Analysis of an Axially Compressed Welded I-beam Column

Objective: Check the mode for calculating columns of solid cross-section in the “Steel” postprocessor of SCAD.

Task: Check the design section of a welded I-beam for the axially compressed column with a height of 6,5 m.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 256.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:
5.1_Column_Example_5.1.spr;
report – 5.1_Column_Example_5.1.doc

Initial data:

l = 6,5 m Column height;
μ = 0,7 The lower restraint is rigid and the upper one is pinned;
N = 5000 kN Design compressive force;
γc = 1 Service factor;
Ry = 24 kN/cm2 Steel grade C245;
A = 230,4 cm2 Geometric properties of
Iy = 118243,584 cm4, Iz = 33184,512 cm4
iy = 22,654 cm, iz = 12,001 cm.
the selected section;

                              

SCAD Results. STEEL Postprocessor:

[Element No 1] Forces

N

Max. -509,68 T
Snap 0 m

My

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Mz

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Mk

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Qz

Max. 0 T
Snap 0 m

Max. 0 T
Snap 0 m

Qy

Max. 0 T
Snap 0 m

Max. 0 T
Snap 0 m

Length of the bar 6,5 m
Length of the flexible part 6,5 m
Loading L1

 

Analysis complies with SNiP II-23-81*
Structural member column

Steel: C245

Member length 6,5 m
Limit slenderness for members in compression: 180 - 60a
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor  XoZ -- 0,7
Effective length factor  XoY -- 0,7
Length between out-of-plane restraints 0 m

 

Section

Results

Check

Utilization factor

Sec.5.24,5.25

Strength under combined action of longitudinal force and bending moments, no plasticity

0,9

Sec.5.3

Stability under compression in XoY (XoU) plane

1

Sec.5.3

Stability under compression in XoZ (XoV) plane

0,94

Sec.5.1

Strength under axial compression/tension

0,9

Sec.6.15,6.16

Limit slenderness in XoY plane

0,316

Sec.6.15,6.16

Limit slenderness in XoZ plane

0,162

 

Utilization factor 1 - Stability under compression in XoY (XoU) plane

Manual calculation (SNiP II-23-81*):

1. Strength check of the selected column section:

\[ \frac{N}{AR_{y} \gamma_{c} }=\frac{5000}{230,4\cdot 24\cdot 1}=0,904. \]

2. Slenderness of the column:

\[ {\lambda}_{y} =\frac{l_{ef,y} }{i_{y} }=\frac{0,7\cdot 6,5\cdot 100}{22,654}=20,08475; \] \[ {\lambda}_{z} =\frac{l_{ef,z} }{i_{z} }=\frac{0,7\cdot 6,5\cdot 100}{12,001}=37,9135. \]

3. Conditional slenderness of the column:

\[ \bar{{\lambda }}_{y} =\frac{l_{ef,y} }{i_{y} }\sqrt {\frac{R_{y} }{E}} =\frac{0,7\cdot 6,5\cdot 100}{22,654}\sqrt {\frac{240}{2,06\cdot 10^{5}}} =0,68555; \] \[ \bar{{\lambda }}_{z} =\frac{l_{ef,z} }{i_{z} }\sqrt {\frac{R_{y} }{E}} =\frac{0,7\cdot 6,5\cdot 100}{12,001}\sqrt {\frac{240}{2,06\cdot 10^{5}}} =1,2941. \]

4. Buckling coefficients:

\[ \varphi_{y} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{y} \sqrt {\bar{{\lambda }}_{y} } =1-\left( {0,073-\frac{5,53\cdot 240}{2,06\cdot 10^{5}}} \right)\cdot 0,68555\sqrt {0,68555} =0,9622; \] \[ \varphi_{z} =1-\left( {0,073-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{z} \sqrt {\bar{{\lambda }}_{z} } =1-\left( {0,073-\frac{5,53\cdot 240}{2,06\cdot 10^{5}}} \right)\cdot 1,2941\sqrt {1,2941} =0,902. \]

5. Strength of the column from the condition of providing the general stability under axial compression:

\[ N_{b,y} =\varphi_{y} AR_{y} \gamma_{c} =0,9622\cdot 230,4\cdot 24\cdot 1=5320,58 \quad кН; \] \[ N_{b,z} =\varphi_{z} AR_{y} \gamma_{c} =0,902\cdot 230,4\cdot 24\cdot 1=4987,7 \quad kN. \]

6. Limit slenderness of the column:

\[ \left[ \lambda \right]_{y} =180-60\alpha_{y} =180-60\cdot \frac{N}{\varphi _{y} AR_{y} \gamma_{c} }=180-60\cdot \frac{5000}{0,9622\cdot 230,4 \cdot 24 \cdot 1}=123,615; \] \[ \left[ \lambda \right]_{z} =180-60\alpha_{z} =180-60\cdot \frac{N}{\varphi _{z} AR_{y} \gamma_{c} }=180-60\cdot 1=120. \]

 

Comparison of solutions:

Factor

Source

Manual calculation

SCAD

Deviation, %

Strength under combined action of longitudinal force and bending moments, no plasticity

0,904

0,904

0,0

Stability under compression in XoY (XoU) plane

23,69/24=0,987

5000/4987,7 =

1,002

1,002

0,0

Stability under compression in XoZ (XoV) plane

5000/5320,58 =

0,940

0,94

0,0

Strength under axial compression/tension

5000/230,4/24=

0,904

0,904

0,904

0,0

Limit slenderness in XoY plane

37,9135/120 =

0,316

0,316

0,0

Limit slenderness in XoZ plane

20,08475/123,615  =

0,162

0,162

0,0