Расчет центрально-сжатой колонны из сварного двутаврового профиля

Цель: Проверка режима расчета сопротивления сечений

Задача: Проверить расчетное сечение сварного двутаврового профиля для центрально-сжатой колонны высотой 6,5 м.

Источник: Металлические конструкции: учебник для студ. Учреждений высш. проф. Образования / [Ю. И. Кудишин, Е. И. Беленя, В. С. Игнатьева и др.]; под. Ред. Ю. И. Кудишина. - 13-е изд., испр. - М. : Издательский центр "Академия", 2011. С 256.

Соответствие нормативным документам: СНиП II-23-81*, СП 16.13330, ДБН В.2.6-163:2010.

Имя файла с исходными данными:

4.6.sav;
отчет — Kristall4.6.doc

Исходные данные:

Ry = 24 кН/cм2 Сталь марки C245;
l = 6,5 м Высота колонны;
N = 5000 кН Расчетное продольное усилие сжатия;
μ = 0,7 Закрепление внизу жесткое, сверху шарнирное для обеих главных плоскостей инерции;
γc = 1 Коэффициент условий работы;
A = 230,4 см2,
Iy = 118243,584 см4, Iz = 33184,512 см4
Wy = 4583,085 см3, Wz = 1382,688 см3
iy = 22,654 см, iz = 12,001 см
Геометрические характеристики для сечения сварного двутавра со стенкой 480×12 мм и полками 480×18 мм;

 

Параметры КРИСТАЛЛ:

Сталь: C245

Группа конструкций по таблице 50* СНиП II-23-81* 3
Коэффициент надежности по ответственности 1
Коэффициент условий работы 1
Предельная гибкость для сжатых элементов: 180 - 60α
Предельная гибкость для растянутых элементов: 250

Сечение

Ручной расчет (СНиП II-23-81*):

1. Несущая способность элемента при центральном сжатии/растяжении:

\[ N=AR_{y} \gamma_{c} =230,4\cdot 24\cdot 1=5529,6 \quad кН. \]

2. Гибкости элемента для обеих главных плоскостей инерции:

\[ \lambda_{y} =\frac{l_{ef,y} }{i_{y} }=\frac{\mu l}{i_{y} }=\frac{0,7\cdot 6,5\cdot 100}{22,654}=20,08475; \] \[ {\lambda}_{z} =\frac{l_{ef,z} }{i_{z} }=\frac{\mu l}{i_{z} }=\frac{0,7\cdot 6,5\cdot 100}{12,001}=37,9135. \]

3. Условные гибкости элемента для обеих главных плоскостей инерции:

\[ \bar{{\lambda }}_{y} =\frac{l_{ef,y} }{i_{y} }\sqrt {\frac{R_{y} }{E}} =\frac{\mu l}{i_{y} }\sqrt {\frac{R_{y} }{E}} =\frac{0,7\cdot 6,5\cdot 100}{22,654}\sqrt {\frac{240}{2,06\cdot 10^{5}}} =0,68555; \] \[ \bar{{\lambda }}_{z} =\frac{l_{ef,z} }{i_{z} }\sqrt {\frac{R_{y} }{E}} =\frac{\mu l}{i_{z} }\sqrt {\frac{R_{y} }{E}} =\frac{0,7\cdot 6,5\cdot 100}{12,001}\sqrt {\frac{240}{2,06\cdot 10^{5}}} =1,2941. \]

4. Коэффициенты продольного изгиба при центральном сжатии:

\[ \varphi_{y} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{y} \sqrt {\bar{{\lambda }}_{y} } =1-\left( {0,073-5,53\cdot \frac{240}{2,06\cdot 10^{5}}} \right)\cdot 0,68555\sqrt {0,68555} =0,9622; \] \[ \varphi_{z} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{z} \sqrt {\bar{{\lambda }}_{z} } =1-\left( {0,073-5,53\cdot \frac{240}{2,06\cdot 10^{5}}} \right)\cdot 1,2941\sqrt {1,2941} =0,902; \]

5. Несущая способность элемента при потере устойчивости:

\[ N_{b,y} =\varphi_{y} AR_{y} \gamma_{c} =0,9622\cdot 230,4\cdot 24\cdot 1=5320,58 \quad кН; \] \[ N_{b,z} =\varphi_{z} AR_{y} \gamma_{c} =0,902\cdot 230,4\cdot 24\cdot 1=4987,7 \quad кН. \]

6. Предельные гибкости:

\[ \lambda_{uy} =180-60\cdot \frac{N}{\varphi_{y} AR_{y} \gamma_{c} }=180-60\cdot \frac{5000}{0,9622\cdot 230,4\cdot 24\cdot 1}=123,615; \] \[ \lambda_{uz} =180-60\cdot \frac{N}{\varphi_{z} AR_{y} \gamma_{c} }=180-60\cdot \frac{5000}{0,902\cdot 230,4\cdot 24\cdot 1}=119,852. \]

Сравнение решений:

Фактор

Источник

Ручной счет

КРИСТАЛЛ

Отклонение от ручного счета, %

Прочность при совместном действии продольной силы и изгибающих моментов без учета пластики

5000/5529,6 = 

0,904

0,904

0,0

Устойчивость при сжатии в плоскости XoY (XoU)

23,69/24 = 0,987

5000/4987,7 =

1,002

1,002

0,0

Устойчивость при сжатии в плоскости XoZ (XoV) )

5000/5320,58 =

0,94

0,94

0,0

Прочность при центральном сжатии/растяжении

0,904

5000/5529,6 = 

0,904

0,904

0,0

Предельная гибкость в плоскости XoY

37,9135/119,852 =

0,316

0,316

0,0

Предельная гибкость в плоскости XoZ

20,085/123,615 =

0,1625

0,1625

0,0