Analysis of a Lattice Axially Compressed Column from Two Rolled Channels
Objective: Check the mode for calculating columns of lattice cross-section
Task: Check the design lattice section from two channels on battens for the axially compressed column with a height of 6,5 m.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 257.
Compliance with the codes: SNiP II-23-81*, SP 16.13330, DBN B.2.6-163:2010.
Initial data file:
5.2.sav;
report — Kristall-5.2.doc
Initial data:
l = 6 m | Column height; |
μ = 1 | Pinned restraint; |
N = 1400 kN | Design compressive force; |
γc = 1 | Service factor; |
Ry = 24 kN/cm2 | Steel grade C245; |
В = 300 mm | Distance between the outer faces of the chord; |
b = 170 mm, s = 1120 mm | Batten height, distance between the batten axes; |
t = 10 mm | Batten thickness; |
A = 70,4 cm2, Iy = 8320 cm4, Iz = 11576,86 cm4 iy = 10,871 cm, iz = 12,824 cm |
Geometric properties of the lattice section; |
Ab = 35,2 cm2, Ib = Iz = 262 cm4 iy = 10,871 cm, iz = 2,728 cm Wb,z,min = 37,269 cm3 |
Geometric properties of the chord section; |
KRISTALL parameters:
Steel: C245
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1
Member length – 6 m
Limit slenderness for members in compression: 180 - 60α
Limit slenderness for members in tension: 250
Section:
|
Lattice b = 170 mm |
Manual calculation (SNiP II-23-81*):
1. Moment of inertia and section modulus of one batten with respect to its own axis:
\[ I_{s} =\frac{t_{0} b^{3}}{12}=\frac{1\cdot 17^{3}}{12}=409,4167 \quad см^{4}; \] \[ W_{s} =\frac{t_{0} b^{2}}{6}=\frac{1\cdot 17^{2}}{6}=48,167 \quadсм^{3}. \]
2. Distance between chord axes:
\[ b=B-2z_{0} =30-2\cdot 2,47=25,06 \quad см. \]
3. Slenderness of one of the chords in the sections between the battens (in the clear):
\[ \lambda_{1,y} =\frac{l_{1,y} }{i_{1,y} }=\frac{600}{10,871}=55,193; \quad \bar{{\lambda }}_{1,y} =\lambda_{1,y} \sqrt {\frac{R_{y} }{E}} =55,193\sqrt {\frac{240}{2,06\cdot 10^{5}}} =1,884\le 5; \] \[ \lambda_{1,z} =\frac{l_{1,z} }{i_{1,z} }=\frac{s-b}{i_{1,z} }=\frac{112-17}{2,728}=34,824<40; \quad \bar{{\lambda }}_{1,z} =\lambda_{1,z} \sqrt {\frac{R_{y} }{E}} =34,824\sqrt {\frac{240}{2,06\cdot 10^{5}}} =1,1886\le 5. \]
4. Column slenderness and respective conditional slenderness:
\[ \lambda_{y} =\frac{l_{ef,y} }{i_{y} }=\frac{600}{10,871}=55,193; \quad \Rightarrow \quad \bar{{\lambda }}_{y} =\lambda_{y} \sqrt {\frac{R_{y} }{E}} =55,193\sqrt {\frac{240}{2,06\cdot 10^{5}}} =1,884<2,5; \] \[ \lambda_{z} =\frac{l_{ef,z} }{i_{z} }=\frac{600}{12,824}=46,787. \]
5. Reduced and conditional reduced slenderness of the column with respect to the free axis:
При \( \frac{I_{s} s}{I_{b} b}=\frac{409,4167\cdot 112}{262\cdot 25,06}=6,984>5: \)
\[ \lambda_{z} =\lambda_{ef,z} =\sqrt {\lambda_{z}^{2} +\lambda_{1,z}^{2} } =\sqrt {46,787^{2}+34,824^{2}} =58,3244; \] \[ \bar{{\lambda }}_{z} =\lambda_{z} \sqrt {\frac{R_{y} }{E}} =58,3244\sqrt {\frac{240}{2,06\cdot 10^{5}}} =1,991<2,5. \]
6. Buckling coefficients:
\[ \varphi_{y} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{y} \sqrt {\bar{{\lambda }}_{y} } =1-\left( {0,073-5,53\frac{240}{2,06\cdot 10^{5}}} \right)\cdot 1,884\sqrt {1,884} =0,8279; \] \[ \varphi_{z} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{z} \sqrt {\bar{{\lambda }}_{z} } =1-\left( {0,073-5,53\frac{240}{2,06\cdot 10^{5}}} \right)\cdot 1,991\sqrt {1,991} =0,813. \]
7. Limit compressive forces causing the column buckling about the respective axes:
\[ N_{b,y} =\varphi_{y} AR_{y} \gamma_{c} =0,8279\cdot 70,4\cdot 24\cdot 1=1398,8 \quad кН; \] \[ N_{b,z} =\varphi_{z} AR_{y} \gamma_{c} =0,813\cdot 70,4\cdot 24\cdot 1=1373,645 \quad кН. \]
8. Conditional shear force Qfic:
\[ Q_{fic} =7,15\cdot 10^{-6}\left( {2330-\frac{E}{R_{y} }} \right)\frac{N}{\varphi_{z} }=7,15\cdot 10^{-6}\left( {2330-\frac{2,06\cdot 10^{5}}{240}} \right)\frac{1400}{0,813}=18,1198 \quad кН. \]
9. Force F, shearing the batten, and moment M1, bending the batten in its plane:
\[ F=\frac{Q_{s} s}{b}=\frac{Q_{fic} s}{2b}=\frac{18,1198\cdot 112}{2\cdot 25,06}=40,4912 \quad кН; \] \[ M_{1} =\frac{Q_{s} s}{2}=\frac{Q_{fic} s}{4}=\frac{18,1198\cdot 112}{4}=507,3544 \quad кНсм. \]
10. Load-bearing capacity of the batten under bending:
\[ W_{s} R_{y} \gamma_{c} =48,167\cdot 24\cdot 1=1156,01 \quad кНсм. \]
11. Bending moment acting on the column chord and caused by the bending of the batten:
\[ M_{b} =2M_{1} =2\cdot 507,3544=1014,7088 \quad кНсм. \]
12. Load-bearing capacity of the chord under bending in the batten plane:
\[ W_{b,z,\min } R_{y} \gamma_{c} =37,269\cdot 24\cdot 1=894,456 \quad кНсм. \]
13. Strength of the chord under the combined action of the longitudinal force and bending moment in the batten plane without taking the plasticity into account:
\[ \frac{1}{R_{y} \gamma_{c} }\left( {\frac{N}{A}+\frac{M_{b} }{W_{b,z,\min } }} \right)=\frac{1}{24\cdot 1}\left( {\frac{1400}{70,4}+\frac{1014,7088}{37,269}} \right)=1,963. \]
14. Buckling coefficients for a chord:
\[ \varphi_{y} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{1,y} \sqrt {\bar{{\lambda }}_{1,y} } =1-\left( {0,073-5,53\frac{240}{2,06\cdot 10^{5}}} \right)1,884\sqrt {1,884} =0,828; \] \[ \varphi_{z} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\lambda_{1,z} \sqrt {\lambda_{1,z} } =1-\left( {0,073-5,53\frac{240}{2,06\cdot 10^{5}}} \right)\cdot 1,1886\sqrt {1,1886} =0,914. \]
15. Load-bearing capacity of the chord under compression:
\[ \varphi_{y} AR_{y} \gamma_{c} =0,828\cdot 35,2\cdot 24\cdot 1=699,398 \quad кН; \] \[ \varphi_{z} AR_{y} \gamma_{c} =0,914\cdot 35,2\cdot 24\cdot 1=772,1472 \quad кН. \]
16. Relative eccentricity, cross-section shape coefficient, reduced eccentricity, and buckling coefficient under eccentric compression of the chord
\[ m_{z} =\frac{M_{z} }{N}\cdot \frac{A_{b} }{W_{b,z,\min } }=\frac{1014,7088}{700}\cdot \frac{35,2}{37,269}=1,36911\le 5; \] \[ \frac{A_{f} }{A_{w} }=\frac{16,2}{19,95}=0,812; \] \[ \eta =\left( {1,25-0,05m_{z} } \right)-0,01\left( {5-m_{z} } \right)\bar{{\lambda }}_{1,z} =\left( {1,25-0,05\cdot 1,36911} \right)-0,01\left( {5-1,36911} \right)\cdot 1,1886=1,13838 \]
(for the section type 9 according to the table 73 of SNiP ІІ-23-81* when \(\frac{A_{f} }{A_{w} }=0,5);\)
\[ \eta =\left( {1,5-0,1m_{z} } \right)-0,02\left( {5-m_{z} } \right)\bar{{\lambda }}_{1,z} =\left( {1,5-0,1\cdot 1,36911} \right)-0,02\left( {5-1,36911} \right)\cdot 1,1886=1,27678 \]
(for the section type 9 according to the table 73 of SNiP ІІ-23-81* when \( \frac{A_{f} }{A_{w} }=1,0); \)
\(\eta =1,2247\) (for the section type 9 according to the table 73 of SNiP ІІ-23-81* when \( \frac{A_{f}}{A_{w} }=0,812);\)
\( \eta =1,45+0,04m_{z} =1,45+0,04\cdot 1,36911=1,50476 \) (for the section type 11 according to the table 73 of SNiP ІІ-23-81* when \( \frac{A_{f} }{A_{w} }=0,5);\)
\( \eta =1,8+0,12m_{z} =1,8+0,12\cdot 1,36911=1,9643\) (for the section type 11 according to the table 73 of SNiP ІІ-23-81* when \(\frac{A_{f} }{A_{w} }=1,0)\);
\(\eta =1,7915\) (for the section type 11 according to the table 73 of SNiP ІІ-23-81* when \(\frac{A_{f} }{A_{w} }=1,33811);\)
\[ m_{z,ef} =\eta m_{z} =1,7915\cdot 1,36911=2,453; \] \(\varphi_{e} =0,4174\) (according to the table 74 of SNiP ІІ-23-81*).
17. Stability check of the chord in the batten bending plane:
\[ \frac{N}{2\varphi_{e} A_{b} }=\frac{1400}{2\cdot 0,4174\cdot 35,2}=47,6434 \quad кН/см^{2} \quad >R_{y} \gamma_{c} =24\cdot 1=24 \quad кН/см^{2}. \]
18. Stability check of the chord out of the batten bending plane is performed as a stability check of an axially compressed bar in the respective plane according to Sec. 5.32 of SNiP II-23-81*.
Comparison of solutions:
Factor |
Source |
Manual calculation |
KRISTALL |
Deviation from the manual calculation, % |
---|---|---|---|---|
General stability of a bar under axial compression in XoY plane |
24/24=1 |
1400/1373,645 = 1,019 |
1,019 |
0,0 |
General stability of a bar under axial compression in XoZ plane |
23,6/24=0,983 |
1400/1398,82 = 1,001 |
1,001 |
0,0 |
Resistance of a batten to bending |
– |
507,3544/1156,01 = 0,439 |
0,439 |
0,0 |
Strength under action of bending moment Mz |
– |
1014,7088/894,456 = 1,134 |
1,134 |
0,0 |
Strength under combined action of longitudinal force and bending moments, no plasticity |
– |
1,963 |
1,963 |
0,0 |
Stability of chord under compression in XoY plane |
– |
700/772,1472 = 0,9066 |
0,907 |
0,0 |
Stability of chord under compression in XoZ plane |
23,6/24=0,983 |
700/699,398 = 1,001 |
1,001 |
0,0 |
Stability of chord in the moment Mz plane under eccentric compression |
– |
47,6434/24 = 1,985 |
1,985 |
0,0 |
Stability of chord out of the moment Mz plane under eccentric compression |
– |
24,01735/24 = 1,001 |
1,001 |
0,0 |
Limit slenderness in XoY plane |
– |
58,3244/120 = 0,486 |
0,486 |
0,0 |
Limit slenderness in XoZ plane |
–
|
55,193/120 = 0,46 |
0,46 |
0,0 |