Simply Supported Beam Subjected to a Concentrated Force and Uniformly Distributed Pressure

Objective: Combined loading (lateral pressure, concentrated force) in one plane without taking into account the transverse shear deformations. Displacements and forces are checked.

Initial data file: 4_3.spr

Problem formulation: The simply supported beam is subjected to a concentrated force Р and uniformly distributed pressure q. Displacements w, rotation angles θ, shear forces Q and bending moments М are determined.

References: G.S. Pisarenko, A.P. Yakovlev, V.V. Matveev, Handbook on Strength of Materials. — Kiev: Naukova Dumka, 1988.

Initial data:

E = 2.0·1011 Pa - elastic modulus;
μ = 0.3 - Poisson’s ratio;
l = 3 m - beam length;
F = 14.2·10-4 m2 - cross-sectional area;
I = 2.44·10-6 m4 - moment of inertia;
Р = −5 kN - value of the concentrated force;
q = 10 kN/m - value of pressure;
a = b = 1.5 m - geometric size.

 

Finite element model:
Design model – plane frame, 10 bar elements, 11 nodes.

 

Results in SCAD


Bending moment diagram М (kN*m) 


Shear force diagram Q  (kN)


Values of transverse displacements w (mm)


Values of rotation angles θ (rad)

 

Comparison of solutions:

Parameter

Theory

SCAD

Deviations, %

Deflection in the point С, mm

-5.043

-5.043

0.00

Rotation angle in the point В, rad

-7.204·10-3

-7.204·10-3

0.00

Bending moment in the point С, kN·m

1.875

1.875

0.00

Shear force in the point A, kN

1.25

1.25

0.00

Shear force in the point B, kN

-8.75

-8.75

0.00

 

Notes: In the analytical solution, the deflection in the point C can be calculated according to the following formula (“Handbook on Strength of Materials” p. 295, 297):

\[ w_{C} =\frac{P\cdot a^{2}\cdot b^{2}}{3\cdot E\cdot I\cdot \left( {a+b} \right)}+\frac{q\cdot a\cdot b^{3}\cdot \left( {4\cdot a+b} \right)}{24\cdot E\cdot I\cdot \left( {a+b} \right)}. \]

The rotation angle in the point B can be calculated according to the following formula (“Handbook on Strength of Materials” p. 295, 297):

\[ \theta_{B} =\frac{P\cdot b\cdot \left( {2\cdot a^{2}+a\cdot b} \right)}{6\cdot E\cdot I\cdot \left( {a+b} \right)}-\frac{q\cdot b^{2}\cdot \left( {4\cdot a^{2}+4\cdot a\cdot b+b^{2}} \right)}{24\cdot E\cdot I\cdot \left( {a+b} \right)}. \]

The bending moment in the point C can be calculated according to the following formula:

\[ M_{C} =\frac{P\cdot a\cdot b}{a+b}+\frac{q\cdot a\cdot b^{2}}{2\cdot \left( {a+b} \right)}. \]

The shear force in the point A can be calculated according to the following formula:

\[ Q_{A} =\frac{P\cdot b}{a+b}+\frac{q\cdot b^{2}}{2\cdot \left( {a+b} \right)}. \]

The shear force in the point B can be calculated according to the following formula:

\[ Q_{B} =-\frac{P\cdot a}{a+b}-\frac{q\cdot \left( {2\cdot a+b} \right)\cdot b}{2\cdot \left( {a+b} \right)}. \]