Strength and Stiffness Analysis of a Welded I-beam
a – cross-section variation along the beam length; b – beam section and stress diagrams
Objective: Check of the Resistance of Sections mode
Task: Check the design section of a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing of 1,125 m.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p 195.
Compliance with the codes: SNiP II-23-81*, SP 16.13330, DBN B.2.6-163:2010.
Initial data file:
4.1.sav;
report — Kristall4.1.doc
Initial data:
M1 = 3469,28 kNm | Design bending moment; |
Q1 = 925 kN | Design shear force; |
Ry = 23 kN/cm2, Rs = 0,58*23=13,3 kN/cm2 |
Steel grade C255 with thickness t>20 mm; |
l = 18 m | Beam span; |
Wy = 15187,794 cm3 | Geometric properties for a welded |
Iy = 1290962,5 cm4 Sy = 9108,75 cm3 iy = 63,715 cm, iz = 4,265 cm |
I-section with flanges 240×25 mm and a web 1650×12 mm; |
KRISTALL parameters:
Steel: C255
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1
Limit slenderness for members in compression: 220
Limit slenderness for members in tension: 300
Section:
Manual calculation (SNiP II-23-81*):
1. Necessary beam section modulus:
\[ W_{nes} =\frac{M_{\max } }{R_{y} \gamma_{c} }=\frac{\mbox{3469},\mbox{28}\cdot 100}{23}=15083,826 \quad cm^{3}. \]
2. Maximum tangential stresses in support sections of the beam:
\[ \tau_{\max } =\frac{Q_{\max } S_{y} }{I_{y} t_{w} }=\frac{925\cdot 9108,75}{1290962,5\cdot 1,2}=5,4388 \quad kN/cm^{2}. \]
3. Reduced stresses in the considered beam section:
\[ \sigma_{y} =\frac{M_{y} }{I_{y} }\frac{h_{w} }{2}=\frac{3469,28\cdot 100\cdot 165}{1290962,5\cdot 2}=22,1707 \quad kN/cm^{2} \] \[ \tau_{yz} =\frac{Q_{z} S_{yf} }{I_{y} t_{w} }=\frac{925\cdot \left( {24\cdot 2,5\cdot \left( {0,5\cdot 165+0,5\cdot 2,5} \right)} \right)}{1290962,5\cdot 1,2}=3,00 \quad kN/cm^{2} \] \[\sigma_{red} =\sqrt {\sigma_{y}^{2} +3\tau_{yz}^{2} } =\sqrt {22,1707^{2}+3\cdot 3,00^{2}} =22,7715 \quad kN/cm^{2} \]
4. Slenderness of the member in the moment plane:
\[ \lambda_{y} =\frac{\mu l}{i_{y} }=\frac{18\cdot 100}{63,715}=28,2508. \]
5. Slenderness of the member out of the moment plane:
\[ \lambda_{y} =\frac{\mu l}{i_{y} }=\frac{1,125\cdot 100}{4,265}=26,3775. \]
Comparison of solutions:
Factor |
Source |
Manual calculation |
KRISTALL |
Deviation from the manual calculation, % |
---|---|---|---|---|
Strength under action of bending moment Му |
0,99 |
15083,826/15187,794 = = 0,993 |
0,993 |
0,0 |
Strength under action of lateral force Qz |
– |
5,4388/13,3 = 0,4089 |
0,408 |
0,0 |
Strength for reduced stresses |
– |
22,7715/1,15/23 = 0,861 |
0,861 |
0,0 |
Strength under combined action of longitudinal force and bending moments, no plasticity |
– |
15083,826/15187,794 = = 0,993 |
0,993 |
0,0 |
Stability of in-plane bending |
– |
15083,826/1/15187,794 = = 0,993 |
0,993 |
0,0 |
Limit slenderness in XoY plane |
– |
26,3775/300 = 0,088 |
0,088 |
0,0 |
Limit slenderness in XoZ plane |
– |
28,2508/300 = 0,094 |
0,094 |
0,0 |