Strength and Stiffness Analysis of Main Beams of Complex Stub Girder Systems

a – floor plan; b – design model of the main beam; c – beam section;
1 – load area

Objective: Check the mode for the beam analysis in the “Steel” postprocessor of SCAD

Task: Select a welded I-beam for the main beams with a span of 18 m in a normal stub girder system. The top chord of the main beams is restrained by the stringers arranged with a spacing of 1 m.

Source: Steel Structures: Student Handbook / [Kudishin U.I., Belenya E.I., Ignatieva V.S and others] - 13-th ed. rev. - M.: Publishing Center "Academy", 2011. p. 192.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010.

Initial data file:

3.4 Beam_Example_3.4.spr;
report – 3.4 Beam_Example_3.4.doc

 

Initial data:

а = 6 м Spacing of main beams;
g1 = 1,16 kN/m2 Weight of the floor plate and stringers;
p = 20 kN/m2 Temporary (live) load;
qн = 127,099 kN/m Total characteristic load on the beam;
q1 = 1,05*1,16 kN/m2 * 6 m*1,02 = 7,454 kN/m Design permanent load (coefficient 1,02 allows for the self-weight of the main beam);
q2 = 1,2*20 kN/m2 * 6 m = 144,0 kN/m Design live load;
l = 18 m Main beam span;
Ry = 23 kN/cm2
Rs = 0,58*23=13,34 kN/cm2
Steel grade C255 with thickness t>20 mm;
[ f ] = l/400 = 45 mm Limit deflection;
bp×tp = 530×20 mm Section of the bearing stiffener;
kp = 6 mm Fillet weld leg in a welded connection between a bearing stiffener and a beam;
γc = 1 Service factor;
Wy = 27153,85 cm3 Geometric properties for a welded I-section with flanges 530×25 mm
Iy = 2308077,083 cm4 and a web 1650×12 mm;
Sy = 15180,625 cm3.  

 

 

SCAD Results. STEEL Postprocessor:

[Element No 3] Forces

N

Max. 0 T
Snap 0 m

Max. 0 T
Snap 0 m

My

Max. 625,27 T*m
Snap 4,5 m

Mz

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Mk

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Qz

Max. 69,47 T
Snap 0 m

Max. 0 T
Snap 4,5 m

Qy

Max. 0 T
Snap 0 m

Max. 0 T
Snap 0 m

Length of the bar 4,5 m
Length of the flexible part 4,5 m
Loading L1 - "1"

 

[Element No. 3] Deflections

 X

 

 

 

 

 Y

 

 

 

 

 Z

Max. -43,54 mm
Snap 4,5 m

Length of the bar 4,5 m
Length of the flexible part 4,5 m
Loading L1 - "1"

 

Analysis complies with SNiP II-23-81*
Structural member main beam

Steel: C255

Member length 18 m
Limit slenderness for members in compression: 180
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor  XoZ -- 1
Effective length factor  XoY -- 1
Length between out-of-plane restraints 1 m

 

Section

 

Results

Check

Utilization factor

Sec.5.12

Strength under action of bending moment My

0,98

Sec.5.12,5.18

Strength under action of lateral force Qz

0,56

Sec.5.24,5.25

Strength under combined action of longitudinal force and bending moments, no plasticity

0,98

Sec.5.15

Stability of in-plane bending

0,98

Sec.6.15,6.16

Limit slenderness in XoY plane

0,52

Sec.6.15,6.16

Limit slenderness in XoZ plane

0,08

 

Utilization factor 0,98 - Strength under action of bending moment My

Manual calculation (SNiP II-23-81*)

1. Maximum bending moment and shear force acting in the design sections of the beam:

\[ M_{\max } =\frac{q_{\Sigma } l^{2}}{8}=\frac{\left( {7,454+144} \right)\cdot 18,0^{2}}{8}=6133,887 \quad kNm. \] \[ Q_{\max } =\frac{q_{\Sigma } l}{2}=\frac{\left( {7,454+144} \right)\cdot 18,0}{2}=1363,086 \quad kN. \]

2. Necessary beam section modulus:

\[ W_{nes} =\frac{M_{\max } }{R_{y} \gamma_{c} }=\frac{6133,887\cdot 100}{23}=26669,074 \quad cm^{3}. \]

3. Maximum tangential stresses in the support section of the beam:

\[ \tau_{\max } =\frac{Q_{\max } S_{y} }{I_{y} t_{w} }=\frac{1363,086\cdot 15180,625}{2308077,083\cdot 1,2}=7,471 \quad kN/cm^{2}. \]

4. Maximum deflection occurring in the middle of the beam span:

\[ f_{\max } =\frac{5}{384}\cdot \frac{q_{н} l^{4}}{EI_{y} }=\frac{5}{384}\cdot \frac{127,099\cdot 18,0^{4}}{2,06\cdot 10^{5}\cdot 10^{3}\cdot 2308077,083\cdot 10^{-8}}=36,539 \quad mm. \]

5. Conditional limit slenderness of the compressed beam chord:

\[ \bar{{\lambda }}_{ub} =0,35+0,0032\frac{b_{f} }{t_{f} }+\left( {0,76-0,02\frac{b_{f} }{t_{f} }} \right)\frac{b_{f} }{h_{f} }=0,35+0,0032\frac{530}{25}+\left( {0,76-0,02\frac{530}{25}} \right)\frac{530}{1675}=0,524. \]

6. Conditional actual slenderness of the compressed beam chord:

\( \bar{{\lambda }}_{b} =\frac{l_{ef} }{b_{f} }\sqrt {\frac{R_{y} }{E}} =\frac{1000}{530}\sqrt {\frac{230}{2,06\cdot 10^{5}}} =0,063<\bar{{\lambda }}_{ub} =0,524 \) – the stability check is not required.

 

Comparison of solutions:

Factor

Manual calculation

SCAD

Deviation, %

Strength under action of lateral force

7,471/13,34 = 0,56

0,56

0,0

Strength under action of bending moment

26669,074/27153,85=0,982

0,982

0,0

Stability of in-plane bending under moment

0,982

0,0

Maximum deflection

36,539/45 = 0,812

43,54/1,1916/45=

0,812

0,0

 

Comments:

The check for the stability of in-plane bending of the beam was performed in the computer-aided calculation according to the codes at φb = 1,0.