Vertical Cantilever Bar of Square Cross-Section with Longitudinal and Transverse Concentrated Loads at Its Free End

Objective: Check of the consistency of the results for models of different dimensions.

Initial data files:

File name Description
4.9_c.spr Bar model
4.9_p.spr Shell element model
4.9_o.spr Solid element model

 

Problem formulation: Determine the displacements of the free end x, y, z and maximum stresses in the clamped section σz.

Initial data:

E = 3.0·107 kPa - elastic modulus;
μ = 0.2 - Poisson’s ratio;
b = h = 0.5 m - cross-sectional dimensions of the cantilever bar;
l = 10 m - height of the cantilever bar;
Px = 10 kN - value of the concentrated force acting along the X axis of the global coordinate system ( loading 1 );
Py = 10 kN - value of the concentrated force acting along the Y axis of the global coordinate system ( loading 2 );
N = 10000 kN - value of the concentrated force acting along the Z axis of the global coordinate system ( loading 3 ).

 

Finite element model: Design model – general type system. Three design models are considered:

Bar model (B), 2 elements of type 5, 3 nodes;

Shell element model  (P), 20 elements of type 50, 85 nodes;

Solid element model (S), 10 elements of type 37, 128 nodes.

 

Results in SCAD


Values of the displacements x, y , z in the bar model (mm)


Values of the displacements x, y , z in the shell element model (mm)


Values of the displacements x, y , z in the solid element model (mm)

Comparison of solutions:

Model

Loading 1

Displacements x (mm)

Deviations, %

Stresses σz (kPa)

Deviations, %

Bar (B)

21.333

0.00

4800

0.00

Shell element (P)

21.330

0.01

4819

0.40

Solid element (S)

21.336

0.01

4738

1.29

Theory

21.333

4800

 

 

Model

Loading 2

Displacements y (mm)

Deviations, %

Stresses σz (kPa)

Deviations, %

Bar (B)

21.333

0.00

4800

0.00

Shell element (P)

21.359

0.12

4720

1.67

Solid element (S)

21.345

0.06

4743

1.19

Theory

21.333

4800

 

 

Model

Loading 3

Displacements z (mm)

Deviations, %

Stresses σz (kPa)

Deviations, %

Bar (B)

-13.333

0.00

-40000

0.00

Shell element (P)

-13.333

0.00

-40000

0.00

Solid element (S)

-13.333

0.00

-40000

0.00

Theory

-13.333

-40000

 

Notes: In the analytical solution for non-deformed models, the displacements of the free end x, y, z and the maximum stresses in the clamped section σz are determined according to the following formulas:

\[ x=\frac{4\cdot Px\cdot l^{3}}{E\cdot b\cdot h^{3}}; \quad y=\frac{4\cdot Py\cdot l^{3}}{E\cdot h\cdot b^{3}}; \quad z=\frac{N\cdot l}{E\cdot b\cdot h}; \] \[ \sigma_{z} \left( {Px} \right)=\frac{6\cdot Px\cdot l}{b\cdot h^{2}}; \quad \sigma_{z} \left( {Py} \right)=\frac{6\cdot Py\cdot l}{h\cdot b^{2}}; \quad \sigma_{z} \left( N \right)=\frac{N}{b\cdot h}. \]