Analysis of an Axially Compressed Electric Welded Circular Hollow Section Column

Objective: Check the mode for calculating columns of solid cross-section in the “Steel” postprocessor of SCAD

Task: Check the design section of an axially compressed electric welded circular hollow section column with a height of 7,7 m.

Source: Kuznetsov A.F., Kozmin N.B., Amelkovich S.V. Examples of the analysis of steel structures of civil and industrial buildings. Textbook for students of construction specialties. - Chelyabinsk, 2009. – p. 11, 12.

Compliance with the codes: SNiP II-23-81*, SP 16.13330.2011, DBN B.2.6-163:2010, DBN B.2.6-198:2014.

Initial data file:

5.3 Column_Example_5.3.spr;
report – 5.3 Column_Example_5.3.doc

Initial data:

l = 7,7 m Column height
μ = 1,0 The lower and upper restraints are pinned
N = 472,5 kN Design compressive force
γc = 1 Service factor
Ry = 23 kN/cm2 Steel grade C235

A = 51.12 см2
Iy = Iz = 3868,506 cm4
iy = iz = 8,699 cm
 

Geometric properties of the selected section

 

SCAD Results. STEEL Postprocessor:

[Element No. 1] Forces

N

Max. -48,17 T
Snap 0 m

My

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Mz

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Mk

Max. 0 T*m
Snap 0 m

Max. 0 T*m
Snap 0 m

Qz

Max. 0 T
Snap 0 m

Max. 0 T
Snap 0 m

Qy

Max. 0 T
Snap 0 m

Max. 0 T
Snap 0 m

Length of the bar 7,7 m
Length of the flexible part 7,7 m
Loading L1

 

Analysis complies with SNiP II-23-81*
Structural member column1

Steel: C235
Member length 7,7 m
Limit slenderness for members in compression: 180 - 60α
Limit slenderness for members in tension: 300
Service factor 1
Importance factor 1
Effective length factor  XoZ -- 1,0
Effective length factor  XoY -- 1,0
Length between out-of-plane restraints 7,7 m

Section:

 

Results

Check

Utilization factor

Sec. 5.24,5.25

Strength under combined action of longitudinal force and bending moments, no plasticity

0,4

Sec. 5.3

Stability under compression in XoY (XoU) plane

0,63

Sec. 5.3

Stability under compression in XoZ (XoV) plane

0,63

Sec. 5.34

Stability under compression and bending in two planes

0,63

Sec. 5.1

Strength under axial compression/tension

0,4

Sec. 6.15,6.16

Limit slenderness in XoY plane

0,62

Sec. 6.15,6.16

Limit slenderness in XoZ plane

0,62

 

Utilization factor 0,63 - Stability under compression in XoY (XoU) plane

Manual calculation (SNiP II-23-81*):

1. Strength check of the selected column section:

\[ \frac{N}{AR_{y} \gamma_{c} }=\frac{472,5}{51,12\cdot 23\cdot 1}=0,402. \]

2. Slenderness of the column:

\[ \lambda_{y} =\frac{l_{ef,y} }{i_{y} }=\frac{1,0\cdot 7,7\cdot 100}{8,699}=88,516; \] \[ \lambda_{z} =\frac{l_{ef,z} }{i_{z} }=\frac{1,0\cdot 7,7\cdot 100}{8,699}=88,516. \]

3. Conditional slenderness of the column:

\[ \bar{{\lambda }}_{y} =\frac{l_{ef,y} }{i_{y} }\sqrt {\frac{R_{y} }{E}} =\frac{1,0\cdot 7,7\cdot 100}{8,699}\sqrt {\frac{230}{2,06\cdot 10^{5}}} =2,9577; \] \[ \bar{{\lambda }}_{z} =\frac{l_{ef,z} }{i_{z} }\sqrt {\frac{R_{y} }{E}} =\frac{1,0\cdot 7,7\cdot 100}{8,699}\sqrt {\frac{230}{2,06\cdot 10^{5}}} =2,9577. \]

4. Buckling coefficients at \(2,5<\bar{{\lambda }}\le 4,5\):

\[ \begin{array}{l} \varphi_{y} =\varphi_{z} =1,47-13,0\frac{R_{y} }{E}-\left( {0,371-27,3\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{y} +\left( {0,0275-5,53\frac{R_{y} }{E}} \right)\bar{{\lambda }}_{y}^{2} = \\ =1,47-\frac{13,0\cdot 230}{2,06\cdot 10^{5}}-\left( {0,371-\frac{27,3\cdot 230}{2,06\cdot 10^{5}}} \right)\cdot 2,9577+\left( {0,0275-\frac{5,53\cdot 230}{2,06\cdot 10^{5}}} \right)\cdot 2,9577^{2}=0,6349. \\ \end{array} \]

5. Strength of the column from the condition of providing the general stability under axial compression:

\[ N_{b,y} =\varphi_{y} AR_{y} \gamma_{c} =0,6349\cdot 23\cdot 51,12\cdot 1=746,476 \quad kN; \] \[ N_{b,z} =\varphi_{z} AR_{y} \gamma_{c} =0,6349\cdot 23\cdot 51,12\cdot 1=746,476\quad kN. \]

6. Limit slenderness of the column:

\[ \left[ \lambda \right]_{y} =180-60\alpha_{y} =180-60\cdot \frac{N}{\varphi _{y} AR_{y} \gamma_{c} }=180-60\cdot \frac{472,5}{746,476}=142,022; \] \[ \left[ \lambda \right]_{z} =180-60\alpha_{z} =180-60\cdot \frac{N}{\varphi _{z} AR_{y} \gamma_{c} }=180-60\cdot \frac{472,5}{746,476}=142,022. \]

 

Comparison of solutions:

Factor

Source

Manual calculation

SCAD

Deviation, %

Strength under combined action of longitudinal force and bending moments, no plasticity

0,402

0,4

0,0

Stability under compression in XoY (XoU) plane

0,966

472,5/746,476 =

0,633

0,63

0,0

Stability under compression in XoZ (XoV) plane

0,966

472,5/746,476 =

0,633

0,63

0,0

Strength under axial compression/tension

0,511

0,402

0,4

0,0

Limit slenderness in XoY plane

88,516/142,022 =

0,62

0,62

0,0

Limit slenderness in XoZ plane

88,516/142,022 =

0,62

0,62

0,0