Columns

This mode enables to perform checks of columns and posts of solid (rolled or welded I-beams, round or rectangular pipes) and of lattice cross-section. The whole set of checks for strength, stability and slenderness is implemented in compliance with the selected code. A planar loading is assumed, though checks are performed for two principal planes.

The slenderness checks use the values specified in the Limit Slenderness mode. The set of checks depends on the type of the member cross-section and the set of loads it is subjected to.

Check

SNiP II-23-81*

SNiP RK
5.04-23-2002

SP 53-102-2004

SP 16.13330

DBN B.2.6-163:2010

DBN B.2.6-198:2014

ShNK 2.03.05-13

Strength under action of bending moment My

Sec. 5.12

Sec. 5.12

Sec. 9.2.1

Sec. 8.2.1

Sec. 1.5.2.1

Sec. 9.2.1

Sec. 7.1

Strength under action of bending moment Mz

Sec. 5.12

Sec. 5.12

Sec. 9.2.1

Sec. 8.2.1

Sec. 1.5.2.1

Sec. 9.2.1

Sec. 7.28

Strength under action of lateral force Qy

Sec. 5.12, 5.18*

Sec. 5.12, 5.18

Sec. 9.2.1, 10.1.1

Sec. 8.2.1

Sec. 1.5.2.1

Sec. 9.2.1

Sec. 7.12

Strength under action of lateral force Qz

Sec. 5.12, 5.18*

Sec. 5.12, 5.18

Sec. 9.2.1, 10.1.1

Sec. 8.2.1

Sec. 1.5.2.1

Sec. 9.2.1

Sec. 7.12

Strength under combined action of longitudinal force and bending moments

Sec. 5.24, 5.25

Sec. 5.24, 5.25

Sec. 10.1.1

Sec. 9.1.1

Sec. 1.6.1.1

Sec. 10.1.1

Sec. 7.12, 7.18

Strength under combined action of longitudinal force and bending moments, allowing for plasticity

Sec. 5.24, 5.25

Sec. 5.24, 5.25

Sec. 10.1.1

Sec. 9.1.1

Sec. 1.6.1.1

Sec. 10.1.1

Sec. 7.12, 7.18

Strength under combined action of longitudinal force and bending moments, no plasticity

Sec. 5.24, 5.25

Sec. 5.24, 5.25

Sec. 10.1.1

Sec. 9.1.1

Sec. 1.6.1.1

Sec. 10.1.1

Sec. 7.24, 7.25

Strength for reduced stresses at the simultaneous action of the bending moment and the lateral force

Sec. 5.14*

Sec. 5.14

Sec. 9.2.1

Sec. 8.2.1

Sec. 1.5.2.1

Sec. 9.2.1

Sec. 7.24, 7.25

Stability under compression in XoY (XoU) plane

Sec. 5.3

Sec. 5.3

Sec. 8.1.3

Sec. 7.1.3

Sec. 1.4.1.3

Sec. 8.1.3

Sec. 7.24, 7.25

Stability under compression in XoY (XoU) plane (post-buckling behavior)

Sec. 5.3, 7.20*

Sec. 5.3, 7.30

Sec. 8.1.3, 8.3.5

Sec. 7.1.3, 7.3.6

Sec. 1.4.1.3, 1.4.3.5

Sec. 8.1.3, 8.3.5

Sec. 7.14

Stability under compression in XoZ (XoV) plane

Sec. 5.3

Sec. 5.3

Sec. 8.1.3

Sec. 7.1.3

Sec. 1.4.1.3

Sec. 8.1.3

Sec. 7.3

Stability under compression in XoZ (XoV) plane (post-buckling behavior)

Sec. 5.3, 7.20*

Sec. 5.27, 7.30

Sec. 8.1.3, 8.3.5

Sec. 7.1.3, 7.3.6

Sec. 1.4.1.3, 1.4.3.5

Sec. 8.1.3, 8.3.5

Sec. 7.3, 9.20

Stability in the moment My plane under eccentric compression

Sec. 5.27*

Sec. 5.27

Sec. 10.2.9, 10.2.10

Sec. 9.2.9, 9.2.10

Sec.  1.6.2.9, 1.6.2.10

Sec.  10.2.9, 10.2.10

Sec. 7.3

Stability in the moment My plane under eccentric compression (post-buckling behavior)

Sec. 5.27, 7.20*

Sec. 5.27, 7.30

Sec. 10.2.9, 10.2.10, 10.4.6

Sec. 9.2.2, 9.2.10, 9.4.6

Sec. 1.6.2.2, 1.6.2.10, 1.6.4.5

Sec. 10.2.2, 10.2.10, 10.4.5

Sec. 7.3, 9.20

Stability in the moment Mz plane under eccentric compression

Sec. 5.27*

Sec. 5.27

Sec. 10.2.9, 10.2.10, 10.3.1, 10.3.2

Sec. 9.2.9, 9.2.10, 9.3.1, 9.3.2

Sec.  1.6.2.9, 1.6.2.10, 1.6.3.1, 1.6.3.2

Sec.  10.2.9, 10.2.10, 10.3.1, 10.3.2

Sec. 7.3

Stability in the moment Mz plane under eccentric compression (post-buckling behavior)

Sec. 5.27, 7.20*

Sec. 5.27, 7.30

Sec. 10.2.9, 10.2.10, 10.3.1, 10.3.2, 10.4.6

Sec. 9.2.8, 9.2.10, 9.3.1, 9.3.2, 9.4.6

Sec. 1.6.2.8, 1.6.2.10, 1.6.3.1, 1.6.3.2, 1.6.4.5

Sec. 10.2.8, 10.2.10, 10.3.1, 10.3.2, 10.4.5

Sec. 7.27

Stability under compression and bending in two planes

Sec. 5.34

Sec. 5.35

Sec. 10.2.9

Sec. 9.2.9

Sec. 1.6.2.9

Sec. 10.2.9

Sec. 7.27, 9.20

Stability under compression and bending in two planes (post-buckling behavior)

Sec. 5.34, 7.20*

Sec. 5.35, 7.30

Sec. 10.2.9, 10.4.6

Sec. 9.2.9, 9.2.10, 9.4.6

Sec. 1.6.2.9, 1.6.2.10, 1.6.4.5

Sec. 10.2.9, 10.2.10, 10.4.5

Sec. 7.27

Stability out of the moment My plane under eccentric compression

Sec. 5.30-5.32

Sec. 5.30-5.32

Sec. 10.2.4, 10.2.5, 10.2.8

Sec. 9.2.4, 9.2.5, 9.2.8

Sec. 1.6.2.4, 1.6.2.5, 1.6.2.8

Sec. 10.2.4, 10.2.5, 10.2.8

Sec. 7.27, 9.20

Stability out of the moment My plane under eccentric compression (post-buckling behavior)

Sec. 5.30-5.32, 7.20*

Sec. 5.30-5.32, 7.30

Sec. 10.2.4, 10.2.5, 10.2.8, 10.4.6

Sec. 9.2.4, 9.2.5, 9.2.8, 9.2.10, 9.4.6

Sec. 1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.4.5

Sec. 10.2.4, 10.2.5, 10.2.8, 10.4.5

Sec. 7.34

Stability out of the moment Mz plane under eccentric compression (sections of the following types  , , , , , , ,  are not checked)

Sec. 5.27*, 5.30-5.32

Sec. 5.27, 5.30-5.32

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.1, 10.3.2

Sec. 9.2.4, 9.2.5, 9.2.8, 9.3.1, 9.3.2

Sec.  1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.3.1, 1.6.3.2

Sec.  10.2.4, 10.2.5, 10.2.8, 10.3.1, 10.3.2

Sec. 7.34, 9.20

Stability out of the moment Mz plane under eccentric compression (post-buckling behavior)

Sec. 5.27*, 5.30-5.32, 7.20*

Sec. 5.27, 5.30-5.32, 7.30

Sec. 10.2.4,10.2.5,10.2.8, 10.3.1, 10.3.2, 10.4.6

Sec. 9.2.4, 9.2.5, 9.2.8, 9.2.10, 9.3.1, 9.3.2, 9.4.6

Sec. 1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.3.1, 1.6.3.2, 1.6.4.5

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.1, 10.3.2, 10.4.5

Sec. 7.30-7.32

Strength under axial tension/compression

Sec. 5.1

Sec. 5.1

Sec. 8.1.1

Sec. 7.1.1

Sec. 1.4.1.3

Sec. 8.1.3

Sec. 7.30-7.32, 9.20

Stability in compression of angle

Sec. 5.3

Sec. 5.3

Sec. 8.1.3

Sec. 7.1.3

Sec. 1.4.1.3

Sec. 8.1.3

Sec. 7.27, 7.30-7.32

Excessive deformations of the tension fiber

Sec. 5.28

Sec. 5.28

Sec. 10.1.3

Sec. 9.1.3

Sec. 1.6.1.3

Sec. 10.1.3

Sec. 7.27, 7.30-7.32, 9.20

Stability of in-plane bending (sections of the following types , , ,, , , , are not checked)

Sec. 5.15

Sec. 5.15

Sec. 9.4.1

Sec. 8.4.1

Sec. 1.5.4.1

Sec. 9.4.1

Sec. 7.15

Lateral-torsional buckling taking into account plastic deformation

 

 

Sec. 9.4.6

Sec. 8.4.6

Sec. 1.5.4.6

Sec. 9.4.6

 

Web slenderness based on local stability constraint

Sec. 7.1. 7.2*, 7.3, 7.4*–7.6*, 7.9, 7.10;

Sec. 7.14, 7.16*, 7.17*, 7.18*, Table 27*

Sec. 7.1. 7.2, 7.3, 7.4–7.6, 7.9, 7.10;

 7.23, 7.26, 7.27, 7.28

Sec. 8.3.2, Table 8;

Sec. 8.3.10 ;

Sec. 9.5.1–9.5.9; Sec. 10.4.2, Table 20 ; Sec. 10.4.3;

Sec. 10.4.9

Sec. 7.3.2, Table 9;

Sec. 7.3.11 ;

Sec. 8.5.1–8.5.9; Sec. 9.4.2, Table 22 ; Sec. 9.4.3;

Sec. 9.4.9

Sec. 1.4.3.2, Table 1.4.3; Sec. 1.5.5.1–1.5.5.9; Sec. 1.6.4.2, Table 1.6.3 ;

Sec. 1.6.4.5

Sec. 8.3.2, Table 8.3; Sec. 9.5.1–9.5.9; Sec. 10.4.2, Table 10.3 ;

Sec. 10.4.5

Sec. 9.1 –9.7,

Sec. 9.10, 9.11;

Sec. 9.15, 9.16, 9.17, 9.18

Flange overhang (flange plate)  slenderness based on local stability constraint

Sec. 7.22*, 7.23*, Table 29*, Sec. 7.24, Table 30; Sec. 7.27*

Sec. 7.32, 7.33, 7.34, 7.37

Sec. 8.3.7, Table 9;

Sec. 8.3.10 ;

Sec. 9.5.14; Sec. 10.4.7, Table 21 ;

Sec. 10.4.9

Sec. 7.3.8, Table 10;

Sec. 7.3.11 ;

 Sec. 8.5.18; Sec. 9.4.7, Table 23 ;

Sec. 9.4.9

Sec. 1.4.3.7, Table 1.4.4; Sec. 1.5.5.14; Sec. 1.6.4.8, Table 1.6.4 ;

Sec. 1.6.4.7

Sec. 8.3.7, Table 8.4; Sec. 9.5.14; Sec. 10.4.8, Table 10.4 ;

Sec. 10.4.7

Sec. 9.22, 9.23, Sec. 9.24, 9.27

Pipe radius to thickness ratio based on local stability constraint

Sec. 8.6

Sec. 8.6

Sec. 12.2.2

Sec. 11.2.2

Sec. 1.10.2.2

Sec. 14.2.2

Sec. 10.6

Local stability of the pipe wall based on closed circular cylindric shell calculation

Sec. 8.5-8.13

Sec. 8.5-8.13

Sec. 12.2.1-12.2.8

Sec. 11.2.1-11.2.9

Sec. 1.10.2.1-1.10.2.9

Sec. 14.2.1-14.2.9

Sec. 10.5-10.13

Height to thickness ration of the beam web

Sec. 7.4*

Sec. 7.4

Sec. 9.5.3

Sec. 8.5.3

Sec. 1.5.5.3

Sec. 9.5.3

Sec. 9.5

General stability of a build-up member under axial compression in XoY plane

Sec. 5.3-5.6

Sec. 5.3-5.6

Sec. 8.1.3-8.1.5, 8.2.2

Sec. 7.1.3-7.1.5, 7.2.2

Sec. 1.4.1.3, 1.4.1.5, 1.4.2.2, 1.4.2.5

Sec. 8.1.3, 8.1.5, 8.2.2, 8.2.5

Sec. 7.3-7.6

General stability of a build-up member under axial compression in XoZ plane

Sec. 5.3-5.6

Sec. 5.3-5.6

Sec. 8.1.3-8.1.5, 8.2.2

Sec. 7.1.3-7.1.5, 7.2.2

Sec. 1.4.1.3, 1.4.1.5, 1.4.2.2, 1.4.2.5

Sec. 8.1.3, 8.1.5, 8.2.2, 8.2.5

Sec. 7.3-7.6

Stability out of the moment Mz plane

Sec. 5.27*, 5.30-5.32

Sec. 5.27, 5.30-5.32

Secs. 10.2.4,10.2.5,10.2.8, 10.3.1, 10.3.2

Secs. 9.2.4, 9.2.5, 9.2.8, 9.3.1, 9.3.2

Secs. 1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.3.1, 1.6.3.2

Secs. 10.2.4, 10.2.5, 10.2.8, 10.3.1, 10.3.2

Sec. 7.27, 7.30-7.32

Chord web slenderness based on local stability constraint

Sec. 7.1. 7.2*, 7.3, 7.4*–7.6*, 7.9, 7.10;

Sec. 7.14, 7.16*, 7.17*, 7.18*, Table 27*

Sec. 7.1. 7.2, 7.3, 7.4–7.6, 7.9, 7.10,

7.23, 7.26, 7.27, 7.28

Sec. 8.3.2, Table 8;

Sec. 8.3.10 ;

Sec. 9.5.1–9.5.9; Sec. 10.4.2, Table 20 ;

Sec. 10.4.9

Sec. 7.3.2, Table 9;

Sec. 7.3.11 ;

Sec. 8.5.1–8.5.9; Sec. 9.4.2, Table 22 ;

Sec. 9.4.9

Sec. 1.4.3.2, Table 1.4.3; Sec. 1.5.5.1–1.5.5.9; Sec. 1.6.4.2, Table 1.6.3 ;

Sec. 1.6.4.5

Sec. 8.3.2, Table 8.3; Sec. 9.5.1–9.5.9; Sec. 10.4.2, Table 10.3 ;

Sec. 10.4.5

Sec. 9.1-9.7, 9.10, 9.11;

Sec. 9.15, 9.16, 9.17, 9.18

Chord flange slenderness based on local stability constraint

Sec. 7.22*, 7.23*, Table 29*, Sec. 7.24, Table 30; Sec. 7.27*

Sec. 7.32, 7.33, 7.34, 7.37

Sec. 8.3.7, Table 9;

Sec. 8.3.10 ;

Sec. 9.5.14; Sec. 10.4.7, Table 21 ;

Sec. 10.4.9

Sec. 7.3.8, Table 10;

Sec. 7.3.11 ;

 Sec. 8.5.18; Sec. 9.4.7, Table 23 ;

Sec. 9.4.9

Sec. 1.4.3.7, Table 1.4.4; Sec. 1.5.5.14; Sec. 1.6.4.8, Table 1.6.4 ;

Sec. 1.6.4.7

Sec. 8.3.7, Table 8.4; Sec. 9.5.14; Sec. 10.4.8, Table 10.4 ;

Sec. 10.4.7

Sec. 9.22, 9.23, 9.24; Sec. 9.27

Resistance of a batten to the lateral force

Sec. 5.8, 5.9, 5.36

Sec. 5.8, 5.9, 5.36

Sec. 8.2.7, 8.2.8, 10.3.7

Sec. 7.2.7, 7.2.8, 9.3.7

Sec. 1.4.2.7, 1.4.2.8, 1.6.3.7

Sec. 8.2.7, 8.2.8, 10.3.7

Sec. 7.8, 7.9, 7.36

Resistance of a batten to bending

Sec. 5.8, 5.9, 5.36

Sec. 5.8, 5.9, 5.38

Sec. 8.2.7, 8.2.8, 10.3.7

Sec. 7.2.7, 7.2.8, 9.3.7

Sec. 1.4.2.7, 1.4.2.8, 1.6.3.7

Sec. 8.2.7, 8.2.8, 10.3.7

Sec. 7.8, 7.9, 7.36

Strength of chord under bending moment My

Sec. 5.12

Sec. 5.12

Sec. 9.2.1

Sec. 8.2.1

Sec. 1.5.2.1

Sec. 9.2.1

п.7.12

Strength of chord under bending moment Mz

Sec. 5.12

Sec. 5.12

Sec. 9.2.1

Sec. 8.2.1

Sec. 1.5.2.1

Sec. 9.2.1

п.7.12

Strength of chord under lateral force Qy

Sec. 5.12, 5.18*

Sec. 5.12, 5.18

Sec. 9.2.1, 9.2.3

Sec. 8.2.1, 8.2.3

Sec. 1.5.2.1, 1.5.2.3

Sec. 9.2.1, 9.2.3

п.7.12, 7.18

Strength of chord under lateral force Qz

Sec. 5.12, 5.18*

 

Sec. 5.12, 5.18

Sec. 9.2.1, 9.2.3

Sec. 8.2.1, 8.2.3

Sec. 1.5.2.1, 1.5.2.3

Sec. 9.2.1, 9.2.3

п.7.12, 7.18

Strength of chord under combined action of longitudinal force and bending moments

Sec. 5.24, 5.25, 5.33

Sec. 5.24, 5.25, 5.33

Sec. 10.1.1, 10.3.3

Sec. 9.1.1, 9.3.3

Sec. 1.6.1.1, 1.6.3.3

Sec. 10.1.1, 10.3.3

Sec. 7.24, 7.25, 7.33

Strength of chord under combined action of longitudinal force and bending moments, allowing for plasticity

Sec. 5.24, 5.25, 5.33

Sec. 5.24, 5.25, 5.33

Sec. 10.1.1, 10.3.3

Sec. 9.1.1, 9.3.3

Sec. 1.6.1.1, 1.6.3.3

Sec. 10.1.1, 10.3.3

Sec. 7.24, 7.25, 7.33

Strength of chord under combined action of longitudinal force and bending moments, no plasticity

Sec. 5.24, 5.25, 5.33

Sec. 5.24, 5.25, 5.33

Sec. 10.1.1, 10.3.3

Sec. 9.1.1, 9.3.3

Sec. 1.6.1.1, 1.6.3.3

Sec. 10.1.1, 10.3.3

Sec. 7.24, 7.25, 7.33

Stability of chord under compression in XoY plane

Sec. 5.3, 5.6

Sec. 5.3, 5.6

Sec. 8.1.3, 8.2.3-8.2.5

Sec. 7.1.3, 7.2.3-7.2.5

Sec. 1.4.1.3, 1.4.2.3, 1.4.2.4

Sec. 8.1.3, 8.2.3, 8.2.4

Sec. 7.3, 7.6

Stability of chord under compression in XoY plane (post-buckling)

Sec. 5.3, 5.6, 7.20*

Sec. 5.3, 5.6, 7.30

Sec. 8.1.3, 8.2.3-8.2.5, 8.3.5

Sec. 7.1.3, 7.2.3-7.2.5, 7.3.6

Sec.  1.4.1.3, 1.4.2.3, 1.4.2.4, 1.4.3.5

Sec. 8.1.3, 8.2.3, 8.2.4, 8.3.5

Sec. 7.3, 7.6, 9.20

Stability of chord under compression in XoZ plane

Sec. 5.3, 5.6

Sec. 5.3, 5.6

Sec. 8.1.3, 8.2.3-8.2.5

Sec. 7.1.3, 7.2.3-7.2.5

Sec. 1.4.1.3, 1.4.2.3, 1.4.2.4

Sec. 8.1.3, 8.2.3, 8.2.4

Sec. 7.3, 7.6

Stability of chord under compression in XoZ plane (post-buckling)

Sec. 5.3, 5.6, 7.20*

Sec. 5.3, 5.6, 7.30

Sec. 8.1.3, 8.2.3-8.2.5, 8.3.5

Sec. 7.1.3, 7.2.3-7.2.5, 7.3.6

Sec. 1.4.1.3, 1.4.2.3, 1.4.2.4, 1.4.3.5

Sec. 8.1.3, 8.2.3, 8.2.4, 8.3.5

Sec. 7.3, 7.6, 9.20

Stability of chord in the moment My plane under eccentric compression

Sec. 5.27*, 5.33, 5.35

Sec. 5.27, 5.33, 5.35

Sec. 10.2.9, 10.3.3, 10.3.4, 10.3.6

Sec. 9.2.9, 9.3.3, 9.3.4, 9.3.6

Sec. 1.6.2.9, 1.6.3.3-1.6.3.5

Sec. 10.2.9, 10.3.3-10.3.5

Sec. 7.27, 7.33, 7.35

Stability of chord in the moment My plane under eccentric compression (post-buckling)

Sec. 5.27*, 5.33, 5.35, 7.20*

Sec. 5.27, 5.33, 5.37, 7.30

Sec. 10.2.9, 10.2.10, 10.3.3, 10.3.4, 10.3.6, 10.4.6

Sec.  9.2.2, 9.2.10, 9.3.3, 9.3.4, 9.3.6, 9.4.6

Sec. 1.6.2.2, 1.6.2.10, 1.6.3.3-1.6.3.5, 1.6.4.5

Sec. 10.2.2, 10.2.10, 10.3.3-10.3.5, 10.4.5

Sec. 7.27, 7.33, 7.35, 9.20

Stability of chord in the moment Mz plane under eccentric compression

Sec. 5.27*, 5.33, 5.35

Sec. 5.27, 5.33, 5.37

Sec. 10.2.9, 10.3.3, 10.3.4, 10.3.6

Sec. 9.2.9, 9.3.1, 9.3.3, 9.3.4, 9.3.6

Sec. 1.6.2.9, 1.6.3.3-1.6.3.5

Sec. 10.2.9, 10.3.3-10.3.5

Sec. 7.27, 7.33, 7.35

Stability of chord in the moment Mz plane under eccentric compression (post-buckling)

Sec. 5.27*, 5.33, 5.35, 7.20*

Sec. 5.27, 5.33, 5.37, 7.30

Sec. 10.2.9, 10.2.10, 10.3.2-10.3.4, 10.3.6, 10.4.6

Sec. 9.2.8, 9.2.10, 9.3.1-9.3.4, 9.3.6, 9.4.6

Sec. 1.6.2.8, 1.6.2.10, 1.6.3.2-1.6.3.5, 1.6.4.5

Sec. 10.2.8, 10.2.10, 10.3.2-10.3.5, 10.4.5

Sec. 7.27, 7.33, 7.35, 9.20

Bending of chord in two principal planes

Sec. 5.24, 5.25

Sec. 5.24, 5.25

Sec. 10.1.1

Sec. 9.1.1

Sec. 1.6.1.1

Sec. 10.1.1

Sec. 7.24, 7.25

Stability of chord out of the moment My plane under eccentric compression

Sec. 5.27*, 5.30-5.33, 5.35

 

Sec. 5.27, 5.30-5.33, 5.37

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3, 10.3.4, 10.3.6

Sec. 9.2.4, 9.2.5, 9.2.8, 9.3.1, 9.3.3, 9.3.4, 9.3.6

Sec. 1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.3.3-1.6.3.5

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3-10.3.5

Sec. 7.27, 7.30-7.33, 7.35

Stability of chord out of the moment My plane under eccentric compression (post-buckling)

Sec. 5.27*, 5.30-5.33, 5.35, 7.20*

Sec. 5.27, 5.30-5.33, 5.37, 7.30

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3, 10.3.4, 10.3.6, 10.4.6

Sec.  9.2.4, 9.2.5, 9.2.8, 9.2.10, 9.3.1, 9.3.3, 9.3.4, 9.3.6, 9.4.6

Sec. 1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.3.3-1.6.3.5, 1.6.4.5

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3-10.3.5, 10.4.5

Sec. 7.27, 7.30-7.33, 7.35, 9.20

Stability of chord out of the moment Mz plane under eccentric compression

Sec. 5.27*, 5.30-5.33, 5.35

Sec. 5.27, 5.30-5.33, 5.37

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3, 10.3.4, 10.3.6

Sec. 9.2.4, 9.2.5, 9.2.8, 9.3.1, 9.3.3, 9.3.4, 9.3.6

Sec. 1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.3.3-1.6.3.5

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3-10.3.5

Sec. 7.27, 7.30-7.33, 7.35

Stability of chord out of the moment Mz plane under eccentric compression (post-buckling)

Sec. 5.27*, 5.30-5.33, 5.35, 7.20*

Sec. 5.27, 5.30-5.33, 5.37, 7.30

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3, 10.3.4, 10.3.6, 10.4.6

Sec. 9.2.4, 9.2.5, 9.2.8, 9.2.10, 9.3.1, 9.3.3, 9.3.4, 9.3.6, 9.4.6

Sec. 1.6.2.4, 1.6.2.5, 1.6.2.8, 1.6.3.3-1.6.3.5, 1.6.4.5

Sec. 10.2.4, 10.2.5, 10.2.8, 10.3.3-10.3.5, 10.4.5

Sec. 7.27, 7.30-7.33, 7.35, 9.20

Strength of chord under tension

Sec. 5.1, 5.6

Sec. 5.1, 5.6

Sec. 8.1.1, 8.2.1

Sec. 7.1.1, 7.2.1

Sec. 1.4.1.3, 1.4.2.1

Sec. 8.1.3, 8.2.1

Sec. 7.1, 7.6

Stability of chord under compression

Sec. 5.3, 5.6

Sec. 5.3, 5.6

Sec. 8.1.3, 8.2.3-8.2.5

Sec. 7.1.3, 7.2.3-7.2.5

Sec. 1.4.1.3, 1.4.2.3-1.4.2.4

Sec. 8.1.3, 8.2.3-8.2.4

Sec. 7.3, 7.6

Stability of chord under compression (post-buckling)

Sec. 5.3, 5.6, 7.20*

Sec. 5.3, 5.6, 7.30

Sec. 8.1.3, 8.2.3-8.2.5, 8.3.5

Sec. 7.1.3, 7.2.3-7.2.5, 7.3.6

Sec. 1.4.1.3, 1.4.2.3-1.4.2.4, 1.4.3.5

Sec. 8.1.3, 8.2.3-8.2.4, 8.3.5

Sec. 7.3, 7.6, 9.20

Excessive deformations of the tension chord fiber

Sec. 5.28

Sec. 5.28

Sec. 10.1.3

Sec. 9.1.3

Sec. 1.6.1.3

Sec. 10.1.3

Sec. 7.28

Stability of in-plane bending of the chord

Sec. 5.15

Sec. 5.15

Sec. 9.4.1

Sec. 8.4.1

Sec. 1.5.4.1

Sec. 9.4.1

Sec. 7.15

Strength of lattice posts

Sec. 5.10

Sec. 5.8, 5.10

Sec. 8.2.9

Sec. 7.2.9

Sec. 1.4.2.9

Sec. 8.2.9

Sec. 7.8, 7.10

Strength of lattice struts

Sec. 5.10

Sec. 5.8, 5.10

Sec. 8.2.9

Sec. 7.2.9

Sec. 1.4.2.9

Sec. 8.2.9

Sec. 7.8, 7.10

Stability of lattice posts under compression

Sec. 5.10, 5.3

Sec. 5.8, 5.10, 5.3

Sec. 8.1.3

Sec. 7.1.3

Sec. 1.4.1.3

Sec. 8.1.3

Sec. 7.3, 7.8, 7.10

Stability of lattice struts under compression

Sec. 5.10, 5.3

Sec. 5.8, 5.10, 5.3

Sec. 8.1.3

Sec. 7.1.3

Sec. 1.4.1.3

Sec. 8.1.3

Sec. 7.3, 7.8, 7.10

Slenderness in XoY plane

Sec. 6.15, 6.16

Sec. 6.14, 6.15

Sec. 11.4.1

Sec. 10.4.1

Sec. 1.9.4.1

Sec. 13.4.1

Sec. 8.18

Slenderness in XoZ plane

Sec. 6.15, 6.16

Sec. 6.14, 6.15

Sec. 11.4.1

Sec. 10.4.1

Sec. 1.9.4.1

Sec. 13.4.1

Sec. 8.18

 

 

Limitations

When determining the relative eccentricity of members under compression and bending the design codes recommend taking the design moment as the moment in the section, which is located in a particular area of the bar. This area is determined depending on the boundary conditions of the bar, on which the program has no information. Therefore, the value of the moment maximal along the length of the element is used.

The dialog box of the Columns mode contains five tabs: General Properties, Section, Forces, Effective Length in the XОY Plane, Effective Length in the XОZ Plane.

The General Properties tab contains a text field for entering the column height and two buttons for selecting the plane of loading (an orientation of the deformation plane). For frame structures, the plane of loading is defined by the way a column is incorporated into a planar frame.

This tab also contains radio buttons for specifying a design model according to which the application should calculate the effective length for each of the principal planes.

For members carrying the longitudinal force and the bending moment, design standards for steel structures suggest two possible strength checks:

The possibility of the elastoplastic behavior is limited by a number of conditions, such as the absence of the direct action of dynamic loads.

In the case when there is a direct action of dynamic loads, as well as in cases when the user for some other reasons does not want to go beyond the elastic behavior, he can use the Inelasticity is not allowed checkbox provided in this tab.

The Web instability is forbidden checkbox is used to perform the check of the section taking into account its post-buckling behavior (after the local buckling of the web). The checked checkbox enables to reject the post-buckling behavior of the section if the check indicates local buckling of the web.

The Section tab enables you to select a cross-section for the column and to specify its properties. Rolled profiles can be selected from the database.

The properties of welded sections are entered into the respective text fields for specifying the thickness and the width of the sheets. Buttons for selecting the lattice type and the text fields for specifying the respective data are used for the lattice cross-sections. Sections of the lattice members are selected from the catalogue of equal or unequal angles.

Particular members of the lattice cross-section can be selected using the respective buttons.

The length between restraints out of the bending plane has to be specified (this value will be used in the analysis of stability of in-plane bending).

If the transverse stiffeners can be installed for the given cross-sections, you can use the Stiffeners checkbox, thus indicating that the stiffeners are installed, and specify their spacing. If this spacing is greater than the length of the element, the local stability analysis of the web is performed as for a web without stiffeners. If the web has such a slenderness that the element can be classified as an element with a flexible web, the application outputs the Ratio between height and width of the web factor with a value greater than 1,0. The calculation of elements with a flexible web is not implemented in the program due to the extremely limited scope of the method for calculating such structures (only for continuous beams bearing the static load).

The analysis can be performed with the account of corrosion like in the Resistance of Sections mode. The difference is that the built-in corrosion calculation module (invoked with the button image\calc.png) does not require you to specify the inclination of the member to the horizon.

The Forces tab is used to specify all the loads for each load case simultaneously. The general conditions of equilibrium are satisfied for these forces and moments. In particular, shear forces Q1 and Q2, as well as the nodal moments M1 and M2 should be taken from the results of the analysis of the system as a whole. The conditions of equilibrium are as follows:

Q1 - Q2 + qL = 0

M2 - M1-Q1L - qL2/2 = 0

Note that a positive longitudinal force corresponds to compression in this mode.

Clicking the button will open the Preview dialog box with diagrams of N, My и Qz. Clicking the Apply button will perform the calculation of the lacking force factors on the basis of the conditions of equilibrium.

It should be noted that all the loads act in the XОY plane or in the XОZ plane (the Х axis is oriented along the bar). The plane is selected in the General Properties tab.

The Effective Length in the XoY Plane and Effective Length in the XoZ Plane tabs are equivalent to those described in the Effective Lengths mode and implement the same capabilities, except for the rules for calculation of the effective lengths in compliance with Eurocode 3. The tabs enable to specify a column configuration and all the parameters necessary for the calculation of the effective lengths. These lengths are calculated for a fragment of a frame structure located in the plane of loading.

If the data on the effective length in one of the planes are specified in the information mode for a frame system, it should be noted that Kristall itself calculates the effective length factor based on the same algorithms that are used in the Effective Lengths mode. The height of the column and the moment of inertia are automatically selected from the data specified in the General Properties tab. Rules for selecting the moment of inertia are as follows:

 

Effective length in plane

XoY

XoZ

Plane of loading

XoY

Iz

 

XoZ

 

Iy

It should be noted that for cases highlighted in grey in the above table, the codes do not provide any procedures for determining the effective length (the plane of loading should coincide with the plane of the frame structure).

The Factors and Find buttons (the latter is available only for the rolled-profile columns) enable you to analyze the calculation results or to perform the search of cross-sections.