Устойчивость рамы из двух шарнирно опертых одинаково нагруженных абсолютно жестких стоек, жестко связанных между собой ригелем

Цель: Определение критического значения сосредоточенных продольных сил одинаковой величины, действующих на две шарнирно опертые одинаково нагруженные абсолютно жесткие стойки рамы, жестко связанные между собой ригелем, соответствующего моменту потери устойчивости рамы.

Файл с исходными данными: Frame_leg_hard.rar

Формулировка задачи: Две шарнирно опертые абсолютно жесткие стойки рамы, жестко связанные между собой ригелем, подвергаются воздействию сосредоточенных продольных сил одинаковой величины N. Продольная жесткость ригеля принимаются значительной величины с целью исключения ее влияния на решение задачи. Определить критическое значение сосредоточенных продольных сил Ncr, соответствующее моменту потери устойчивости рамы.  

Ссылки: А. В. Перельмутер, В. И. Сливкер, Устойчивость равновесия конструкций и родственные проблемы. Том 2. Устойчивость упруго деформируемых механических систем, Москва, СКАД СОФТ, 2010, стр. 173.

Исходные данные:

L = 10.0 м - длина ригеля рамы;
H = 6.0 м - высота стоек рамы;
EA = 1.0·108 т - продольная жесткость ригеля;
EI = 1.0·104 т∙м2 - изгибная жесткость ригеля;
N = 1.0·103 т - начальное значение сосредоточенных продольных сил на стойки рамы.

 

Конечноэлементная модель: Расчетная  схема – плоская рама, стойки – 2 элемента типа 100 (двухузловые твердые тела со связями по направлениям X, Z, UY, ведущими опорными узлами и ведомыми узлами на сопряженном ригеле), ригель – 10 элемента типа 2 (сетка конечных элементов разбита по длинам продольных осей с шагом 1.0 м). Обеспечение граничных условий достигается за счет наложения связей на опорные узлы стоек по направлениям степеней свободы X и Z. Воздействие с начальным значением сосредоточенных продольных сил N задается на узлах сопряжения элементов ригеля с элементами стоек. Количество узлов в расчетной схеме – 13.

Результаты решения в SCAD


Расчетная схема

 


Форма потери устойчивости

 

Сравнение решений:

Параметр

Теория

SCAD

Отклонение, %

Критическое значение сосредоточенных

продольных сил Ncr, т

1000

0.999975∙1000 =

= 1000

0.00

 

Замечания: При точном аналитическом решении критическое значение сосредоточенных продольных сил Ncr, соответствующее моменту потери устойчивости рамы, определяется по следующей формуле:

\[ N_{cr} =\frac{6\cdot EI}{L\cdot H}. \]