Analysis of a Welded Connection for a Bending Moment Acting in the Fillet Weld Plane

Objective: Check the mode for calculating welded connections.

Task: Check the welded connection with fillet welds. The connection is loaded with a bending moment acting in the weld plane.

References: Moskalev N.S., Pronosin J.A. Steel Structures. Handbook / M.: ASV Publishing House, 2010. p. 88-89.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, SP 16.13330.2017, DBN B.2.6-163:2010, DBN B.2.6-198:2014.

Initial data:

Run = 370 MPa Steel С245
М = 51 kNm Force
l1 = 20 cm Geometric length of longitudinal fillet welds
l2 = 25 cm Geometric length of the transverse fillet weld
Rwf = 185 MPa Manual welding with E46 electrodes
kf = 8 mm Weld leg

 

Initial data file:

1.8.sav;
report — Kristall1.8.doc

 

KRISTALL initial data:
Steel:
C245

Importance factor

1

Service factor

1

Group of structures according to the table 50* of SNiP II-23-81*

4

 

Properties of welding materials:

Characteristic resistance of the weld metal based on the ultimate strength, Rwun

450000 kN/m2

Design resistance of the fillet welds for shear in the weld metal, Rwf

200000 kN/m2

Type of welding

Manual

Position of weld

Flat

Climatic region

with temperature  t > -40°C

 

Type:

Parameters:

Weld leg = 8 mm
b = 200 mm
h = 250 mm
t = 20 mm
tf = 24 mm

 

 

Internal forces and moments:

N = 0 kN
My = 51 kNm
Qz = 0 kN

Checked according to SNiP

Check

Utilization factor

 Sec.11.2 Formula (120)

of the weld metal

0.793

 Sec.11.2 Formula (121)

of the metal of the fusion border

0.659

 

Comparison of solutions

Check

of the weld metal

of the metal of the fusion border

Source

1760 kN/cm2 / 1850 kN/cm2 = 0,951

1231,5 kN/cm2 / 1665 kN/cm2 = 0,740

KRISTALL

0,793

0,659

Deviation, %

16,6

10,95

Refined manual calculation (see comments)

1636,178 kN/cm2 / 2000 kN/cm2 = 0,818

1135,787 kN/cm2 / 1665 kN/cm2 = 0,682

Deviation, %

3,06

3,37

 

Comments:

The difference in the results is due to the inaccuracy made by the authors of the example in the design section of the weld. Moreover, the design resistance of the fillet welds for shear in the weld metal for the E46 electrodes was incorrectly taken in the example as Rwf = 185 MPa, while KRISTALL and design codes use the value of Rwf = 200 MPa.

Design section of the weld

Let’s determine the moments of inertia of the weld with respect to the principal axes of inertia for the correct design section of the weld given in the figure:

\[ I_{fx} =\frac{25^{3}\cdot 0,7\cdot 0,8}{12}+\frac{\left( {0,7\cdot 0,8} \right)^{3}\cdot 20}{6}+2\cdot 0,7\cdot 0,8\cdot 20\cdot \left( {\frac{25}{2}+\frac{0,8\cdot 0,7}{2}} \right)^{2}= 4388,31 \quad cm^{4} \] \[ \begin{array}{l} I_{fy} =\frac{25\cdot \left( {0,7\cdot 0,8} \right)^{3}}{12}+25\cdot 0,7\cdot 0,8\cdot \left( {6,31-\frac{0,7\cdot 0,8}{2}} \right)^{2}+\frac{0,7\cdot 0,8\cdot 20^{3}}{6}+ \\ +2\cdot 0,7\cdot 0,8\cdot 20\cdot \left( {\frac{20}{2}-6,31} \right)^{2}=1561,086 \quad cm^{4} \\ \end{array} \] \[ I_{zx} =\frac{25^{3}\cdot 1,0\cdot 0,8}{12}+\frac{\left( {1,0\cdot 0,8} \right)^{3}\cdot 20}{6}+2\cdot 1,0\cdot 0,8\cdot 20\cdot \left( {\frac{25}{2}+\frac{0,8\cdot 1,0}{2}} \right)^{2}=6368,5 \quad cm^{4} \] \[ \begin{array}{l} I_{zy} =\frac{25\cdot \left( {1,0\cdot 0,8} \right)^{3}}{12}+25\cdot 1,0\cdot 0,8\cdot \left( {6,31-\frac{1,0\cdot 0,8}{2}} \right)^{2}+\frac{1,0\cdot 0,8\cdot 20^{3}}{6}+ \\ +2\cdot 1,0\cdot 0,8\cdot 20\cdot \left( {\frac{20}{2}-6,31} \right)^{2}=2202,01 \quad cm^{4} \\ \end{array} \]

Then the strength checks of the weld will be as follows:

– of the weld metal:

\[ \sigma_{f} =\frac{510000}{4388,31+1561,086}\sqrt {13,3^{2}+13,69^{2}} =1636,178 \quad kN/cm^{2} < 2000 kN/cm^{2} \]

– of the metal of the fusion border:

\[ \sigma_{f} =\frac{510000}{6368,5+2202,01}\sqrt {13,3^{2}+13,69^{2}} =1135,787 \quad kN/cm^{2} < 1665 kN/cm^{2} \]