Stress-Strain State of a Simply Supported Beam Subjected to Longitudinal-Transverse Bending

Objective: Longitudinal-transverse bending in one plane.

Initial data files:

File name

Description

4.8_s_c.spr

Longitudinal-transverse bending under a longitudinal compressive force

4.8_s_t.spr

Longitudinal-transverse bending under a longitudinal tensile force

Problem formulation: A simply supported beam under pure bending is additionally loaded by a longitudinal force. Determine the maximum transverse displacements w(x) and bending moments M(x) under a longitudinal compressive and tensile force.

References: Strength Analysis in Mechanical Engineering / S. D. Ponomarev, V. L. Biderman, K. K. Likharev, et al., In three volumes. Volume 1. M.: Mashgiz, 1956.

Initial data:

 
E = 1.0·1010  Pa - elastic modulus;
μ = 0.3 - Poisson’s ratio;
F = 1·10-2 m2 - cross-sectional area;
I  = 8.333·10-6 m4 - cross-sectional moment of inertia;
M = 10 kN·m - value of the bending moment;
N  = ±200 kN - value of the concentrated force;
l = 1.0 m - beam length.
 

 

Finite element model: The calculation is performed in the geometrically linear formulation for an energetically equivalent model in the form of a bar on the elastic subgrade resisting the rotations of its sections with a linear stiffness parameter kφ = N. Design model – plane frame, 16 bar elements of type 2, 17 elements of concentrated rotational (clock) springs with stiffness CUY = -12.5 kN·m/rad (-6.25 kN·m/rad) for a bar under compression and bending and CUY = 12.5 kN m/rad (6.25 kN·m/rad) for a bar under tension and bending of type 51, 17 nodes.

Results in SCAD


Values of transverse displacements w under a longitudinal compressive force (mm)


Bending moment diagram M under a longitudinal compressive force (kN·m)


Values of transverse displacements w under a longitudinal tensile force (mm)


Bending moment diagram M under a longitudinal tensile force (kN·m)

Comparison of solutions:

Parameter

Longitudinal compressive force

Longitudinal tensile force

Theory

SCAD

Deviations, %

Theory

SCAD

Deviations, %

Transverse displacements

w(0.5·l), mm

-19.959

-19.980

0.11

-11.986

-11.978

0.07

Bending moment

M(0.5·l), kN·m

13.992

13.996

0.03

7.603

7.604

0.01

 

Notes: In the analytical solution, the equation of the elastic line w(x) and the equation of the bending moment M(x) under a longitudinal compressive force are determined according to the following formulas:

\[ w\left( x \right)=\frac{M}{N}\cdot \left[ {\frac{\cos \left( {k\cdot l} \right)-1}{\sin \left( {k\cdot l} \right)}\cdot \sin \left( {k\cdot x} \right)-\cos \left( {k\cdot x} \right)+1} \right]; \] \[ M\left( x \right)=M\cdot \left[ {\frac{1-\cos \left( {k\cdot l} \right)}{\sin \left( {k\cdot l} \right)}\cdot \sin \left( {k\cdot x} \right)+\cos \left( {k\cdot x} \right)} \right], \] where: \[ k=\sqrt {\frac{N}{E\cdot I}} . \]

In the analytical solution, the equation of the elastic line w(x) and the equation of the bending moment M(x) under a longitudinal tensile force are determined according to the following formulas:

\[ w\left( x \right)=\frac{M}{N}\cdot \left[ {\frac{1-ch\left( {k\cdot l} \right)}{sh\left( {k\cdot l} \right)}\cdot sh\left( {k\cdot x} \right)+ch\left( {k\cdot x} \right)-1} \right]; \] \[ M\left( x \right)=M\cdot \left[ {\frac{ch\left( {k\cdot l} \right)-1}{sh\left( {k\cdot l} \right)}\cdot sh\left( {k\cdot x} \right)+ch\left( {k\cdot x} \right)} \right], \] where: \[ k=\sqrt {\frac{N}{E\cdot I}} . \]