Simply Supported Flat Rectangular Plate Subjected to a Transverse Load Uniformly Distributed over the Entire Area and a Concentrated Shear Force Applied in the Center

Objective: Check of the obtained values of the transverse displacements in the center of a simply supported flat rectangular plate subjected to a transverse load uniformly distributed over the entire area and a concentrated shear force applied in the center.

Initial data files:

File name

Description

Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_2x2.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_4x4.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_42_Mesh_8x8.spr

Design model with the elements of type 42 for meshes 2x2, 4x4, 8x8

Bending_of_rectangular_flat_plate_Simply_supported_Shell_44_Mesh_2x2.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_44_Mesh_4x4.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_44_Mesh_8x8.spr

Design model with the elements of type 44 for meshes 2x2, 4x4, 8x8

Bending_of_rectangular_flat_plate_Simply_supported_Shell_45_Mesh_2x2.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_45_Mesh_4x4.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_45_Mesh_8x8.spr

Design model with the elements of type 45 for meshes 2x2, 4x4, 8x8

Bending_of_rectangular_flat_plate_Simply_supported_Shell_50_Mesh_2x2.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_50_Mesh_4x4.spr
Bending_of_rectangular_flat_plate_Simply_supported_Shell_50_Mesh_8x8.spr

Design model with the elements of type 50 for meshes 2x2, 4x4, 8x8

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_2x2.spr
Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_4x4.spr
Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_8x8.spr

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_16x16.SPR

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_32x32.SPR

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_64x64.SPR

Bending_of_rectangular_flat_plate_Simply_supported_Solid_36_Mesh_128x128.SPR

Design model with the elements of type 36 for meshes 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_2x2.spr
Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_4x4.spr
Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_8x8.spr

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_16x16.SPR

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_32x32.SPR

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_64x64.SPR

Bending_of_rectangular_flat_plate_Simply_supported_Solid_37_Mesh_128x128.SPR

Design model with the elements of type 37 for meshes 2x2, 4x4, 8x8, 16x16, 32x32, 64x64, 128x128

 

Problem formulation: The simply supported flat rectangular plate is subjected to the transverse load q uniformly distributed over the entire area and the concentrated shear force P applied in the center. Check the obtained values of the transverse displacements in the center of the simply supported flat rectangular plate wq and wP from the respective actions.

References: R. H. Macneal, R. L. Harder, A proposed standard set of problems to test finite element accuracy, North-Holland, Finite elements in analysis and design, 1, 1985, p. 3-20.

S. Timoshenko, S. Woinowsky-Krieger, Theory of plates and shells, New York, McGraw-Hill,1959, p. 120, 143, 202, 206.

Initial data:

E = 1.7472·107 kPa - elastic modulus of the plate material;
ν = 0.30 - Poisson’s ratio;
a = 2.00 m - width of the plate;
b = 10.00 m - length of the plate;
h = 10-4 (10-2) m - thickness of the plate;
q = 1.0·10-4 kN/m2 - value of the transverse load uniformly distributed over the entire area of the plate;
P = 4.0·10-4 kN - value of the concentrated shear force in the center of the plate.

 

Finite element model: Design model – general type system. Six design models of a quarter of the plate according to the symmetry conditions are considered:

 

Model 1 – 8, 32, 128 three-node shell elements of type 42 with a regular mesh 2x2, 4x4, 8x8. The thickness of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the symmetry conditions. Number of nodes in the model – 9, 25, 81.

Model 2 – 4, 16, 64 four-node shell elements of type 44 with a regular mesh 2x2, 4x4, 8x8. The thickness of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the symmetry conditions. Number of nodes in the model – 9, 25, 81.

Model 3 – 8, 32, 128 six-node shell elements of type 45 with a regular mesh 2x2, 4x4, 8x8. The thickness of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the symmetry conditions. Number of nodes in the model – 25, 81, 289.

Model 4 – 4, 16, 64 eight-node shell elements of type 50 with a regular mesh 2x2, 4x4, 8x8. The thickness of the plate – 10-4 m. Boundary conditions are provided by imposing constraints on the nodes of the support edges of the plate in the directions of the degrees of freedom X, Y, Z and constraints according to the symmetry conditions. Number of nodes in the model – 25, 81, 289.

Model 5 – 4, 16, 64, 256, 1024, 4096, 16384 eight-node isoparametric solid elements of type 36 with a regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the lower surface of the plate in the direction of the degree of freedom Z and constraints according to the symmetry conditions. Number of nodes in the model – 18, 50, 162, 578, 2178, 8450, 33282.

Model 6 – 4, 16, 64, 256, 1024, 4096, 16384 twenty-node isoparametric solid elements of type 37 with a regular mesh 2x2x1, 4x4x1, 8x8x1, 16x16x1, 32x32x1, 64x64x1, 128x128x1. The thickness of the plate – 10-2 m. Boundary conditions are provided by imposing constraints on the nodes of the support sides of the lower surface of the plate in the direction of the degree of freedom Z and constraints according to the symmetry conditions. Number of nodes in the model – 51, 155, 531, 1955, 7491, 29315, 115971.

 

Results in SCAD




Model 1. Design model

 



Model 1. Deformed model

 



Model 1. Values of the transverse displacements in the center of the simply supported rectangular plate wq and wP (m, m)

 




Model 2. Design model

 




Model 2. Deformed model

 




Model 2. Values of the transverse displacements in the center of the simply supported rectangular plate wq and wP (m, m)

 




Model 3. Design model

 




Model 3. Deformed model

 




Model 3. Values of the transverse displacements in the center of the simply supported rectangular plate wq and wP (m, m)

 




Model 4. Design model

 




Model 4. Deformed model

 




Model 4. Values of the transverse displacements in the center of the simply supported rectangular plate wq and wP (m, m)

 








Model 5. Design model

 








Model 5. Deformed model

 








Model 5. Values of the transverse displacements in the center of the simply supported rectangular plate wq and wP (m, m)

 








Model 6. Design model

 








Model 6. Deformed model

 








Model 6. Values of the transverse displacements in the center of the simply supported rectangular plate wq and wP (m, m)

 

Comparison of solutions:

Transverse displacements in the center of the simply supported flat rectangular plate wq from the transverse load q uniformly distributed over the entire area

Model

Finite element mesh

Theory

SCAD

Deviation, %

1

(Member type 42)

2x2

12.971

11.804

9.00

4x4

12.847

0.96

8x8

12.958

0.10

2

(Member type 44)

2x2

12.971

12.528

3.42

4x4

13.093

0.94

8x8

13.030

0.45

3

(Member type 45)

2x2

12.971

13.029

0.45

4x4

12.973

0.02

8x8

12.971

0.00

4

(Member type 50)

2x2

12.971

13.020

0.38

4x4

12.971

0.00

8x8

12.971

0.00

5

(Member type 36)

2x2

12.971∙10-6

0.017∙10-6

99.87

4x4

0.067∙10-6

99.48

8x8

0.264∙10-6

97.96

16x16

0.983∙10-6

92.42

32x32

3.099∙10-6

76.11

64x64

6.656∙10-6

48.69

128x128

9.234∙10-6

28.81

6

(Member type 37)

2x2

12.971∙10-6

9.000∙10-6

30.61

4x4

13.308∙10-6

2.60

8x8

12.931∙10-6

0.31

16x16

12.963∙10-6

0.06

32x32

12.971∙10-6

0.00

64x64

12.972∙10-6

0.01

128x128

12.973∙10-6

0.02

 

 

Transverse displacements in the center of the simply supported flat rectangular plate wP from the concentrated shear force P applied in the center

Model

Finite element mesh

Theory

SCAD

Deviation, %

1

(Member type 42)

2x2

16.960

7.771

54.18

4x4

11.983

29.34

8x8

14.833

12.54

2

(Member type 44)

2x2

16.960

12.674

25.27

4x4

14.768

12.92

8x8

15.657

7.68

3

(Member type 45)

2x2

16.960

15.383

9.30

4x4

16.539

2.48

8x8

16.849

0.65

4

(Member type 50)

2x2

16.960

15.862

6.47

4x4

16.553

2.40

8x8

16.845

0.68

5

(Member type 36)

2x2

16.960∙10-6

0.014∙10-6

99.92

4x4

0.051∙10-6

99.70

8x8

0.197∙10-6

98.84

16x16

0.737∙10-6

95.65

32x32

2.426∙10-6

85.70

64x64

5.859∙10-6

65.45

128x128

9.654∙10-6

43.08

6

(Member type 37)

2x2

16.960∙10-6

4.494∙10-6

73.50

4x4

10.523∙10-6

37.95

8x8

15.480∙10-6

8.73

16x16

16.572∙10-6

2.29

32x32

16.866∙10-6

0.55

64x64

16.952∙10-6

0.05

128x128

16.976∙10-6

0.09

 

Notes: In the analytical solution the values of the transverse displacements in the center of the simply supported flat rectangular plate wq and wP from the respective actions are determined according to the following formulas: 

\[ w_{q} =\frac{4\cdot q\cdot a^{4}}{\pi^{5}\cdot D}\cdot \sum\limits_{m=1}^\infty {\left\{ {\frac{1}{m^{5}}\cdot \left[ {1-\frac{\frac{m\cdot \pi \cdot b}{2\cdot a}\cdot th\left( {\frac{m\cdot \pi \cdot b}{2\cdot a}} \right)+2}{2\cdot ch\left( {\frac{m\cdot \pi \cdot b}{2\cdot a}} \right)}} \right]\cdot \sin \left( {\frac{m\cdot \pi }{2}} \right)} \right\}} ; \] \[ w_{P} =\frac{P\cdot a^{2}}{2\cdot \pi^{3}\cdot D}\cdot \sum\limits_{m=1}^\infty {\left\{ {\frac{1}{m^{3}}\cdot \left[ {th\left( {\frac{m\cdot \pi \cdot b}{2\cdot a}} \right)-\frac{\frac{m\cdot \pi \cdot b}{2\cdot a}}{ch^{2}\left( {\frac{m\cdot \pi \cdot b}{2\cdot a}} \right)}} \right]\cdot \sin^{2}\left( {\frac{m\cdot \pi }{2}} \right)} \right\}} , \quad where: \quad \] \[ D=\frac{E\cdot h^{3}}{12\cdot \left( {1-\nu^{2}} \right)}. \]