Cylindrical Shell with Free Edges at a Temperature Gradient across the Thickness (in the Radial Direction)

Objective: Determination of the stress-strain state of a cylindrical shell with free edges subjected to a temperature gradient across the thickness.

Initial data file: 4_33.spr

Problem formulation: The cylindrical thin-walled shell free from constraints is subjected to a temperature gradient across the thickness. The temperatures of the cylinder wall on its internal t1 and external surfaces t2 are constant. The temperature varies linearly across the thickness of the wall. Determine the stress tensor components on the internal and external surfaces of the shell in the meridian σxext (σxint) and circumferential σφextφint)  directions, as well as the radial displacements w.

References: S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948.

Initial data:

E = 2.1·108 kPa - elastic modulus;
ν = 0.3 - Poisson’s ratio;
h = 0.02 m - thickness of the shell wall;
a = 1.0 m - radius of the midsurface of the shell wall;
l = 4.0 m - length of the shell;
α = 0.12·10-4 1/ºC - linear expansion coefficient;
t1 = 20 ºC - temperature on the internal surface of the cylinder wall;
t2 = 0 ºC - temperature on the external surface of the cylinder wall;
 

 

Finite element model: Design model – general type system, shell elements – 12800 four-node elements of type 44. The spacing of the finite element mesh in the meridian direction is 0.025 m  and in the circumferential direction is 4.5º. The dimensional stability of the design model is provided by imposing constraints according to its symmetry conditions. Number of nodes in the design model – 12880.

 

Results in SCAD


Design model


Deformed model


Values of radial displacements w (mm)


Values of radial displacements w (mm) for the fragment of the model from the section with the central angle of 18.0º


Values of stresses on the external surface of the shell in the meridian direction σxext (kN/m2)


Values of stresses on the internal surface of the shell in the meridian direction σxint (kN/m2)


Values of stresses on the external surface of the shell in the circumferential direction σφext (kN/m2)


Values of stresses on the internal surface of the shell in the circumferential direction σφint (kN/m2)

 

Comparison of solutions:

x, m

w, mm

Theory

SCAD

Deviations, %

0.200

-18.61∙10-3

-18.01∙10-3

3.22

0.250

-13.71∙10-3

-13.20∙10-3

3.72

0.300

-8.14∙10-3

-7.81∙10-3

4.05

0.350

-3.76∙10-3

-3.60∙10-3

4.26

0.400

-1.01∙10-3

-0.97∙10-3

3.96

0.450

0.36∙10-3

0.34∙10-3

5.56

0.500

0.82∙10-3

0.78∙10-3

4.88

0.550

0.79∙10-3

0.75∙10-3

5.06

0.600

0.57∙10-3

0.54∙10-3

5.26

0.650

0.33∙10-3

0.32∙10-3

3.03

0.700

0.15∙10-3

0.14∙10-3

6.67

0.750

0.04∙10-3

0.04∙10-3

0.00

0.800

-0.02∙10-3

-0.02∙10-3

0.850

-0.04∙10-3

-0.03∙10-3

0.900

-0.03∙10-3

-0.03∙10-3

0.950

-0.02∙10-3

-0.02∙10-3

1.000

-0.01∙10-3

-0.01∙10-3

1.100

0

0

1.200

0

0

1.300

0

0

1.400

0

0

1.500

0

0

1.600

0

0

1.700

0

0

1.800

0

0

1.900

0

0

2.000

0

0

 

x, m

σxext (kN/m2)

σxint (kN/m2)

Theory

SCAD

Deviations, %

Theory

SCAD

Deviations, %

0.200

31761

32052

0.92

-31761

-32090

1.04

0.250

35560

35681

0.34

-35560

-35685

0.35

0.300

37206

37221

0.04

-37206

-37210

0.01

0.350

37553

37519

0.09

-37553

-37505

0.13

0.400

37286

37241

0.12

-37286

-37229

0.15

0.450

36841

36804

0.10

-36841

-36796

0.12

0.500

36441

36418

0.06

-36441

-36414

0.07

0.550

36164

36154

0.03

-36164

-36152

0.03

0.600

36010

36007

0.01

-36010

-36007

0.01

0.650

35945

35947

0.01

-35945

-35947

0.01

0.700

35933

35936

0.01

-35933

-35937

0.01

0.750

35946

35949

0.01

-35946

-35949

0.01

0.800

35965

35967

0.01

-35965

-35968

0.01

0.850

35982

35983

0.00

-35982

-35983

0.00

0.900

35994

35994

0.00

-35994

-35994

0.00

0.950

36000

36000

0.00

-36000

-36000

0.00

1.000

36002

36002

0.00

-36002

-36002

0.00

1.100

36002

36002

0.00

-36002

-36002

0.00

1.200

36001

36001

0.00

-36001

-36001

0.00

1.300

36000

36000

0.00

-36000

-36000

0.00

1.400

36000

36000

0.00

-36000

-36000

0.00

1.500

36000

36000

0.00

-36000

-36000

0.00

1.600

36000

36000

0.00

-36000

-36000

0.00

1.700

36000

36000

0.00

-36000

-36000

0.00

1.800

36000

36000

0.00

-36000

-36000

0.00

1.900

36000

36000

0.00

-36000

-36000

0.00

2.000

36000

36000

0.00

-36000

-36000

0.00

0.000

45027

44606

0.93

-5373

-5794

7.84

0.025

37510

37025

1.29

-13846

-14584

5.33

0.050

32614

32413

0.62

-21047

-21639

2.81

0.075

29785

29786

0.00

-26849

-27290

1.64

0.100

28500

28633

0.47

-31284

-31586

0.97

0.150

28809

29047

0.83

-36646

-36735

0.24

0.200

30819

31034

0.70

-38637

-38608

0.08

0.250

32988

33133

0.44

-38748

-38677

0.18

0.300

34652

34726

0.21

-38072

-38003

0.18

0.350

35676

35700

0.07

-37256

-37208

0.13

0.400

36173

36169

0.01

-36598

-36572

0.07

0.450

36328

36313

0.04

-36176

-36167

0.02

0.500

36305

36289

0.04

-35960

-35961

0.00

0.550

36215

36203

0.03

-35883

-35888

0.01

0.600

36123

36116

0.02

-35883

-35888

0.01

0.650

36053

36050

0.01

-35914

-35918

0.01

0.700

36011

36011

0.00

-35949

-35951

0.01

0.750

35991

35992

0.00

-35976

-35977

0.00

0.800

35986

35987

0.00

-35993

-35994

0.00

0.850

35987

35988

0.00

-36002

-36002

0.00

0.900

35991

35992

0.00

-36005

-36005

0.00

0.950

35995

35995

0.00

-36005

-36005

0.00

1.000

35998

35998

0.00

-36004

-36003

0.00

1.100

36000

36000

0.00

-36001

-36001

0.00

1.200

36001

36000

0.00

-36000

-36000

0.00

1.300

36000

36000

0.00

-36000

-36000

0.00

1.400

36000

36000

0.00

-36000

-36000

0.00

1.500

36000

36000

0.00

-36000

-36000

0.00

1.600

36000

36000

0.00

-36000

-36000

0.00

1.700

36000

36000

0.00

-36000

-36000

0.00

1.800

36000

36000

0.00

-36000

-36000

0.00

1.900

36000

36000

0.00

-36000

-36000

0.00

2.000

36000

36000

0.00

-36000

-36000

0.00

x – ordinate along the axis of the cylindrical shell (meridian direction) measured from the free edge.

Notes: In the analytical solution the stresses on the internal and external surfaces of the shell in the meridian σxext (σxint) and circumferential σφext (σφint) directions, as well as the radial displacements w can be determined according to the following formulas (S.P. Timoshenko, Theory of Plates and Shells. — Moscow: OGIZ. Gostekhizdat, 1948, p. 399), which give a good approximation “at points at a considerable distance from the edges of the shell”:

\[ w=0.5\cdot \alpha \cdot \left( {t_{1} -t_{2} } \right)\cdot a\cdot \sqrt {\frac{1+\nu }{3\cdot \left( {1-\nu } \right)}} \cdot e^{-\beta \cdot x}\cdot \left( {\sin \left( {\beta \cdot x} \right)-\cos \left( {\beta \cdot x} \right)} \right); \] \[ \sigma_{x}^{ext} =\frac{E\cdot \alpha \cdot \left( {t_{1} -t_{2} } \right)}{2\cdot \left( {1-\nu } \right)}\cdot \left[ {-1+e^{-\beta \cdot x}\cdot \left( {\cos \left( {\beta \cdot x} \right)+\sin \left( {\beta \cdot x} \right)} \right)} \right]; \] \[ \sigma_{x}^{int} =\frac{E\cdot \alpha \cdot \left( {t_{1} -t_{2} } \right)}{2\cdot \left( {1-\nu } \right)}\cdot \left[ {1-e^{-\beta \cdot x}\cdot \left( {\cos \left( {\beta \cdot x} \right)+\sin \left( {\beta \cdot x} \right)} \right)} \right]; \] \[ \sigma_{\phi }^{ext} =\frac{E\cdot \alpha \cdot \left( {t_{1} -t_{2} } \right)}{2\cdot \left( {1-\nu } \right)}\cdot \left[ {-1+\nu \cdot e^{-\beta \cdot x}\cdot \left( {\cos \left( {\beta \cdot x} \right)+\sin \left( {\beta \cdot x} \right)} \right)-\sqrt {\frac{1-\nu^{2}}{3}} \cdot e^{-\beta \cdot x}\cdot \left( {\sin \left( {\beta \cdot x} \right)-\cos \left( {\beta \cdot x} \right)} \right)} \right]; \] \[\sigma_{\phi }^{int} =\frac{E\cdot \alpha \cdot \left( {t_{1} -t_{2} } \right)}{2\cdot \left( {1-\nu } \right)}\cdot \left[ {1-\nu \cdot e^{-\beta \cdot x}\cdot \left( {\cos \left( {\beta \cdot x} \right)+\sin \left( {\beta \cdot x} \right)} \right)-\sqrt {\frac{1-\nu^{2}}{3}} \cdot e^{-\beta \cdot x}\cdot \left( {\sin \left( {\beta \cdot x} \right)-\cos \left( {\beta \cdot x} \right)} \right)} \right], where: \]\[ \beta =\sqrt[4]{\frac{3\cdot \left( {1-\nu^{2}} \right)}{a^{2}\cdot h^{2}}}. \]