Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems


a – floor plan; b – design model of the main beam; c – beam section;
1 – load area

Objective: Check the mode for calculating and selecting beams

Task: Select a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing of 1 m.

References: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192.

Compliance with the codes: SNiP II-23-81*, SP 16.13330, DBN B.2.6-163:2010.

Initial data file:

3.4.sav;
report — Kristall3.4.doc

Initial data:

а = 6 m Spacing of main beams;
g1 = 1,16 kN/m2 Weight of the floor plate and stringers;
p = 20 kN/m2 Temporary (live) load;
qн = 127,099 kN/m Total characteristic load on the beam;
q1 = 1,05*1,16 kN/m2 * 6 m*1,02 = 7,454 kN/m

Design permanent load;(coefficient 1,02 allows for the self-weight of the main beam);

q2 = 1,2*20 kN/m2 * 6 m = 144,0 kN/m Design live load;
l = 18 m Main beam span;
Ry = 23 kN/cm2
Rs = 0,58*23=13,34 kN/cm2
Steel grade C255 with thickness t>20 mm;
[ f ] = l/400 = 45 mm Limit deflection;
bp×tp = 530×20 mm Section of the bearing stiffener;
kp = 6 mm Fillet weld leg in a welded connection between a bearing stiffener and a beam;
γc = 1 Service factor;
Wy = 27153,85 cm3 Geometric properties for a welded
Iy = 2308077,083 cm4 I-section with flanges 530×25 mm and a web 1650×12 mm
Sy = 15180,625 cm3.  

KRISTALL parameters:

Steel: C255
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor γn = 1
Importance factor (serviceability limit state)  = 1
Service factor  1

Structure:

Restraints against lateral displacements and rotations:

 

Left

Right

Displacement along Y

Restrained

Restrained

Displacement along Z

Restrained

Restrained

Rotation about Y

 

 

Rotation about Z

 

 

Restraints out of the bending plane n=17
Leg of girth welds – 8 mm
Leg of welds that attach the bearing stiffener – 6 mm

Section:

Manual calculation (SNiP II-23-81*):

1. Maximum bending moment and shear force acting in the design sections of the beam:

\[ M_{\max } =\frac{q_{\Sigma } l^{2}}{8}=\frac{\left( {7,454+144} \right)\cdot 18,0^{2}}{8}=6133,887 \quad kNм. \] \[ Q_{\max } =\frac{q_{\Sigma } l}{2}=\frac{\left( {7,454+144} \right)\cdot 18,0}{2}=1363,086 \quad kN. \]

2. Necessary beam section modulus:

\[ W_{nes} =\frac{M_{\max } }{R_{y} \gamma_{c} }=\frac{6133,887\cdot 100}{23}=26669,074 \quad cm^{3}. \]

3. Maximum tangential stresses in the support section of the beam:

\[ \tau_{\max } =\frac{Q_{\max } S_{y} }{I_{y} t_{w} }=\frac{1363,086\cdot 15180,625}{2308077,083\cdot 1,2}=7,471 \quad kN/cm^{2}. \]

4. Maximum deflection occurring in the middle of the beam span:

\[ f_{\max } =\frac{5}{384}\cdot \frac{q_{н} l^{4}}{EI_{y} }=\frac{5}{384}\cdot \frac{127,099\cdot 18,0^{4}}{2,06\cdot 10^{5}\cdot 10^{3}\cdot 2308077,083\cdot 10^{-8}}=36,539 \quad мм. \]

5. Conditional limit slenderness of the compressed beam chord:

\[ \bar{{\lambda }}_{ub} =0,35+0,0032\frac{b_{f} }{t_{f} }+\left( {0,76-0,02\frac{b_{f} }{t_{f} }} \right)\frac{b_{f} }{h_{f} }=0,35+0,0032\frac{530}{25}+\left( {0,76-0,02\frac{530}{25}} \right)\frac{530}{1675}=0,524. \]

6. Conditional actual slenderness of the compressed beam chord:

\( \bar{{\lambda }}_{b} =\frac{l_{ef} }{b_{f} }\sqrt {\frac{R_{y} }{E}} =\frac{1000}{530}\sqrt {\frac{230}{2,06\cdot 10^{5}}} =0,063<\bar{{\lambda }}_{ub} =0,524 \) – проверка устойчивости не требуется.

7. Conditional slenderness of the overhang of the compressed beam flange:

\[ \bar{{\lambda }}_{f} =\frac{b_{ef} }{t_{f} }\sqrt {\frac{R_{y} }{E}} =\frac{b_{f} -t_{w} }{2t_{f} }\sqrt {\frac{R_{y} }{E}} =\frac{530-12}{2\cdot 25}\sqrt {\frac{230}{2,06\cdot 10^{5}}} =0,346<\bar{{\lambda }}_{uf} =0,5. \]

8. 8. Strength of the bearing stiffener at the bearing of its end surface (\( (R_{un} =370 \quad MPa,\), \(R_{p} =\frac{370}{1,025}=360,98 \quad MPa \) (cm. табл. 1*)):

\[ N_{p} =A_{p} R_{p} =53,0\cdot 2\cdot 36,098=3826,388 \quad kN. \]

9. Reduced area, moment of inertia and slenderness of the bearing stiffener in the analysis of its stability:

\[ A_{red} =b_{p} t_{p} +0,65t_{w}^{2} \sqrt {\frac{E}{R_{y} }} =53,0\cdot 2,0+0,65\cdot 1,2^{2}\sqrt {\frac{2,06\cdot 10^{5}}{230}} =134,012 \quad cm^{2}; \] \[ I_{p} =\frac{1}{12}\left( {t_{p} b_{p}^{3} +0,65t_{w}^{4} \sqrt {\frac{E}{R_{y} }} } \right)=\frac{1}{12}\left( {2,0\cdot 53,0^{3}+0,65\cdot 1,2^{4}\sqrt {\frac{2,06\cdot 10^{5}}{230}} } \right)=24816,1948 \quad cm^{4}. \] \[ \lambda_{p} =l_{ef} \sqrt {\frac{A_{red} }{I_{p} }} =\left( {165+2,5} \right)\cdot \sqrt {\frac{134,012}{24816,1948}} =12,309; \] \[ \bar{{\lambda }}_{p} =\lambda_{p} \sqrt {\frac{R_{y} }{E}} =12,309\cdot \sqrt {\frac{230}{2,06\cdot 10^{5}}} =0,411. \]

10. Buckling coefficient of the bearing stiffener of the beam:

\[ \varphi =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{p} \sqrt {\bar{{\lambda }}_{p} } =1-\left( {0,073-5,53\cdot \frac{230}{2,06\cdot 10^{5}}} \right)0,411\sqrt {0,411} =0,9824. \]

11. Load-bearing capacity of the bearing stiffener from the condition of providing its stability:

\[ N_{p,b} =\varphi A_{red} R_{y} =0,9824\cdot 134,012\cdot 23,0=3028,028 \quad kN. \]

12. Load-bearing capacity of the fillet welds attaching the bearing stiffener to the beam web:

\[ N_{f} =2\beta_{f} k_{f} l_{f} R_{wf} \gamma_{wf} =2\beta_{f} k_{f} \left( {85\beta_{f} k_{f} } \right)R_{wf} \gamma_{wf} =2\cdot 0,7\cdot 0,6\cdot \left( {85\cdot 0,7\cdot 0,6} \right)\cdot 18,0\cdot 1,0=539,784 \quad kN. \]

13. Load-bearing capacity per unit length of fillet welds attaching the beam flanges to the web:

\[ N_{f} =2\beta_{f} k_{f} R_{wf} \gamma_{wf} =2\cdot 0,7\cdot 0,8\cdot 18,0\cdot 1,0=20,16 \quad kN/cm. \]

14. Shear force per unit length acting on the fillet welds attaching the beam flanges to the web:

\[ T=\frac{Q_{\max } S_{yf} }{I_{y} }=\frac{1363,086\cdot 53,0\cdot 2,5\cdot 83,75}{2308077,083}=6,5535 \quad kN/cm. \]

Comparison of solutions:

Factor

Source

Manual calculation

KRISTALL

Deviation, %

Stability of bearing stiffener

1363,086/3028,028 = 0,450

0,45

0,0

Bearing stiffener in bearing

1363,086/3826,388 = 0,356

0,357

0,0

Strength of girth weld

6,5535/20,16 = 0,325

0,315

1,23%

Strength of bearing stiffener weld

1363,086/539,784 = 2,525

2,525

0,0

Strength under action of lateral force

0,617

7,471/13,34 = 0,56

0,56

0,0

Strength under action of bending moment

1,0

26669,074/27153.85=0,982

0,982

0,0

Stability of in-plane bending under moment

0,982

0,0

Local stability of web

0,6

0,0

Local stability of chord overhang

0,71

0,346/0,5 = 0,692

0,692

0,0

Maximum deflection

36,539/45 = 0,812

0,812

0,0

Comments:

  1. In the source the check of the tangential stresses was performed according to the approximate formula.
  2. The check of the local stability of the chord overhang performed in the source is incorrect.