 

 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 18 m 

Length of the flexible part 18 m 

Loading L1  

265 265
530

530

12

1
7
0
0

8
5
0

8
5
0

2
5

2
5

Y1

Z1

 
 

Analysis complies with SNiP II-23-81* 

Structural member section 

Steel: C255 

Member length 18 m 

Limit slenderness for members in compression: 250 

Limit slenderness for members in tension: 250 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 
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Length between out-of-plane restraints 1,125 m 

Section 

2
5

1
6
5
0

2
5

8
2
5

530

265 265

12

Z1

Y1

 
 

 

Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 1 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,14 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

1 

Sec.5.15 Stability of in-plane bending 1 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,62 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,1 

 

Utilization factor 1 - Strength under action of bending moment My 

 

Manual calculation (SNiP II-23-81*): 

1. Necessary beam section modulus: 

max 6245 100
27152,174

23
nes

y c

M
W

R 


   cm3. 

2. Slenderness of the member in the moment plane and out of the moment plane: 

18,0 100
25,4939

70,605
y

y

l

i





   ; 

18,0 100
155,481

11,577
z

z

l

i





   . 

Comparison of solutions: 

Factor Manual calculation SCAD Deviation, % 

Strength under action of bending moment Му 27152,174/27153,848 = 1,0 1,0 0,0 

Strength under combined action of longitudinal 

force and bending moments, no plasticity 

– 1,0 0,0 

Stability of in-plane bending – 1,0 0,0 

Limit slenderness in XoZ plane 25,4939/250 = 0,102 0,102 0,0 

Limit slenderness in XoY plane 155,481/250 = 0,622 0,622 0,0 

 
Comments: 

1. The check of the beam strength taking into account the development of the limited plastic deformations 

was not performed, because according to the codes this calculation is possible only when the beam web 

has stiffeners. In the initial data of the example the stringer was specified without any intermediate 

stiffeners. 

2. The check for the stability of in-plane bending was performed in the computer-aided calculation 

according to the codes at 1,0b   for the effective length 1efl  m. 
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Analysis of an Axially Compressed Welded I-beam Column 

 

 
 

Objective: Check of the Resistance of Sections mode in the “Steel” postprocessor of SCAD 

 

Task: Check the design section of a welded I-beam for the axially compressed column with a height of 

6,5 m. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

4.6 SectionResistance_Example_4.6.spr; 

report – 4.6 SectionResistance _Example_4.6.doc 

 

Initial data: 

Ry = 24 kN/cm2 Steel grade C245; 

l = 6,5 m Column height; 

N = 5000 kN = 509,684 T Design longitudinal compressive force; 

μ = 0,7 The lower restraint is rigid and the upper one is 

pinned 

 for both principal planes of inertia; 

γc = 1 Service factor; 

230,4A  cm2,  Geometric properties for a welded 

118243,584yI  cm4, 33184,512zI  cm4 I-section with a web 480×12 mm and flanges 

480×18 mm; 

4583,085yW  cm3, 1382,688zW  cm3  

22,654yi  cm, 12,001zi  cm 
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SCAD Results. STEEL Postprocessor: 

 
[Element No. 1] Forces 

N 

 

 

 
Max. -509,68 T 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 6,5 м 

Length of the flexible part 6,5 м 

Loading L1  

240 240
480

480

12

5
1
6

2
5
8

2
5
8

1
8

1
8

Y1

Z1

 

Analysis complies with SNiP II-23-81* 

Structural member section 

Steel: C245 

Member length 6,5 m 

Limit slenderness for members in compression: 180 - 60  

Limit slenderness for members in tension: 250 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 0,7 

Effective length factor  XoY -- 0,7 

Length between out-of-plane restraints 6,5 m 
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Section 

1
8

4
8
0

1
8

2
4
0

480

240 240

12

Z1

Y1

 
 

 

Results Check Utilization factor 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,9 

Sec.5.3 Stability under compression in XoY (XoU) plane 1 

Sec.5.3 Stability under compression in XoZ (XoV) plane 0,94 

Sec.5.1 Strength under axial compression/tension 0,9 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,316 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,162 

 
Utilization factor 1 - Stability under compression in XoY (XoU) plane 

 
Manual calculation (SNiP II-23-81*): 

1. Load-bearing capacity of the element under axial compression/tension: 

230,4 24 1 5529,6y cN AR      kN. 

2. Slenderness of the element for both principal planes of inertia: 

, 0,7 6,5 100
20,08475

22,654

ef y

y

y y

l l

i i




 
    ; 

, 0,7 6,5 100
37,9135

12,001

ef z

z

z z

l l

i i




 
    . 

3. Conditional slenderness of the element for both principal planes of inertia: 

,

5

0,7 6,5 100 240
0,68555

22,654 2,06 10

ef y y y

y

y y

l R Rl

i E i E




 
   


; 

,

5

0,7 6,5 100 240
1,2941

12,001 2,06 10

ef z y y

z

z z

l R Rl

i E i E




 
   


. 

4. Buckling coefficients under axial compression: 

5

240
1 0,073 5,53 1 0,073 5,53 0,68555 0,68555 0,9622

2,06 10

y

y y y

R

E
  

   
           

  
; 

5

240
1 0,073 5,53 1 0,073 5,53 1,2941 1,2941 0,902

2,06 10

y

z z z

R

E
  

   
           

  
; 

5. Load-bearing capacity of the element at its buckling: 

, 0,9622 230,4 24 1 5320,58b y y y cN AR       kN; 

, 0,902 230,4 24 1 4987,7b z z y cN AR       kN. 
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6. Limit slenderness: 

5000
180 60 180 60 123,615

0,9622 230,4 24 1
uy

y y c

N

AR


 
      

  
; 

5000
180 60 180 60 119,852

0,902 230,4 24 1
uz

z y c

N

AR


 
      

  
. 

Comparison of solutions: 

Factor Source Manual calculation SCAD Deviation, % 

Strength under combined 

action of longitudinal force 

and bending moments, no 

plasticity 

– 5000/5529,6 =  

0,904 

0,904 0,0 

Stability under compression in 

XoY (XoU) plane 

23,69/24 =  

0,987 

5000/4987,7 = 

1,002 

1,002 0,0 

Stability under compression in 

XoZ (XoV) plane 

– 5000/5320,58 = 

0,94 

0,94 0,0 

Strength under axial 

compression/tension 

0,904 5000/5529,6 =  

0,904 

0,904 0,0 

Limit slenderness in XoY 

plane 

– 37,9135 /119,852  = 

0,316 

0,316 0,0 

Limit slenderness in XoZ 

plane 

– 20,085 /123,615 = 

0,162 

0,162 0,0 
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Strength and Stiffness Analysis of Stringers for a Normal Stub Girder System 

 

1 – stringer 

 

Objective: Check the mode for the beam analysis in the “Steel” postprocessor of SCAD. 

 

Task: Select a rolled I-beam for the stringers with a span of 6 m in a normal stub girder system. The top 

chord of the stringers is continuously restrained by the floor plate. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

3.1 Beam_Example_3.1.spr;  

report – 3.1 Beam_Example_3.1.doc 

 

Initial data: 

а = 1,125 m      Spacing of stringers 

qch = (0,77 + 20) kN/m2 ×1,125 m = 23,37 kN/m Total characteristic load 

q1 = 1,05×0,77 kN/m2 ×1,125 m = 0,91 kN/m  Design permanent load 

q2 = 1,2×20 kN/m2 ×1,125 m = 27 kN/m  Design temporary load 

Ry = 23 kN/cm2      Steel grade C235 

l = 6 m Beam span 

 f  1/250×6,0 m = 24 mm    Limit deflection 

γc = 1 Service factor 

Wx = 596,364 cm3 Selected I-beam No.33 GOST 8239-89 

Ix = 9840 cm4, 339xS  cm3, 7wt  mm. 
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SCAD Results. STEEL Postprocessor: 

 
[Element No. 1] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 Т 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 12,8 T*m 

Snap 3 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 8,54 Т 

Snap 0 m 

 
Max. -8,54 T 

Snap 6 m 

Qy 

Max. 0 Т 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 6 m 

Length of the flexible part 6 m 

Loading L1 - "1"  

3
3
0

1
6
5

1
6
5

1
1
,2

140

70 70

7

Z1

Y1
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[Element No. 1] Deflections 

 X 

 

 

 
 

 

 Y 

 

 

 
 

 

 Z 

 

 

 
Max. -23,23 mm 

Snap 3 m 

X
Y
Z

1

2

 

Length of the bar 6 m 

Length of the flexible part 6 m 

Loading L1 - "1"  

3
3
0

1
6
5

1
6
5

1
1
,2

140

70 70

7

Z1

Y1

 

 
Analysis complies with SNiP II-23-81* 

Structural member beam 

 

Steel: C235 

Member length 6 m 

Limit slenderness for members in compression: 180 

Limit slenderness for members in tension: 300 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 

Length between out-of-plane restraints 0,01 m 

 

Section 

3
3
0

1
6
5

1
6
5

1
1
,2

140

70 70

7

Z1

Y1

 
Profile: I-beam with sloped inner flange surfaces GOST 8239-89  33 
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Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 0,92 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,31 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,92 

Sec.5.15 Stability of in-plane bending 0,92 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,72 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,15 

 

Utilization factor 0,92 - Strength under action of bending moment My 

 

Manual calculation: 

1. Design bending moment and shear force: 

  22

max

0.91 27 6.0
125.593

8 8

q l
M 

 
   kNm; 

 
max

0.91 27 6.0
83,73

2 2

q l
Q 

 
   kN. 

2. Necessary beam section modulus assuming that the deformations of steel are elastic: 

max 125.593 100
546.057

23y

M
W

R


   cm3. 

3. Maximum deflection occurring in the middle of the beam span: 
4 4

max 5 3 8

5 5 23,37 6
19,46

384 384 2,06 10 10 9840 10

н

x

q l
f

EI 


    

   
mm. 

4. Check of the maximum shear stresses: 

max
max

83,73 339
4,12577

9840 0,7

x

x w

Q S

I t



  


 kN/cm2 0,58 23 13,34s cR      kN/cm2. 

 

Comparison of solutions: 

Factor Strength under action 

of lateral force 

Strength under 

action of bending 

moment 

Stability of in-

plane bending 

under moment 

Maximum deflection 

Manual 

calculation 

4,126/13,34 = 0,309 546,06/596,36 = 

0,916 

– 19,46/24 = 0,81 

SCAD 0,309 0,916 0,916 23,23/1,1945/24 = 0,81 

Deviation, % 0,0 0,0 0,0 0,0 

 

Comments: 

1. The check of the general stability of the beam was not performed in the manual calculation, because 

the compressed beam chord is restrained against lateral displacements out of the bending plane by a 

welded floor plate. 

2. The check of the beam strength taking into account the development of the limited plastic deformations 

was not performed, because according to the codes this calculation is possible only when the beam web 

has stiffeners. In the initial data of the example the stringer was specified without any intermediate 

stiffeners. 
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Strength and Stiffness Analysis of Stringers for a Complex Stub Girder System  

 
1 – stringer 

2 – secondary beam 

 

Objective: Check the mode for the beam analysis in the “Steel” postprocessor of SCAD. 
 

Task: Select a rolled I-beam for the stringers with a span of 4,5 m in a complex stub girder system. The 

top chord of the stringers is continuously restrained by the floor plate. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

3.2 Beam_Example_3.2.spr;  

report – 3.2 Beam_Example_3.2.doc 

 
Initial data: 

а = 1,0 m      Spacing of stringers; 

qch = (0,77 + 20) kN/m2 ×1 m = 20,77 kN/m  Total characteristic load; 

q1 = 1,05×0,77 kN/m2 ×1 m = 0,8085 kN/m  Design permanent load; 

q2 = 1,2×20 kN/m2 ×1 m = 24 kN/m   Design temporary load; 

Ry = 23 kN/cm 2,     Steel grade C235; 

l = 4,5 m 

 Beam span; 

 f  1/250×4,5 m = 18 mm    Limit deflection; 

γc = 1 Service factor; 

Wx = 288,33 cm3 Selected I-beam No.24 GOST 8239-89. 

Ix = 3460 cm4 
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SCAD Results. STEEL Postprocessor: 

 
[Element No. 1] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 Т 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 6,4 T*m 

Snap 2,25 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 5,69 T 

Snap 0 m 

 
Max. -5,69 T 

Snap 4,5 m 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 4,5 m 

Length of the flexible part 4,5 m 

Loading L1 - "1"  

2
4
0

1
2
0

1
2
0

9
,5

115

57,5 57,5

5,6

Z1

Y1
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[Element No. 1] Deflections 

 X 

 

 

 
 

 

 Y 

 

 

 
 

 

 Z 

 

 

 
Max. -18,58 mm 

Snap 2,25 m 

X
Y
Z

1

2

 

Length of the bar 4,5 m 

Length of the flexible part 4,5 m 

Loading L1 - "1"  

2
4
0

1
2
0

1
2
0

9
,5

115

57,5 57,5

5,6

Z1

Y1

 

 
Analysis complies with SNiP II-23-81* 

Structural member beam 

 

Steel: C235 

 

Importance factor 1 

Service factor 1 

Limit slenderness for members in compression: 180 

Limit slenderness for members in tension: 300 

Member length 4,5 m 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 

Length between out-of-plane restraints 0,01 m 

 

Section 

2
4
0

1
2
0

1
2
0

9
,5

115

57,5 57,5

5,6

Z1

Y1

 
Profile: I-beam with sloped inner flange surfaces GOST 8239-89  24 
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Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 0,95 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,35 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,95 

Sec.5.15 Stability of in-plane bending 0,95 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,63 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,15 

 
Utilization factor 0,95 - Strength under action of bending moment My 

 

Manual calculation: 

1. Design bending moment acting in the beam span: 

  22

max

0,8085 24 4,5
62,7965

8 8

q l
M 

 
   kNm. 

2. Necessary beam section modulus assuming that the deformations of steel are elastic: 

max 62,7965 100
273,028

23y

M
W

R


   cm3. 

3. Maximum deflection occurring in the middle of the beam span: 
4 4

max 5 3 8

5 5 20,77 4,5
15,56

384 384 2,06 10 10 3460 10

н

x

q l
f

EI 


    

   
mm. 

 

Comparison of solutions: 

Factor Strength under 

action of lateral 

force 

Strength under action of 

bending moment 

Stability of in-

plane bending 

under moment 

Maximum deflection 

Manual calculation not defined 273,028/288,33 = 0,947 not defined 15,56/18 = 0,864 

SCAD 0,352 0,947 0,947 18,58/1,1944/18 = 0,864 

Deviation, % 0,0 0,0 0,0 0,0 

 
Comments: 

1. The check of tangential stresses was not performed in the manual calculation due to the absence of 

weakenings and a relatively large thickness of the beam webs. 

2. The check of the general stability of the beam was not performed in the manual calculation, because 

the compressed beam chord is restrained against lateral displacements out of the bending plane by a 

welded floor plate. 

3. The check of the beam strength taking into account the development of the limited plastic deformations 

was not performed, because according to the codes this calculation is possible only when the beam web 

has stiffeners. In the initial data of the example the stringer was specified without any intermediate 

stiffeners. 
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Strength and Stiffness Analysis of Secondary Beams for a Complex Stub Girder 

System 

                    
1 – stringer 

2 – secondary beam 

 

Objective: Check the mode for the beam analysis in the “Steel” postprocessor of SCAD. 

 

Task: Select a rolled I-beam for the secondary beams with a span of 6 m in a complex stub girder system. 

The top chord of the secondary beams is restrained by the stringers arranged with a spacing of 1 m. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 183. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

3.3 Beam_Example_3.3.spr;  

report – 3.3 Beam_Example_3.3.doc 

 

 

Initial data: 

а = 4,5 m       Spacing of secondary beams; 

qch = (0,77 + 27,3/102 + 20) kN/m2 × 4,5 m = 94,67 kN/m Total characteristic load; 

q1 = 1,05×(0,77 + 27,3/102) kN/m2 × 4,5 m = 4,9 kN/m  Design permanent load; 

q2 = 1,2×20 kN/m2 × 4,5 м = 108 kN/m    Design temporary load; 

Ry = 23 kN/cm 2,      Steel grade C235; 

l = 6,0 m  Beam span; 

 f  1/250×6,0 m = 24 mm     Limit deflection; 

γc = 1  Service factor; 

Wy = 2034,98 cm3              Selected I-beam No.55 GOST 8239-89. 

Iy = 55962 cm4 
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SCAD Results. STEEL Postprocessor: 

 
[Element No. 1] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 51,79 T*m 

Snap 3 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 34,53 T 

Snap 0 m 

 
Max. -34,53 T 

Snap 6 m 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 6 m 

Length of the flexible part 6 m 

Loading L1 - "1"  

5
5
0

2
7
5

2
7
5

1
6
,5

180

90 90

11

Z1

Y1
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[Element No. 1] Deflections 

 X 

 

 

 
 

 

 Y 

 

 

 
 

 

 Z 

 

 

 
Max. -16,53 mm 

Snap 3 m 

X
Y
Z

1

2

 

Length of the bar 6 m 

Length of the flexible part 6 m 

Loading L1 - "1"  

5
5
0

2
7
5

2
7
5

1
6
,5

180

90 90

11

Z1

Y1

 

 
Analysis complies with SNiP II-23-81* 

Structural member beam 

 

Steel: C235 

Member length 6 m 

Limit slenderness for members in compression: 180 

Limit slenderness for members in tension: 300 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 

Length between out-of-plane restraints 0,01 m 

 

Section 

5
5
0

2
7
5

2
7
5

1
6
,5

180

90 90

11

Z1

Y1

 
Profile: I-beam with sloped inner flange surfaces GOST 8239-89  55 
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Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 1,09 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,49 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

1,09 

Sec.5.15 Stability of in-plane bending 1,09 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,59 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,09 

 

Utilization factor 1,09 - Strength under action of bending moment My 

 

Manual calculation: 

1. Design bending moment acting in the beam span: 

  22

max

4,9 108 6,0
508,05

8 8

q l
M 

 
   kNm. 

2. Necessary beam section modulus assuming that the deformations of steel are elastic: 

max 508,05 100
2208,913

23
nes

y

M
W

R


   cm3. 

3. Maximum deflection occurring in the middle of the beam span: 
4 4

max 5 3 8

5 5 94,67 6,0
13,858

384 384 2,06 10 10 55962 10

н

y

q l
f

EI 


    

   
mm. 

4. Conditional limit slenderness of the compressed beam chord: 

180
0,35 0,0032 0,76 0,02 0,35 0,0032

16,5

180 180
0,76 0,02 0,5677.

16,5 533,5

f f f

ub

f f f

b b b

t t h


 
        

 

 
  

 

 

5. Conditional actual slenderness of the compressed beam chord: 

5

1000 230
0,1856 0,5677

180 2,06 10

ef y

b ub

f

l R

b E
     


 – the stability check is not 

required. 

 

Comparison of solutions: 

Factor Strength 

under action 

of lateral 

force 

Strength under 

action of bending 

moment 

Stability of in-plane 

bending under moment 

Maximum deflection 

Manual 

calculation 

not defined 2208,913/2034,98 

=1,085 

check is not required  13,858/24 = 0,577 

SCAD 0,488 1,085 1,085 16,53/1,1925/24 = 0,577 

Deviation, % 0,0 0,0 0,0 0,0 

 

Comments: 

1. The check of tangential stresses was not performed in the manual calculation due to the absence of 

weakenings and a relatively large thickness of the beam webs. 

2. The check for the stability of in-plane bending of the beam was performed in the computer-aided 

calculation according to the codes at 1,0b  . 

3. The check of the beam strength taking into account the development of the limited plastic deformations 

was not performed, because according to the codes this calculation is possible only when the beam web 

has stiffeners. In the initial data of the example a rolled beam without intermediate stiffeners was selected 

for the secondary beam. 
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Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems 

 
a – floor plan; b – design model of the main beam; c – beam section; 

 1 – load area 

 

Objective: Check the mode for the beam analysis in the “Steel” postprocessor of SCAD 

 

Task: Select a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The 

top chord of the main beams is restrained by the stringers arranged with a spacing of 1 m. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

3.4 Beam_Example_3.4.spr;  

report – 3.4 Beam_Example_3.4.doc 

 

Initial data: 

а = 6 m Spacing of main beams 

g1 = 1,16 kN/m2  Weight of the floor plate and stringers 

p = 20 kN/m2 Temporary (live) load 

qch = 127,099 kN/m Total characteristic load on the beam 

q1 = 1,05*1,16 kN/m2 * 6 m*1,02 = 7,454 kN/m Design permanent load 

 (coefficient 1,02 allows for the self-weight of the 

main beam)  

q2 = 1,2*20 kN/m2 * 6 m = 144,0 kN/m Design live load 

l = 18 m Main beam span 

Ry = 23 kN/cm2 Steel grade C255 with thickness t>20 mm 

Rs = 0,58*23=13,34 kN/cm2  

 f   l/400 = 45 mm     Limit deflection 

530 20p pb t   mm Section of the bearing stiffener 

6pk  mm  Fillet weld leg in a welded connection between a 

bearing stiffener and a beam 

γc = 1 Service factor 

27153,85yW  cm3 Geometric properties for a welded I-section with 

flanges 530×25 mm 

2308077,083yI  cm4  and a web 1650×12 mm 

15180,625yS  cm3 
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SCAD Results. STEEL Postprocessor: 

 
[Element No 3] Forces 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

 

 

 
Max. 625,27 T*m 

Snap 4,5 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 69,47 T 

Snap 0 m 

 
Max. 0 T 

Snap 4,5 m 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
Y
Z

3

4

 

Length of the bar 4,5 m 

Length of the flexible part 4,5 m 

Loading L1 - "1"  

265 265
530

530

12

1
7
0
0

8
5
0

8
5
0

2
5

2
5

Y1

Z1
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[Element No. 3] Deflections 

 X 

 

 

 
 

 

 Y 

 

 

 
 

 

 Z 

 

 

 
Max. -43,54 mm 

Snap 4,5 m 

X
Y
Z

3

4

 

Length of the bar 4,5 m 

Length of the flexible part 4,5 m 

Loading L1 - "1"  

265 265
530

530

12

1
7
0
0

8
5
0

8
5
0

2
5

2
5

Y1

Z1

 

 
Analysis complies with SNiP II-23-81* 

Structural member main beam 

 

Steel: C255 

Member length 18 m 

Limit slenderness for members in compression: 180 

Limit slenderness for members in tension: 300 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1 

Effective length factor  XoY -- 1 

Length between out-of-plane restraints 1 m 

 

Section 

2
5

1
6
5
0

2
5

8
2
5

530

265 265

12

Z1

Y1
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Results Check Utilization factor 

Sec.5.12 Strength under action of bending moment My 0,98 

Sec.5.12,5.18 Strength under action of lateral force Qz 0,56 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,98 

Sec.5.15 Stability of in-plane bending 0,98 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,52 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,08 

 

Utilization factor 0,98 - Strength under action of bending moment My 

 

Manual calculation (SNiP II-23-81*) 

1. Maximum bending moment and shear force acting in the design sections of the beam: 

  22

max

7,454 144 18,0
6133,887

8 8

q l
M 

 
   kNm. 

 
max

7,454 144 18,0
1363,086

2 2

q l
Q 

 
    kN. 

2. Necessary beam section modulus: 

max 6133,887 100
26669,074

23
nes

y c

M
W

R 


   cm3. 

3. Maximum tangential stresses in the support section of the beam: 

max

max

1363,086 15180,625
7,471

2308077,083 1,2

y

y w

Q S

I t



  


kN/cm2. 

4. Maximum deflection occurring in the middle of the beam span: 
4 4

max 5 3 8

5 5 127,099 18,0
36,539

384 384 2,06 10 10 2308077,083 10

н

y

q l
f

EI 


    

   
mm. 

5. Conditional limit slenderness of the compressed beam chord: 

530
0,35 0,0032 0,76 0,02 0,35 0,0032

25

530 530
0,76 0,02 0,524

25 1675

f f f

ub

f f f

b b b

t t h


 
        

 

 
  

 

. 

6. Conditional actual slenderness of the compressed beam chord: 

5

1000 230
0,063 0,524

530 2,06 10

ef y

b ub

f

l R

b E
     


 – the stability check is not required. 

 
Comparison of solutions: 

Factor Manual calculation SCAD Deviation, % 

Strength under action 

of lateral force 

7,471/13,34 = 0,56 0,56 0,0 

Strength under action 

of bending moment 
26669,074/ 27153,85 =0,982 0,982 0,0 

Stability of in-plane 

bending under 

moment 

– 0,982 0,0 

Maximum deflection 36,539/45 = 0,812 43,54/1,1916/45= 

0,812 

0,0 
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Comments: 

The check for the stability of in-plane bending of the beam was performed in the computer-aided 

calculation according to the codes at 1,0b  . 
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Analysis of an Axially Compressed Welded I-beam Column 

 

                                  
 
Objective: Check the mode for calculating columns of solid cross-section in the “Steel” postprocessor of 

SCAD. 

 

Task: Check the design section of a welded I-beam for the axially compressed column with a height of 

6,5 m. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010. 

 

Initial data file:  

5.1 Column_Example_5.1.spr;  

report – 5.1 Column_Example_5.1.doc 

 

Initial data: 

l = 6,5 m Column height 

μ = 0,7 The lower restraint is rigid and the upper one is 

pinned 

N = 5000 kN  Design compressive force 

γc = 1 Service factor 

Ry = 24 kN/cm2 Steel grade C245 

230,4A  cm2 Geometric properties of 

118243,584xI  cm4, 33184,512yI  cm4 the selected section 

22,654xi  cm, 12,001yi  cm 
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SCAD Results. STEEL Postprocessor: 

 

[Element No 1] Forces 

N 

 

 

 
Max. -509,68 T 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
YZ

1

2

 

Length of the bar 6,5 m 

Length of the flexible part 6,5 m 

Loading L1  

240 240
480

480

12

5
1
6

2
5
8

2
5
8

1
8

1
8

Y1

Z1

 
 

 
Analysis complies with SNiP II-23-81* 

Structural member column 

Steel: C245 

Member length 6,5 m 

Limit slenderness for members in compression: 180 - 60  

Limit slenderness for members in tension: 300 

Service factor 1 

Importance factor 1 
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Effective length factor  XoZ -- 0,7 

Effective length factor  XoY -- 0,7 

Length between out-of-plane restraints 0 m 

 

Section 

1
8

4
8
0

1
8

2
4
0

480

240 240

12

Z1

Y1

 
 

 

Results Check Utilization factor 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,9 

Sec.5.3 Stability under compression in XoY (XoU) plane 1 

Sec.5.3 Stability under compression in XoZ (XoV) plane 0,94 

Sec.5.1 Strength under axial compression/tension 0,9 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,316 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,162 

 
Utilization factor 1 - Stability under compression in XoY (XoU) plane 

 
Manual calculation (SNiP II-23-81*): 

1. Strength check of the selected column section: 

5000
0,904

230,4 24 1y c

N

AR 
 

 
. 

2. Slenderness of the column: 

, 0,7 6,5 100
20,08475

22,654

ef x

x

x

l

i

 
   ; 

 

, 0,7 6,5 100
37,9135

12,001

ef y

y

y

l

i

 
   . 

3. Conditional slenderness of the column: 

,

5

0,7 6,5 100 240
0,68555

22,654 2,06 10

ef x y

x

x

l R

i E


 
  


; 

,

5

0,7 6,5 100 240
1,2941

12,001 2,06 10

ef y y

y

y

l R

i E


 
  


. 

4. Buckling coefficients: 

5

5,53 240
1 0,073 5,53 1 0,073 0,68555 0,68555 0,9622

2,06 10

y

y y y

R

E
  

   
          

  
; 
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5

5,53 240
1 0,073 5,53 1 0,073 1,2941 1,2941 0,902

2,06 10

y

y y y

R

E
  

   
          

  
. 

5. Strength of the column from the condition of providing the general stability under axial compression: 

, 0,9622 230,4 24 1 5320,58b x x y cN AR       kN; 

, 0,902 230,4 24 1 4987,7b y y y cN AR       kN. 

6. Limit slenderness of the column: 

 
5000

180 60 180 60 180 60 123,615
5320,58

xx
x y c

N

AR
 

 
         ; 

  180 60 180 60 180 60 1 120yy
y y c

N

AR
 

 
         . 

 

Comparison of solutions: 

Factor Source Manual calculation SCAD Deviation, % 

Strength under combined action 

of longitudinal force and 

bending moments, no plasticity 

– 0,904 0,904 0,0 

Stability under compression in 

XoY (XoU) plane 

23,69/24=0,987 5000/4987,7 =1,002 1,002 0,0 

Stability under compression in 

XoZ (XoV) plane 

– 5000/5320,58 =0,940 0,94 0,0 

Strength under axial 

compression/tension 

5000/230,4/24= 

0,904 

0,904 0,904 0,0 

Limit slenderness in XoY plane – 37,9135/120 =0,316 0,316 0,0 

Limit slenderness in XoZ plane – 20,08475/123,615  = 

0,162 

0,162 0,0 
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Analysis of an Axially Compressed Electric Welded Circular Hollow Section 

Column 

 

                                 

6
2
0
7

6

1
0
9
,5

1
0
9
,5

219

6 6

109,5 109,5

Z1

Y1

 
 
Objective: Check the mode for calculating columns of solid cross-section in the “Steel” postprocessor of 

SCAD 

 

Task: Check the design section of an axially compressed electric welded circular hollow section column 

with a height of 7,7 m. 

 

Source: Kuznetsov A.F., Kozmin N.B., Amelkovich S.V. Examples of the analysis of steel structures of 

civil and industrial buildings. Textbook for students of construction specialties. - Chelyabinsk, 2009. – 

p. 11, 12.  

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010, DBN B.2.6-

198:2014. 

 

Initial data file:  

5.3 Column_Example_5.3.spr;  

report – 5.3 Column_Example_5.3.doc 

 

Initial data: 

l = 7,7 m Column height 

μ = 1,0 The lower and upper restraints are 

 pinned 

N = 472,5 kN  Design compressive force 

γc = 1 Service factor 

Ry = 23 kN/cm2 Steel grade C235 

51,12A cm2 Geometric properties of 

3868,506y zI I  cm4 the selected section 

8,699y zi i  cm 
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SCAD Results. STEEL Postprocessor: 
[Element No. 1] Forces 
 

N 

 

 

 
Max. -48,17 T 

Snap 0 m 

My 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mz 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Mk 

Max. 0 T*m 

Snap 0 m 

 
Max. 0 T*m 

Snap 0 m 

Qz 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

Qy 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

X
YZ

1

2

 

Length of the bar 7,7 m 

Length of the flexible part 7,7 m 

Loading L1  

109,5 109,5

219

6

2
1
9

1
0
9
,5

1
0
9
,5

6

Y1

Z1

 
 

Analysis complies with SNiP II-23-81* 

Structural member column1 

Steel: C235 

Member length 7,7 m 

Limit slenderness for members in compression: 180 - 60  

Limit slenderness for members in tension: 300 

Service factor 1 

Importance factor 1 

Effective length factor  XoZ -- 1,0 

Effective length factor  XoY -- 1,0 
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Length between out-of-plane restraints 7,7 m 

Section: 

6
2
0
7

6

1
0
9
,5

1
0
9
,5

219

6 6

109,5 109,5

Z1

Y1

 
 

 

Results Check Utilization factor 

Sec. 5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,4 

Sec. 5.3 Stability under compression in XoY (XoU) plane 0,63 

Sec. 5.3 Stability under compression in XoZ (XoV) plane 0,63 

Sec. 5.34 Stability under compression and bending in two planes 0,63 

Sec. 5.1 Strength under axial compression/tension 0,4 

Sec. 6.15,6.16 Limit slenderness in XoY plane 0,62 

Sec. 6.15,6.16 Limit slenderness in XoZ plane 0,62 

 

Utilization factor 0,63 - Stability under compression in XoY (XoU) plane 

 

Manual calculation (SNiP II-23-81*): 
1. Strength check of the selected column section: 

472,5
0,402

51,12 23 1y c

N

AR 
 

 
. 

2. Slenderness of the column: 

, 1,0 7,7 100
88,516

8,699

ef y

y

y

l

i


 
   ; 

, 1,0 7,7 100
88,516

8,699

ef z

z

z

l

i


 
   . 

3. Conditional slenderness of the column: 

,

5

1,0 7,7 100 230
2,9577

8,699 2,06 10

ef y y

y

y

l R

i E


 
  


; 

,

5

1,0 7,7 100 230
2,9577

8,699 2,06 10

ef z y

z

z

l R

i E


 
  


. 

4. Buckling coefficients at 2,5 4,5  : 

2

2

5 5 5

1,47 13,0 0,371 27,3 0,0275 5,53

13,0 230 27,3 230 5,53 230
1,47 0,371 2,9577 0,0275 2,9577 0,6349.

2,06 10 2,06 10 2,06 10

y y y

y z y y

R R R

E E E
   

   
          

   

     
           

     

 

5. Strength of the column from the condition of providing the general stability under axial compression: 

, 0,6349 23 51,12 1 746,476b y y y cN AR       kN; 
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, 0,6349 23 51,12 1 746,476b z z y cN AR       kN. 

6. Limit slenderness of the column: 

 
472,5

180 60 180 60 180 60 142,022
746,476

yy
y y c

N

AR
 

 
         ; 

 
472,5

180 60 180 60 180 60 142,022
746,476

zz
z y c

N

AR
 

 
         . 

 
Comparison of solutions: 

Factor 
Source 

Manual 

calculation 

SCAD Deviation, 

% 

Strength under combined action of longitudinal 

force and bending moments, no plasticity 

– 0,402 0,4 0,0 

Stability under compression in XoY (XoU) plane 0,966 472,5/746,476 = 

0,633 

0,63 0,0 

Stability under compression in XoZ (XoV) plane 0,966 472,5/746,476 = 

0,633 

0,63 0,0 

Strength under axial compression/tension 0,511 0,402 0,4 0,0 

Limit slenderness in XoY plane – 88,516/142,022 = 

0,62 

0,62 0,0 

Limit slenderness in XoZ plane – 88,516/142,022 = 

0,62 

0,62 0,0 
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Analysis of a Top Truss Chord from Unequal Angles 

Objective: Check the mode for calculating truss members in the “Steel” postprocessor of SCAD 

 

Task: Check the top truss chord section from two unequal angles L160x100x9 mm. The truss panel 

length is 2,58 m. The truss is restrained out of the bending plane through the panel. 

 

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 

13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 280. 

 

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010, DBN B.2.6-

198:2014. 

 

Initial data file:  

7.1 Truss_Element_Example_7.1.spr; 

report – 7.1 Truss_Element_Example_7.1.doc 

 

Initial data: 

N = 535 kN Design compressive force 

Ry = 24 kN/cm2 Steel grade C245 

γc = 0,95 Service factor 

g = 12 mm Thickness of the gusset plate 

ly = 2,58, lz = 5,16 Effective lengths of the bar 

iy = 2,851 cm, А = 45,74 cm2 Geometric properties of 

iz = 7,745 cm the top chord section from two angles 160х100х9 

 

SCAD Results. STEEL Postprocessor: 
[Element No 1] Forces 

N 

 

 

 
Max. -535 kN 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 0 kN*m 

Snap 0 m 

Mz 

Max. 0 kN*m 

Snap 0 m 

 
Max. 0 kN*m 

Snap 0 m 

Mk 

Max. 0 kN*m 

Snap 0 m 

Qz 

Max. 0 kN 

Snap 0 m 

Qy 

Max. 0 kN 

Snap 0 m 
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Max. 0 kN*m 

Snap 0 m 

 
Max. 0 kN 

Snap 0 m 

 
Max. 0 kN 

Snap 0 m 

X
Y
Z

1

2

 

Length of the bar 2,58 m 

Length of the flexible part 2,58 m 

Loading L1 - "ff"  

1
0
0

2
2
,3

5

9

160

12

Z1

Y1

 

 
Analysis complies with SNiP II-23-81* 

Structural member Truss chord 

 

Steel: C245 

Member length 2,58 m 

Limit slenderness for members in compression: 180 - 60  

Limit slenderness for members in tension: 300 

Service factor 0,95 

Importance factor 1 

Inelasticity is forbidden 

 

Effective length factor in the X1OZ1 plane 1 

Effective length factor in the X1OY1 plane 2 

Length between the restraints out of the bending plane 2,58 m 

 
Section: 

1
0
0

2
2
,3

59

160

12

Z1

Y1

 
Profile: Unequal angle GOST 8510-86* L160x100x9 
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Results Check Utilization factor 

Sec.5.24,5.25 Strength under combined action of longitudinal force 

and bending moments, no plasticity 

0,51 

Sec.5.3 Stability under compression in XoY (XoU) plane 0,66 

Sec.5.3 Stability under compression in XoZ (XoV) plane 0,84 

Sec.5.1 Strength under axial compression/tension 0,51 

Sec.6.15,6.16 Limit slenderness in XoY plane 0,48 

Sec.6.15,6.16 Limit slenderness in XoZ plane 0,7 

 

Utilization factor 0,84 - Stability under compression in XoZ (XoV) plane  

 

Manual calculation (SNiP II-23-81*): 
1. Strength check 

535
11,69655

45,74

N

A
   kN/cm2 24 0,95 22,8y cR      kN/cm2. 

2. Slenderness of the truss member: 

, 2,58 100
90,49456

2,851

ef y

y

y

l

i



   ; 

, 5,16 100
66,6236

7,745

ef z

z

z

l

i



   . 

3. Conditional slenderness of the truss member: 

,

5

2,58 100 240
3,0888

2,851 2,06 10

ef y y

y

y

l R

i E



  


; 

,

5

5,16 100 240
2,274

7,745 2,06 10

ef z y

z

z

l R

i E



  


. 

4. Buckling coefficients: 

2

2

5 5 5

1,47 13,0 0,371 27,3 0,0275 5,53

13,0 240 27,3 240 5,53 240
1,47 0,371 3,0888 0,0275 3,0888 0,60805

2,06 10 2,06 10 2,06 10

y y y

y y y

R R R

E E E
  

   
         

   

     
           

     

 

5

5,53 240
1 0,073 5,53 1 0,073 2,274 2,274 0,77176

2,06 10

y

z z z

R

E
  

   
          

  
. 

5. Strength of the truss member from the condition of providing the general stability under axial 

compression: 

, 0,60805 45,74 24 0,95 634,118b y y y cN AR        kN; 

, 0,77176 45,74 24 0,95 804,847b z z y cN AR       kN. 

6. Limit slenderness of the truss member: 

 
535

180 60 180 60 180 60 129,3785
634,118

yy
y y c

N

AR
 

 
         ; 

 
535

180 60 180 60 180 60 140,1166
804,847

zz
z y c

N

AR
 

 
         . 
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Comparison of solutions: 

Factor Source 
Manual 

calculation 
SCAD 

Deviation, 

% 

Strength of member 535/45,8/22,8=0,512 11,6966/22,8 = 

0,513 

0,51 0,0 

Stability of member in the truss 

plane 

21,4/22,8=0,938 535/634,118 = 

0,844 

0,84 0,0 

Stability of member out of the 

truss plane 

not defined 535/804,847 = 

0,665 

0,66 0,0 

Slenderness of the member in the 

truss plane 

not defined 90,4946/129,3785 = 

0,7 

0,7 0,0 

Slenderness of the member out of 

the truss plane 

not defined 66,6236/140,1166 = 

0,4755 

0,48 0,0 

 

Comments: 

In the source the buckling coefficient for the conditional slenderness of the bar of 3.09 was mistakenly 

taken as 0.546 instead of 0.6081, which caused the differences in the results of the stability analysis. 

 



   V e r i f i c a t i o n  E x a m p l e s

MAGNUM 1099 

Reinforced Concrete  

Structural  Members  



V e r i f i c a t i o n  E x a m p l e s    

MAGNUM 1100 

C a l c u l a t i o n s  a c c o r d i n g  t o  S N i P  2 . 0 3 . 0 1 - 8 4 *  



   V e r i f i c a t i o n  E x a m p l e s

MAGNUM 1101 

Strength Analysis of a Rectangular Beam 

 
 

Objective: Check the mode for calculating reinforced concrete structures in the “Reinforced 

Concrete” postprocessor of SCAD 

 

Task: Check the strength of the cantilever beam section for the specified reinforcement 

 

References: Guide on designing of concrete and reinforced concrete structures made of heavy-

weight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 26. 

 

Initial data file:  

SCAD 3 SNiP.spr 

report – SCAD 3 SNiP.doc 

 

Compliance with the codes: SNiP 2.03.01-84.   

 

Initial data:  

b = 200 mm 

h = 800 mm 

а = 50 mm 

 

As = 2945 mm
2
 (6Ø25) 

 

Concrete class  

Class of reinforcement 

l = 4,8 m 

q = 191 kN/m 

М = 550 kNm 

Beam section sizes 

 

Distance from the center of gravity of the reinforcement to the 

compressed edge of the section 

Cross-sectional area of reinforcement 

 

В25 

А-III 

Beam span 

Load on the beam 

Bending moment in the section under the load 
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Results of the SCAD analysis: 
N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 5 m 

 
Max. 550,55 kN*m 

Snap 0 m 

Mz 

 

 

 
 

 

Mk 

 

 

 
 

 

Qz 

 

 

 
Max. -11,21 T 

Snap 0 m 

Qy 

 

 

 
 

 

X
Y
Z

1

2

 

Length of the bar 5 m 

Length of the flexible part 5 m 

Loading L1 - "110 kN"  

150 150

300

8
0
0

4
0
0

4
0
0

Y1

Z1
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Structural group Beam 

 
Distance between the rebars in the first row S1  is less than the allowable value (see Sec. 5.12 of SNiP 2.03.01-84*)   

.  

Elements: 1 

 

Importance factor  n = 1 
 
Importance factor (serviceability limit state) = 1 

 

Member type – Flexural 

 

Stress state - Uniaxial bending 

 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

50 50 

 
 
 

Reinforcement Class Service factor  

Longitudinal A-III 1 

Transverse A-I 1 

 

 

Concrete 

Concrete type: Heavy-weight 

Concrete class: B25 

Hardening conditions: Natural  

Hardening factor 1 

Service factor for concrete 

b2 allowance for the sustained loads 0,9 

 resulting factor without b2 1 

 
 
 

Humidity of environmental air - 40-75% 

 

Crack resistance 

Category of crack resistance - 3 

Conditions of operation: Indoors 

Mode of concrete humidity - Natural humidity 

Allowable crack opening width: 

  Short-term opening  0,4 mm 

  Long-term opening  0,3 mm 
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Structural group Beam. Element No. 1 

Member length 5,0 m 

 

Specified reinforcement 

Segment Reinforcement Section 

1 S1 - 625 
 

 
 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,83 Ultimate moment strength of the section Sec. 3.15-3.20, 3.27-3.28 

 
 

Comparison of solutions 
 

Check strength of the section 

Guide 550/636,4 = 0,864 

SCAD 0,83 

Deviation, % 4,1 % 

 



   V e r i f i c a t i o n  E x a m p l e s

MAGNUM 1105 

Strength Analysis of a T-section 

200

400

6
00

4d25 A- III

50

 
 

Objective: Check of the strength analysis of the section 

 

Task: Check the strength of a simply supported T-beam with the length of 4,0 m and the 

specified reinforcement 

 

References: Guide on designing of concrete and reinforced concrete structures made of heavy-

weight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 27-28. 

 

Initial data file:  

SCAD 7 SNiP.spr 

report – SCAD 7 SNiP.doc 

 

Compliance with the codes: SNiP 2.03.01-84.   

 

Initial data:  

b = 200 mm 

h = 600 mm 
/

fb = 400 mm 

/

fh = 100 mm 

а = 50 mm 

 

As = 1964 mm
2
 (4Ø25) 

 

Concrete class  

Class of reinforcement 

 

q = 191 kN/m 

М =  300 kNm 

Beam section sizes 

 

 

 

 

Distance from the center of gravity of the reinforcement to the 

compressed edge of the section 

Cross-sectional area of reinforcement 

 

В25 

А-III 

 

Load on the beam 

Bending moment in the section 
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Results of the SCAD analysis: 
N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 300 kN*m 

Snap 2 m 

Mz 

 

 

 
 

 

Mk 

 

 

 
 

 

Qz 

Max. 30,58 T 

Snap 0 m 

 
Max. -30,58 T 

Snap 4 m 

Qy 

 

 

 
 

 

X
Y
Z

1

2

 

Length of the bar 4 m 

Length of the flexible part 4 m 

Loading L1 - "150 kN/m"  

200 200
400

200

6
0
0

2
6
4
,2

9
3
3
5
,7

1

1
0
0

Y1

Z1
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Structural group Beam 

 

Distance between the rebars in the first row S1  is less than the allowable value (see Sec. 5.12 of SNiP 2.03.01-84*)   

.  

Elements: 1 

 

Importance factor n = 1 
 
Importance factor (serviceability limit state) = 1 

 

Member type – Flexural 

 

Stress state - Uniaxial bending 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

58,5 20 

 

Reinforcement Class Service factor  

Longitudinal A-III 1 

Transverse A-I 1 

 

Concrete 

Concrete type: Heavy-weight 

Concrete class: B25 

Hardening conditions: Natural 

Hardening factor 1 

Service factor for concrete 

b2 allowance for the sustained loads 0,9 

 resulting factor without b2 1 

 
Humidity of environmental air - 40-75% 

 

Crack resistance 

Category of crack resistance - 3 

Conditions of operation: Indoors 

Mode of concrete humidity - Natural humidity 

Allowable crack opening width: 

   Short-term opening  0,4 mm 

   Long-term opening  0,3 mm 
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Structural group Beam. Element No. 1 

Member length 4 m 

 

Specified reinforcement 

Segment Reinforcement Section 

1 S1 - 425 
 

 
 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,89 Ultimate moment strength of the section Sec. 3.15-3.20, 3.27-3.28 

 

 

Comparison of solutions 

Check strength of the section 

Guide 300/327,1 = 0,917 

SCAD 0,89 

Deviation, % 3,0 % 
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Strength Analysis of a Wall Panel 

 

 

 

 

2d10

2d6

2d10

2d6

11
9
5

340

8
0

4
7
5

4
6
0

10
0

8
0

40

 
 
 

Objective: Check of the strength of the wall panel 

 

Task: Check the strength of the section 

 

References: Guide on designing of concrete and reinforced concrete structures made of heavy-

weight or lightweight concrete (no prestressing) (to SNiP 2.03.01-84), 1989, p. 32-34. 

 

Initial data file:  

SCAD 12 SNiP.spr 

report – SCAD 12 SNiP.doc 

 

Compliance with the codes: SNiP 2.03.01-84.   

 

Initial data:  

l = 5,8  m Wall panel span 

b×h = 340×1195 mm  

 

qtot  = 3,93 kN/m
2 

(qx  = 17,72 kN/m) 

 

qw = 0,912 kN/m
2
 

(qy  = 3,83 kN/m) 

 

Concrete class  

 

Class of reinforcement 

Wall panel section sizes 

 

Total vertical uniformly distributed load 

Reduced load in the panel plane 

 

Wind load 

Reduced load out of the panel plane 

 

В3,5; D1100 

 

А-III 
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Results of the SCAD analysis: 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 74,51 kN*m 

Snap 2,9 m 

Mz 

Max. -16,11 kN*m 

Snap 2,9 m 

 
Max. 0 kN*m 

Snap 0 m 

Mk 

Max. 0 kN*m 

Snap 0 m 

 
Max. 0 kN*m 

Snap 0 m 

Qz 

Max. 5,24 T 

Snap 0 m 

 
Max. -5,24 T 

Snap 5,8 m 

Qy 

Max. 1,13 T 

Snap 0 m 

 
Max. -1,13 T 

Snap 5,8 m 

X
Y
Z

1

2

 

Length of the bar 5,8 m 

Length of the flexible part 5,8 m 

Loading L1 - "17,72 kN/m + 3,83 

kN/m"  

170 170

340

1
1
9
5

5
9
7
,5

5
9
7
,5

Y1

Z1
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Structural group Wall panel 

 

Importance factor  n = 1 
 
Member type - Member under compression and bending (in tension) 
 

Stress state - Biaxial bending 

 

Maximum percentage of reinforcement 10 

Random eccentricity along Z1 0 mm 

Random eccentricity along Y1 0 mm 

 

Structure is statically indeterminate 

Effective length factor in the X1OZ1 plane 1 

Effective length factor in the X1OY1 plane 1 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 
 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

75 75 

 
 

Reinforcement Class Service factor  

Longitudinal A-III 1 

Transverse A-I 1 

 
Concrete 

Concrete type: Lightweight 

Concrete class: B3,5 

Grade by average density: D1100 

Aggregate: Artificial dense 

Hardening conditions: Natural 

Hardening factor 1 

Service factor for concrete 

b2 allowance for the sustained loads 1 

 resulting factor without b2 1,1 

 
 
Humidity of environmental air - 40-75% 
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Structural group Wall panel. Element No. 1 

Member length 5,8 m 

 

Specified reinforcement 

Segment Reinforcement Section 

1 S1 - 210, second row 26 
Clear distance between rows 92 mm 

S2 - 210, second row 26 
Clear distance between rows 467 mm 

 

 
 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,99 Ultimate moment strength of the section Sec. 3.15-3.20, 3.27-3.28 

  

 

Comparison of solutions: 

Check Strength of the section 

Guide 74,5/78,4 = 0,95 

SCAD 0,99 

Deviation, % 4,2 % 
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 Strength Analysis of a Rectangular Beam 

300

7
0
0

6d32

7
0

3d12

3
0

 
 

Objective: Check the mode for calculating reinforced concrete structures in the “Reinforced 

Concrete” postprocessor of SCAD 

 

Task: Check the strength of the beam section for the specified reinforcement 

 

References: Guide on designing of concrete and reinforced concrete structures made of heavy-

weight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 28. 

 

Initial data file:  

SCAD 6 SP.spr 

report – SCAD 6 SP.doc 

 

Compliance with the codes: SP 52-101-2003. 

 

Initial data:  

b×h = 300×700 mm  

а = 70 mm 

а
/
= 30 mm 

 

As = 4826 mm
2
 (632) 

A
/
s = 339 mm

2
 (312) 

 

l = 6,0 m 

q = 140 kN/m 

М = 630 kNm 

Concrete class 

Class of reinforcement  

Section sizes 

Distance to the c.o.g. of tensile reinforcement 

Distance to the c.o.g. of compressed reinforcement  

 

Cross-sectional area of tensile reinforcement 

Cross-sectional area of compressed reinforcement 

 

Beam span 

Load on the beam 

Bending moment 

В20 

А400 
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Results of the SCAD analysis: 
N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 630 kN*m 

Snap 3 m 

Mz 

 

 

 
 

 

Mk 

 

 

 
 

 

Qz 

Макс. 42,81 Т 

Snap 0 m 

 
Max. -42,81 T 

Snap 6 m 

Qy 

 

 

 
 

 

X
Y
Z

1

2

 

Length of the bar 6 m 

Length of the flexible part 6 m 

Loading L1 - "140 kN/m"  

150 150

300

7
0
0

3
5
0

3
5
0

Y1

Z1

 

 
Structural group Beam 

 

Distance between the rebars in the first row S1  is less than the allowable value (see Sec. 8.3.3 of SP 52-101-2003)   

.  

Elements: 1 

 

 

Importance factor  n = 1 
 
Member type - Flexural 

 

Stress state - Uniaxial bending 
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Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

70 30 

 
 
 

Reinforcement Class Service factor  

Longitudinal A400 1 

Transverse A240 1 

 

 

Concrete 

Concrete type: Heavy-weight 

Concrete class: B20 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b4 allowance for the freezing/thawing and negative temperatures 1 

 
 
 
Humidity of environmental air - 40-75% 

 

Crack resistance 

Limited crack opening width 

Requirements to crack opening width are based on the preservation of reinforcement 

Allowable crack opening width: 

  Short-term opening  0,4 mm 

  Long-term opening  0,3 mm 
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Structural group Beam. Element No. 1 

Member length 6 m 

 

Specified reinforcement 

Segment Reinforcement Section 

1 S1 - 632 

S2 - 312 
 

 
 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 1,02 Ultimate moment strength of the section  

 

Comparison of solutions: 

Check Strength of the section 

Guide 630/606,2 = 1,039 

SCAD 1,02 

Deviation, % 1,9 % 
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Calculation of a Rib of a TT-shaped Floor Slab for Load-bearing Capacity 

under Lateral Forces 

 
Objective: Check the mode for calculating reinforced concrete structures in the “Reinforced 

Concrete” postprocessor of SCAD 

 

Task: Verify the correctness of the strength analysis of oblique sections and a concrete strip 

between the oblique sections. 

 

References: Guide on designing of concrete and reinforced concrete structures made of heavy-

weight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 56-57. 

 

Initial data file:  

 

when the lateral force is Q = 62 kN – SCAD 12.1.SP. spr 

report –  SCAD 12.1.SP.doc. 

when the lateral force is Q = 58,4 kN – SCAD 12.2.SP. spr 

report –  SCAD 12.2.SP.doc. 

 

Compliance with the codes: SP 52-101-2003, SP 63.13330.2012.  

 

Initial data:  

b×h = 85×350 mm  

а = 35 mm 

d = 8 mm 

s = 100 mm 

 

q = 21,9  kN/m 

q = 18  kN/m 

Q = 62 kN 

 

Concrete class В15 

Class of transverse reinforcement 

А400 

Section sizes 

Distance to the c.o.g. of tensile reinforcement  

Diameter of transverse reinforcement  

Spacing of transverse reinforcement 

 

Load on the rib 

Temporary equivalent load 

Lateral force on the support 

 

 

http://scadsoft.com/tests_arbat/content/images/arbat_12/Arbat_12.1_doc.rar
http://scadsoft.com/tests_arbat/content/images/arbat_12/Arbat_12.2_doc.rar
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Results of the SCAD analysis (when the lateral force is Q = 62 kN): 
N 

Max. 0 kN 

Snap 0 m 

 
Max. 0 kN 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 48,18 kN*m 

Snap 1,55 m 

Mz 

 

 

 
 

 

Mk 

 

 

 
 

 

Qz 

Max. 62 kN 

Snap 0 m 

 
Max. -62 kN 

Snap 3,11 m 

Qy 

 

 

 
 

 

X
Y
Z

1

2

 

Length of the bar 3,11 m 

Length of the flexible part 3,11 m 

Loading L1 - "39,9 kN/m"  

85

3
5
0

1
7
5

1
7
5

Y1

Z1

 
 



V e r i f i c a t i o n  E x a m p l e s    

MAGNUM 1120 

Structural group Beam 

 

Number of rebars in a row must be not less than two (see Sec. 8.3.7 of SP 52-101-2003)   

Distance between the rebars in the first row S1  is less than the allowable value (see Sec. 8.3.3 of SP 52-101-2003)   

.  

Elements: 1 

 

 

 

Importance factor  n = 1 
 
Member type - Flexural 

 

Stress state - Uniaxial bending 

 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

32 32 

 

 

 

Reinforcement Class Service factor  

Longitudinal A400 1 

Transverse A400 1 

 

 

Concrete 

Concrete type: Heavy-weight 

Concrete class: B15 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b4 allowance for the freezing/thawing and negative temperatures 1 

 
 
Humidity of environmental air - 40-75% 

 

Crack resistance 

No cracks 
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Structural group Beam. Element No. 1 

 

Member length 3,11 m 

 

Specified reinforcement 

 

Segment Reinforcement Section 

1 S1 - 26 

Transverse reinforcement along the Z axis 18, 
spacing of transverse reinforcement 100 mm 

 

 
 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,9 Strength in a concrete strip between oblique 

sections 

Sec. 6.2.33, Sec. 3.52 of 

the Guide 

 

Comparison of solutions 
 

Check Strength in a concrete strip between oblique sections 

Guide 62/68,276 = 0,908 

SCAD 0,9 

Deviation, % 0,9 % 
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Results of the SCAD analysis (when the lateral force is Q = 58,4 kN): 

N 

Max. 0 kN 

Snap 0 m 

 
Max. 0 kN 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 42,74 kN*m 

Snap 1,46 m 

Mz 

 

 

 
 

 

Mk 

 

 

 
 

 

Qz 

Max. 58,4 kN 

Snap 0 m 

 
Max. -58,4 kN 

Snap 2,93 m 

Qy 

 

 

 
 

 

X
Y
Z

1

2

 

Length of the bar 2,93 m 

Length of the flexible part 2,93 m 

Loading L1 - "39,9 kN/m"  

85

3
5
0

1
7
5

1
7
5

Y1

Z1
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Structural group Beam 

 

Number of rebars in a row must be not less than two (see Sec. 8.3.7 of SP 52-101-2003)   

Distance between the rebars in the first row S1  is less than the allowable value (see Sec. 8.3.3 of SP 52-101-2003)   

.  

Elements: 1 

 

 

 

Importance factor  n = 1 
 
Member type - Flexural 

 

Stress state - Uniaxial bending 

 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

32 32 

 

 

 

Reinforcement Class Service factor  

Longitudinal A400 1 

Transverse A400 1 

 
 
Concrete 

Concrete type: Heavy-weight 

Concrete class: B15 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b4 allowance for the freezing/thawing and negative temperatures 1 

 
 
 

Humidity of environmental air - 40-75% 

 

Crack resistance 

No cracks 
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Structural group Beam. Element No. 1 

 

Member length 2,93 m 

 

Specified reinforcement 

 

Segment Reinforcement Section 

1 S1 - 26 

Transverse reinforcement along the Z axis 18, 
spacing of transverse reinforcement 100 mm 

 

 
 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,9 Strength for an oblique section Sec. 6.2.34, Sec. 3.52,3.71 

of the Guide 

 

Comparison of solutions: 

Check Strength for an oblique section 

Guide 58,4/63,97 = 0,913 

SCAD 0,9 

Deviation, % 1,4 % 
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Calculation of a Simply Supported Rectangular Beam under Lateral Forces 

 
 

Objective: Check the mode for calculating reinforced concrete structures in the “Reinforced 

Concrete” postprocessor of SCAD 

 

Task: Check the strength of the oblique section of the beam for the specified reinforcement 

 

References: Guide on designing of concrete and reinforced concrete structures made of heavy-

weight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 57-58. 

 

Initial data file:  

SCAD 13 SP.spr 

report – SCAD 13 SP.doc 

 

Compliance with the codes: SP 52-101-2003. 

 

Initial data:  

b×h = 200×400 mm  

а = 30 mm 

а
/
= 30 mm 

 

Asw = 101mm
2
 (28) 

sw = 150 mm 

 

qv = 36 kN/m 

qg = 14 kN/m 

Q = 100,35 kNm 

 

Concrete class В25 

Class of reinforcement 240 

Section sizes 

Distance to the c.o.g. of tensile reinforcement 

Distance to the c.o.g. of compressed reinforcement 

 

Cross-sectional area of transverse reinforcement 

Spacing of transverse reinforcement 

 

Temporary load on the beam 

Permanent load on the beam 

Lateral force on the support 
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Results of the SCAD analysis: 

N 

Max. 0 kN 

Snap 0 m 

 
Max. 0 kN 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 100,7 kN*m 

Snap 2,01 m 

Mz 

 

 

 
 

 

Mk 

 

 

 
 

 

Qz 

Max. 100,35 kN 

Snap 0 m 

 
Max. -100,35 kN 

Snap 4,01 m 

Qy 

 

 

 
 

 

X
Y
Z

1

2

 

Length of the bar 4,01 m 

Length of the flexible part 4,01 m 

Loading L1 - "50 kN/m"  

100 100

200

4
0
0

2
0
0

2
0
0

Y1

Z1
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Structural group Beam 

 

Structural group Beam. Element No. 1 

 

Importance factor  n = 1 
 
Member type – Flexural 

 

Stress state - Uniaxial bending 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

30 30 

 

 

 

Reinforcement Class Service factor  

Longitudinal A240 1 

Transverse A240 1 

 

 

Concrete 

Concrete type: Heavy-weight 

Concrete class: B25 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b4 allowance for the freezing/thawing and negative temperatures 1 

 
 
 
Humidity of environmental air - 40-75% 

 

Crack resistance 

No cracks 
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Structural group Beam. Element No. 1 

Member length 4,01 m 

 

Specified reinforcement 

Segment Reinforcement Section 

1 S1 - 26 

S2 - 26 

Transverse reinforcement along the Z axis 28, 
spacing of transverse reinforcement 150 mm 

Transverse reinforcement along the Y axis 28, 
spacing of transverse reinforcement 150 mm 

 
 

 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,98 Strength for an oblique section Sec. 6.2.34, Sec. 3.52,3.71 

of the Guide 

 

Comparison of solutions 
 

Check Strength of the section 

Guide 100,35/100,69 = 0,997 

SCAD 0,98 

Deviation, % 1,7 % 

 

 

Comments: 

1. The strength check of oblique sections is performed by comparing a sum of lateral forces 

resisted by concrete and stirrups in the oblique section (Qb + Qsw), with a lateral force Q 

in the oblique section which is determined as a projection on the normal to the 

longitudinal axis of the element of the resultant of all external forces acting on the 

element on one side of the considered oblique section (Q = Qmax – q1c). The lateral force 

in the normal section is taken as Q = 100,35 kN according to the Guide. 

2. The data on the longitudinal reinforcement has to be specified in SCAD. Since it is not 

defined in the problem, the following reinforcement is used: class А240, rebars 2Ø6. 
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Calculation of a Column of a Multi-storey Frame for Load-bearing Capacity 

under a Lateral Force 

 
 

Objective: Check the mode for calculating reinforced concrete structures in the “Reinforced 

Concrete” postprocessor of SCAD 

 

Task: Check the strength of the column section for the specified reinforcement 

 

References: Guide on designing of concrete and reinforced concrete structures made of heavy-

weight concrete (no prestressing) (to SP 52-101-2003), 2005, p. 104-105. 

 

Initial data file:  

SCAD 34 SP.spr 

report – SCAD 34 SP-2003.doc 

report – SCAD 34 SP-2012.doc 

 

Compliance with the codes: SP 52-101-2003, SP 63.13330.2012. 

 

Initial data:  

b×h = 400×600 mm  

а = 50 mm 

а
/
= 50 mm 

 

Asw = 226 mm
2
 (212) 

sw = 400 mm 

 

l = 3,3 m 

Мinf = 250 kNm 

Мsup = 350 kNm 

N = 572 kN 

 

Concrete class В25 

Class of transverse reinforcement 

А240 

Section sizes 

Distance to the c.o.g. of tensile reinforcement 

Distance to the c.o.g. of compressed reinforcement 

 

Cross-sectional area of tensile reinforcement 

Cross-sectional area of compressed reinforcement 

 

Column length 

Bending moment in the lower support section 

Bending moment in the upper support section 

Longitudinal compressive force 
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Results of the SCAD analysis: 

N 

 

 

 
Max. -572 kN 

Snap 0 m 

My 

Max. -350 kN*m 

Snap 3,3 m 

 
Max. 250 kN*m 

Snap 0 m 

Mz 

Max. 0 kN*m 

Snap 0 m 

 
Max. 0 kN*m 

Snap 0 m 

Mk 

Max. 0 kN*m 

Snap 0 m 

 
Max. 0 kN*m 

Snap 0 m 

Qz 

 

 

 
Max. -181,82 kN 

Snap 0 m 

Qy 

Max. 0 kN 

Snap 0 m 

 
Max. 0 kN 

Snap 0 m 

X
YZ

1

2

 

Length of the bar 3,3 m 

Length of the flexible part 3,3 m 

Loading L1 - "123"  

200 200

400

6
0
0

3
0
0

3
0
0

Y1

Z1
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Structural group Column 

 

Spacing of transverse reinforcement is greater than the allowable value  (see Sec. 8.3.11 of SP 52-101-2003)   .  

Elements: 1 

 

 

Importance factor  n = 1 
 
Member type - Member under compression and bending (in tension) 

 

Stress state - Uniaxial bending 

 

Maximum percentage of reinforcement 10 

Random eccentricity along Z1 0 mm 

Random eccentricity along Y1 0 mm 

 

Structure is statically indeterminate 

Effective length factor in the X1OZ1 plane 1 

Effective length factor in the X1OY1 plane 1 

 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

50 50 

 

 

Reinforcement Class Service factor  

Longitudinal A240 1 

Transverse A240 1 

 
 
Concrete 

Concrete type: Heavy-weight 

Concrete class: B25 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b4 allowance for the freezing/thawing and negative temperatures 1 

 
 

Humidity of environmental air - 40-75% 

 

Crack resistance 

No cracks 
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Structural group Column. Element No. 1 

 

Member length 3,3 m 

 

Specified reinforcement  

Segment Reinforcement Section 

1 S1 - 26 

S2 - 26 

Transverse reinforcement along the Z axis 212, 
spacing of transverse reinforcement 400 mm 

Transverse reinforcement along the Y axis 212, 
spacing of transverse reinforcement 400 mm 

 
 

 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,98 Strength for an oblique section Sec. 6.2.34, Sec. 3.52,3.71 

of the Guide 

 

Comparison of solutions (according to SNiP 52-101-2003): 

Check Strength for an oblique section 

Guide 181,8/184,8 = 0,984 

SCAD 0,98 

Deviation, % 0,4 % 
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Structural group Column 

 

Spacing of transverse reinforcement is greater than the allowable value  (see Sec. 10.3.13 of SP 63.13330.2012)   .  

Elements: 1 

 

 

Importance factor  n = 1 
 
Member type - Member under compression and bending (in tension) 

 

Stress state - Uniaxial bending 

 

Maximum percentage of reinforcement 10 

Random eccentricity along Z1 0 mm 

Random eccentricity along Y1 0 mm 

 

Structure is statically indeterminate 

Effective length factor in the X1OZ1 plane 1 

Effective length factor in the X1OY1 plane 1 

 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

50 50 

 

 

 

Reinforcement Class Service factor  

Longitudinal A240 1 

Transverse A240 1 

 
 
Concrete 

Concrete type: Heavy-weight 

Concrete class: B25 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b5 allowance for the freezing/thawing and negative temperatures 1 

 
 
 

Humidity of environmental air - 40-75% 

 

Crack resistance 

No cracks 
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Structural group Column. Element No. 1 

Member length 3,3 m 

 

Specified reinforcement 

Segment Reinforcement Section 

1 S1 - 26 

S2 - 26 

Transverse reinforcement along the Z axis 212, 
spacing of transverse reinforcement 400 mm 

Transverse reinforcement along the Y axis 212, 
spacing of transverse reinforcement 400 mm 

 
 

 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,84 Strength for an oblique section Sec. 8.1.33, 8.1.34 

 

Comparison of solutions (according to SP 63.13330.2012) 
 

Check Strength for an oblique section 

Guide 181,8/184,8 = 0,984 

SCAD 0,84 

Deviation, % 14,6 % 

 

 

Comment: 

The difference between the utilization factors of 14,6% in the results of the solution in the 

Guide and in SCAD according to SP 63.13330.2012 is due to the fact that compressive 

stresses are taken into account in different ways according to the given codes (Sec. 8.1.34) 

and according to SNiP 52-101-2003. 
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Example of Punching Near the Edge of the Slab 

 
1 – closed design contour No.1, 2 – open design contour No.2, 3 – open design contour No.3. 

 

Punching Analysis of a Flat Monolithic Floor Slab 

Objective: Check the Punching mode in the “Reinforced Concrete” postprocessor of SCAD 

Task: Verify the correctness of the punching strength analysis of a concrete element under a 

concentrated force and a bending moment when the load application area is near the edge of the 

slab. 

Compliance with the codes: SNiP 52-101-2003, SP 63.13330.2012. 

Initial data file:  

SCAD 41 SP-2003.spr, SCAD 41 SP-2012.spr 

report – SCAD 41 SP-2003.doc 

report – SCAD 41 SP-2012.doc 

 

Initial data: 

h = 230 mm Slab thickness 

h0 = 200 mm Average effective height of the slab 

a×b = 500×400 mm Column section sizes 

F = 150 kN Load transferred from the floor slab to the column 

Msup = 80 kN∙m Moment in the column section on the upper face of the slab 

Minf = 90 kN∙m Moment in the column section on the lower face of the slab 

x0 = 500 mm Distance from the center of the column section to the free edge of the slab 

Concrete class В25 



V e r i f i c a t i o n  E x a m p l e s    

MAGNUM 1136 

 Analytical solution: 

In this case it is necessary to check the strength of three contours of the design cross-

section: 

contour No.1 – closed contour around the column section at a distance of 00,5h  from the 

column contour; 

contour No.2 – open contour around the column section at a distance of 00,5h  from the 

column contour with the extension of the contour to the free edge of the slab; 

contour No.3 – open contour around the column section at a distance of 01,5h  from the 

column contour (contour of the verification analysis without the consideration of the 

reinforcement). 

 

1. Closed contour No.1: 

0x xL A h  = 500 + 200 = 700 mm = 0,7 m, 

0y yL A h  = 400 + 200 = 600 mm = 0,6 m, 

Perimeter of the design contour of the cross-section: 

2( )x yu L L   2 (0,7 + 0,6) = 2,6 m. 

Area of the design contour of the cross-section: 

0bA uh  2,6 х 0,2 = 0,52 m
2
. 

Ultimate force resisted by concrete: 

,b ult bt bF R A  1,05 х10
3
 х 0,52 = 546 kN. 

Moment of inertia of the design contour with respect to the X axis passing through its 

center of gravity: 
23

2 2
12 2

y y

bx x

L L
I L

 
   

 
= 

230,6 0,6
2 2 0,7

12 2

 
   

 
= 0,162 m

3
. 

Section modulus of the design contour of concrete 

max

bx
bx

I
W

y
 = 

0,162

0,3
= 0,54 m

2
. 

Moment of inertia of the design contour with respect to the Y axis passing through its 

center of gravity: 
23

2 2
12 2

x x
by y

L L
I L

 
    

 
= 

230,7 0,7
2 2 0,6

12 2

 
   

 
= 0,204 m

3
. 

Section modulus of the design contour of concrete 

max

by

by

I
W

x
  = 

0,204

0,35
= 0,583 m

2
. 

Bending moment which can be resisted by concrete in the design cross-section: 

, 0bx ult bt bxM R W h 1,05 х10
3
 х 0,54 х 0,2 = 113,4 kNm. 

, 0by ult bt byM R W h  1,05 х10
3
 х 0,583 х 0,2 = 122,4 kNm. 
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For SNiP 52-101-2003: 

, ,

x

bx ult b ult

M F

M F
 ;          

, ,

y

by ult b ult

M F

M F
  

, ,

85 150
0,694 0,275

122,4 546

y

by ult b ult

M F

M F
      – condition is not met. 

Assume 

, ,

0,275
y

by ult b ult

M F

M F
   

Punching strength of the slab: 

, , ,

1 1,0
yx

b ult bx ult by ult

MMF
K

F M M


   
  

 

К1 = 0,275+0+0,275 = 0,55 

 
For SP 63.13330.2012: 

, , ,

0,5
yx

bx ult by ult b ult

MM F

M M F
   

, ,

85 150
0,694 0,5 0,5 0,275 0,1375

122,4 546

y

by ult b ult

M F

M F
        – condition is not met. 

Assume 

, ,

0,1375
y

by ult b ult

M F

M F
   

Punching strength of the slab: 

, , ,

1 1,0
yx

b ult bx ult by ult

MMF
K

F M M


   
  

 

К1 = 0,275+0+0,1375 = 0,413 
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Open contour No.2: 

 

0 150x xL A h   = 500 + 200 + 150 = 850 mm = 0,85 m, 

0y yL A h  = 400 + 200 = 600 mm = 0,6 m, 

Perimeter of the design contour of the cross-section: 

2 x yu L L   2х0,85 + 0,6 = 2,3 m. 

Area of the design contour of the cross-section: 

0bA uh  2,3 х 0,2 = 0,46 m
2
. 

X coordinate of the center of gravity of the open contour with respect to the left edge of 

the slab: 

425 850 2 850 600

850 2 600
X

   
 

 
535,869 mm 

Ultimate force resisted by concrete: 

,b ult bt bF R A  1,05 х10
3
 х 0,46 = 483 kN. 

Moment of inertia of the design contour with respect to the X axis passing through its 

center of gravity: 
23

2
12 2

y y

bx x

L L
I L

 
   

 
= 

230,6 0,6
2 0,85

12 2

 
   

 
= 0,171 m

3
. 

Section modulus of the design contour of concrete 

max

bx
bx

I
W

y
   

0,171

0,3
= 0,57 m

2
. 

Moment of inertia of the design contour with respect to the Y axis passing through its 

center of gravity: 

 
3

222 2 (0,075 0,035869) 0,35 0,035869
12

x
by x y

L
I L L     =  

3
220,85

2 2 0,85(0,075 0,035869) 0,6 0,35 0,035869
12

    

=0,183 m
3
. 

Section modulus of the design contour of concrete 

max

by

by

I
W

x
   

0,183

0,535869
= 0,341m

2
. 

Bending moment which can be resisted by concrete in the design cross-section: 

, 0bx ult bt bxM R W h 1,05 х10
3
 х 0,57 х 0,2 = 119,7 kNm. 

, 0by ult bt byM R W h  1,05 х10
3
 х 0,341 х 0,2 = 71,6 kNm. 

0y yM M Fe   85 – 150х0,035869 = 85 – 5,38 = 79,62 kNm. 
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For SNiP 52-101-2003: 

, ,

x

bx ult b ult

M F

M F
 ;          

, ,

y

by ult b ult

M F

M F
  

, ,

79,62 150
1,112 0,311

71,6 483

y

by ult b ult

M F

M F
      – condition is not met. 

Assume 

, ,

0,311
y

by ult b ult

M F

M F
   

Punching strength of the slab: 

, , ,

1 1,0
yx

b ult bx ult by ult

MMF
K

F M M


   
  

 

К1 = 0,311+0+0,311 = 0,622 
For SP 63.13330.2012: 

, , ,

0,5
yx

bx ult by ult b ult

MM F

M M F
   

, ,

79,62 150
1,112 0,5 0,5 0,311 0,155

71,6 483

y

by ult b ult

M F

M F
        – condition is not met. 

Assume 

, ,

0,155
y

by ult b ult

M F

M F
   

Punching strength of the slab: 

, , ,

1 1,0
yx

b ult bx ult by ult

MMF
K

F M M


   
  

 

К1 = 0,311+0+0,155 = 0,466 
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Open contour No.3: 

 

01,5 250x xL A h   = 500 +1,5х200 + 250 = 1050 mm = 1,05 m, 

02 1,5y yL A h   = 400 + 2х1,5х200 = 1000 mm = 1,0 m, 

Perimeter of the design contour of the cross-section: 

2 x yu L L   2х1,05 + 1,0 = 3,1 m. 

Area of the design contour of the cross-section: 

0bA uh  3,1 х 0,2 = 0,62 m
2
. 

X coordinate of the center of gravity of the open contour with respect to the left edge of 

the slab: 

525 1050 2 1050 1000

1050 2 1000
X

   
 

 
694,355 mm 

Ultimate force resisted by concrete: 

,b ult bt bF R A  1,05 х10
3
 х 0,62 = 651 kN. 

Moment of inertia of the design contour with respect to the X axis passing through its 

center of gravity: 
23

2
12 2

y y

bx x

L L
I L

 
   

 
= 

231,05 1,0
2 1,05

12 2

 
   

 
= 0,608 m

3
. 

Section modulus of the design contour of concrete 

max

bx
bx

I
W

y
   

0,608

0,5
= 1,217 m

2
. 

Moment of inertia of the design contour with respect to the Y axis passing through its 

center of gravity: 

 
3

222 2 (0,194355 0,025) 1,05 0,694355
12

x
by x y

L
I L L     =  

3
221,05

2 2 1,05(0,194355 0,025) 1,0 1,05 0,694355
12

     =0,

38 m
3
. 

Section modulus of the design contour of concrete 

max

by

by

I
W

x
   

0,38

0,694355
= 0,547 m

2
. 

Bending moment which can be resisted by concrete in the design cross-section: 

, 0bx ult bt bxM R W h 1,05 х10
3
 х 1,217 х 0,2 = 255,57 kNm. 

, 0by ult bt byM R W h  1,05 х10
3
 х 0,547 х 0,2 = 114,87 kNm. 

0y yM M Fe   85 – 150х0,194355 = 85 – 29,15 = 55,85 kNm. 
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For SNiP 52-101-2003: 

, ,

x

bx ult b ult

M F

M F
 ;          

, ,

y

by ult b ult

M F

M F
  

, ,

55,85 150
0,486 0,23

114,87 651

y

by ult b ult

M F

M F
      – condition is not met. 

Assume 

, ,

0,23
y

by ult b ult

M F

M F
   

Punching strength of the slab: 

, , ,

1 1,0
yx

b ult bx ult by ult

MMF
K

F M M


   
  

 

К1 = 0,23+0+0,23 = 0,46 
For SP 63.13330.2012: 

, , ,

0,5
yx

bx ult by ult b ult

MM F

M M F
   

, ,

55,85 150
0,486 0,5 0,5 0,23 0,115

114,87 651

y

by ult b ult

M F

M F
        – condition is not met. 

Assume 

, ,

0,155
y

by ult b ult

M F

M F
   

Punching strength of the slab: 

, , ,

1 1,0
yx

b ult bx ult by ult

MMF
K

F M M


   
  

 

К1 = 0,23+0+0,115 = 0,345 
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Results of the SCAD analysis: 

 
 

Node No. 5 
 

Importance factor  n = 1 
 
Concrete 

Concrete type: Heavy-weight 

Concrete class: B25 

 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b4 allowance for the freezing/thawing and negative temperatures 1 

 
 
 

Distance to the c.o.g. of reinforcement 

a1 a2 a3 a4 

mm mm mm mm 

30 30 0 0 

 

 

 

Results 

 

Design case – edge column 

 

Length of the upper base of the bearing pyramid - 1800 mm 

Length of the lower base of the bearing pyramid - 2300 mm 
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Comparison of solutions (according to SNiP 52-101-2003) 

Checked according to SNiP Check Utilization factor 

 Sec.6.2.49 Strength without the consideration of the reinforcement 0,62 

 

Check punching strength of an unclosed concrete element under a 

concentrated force and bending moments (including additional 

ones caused by the eccentric application of a force with respect to 

the punched contour) with their vectors along X,Y-axes (load 

application area is near the edge of the slab) 

Analytical solution 0,622 

SCAD 0,62 

Deviation, % 0,1 % 

 

 

Comparison of solutions (according to SP 63.13330.2012) 

Checked according to SP Check Utilization factor 

 Sec.8.1.49 Strength without the consideration of the reinforcement 0,47 

 

Check punching strength of an unclosed concrete element under a 

concentrated force and bending moments (including additional 

ones caused by the eccentric application of a force with respect to 

the punched contour) with their vectors along X,Y-axes (load 

application area is near the edge of the slab) 

Analytical solution 0,466 

SCAD 0,47 

Deviation, % 0,1 % 
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Analysis of a Reinforced Concrete Foundation Slab for Normal Crack Opening 

 
 

Objective: Check the calculation of the crack opening width in the “Reinforced Concrete” 

postprocessor of SCAD 

 

Task: Verify the correctness of the analysis of normal crack opening. 

 

References:  

1. Guide on designing of concrete and reinforced concrete structures made of heavy-weight 

concrete (no prestressing) (to SP 52-101-2003), 2005, p. 155-157. 

2. M.A. Perelmuter, K.V. Popok, L.N. Skoruk, Calculation of the Normal Crack Opening Width 

for SP 63.13330.2012, Concrete and. Reinforced Concrete, 2014, №1, p.21-22. 

 

 

Initial data file:  

SCAD 43 SP.spr 

report – SCAD 43 SP-2003.doc 

 

Compliance with the codes: SP 52-101-2003. 

 

Initial data:  

b×h = 1150×300 mm  

а = 42 mm 

 

Asw = 923 mm
2
 (614) 

 

Мl = 50 kNm 

 

Мsh = 10 kNm 

 

Concrete class В15 

Class of reinforcement А400 

Slab section sizes 

Distance to the c.o.g. of tensile reinforcement 

 

Cross-sectional area of tensile reinforcement 

 

Moment in the design section from permanent and long-

term loads 

Moment from short-term loads 
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Results of the SCAD analysis: 

N 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

My 

Max. 0 kN*m 

Snap 0 m 

 
Max. 60 kN*m 

Snap 0,02 m 

Mz 

 

 

 
 

 

Mk 

 

 

 
 

 

Qz 

Max. 0 T 

Snap 0 m 

 
Max. 0 T 

Snap 0 m 

Qy 

 

 

 
 

 

X
Y
Z

1

2

 

Length of the bar 1 m 

Length of the flexible part 1 m 

Loading L1 - "Moment"  

575 575

1150

3
0
01

5
0

1
5
0

Y1

Z1
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Structural group Beam 

 

Importance factor  n = 1 
 
Member type - Flexural 

 

Stress state - Uniaxial bending 

 
Maximum percentage of reinforcement 10 

 

Coefficients allowing for seismic action 

Normal sections 0 

Oblique sections 0 

 

 

 

Distance to the c.o.g. of reinforcement 

a1 a2 

mm mm 

42 42 

 

 

 

Reinforcement Class Service factor  

Longitudinal A400 1 

Transverse A240 1 

 

 

Concrete 

Concrete type: Heavy-weight 

Concrete class: B15 

 

Service factor for concrete 

b1 allowance for the sustained loads 1 

b2 allowance for the failure behavior 1 

b3 allowance for the vertical position during concreting 1 

b4 allowance for the freezing/thawing and negative temperatures 1 

 
 
 

Humidity of environmental air - 40-75% 

 

Crack resistance 

Limited crack opening width 

Requirements to crack opening width are based on the preservation of reinforcement 

Allowable crack opening width: 

  Short-term opening  0,4 mm 

  Long-term opening  0,3 mm 
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Structural group Beam. Element No. 1 

 

Member length 1 m 

 

Specified reinforcement 

Segment Reinforcement Section 

1 S1 - 614 
 

 
 

Results 

Segment Utilization factor Check Checked according to 

SNiP 

1 0,97 crack opening width (long-term) Sec. 7.2.3, 7.2.4, 7.2.12 

 

Comparison of solutions 

Check crack opening width (long-term) 

Guide 0,306/0,3 = 1,02 

SCAD 0,97 

Deviation, % 4,9 % 

 

  

 

Comments: 

1. The value of the total moment acting in the section, М = Ml + Msh = 50 + 10 = 60 kN∙m, 

factor for sustained load is equal to Ml /М = 50/60 = 0,833. 

2. The deviation of the results of SCAD from the theoretical solution is due to the fact that 

in order to provide computational stability, diagrams in which the horizontal part of the graph 

() has a small slope are used in SCAD instead of the perfect diagrams of the material 

behavior. 

 

 


