Analysis of an Axially Compressed Welded I-beam Column
Objective: Check of the Resistance of Sections mode
Task: Check the design section of a welded I-beam for the axially compressed column with a height of 6,5 m.
Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256.
Compliance with the codes: SNiP II-23-81*, SP 16.13330, DBN B.2.6-163:2010.
Initial data file:
4.6.sav;
report — Kristall4.6.doc
Initial data:
Ry = 24 kN/cm2 | Steel grade C245; |
l = 6,5 m | Column height; |
N = 5000 kN | Design longitudinal compressive force; |
μ = 0,7 | The lower restraint is rigid and the upper one is pinned for both principal planes of inertia; |
γc = 1 | Service factor; |
A = 230,4 cm2, Iy = 118243,584 cm4, Iz = 33184,512 cm4 Wy = 4583,085 cm3, Wz = 1382,688 cm3 iy = 22,654 cm, iz = 12,001 cm |
Geometric properties for a welded I-section with a web 480×12 mm and flanges 480×18 mm; |
KRISTALL parameters:
Steel: C245
Group of structures according to the table 50* of SNiP II-23-81* 3
Importance factor 1
Service factor 1
Limit slenderness for members in compression: 180 - 60α
Limit slenderness for members in tension: 250
Section:
Manual calculation (SNiP II-23-81*):
1. Load-bearing capacity of the element under axial compression/tension:
\[ N=AR_{y} \gamma_{c} =230,4\cdot 24\cdot 1=5529,6 \quad кН. \]
2. Slenderness of the element for both principal planes of inertia:
\[ \lambda_{y} =\frac{l_{ef,y} }{i_{y} }=\frac{\mu l}{i_{y} }=\frac{0,7\cdot 6,5\cdot 100}{22,654}=20,08475; \] \[ {\lambda}_{z} =\frac{l_{ef,z} }{i_{z} }=\frac{\mu l}{i_{z} }=\frac{0,7\cdot 6,5\cdot 100}{12,001}=37,9135. \]
3. Conditional slenderness of the element for both principal planes of inertia:
\[ \bar{{\lambda }}_{y} =\frac{l_{ef,y} }{i_{y} }\sqrt {\frac{R_{y} }{E}} =\frac{\mu l}{i_{y} }\sqrt {\frac{R_{y} }{E}} =\frac{0,7\cdot 6,5\cdot 100}{22,654}\sqrt {\frac{240}{2,06\cdot 10^{5}}} =0,68555; \] \[ \bar{{\lambda }}_{z} =\frac{l_{ef,z} }{i_{z} }\sqrt {\frac{R_{y} }{E}} =\frac{\mu l}{i_{z} }\sqrt {\frac{R_{y} }{E}} =\frac{0,7\cdot 6,5\cdot 100}{12,001}\sqrt {\frac{240}{2,06\cdot 10^{5}}} =1,2941. \]
4. Buckling coefficients under axial compression:
\[ \varphi_{y} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{y} \sqrt {\bar{{\lambda }}_{y} } =1-\left( {0,073-5,53\cdot \frac{240}{2,06\cdot 10^{5}}} \right)\cdot 0,68555\sqrt {0,68555} =0,9622; \] \[ \varphi_{z} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{z} \sqrt {\bar{{\lambda }}_{z} } =1-\left( {0,073-5,53\cdot \frac{240}{2,06\cdot 10^{5}}} \right)\cdot 1,2941\sqrt {1,2941} =0,902; \]
5. Load-bearing capacity of the element at its buckling:
\[ N_{b,y} =\varphi_{y} AR_{y} \gamma_{c} =0,9622\cdot 230,4\cdot 24\cdot 1=5320,58 \quad кН; \] \[ N_{b,z} =\varphi_{z} AR_{y} \gamma_{c} =0,902\cdot 230,4\cdot 24\cdot 1=4987,7 \quad кН. \]
6. Limit slenderness:
\[ \lambda_{uy} =180-60\cdot \frac{N}{\varphi_{y} AR_{y} \gamma_{c} }=180-60\cdot \frac{5000}{0,9622\cdot 230,4\cdot 24\cdot 1}=123,615; \] \[ \lambda_{uz} =180-60\cdot \frac{N}{\varphi_{z} AR_{y} \gamma_{c} }=180-60\cdot \frac{5000}{0,902\cdot 230,4\cdot 24\cdot 1}=119,852. \]
Comparison of solutions:
Factor |
Source |
Manual calculation |
KRISTALL |
Deviation % |
---|---|---|---|---|
Strength under combined action of longitudinal force and bending moments, no plasticity |
– |
5000/5529,6 = 0,904 |
0,904 |
– |
Stability under compression in XoY (XoU) plane |
23,69/24 = = 0,987 |
5000/4987,7 = 1,002 |
1,002 |
– |
Stability under compression in XoZ (XoV) plane |
– |
5000/5320,58 = 0,94 |
0,94 |
– |
Strength under axial compression/tension |
0,904 |
5000/5529,6 = 0,904 |
0,904 |
– |
Limit slenderness in XoY plane |
– |
37,9135/119,852 = 0,316 |
0,316 |
– |
Limit slenderness in XoZ plane |
– |
20,085/123,615= 0,162 |
0,162 |
– |