О расчете несущих железобетонных конструкций в стержневом приближении

Д.т.н. Кантур О.В., Лоскутов И.С., Глотов Д.А.

ООО «ПКБ Катриэль», г. Москва.

В общем случае задача расчета любой конструкции, в наиболее общей постановке (и вне зависимости от предполагаемого метода решения задачи) ставится как решение задачи механики сплошной среды.

Задача расчета напряжений, деформаций и кинематических параметров при условии статического (динамического) воздействия сводится к решению следующей системы уравнений, описывающих поведение дифференциальных объемов материала в декартовой лагранжевой системе координат:

- уравнения равновесия [движения]
$$\mathbf{f}_i = \frac{\partial \sigma_{ij}}{\partial x_j} + \rho \cdot \mathbf{g}_i = \mathbf{0} = [\rho \cdot \ddot{\mathbf{x}}];$$
 (1)

- уравнения непрерывности
$$\frac{\Delta V}{V} = \frac{\partial (\Delta u_j)}{\partial x_j}, \left[\frac{\dot{V}}{V} = \frac{\partial \dot{u}_j}{\partial x_j}\right];$$
 (1.1)

- определение деформаций (скоростей и приращений деформаций)

$$\varepsilon_{ij} = \frac{1}{2} \cdot \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$
 - без учета геометрической нелинейности;

- учетом геометрической нелинейности

$$\Delta \varepsilon_{ij} = \frac{1}{2} \cdot \left(\frac{\partial (\Delta u_i)}{\partial x_j} + \frac{\partial (\Delta u_j)}{\partial x_i} \right); \quad \left[\dot{\varepsilon}_{ij} = \frac{1}{2} \cdot \left(\frac{\partial \dot{u}_i}{\partial x_j} + \frac{\partial \dot{u}_j}{\partial x_i} \right) \right]; \quad (1.2)$$

- уравнения состояния материалов:

а) соотношения теории упругости

$$\boldsymbol{\varepsilon}_{ij} = \frac{1}{2 \cdot G} \cdot \left(\boldsymbol{\sigma}_{ij} - \boldsymbol{\delta}_{ij} \cdot \frac{3 \cdot \boldsymbol{\mu}}{1 + \boldsymbol{\mu}} \cdot \boldsymbol{\sigma}_{0} \right); \tag{1.3}$$

б) математическая модель деформирования материалов сооружения, учитывающая нелинейные деформации.

На всей поверхности сооружения Г задаются граничные условия вида

$$\mathbf{F}(\overline{\mathbf{u}}_{|\Gamma},\overline{\mathbf{u}}_{|\Gamma},\mathbf{\sigma}_{\mathbf{i}_{|\Gamma}},\mathbf{t}) = \mathbf{0}, \qquad (1.4)$$

во всей области решение, задаются начальные условия

$$\sigma_{ij}^{0}(x, y, z, t = 0), \ \sigma_{ij}^{0}(x, y, z, t = 0).$$
(1.5)

Обозначения: f_i имеет смысл силы, действующей на единицу объема среды в направлении i; [] - относится только к задачам динамики; принято суммирование по повторяющимся индексам; - $\sigma_{ij}, \epsilon_{ij}$ - тензоры напряжений и деформаций; -u_i - смещение точки среды в направлении i, в лагранжевой системе координат для выбранной точки $\Delta u_i = \Delta x_i$ [$\dot{u}_i = \dot{x}_i$]; - индексы в выражениях эквивалентны обозначениям осей координат x_i при $(x_1, x_2, x_3) \sim (x, y, z);$ точка над переменной означает производную по времени; $\sigma_0 = \frac{\sigma_{ii}}{3}$ - среднее напряжение в среде; -

$$G = \frac{E}{2 \cdot (1 + \mu)}, \ \mu$$
 - модуль сдвига и коэффициент Пуассона, Е – модуль Юнга, - δ_{ij} - символ

Кронекера; - \overline{g} - ускорение силы тяжести (в используемой системе координат $\overline{g} = (0,0,-g)^T$); - ρ - плотность материала.

В решении линейной задачи при статическом воздействии на конструкцию существует несколько принципиальных особенностей:

- решение задачи очень слабо зависит (не зависит) от начальных условий (1.5);

- достоверно известно, что решение линейной задачи единственное при заданных конструкции и нагрузках, значительный опыт решения нелинейных статических и динамических задач позволяет утверждать, что и в этом случае решение единственное, но при этом зависит от траектории нагружения, в том числе и граничных условий.

Уравнения типа (1) прямо используются при решении пространственных задач, в практике расчета реальных конструкций чаще прибегают к использованию стержневых, оболочечных приближений, описывающих деформацию конструктивных элементов во взаимных комбинациях, в том числе и с пространственными элементами.

Особенности стержневого приближения при описании деформаций конструктивных элементов.

Использование стержневого приближения при моделировании несущих элементов конструкции предполагает в качестве параметров НДС использование внутренних усилий N, M_i, Q_i - i = (x, y, z) определенных в сечениях конструкции перпендикулярных, в общем случае, изогнутой (и сжатой - растянутой) продольной оси, - нормальные сечения, физический смысл которых станет ясным из нижеприведенных соотношений.

Рассмотрим лишь плоское движение в плоскости хо**z**, другие формы движения могут быть получены по аналогии.¹

Рассматривая строительные несущие конструкции, в которых допускаются малые прогибы (1/250 - 1/150) L, L – длина стержня, можно, в силу их малости, пренебречь влиянием искривления оси стержня на направления оси х в поверхностях A₁, A₂ (в сечении стержня) на определяемые величины при относительно малых величинах Δx . Тогда $\overline{n}_1 = -\overline{n}_2$, $\overline{n}_1(\overline{n}_2) \perp \overline{e}_2$, $\overline{n}_1(\overline{n}_2) \perp \overline{e}_3$ и $\overline{n} \perp \overline{e}_1$, здесь $(\overline{e}_1, \overline{e}_2, \overline{e}_3) = (\overline{e}_x, \overline{e}_y, \overline{e}_z)$ - единичные вектора, направленные вдоль осей (x,y,z).

¹ Расчетные соотношения для оболочек могут быть получены по аналогичной схеме.

Рис. 1. Схема, иллюстрирующая фрагмент деформированного стержня.

Определим силу F_x, действующую на приведенный фрагмент в направлении x (см. 1.1), интегрируя первое из (1.1) по объему тела V

$$F_{x} = \int_{V} f_{x} \cdot dV = \int_{V} \left(\frac{\partial \sigma_{xx}}{\partial x} + \frac{\partial \sigma_{xy}}{\partial y} + \frac{\partial \sigma_{xz}}{\partial z} \right) \cdot dV = \left\langle \begin{matrix} \text{на основании формулы} \\ \Gamma aycca - Octporpadckoro \end{matrix} \right\rangle = \\ = \iint_{S} \left[\sigma_{xx} \cdot (\overline{n} \cdot \overline{e}_{1}) + \sigma_{xy} \cdot (\overline{n} \cdot \overline{e}_{2}) + \sigma_{xz} \cdot (\overline{n} \cdot \overline{e}_{3}) \right] \cdot dS =$$

$$= \iint_{A_{1}} \sigma_{xx}^{A_{1}} \cdot dy \cdot dz - \iint_{A_{2}} \sigma_{xx}^{A_{2}} \cdot dy \cdot dz + \int_{0}^{\Delta x} dx \oint_{C} \left[\sigma_{xy}^{S_{60x}} \cdot (\overline{n} \cdot \overline{e}_{2}) + \sigma_{xy}^{S_{60x}} \cdot (\overline{n} \cdot \overline{e}_{3}) \right] \cdot dC.$$

$$(2)$$

При малых $\Delta x = dx$ уравнение (2) эквивалентно

$$\frac{\mathrm{dN}}{\mathrm{dx}} + \mathbf{R}_{\mathrm{x}} = \mathbf{0} \quad , \tag{2.1}$$

где:
$$\mathbf{N} = \iint_{\mathbf{A}} \boldsymbol{\sigma}_{\mathbf{xx}}^{\mathbf{A}} \cdot \mathbf{dy} \cdot \mathbf{dz}$$
 (в сечениях \mathbf{A}_1 и \mathbf{A}_2) (2.2)

- нормальная сила, определенная в нормальном сечении А;

$$\mathbf{R}_{x} = \oint_{\mathbf{C}} \left[\boldsymbol{\sigma}_{xy} \cdot \left(\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{2} \right) + \boldsymbol{\sigma}_{xz} \cdot \left(\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{3} \right) \right] \cdot \mathbf{dC}$$
(2.3)

- реакция в направлении x, обусловленная взаимодействием стержня по боковой поверхности с окружающей средой, либо действующими на боковой поверхности силами.

Обратим внимание на несколько принципиальных обстоятельств:

- величины N и R_x в сечении A₁(A)являются х-компонентами сил, действующих на «левую» (рис. 1) относительно сечения часть стержня;

- выражение (2.1), является прямым следствием уравнений равновесия механики сплошной среды и не зависит от тензора напряжений и тензора деформаций, истории нагружения;

- силы, действующие на выделенный объем стержня (любой объем) определяются напряжениями, «определенных» на поверхности выделенного объема.

Естественно, что при вычислении N в (2.2) интегрирование производится по части сечения, сохранившей сплошность, (в области, пересекаемой нормальной трещиной, часть интеграла равна нулю). Это первый из эффектов деформирования бетона, который «делает рассматриваемую среду «не сплошной» и нелинейной, если трещину не моделировать как выделенную особенность.

Обратим внимание на обстоятельство: если $R_x=0$ [x₁, x₂], то на этом участке N = const, справедливо и обратное утверждение.

Производя аналогичную процедуру для направления z (учтя наличие массовой силы, - вес материала) получим:

$$\frac{\partial \mathbf{Q}_z}{\partial \mathbf{x}} + \mathbf{R}_z + \mathbf{g} \cdot \mathbf{m} = \mathbf{0} \quad , \tag{3.1}$$

где:
$$\mathbf{Q}_{\mathbf{z}} = \iint_{\mathbf{A}} \boldsymbol{\sigma}_{\mathbf{x}\mathbf{z}}^{\mathbf{A}} \cdot \mathbf{d}\mathbf{y} \cdot \mathbf{d}\mathbf{z}$$
 (3.2)

- перерезывающая сила, определенная в нормальном сечении А;

$$\mathbf{R}_{z} = \oint_{C} \left[\boldsymbol{\sigma}_{yz} \cdot \left(\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{2} \right) + \boldsymbol{\sigma}_{zz} \cdot \left(\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{3} \right) \right] \cdot \mathbf{dC}$$
(3.3)

- реакция в направлении z, обусловленная взаимодействием стержня по боковой поверхности с окружающей средой, либо действующими на боковой поверхности силами;

$$\mathbf{m} = \iint_{\mathbf{A}} \boldsymbol{\rho} \cdot \mathbf{d} \mathbf{y} \cdot \mathbf{d} \mathbf{z} \tag{3.4}$$

- «масса сечения».

При движении стержня в плоскости x0z единственной отличной от нуля компонентой момента $\overline{\mathbf{M}}$ является компонента \mathbf{M}_{y} . Вычислим величину \mathbf{M}_{y} в сечении A относительно оси y.

$$\mathbf{M}_{y} = \iint_{A} \left[\overline{\mathbf{r}} \times \overline{\mathbf{f}} \right]_{y} \cdot \mathbf{dy} \cdot \mathbf{dz} = -\iint_{A} z \cdot \mathbf{f}_{x} \cdot \mathbf{dy} \cdot \mathbf{dz} = -\iint_{A} \left[\frac{\partial (z \cdot \sigma_{xx})}{\partial x} + \frac{\partial (z \cdot \sigma_{xy})}{\partial y} + \frac{\partial (z \cdot \sigma_{xz})}{\partial z} - \sigma_{xz} \right] \cdot \mathbf{dy} \cdot \mathbf{dz} =$$
(4)
$$= -\frac{\partial}{\partial x} \iint_{A} z \cdot \sigma_{xx} \cdot \mathbf{dy} \cdot \mathbf{dz} + \iint_{A} \sigma_{xz} \cdot \mathbf{dy} \cdot \mathbf{dz} - \oint_{C} z \cdot \left[\sigma_{xy} \cdot (\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{2}) + \sigma_{xz} \cdot (\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{3}) \right] \cdot \mathbf{dC}$$

$$\frac{\mathrm{d}\mathbf{M}_{y}}{\mathrm{d}x} + \mathbf{R}_{\varphi z} - \mathbf{Q}_{z} = \mathbf{0} \tag{4.1}$$

где
$$\mathbf{M}_{\mathbf{y}} = \iint_{\mathbf{A}} \mathbf{z} \cdot \boldsymbol{\sigma}_{\mathbf{x}\mathbf{x}} \cdot \mathbf{d}\mathbf{y} \cdot \mathbf{d}\mathbf{z}$$
 (4.2)

- компонента «внутреннего момента», определенная в сечении А;

$$\mathbf{R}_{\varphi y} = \oint_{\mathbf{C}} \mathbf{z} \cdot \left[\boldsymbol{\sigma}_{xy} \cdot \left(\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{2} \right) + \boldsymbol{\sigma}_{xz} \cdot \left(\overline{\mathbf{n}} \cdot \overline{\mathbf{e}}_{3} \right) \right] \cdot \mathbf{dC}$$
(4.3)

- «моментная» реакция в, обусловленная взаимодействием стержня по боковой поверхности с окружающей средой, либо действующими на боковой поверхности силами.

Определенные в сечении стержня величины обладают рядом принципиальных свойств.

1. Величины N, Q и M_y являются компонентами векторов (проекции на оси координат (x,y,z)) и являются следствием уравнений равновесия механики сплошной среды с использованием единственного приближения: деформация стержня сводится к взаимному смещению его нормальных плоскостей. Нарушение любого из этих положения делает зависимости (2)-(5), строго говоря, неверными.

Основные эффекты, способные привести к нарушению вышеназванных приближений при использовании моделей стержней и оболочек: трещинообразование, нелинейные деформации в сжатой зоне бетона, сдвиговые деформации, торцевые эффекты и эффекты, связанные с неоднородностью конструктивных элементов, «скачки нагрузки».

2. При выводе соотношений (2)-(4) не использовались никакие дополнительные требования к выбору начала координат в нормальном сечении, поэтому «продольная ось» стержня может быть выбрана в любом месте.

3. Не использовались никакие предположения об уравнениях состояния материала стержня, поэтому величины N, Q_z , R_x , R_z , $R_{\phi z}$ могут быть определены с использованием любых уравнений состояния.

4. Использование вышеприведенных уравнений недостаточно для расчета деформаций стержневой системы. Даже при использовании упругого приближения должна быть введена гипотеза о распределении напряжений по сечению стержневой конструкции.

5. Расчет внутренних усилий в стержневых конструкциях является способом вычисления интегралов N, Q_z, M_y (2.2, 3.2, 4.2) с учетом взаимодействия конструктивных элементов. Отметим, что даже для горизонтальных конструкций результаты расчетов с учетом и без учета геометрической нелинейности незначительно отличаться друг от друга, аналогичные результаты характерны и при «некотором» изменении модулей упругости.

6. Используя в качестве расчета варианты конечно-разностного расчета или метода конечных элементов, оперирующего понятиями «условия связи элементов», «условия, заданные на границе расчетных областей» и т.д., следует констатировать, что такие понятия, как «статическая неопределимость (определимость)», «неразрезность», перешедшие в системы современного расчета строительных конструкций, не имеют серьезного смысла при расчете внутренних усилий в стержнях (и вообще всех конструктивных элементов). При статическом расчете в подобных методах задача решается всегда с учетом деформаций всех элементов.

7. Задача расчета арматуры для обеспечения требований 1 и 2 групп предельных состояний использует совершенно независимые от методов определения внутренних усилий гипотезы о распределении напряжений по нормальным сечениям.

8. Самое главное. Для расчета арматуры и прогибов, сжатия-растяжения стержня, у нас нет более надежной информации, чем внутренние усилия - интегральные характеристики сечений несущих железобетонных элементов конструкции, обеспечение возможности восприятия которых и является основной задачей конструирования сечений стержневых элементов.

Некоторые примеры из практики расчетов конструкций

1. Деформация горизотальной балки при действии собственного веса и распределенной нагрузки.

Балка: призматическая шарнирно опертая длиной L = 3 м. Сечение h = 60 см, b = 30 см.

Свойства материалов.

Расчетные характеристики бетона класса В35, МПа (кгс/см²).

	Предельные состояния второй группы		Предельные состояния первой группы	
модуль упругости,	осевое сжатие,	осевое	осевое сжатие,	Осевое
E	R _{bn}	растяжение,	R _b	растяжение, R _{bt}
	Dii	R _{btn}		
34,5 (352)	25,5 (259)	1,95 (20)	19,5 (199)	1,2 (12,2)

Критериальными считались предельные состояния первой группы (отмечено в таблице).

Расчетные характеристики арматуры класса А400С, МПа (кгс/см²): Расчетное сопротивление арматуры:

- растяжению для предельного состояния первой группы **R**_s 365 (3750)
- сжатию для предельного состояния первой группы **R**_{sc} 365 (3750)
- поперечной растяжению для предельного состояния первой группы R_{sw} 290 (2970)
- растяжению для предельного состояния второй группы **R**_{s,ser} 400 (4080)

Модуль упругости арматуры Е_s - 200000 (2000000)

Некоторые особенности модели.

- 1. Призматический стержень;
- Стержень- оболочка. На левом и правом краях все узлы объединены твердыми телами не допускающими изгиб. Опора устанавливалась на ведущий узел по центру торцов.

На торцах (опорах) подавлялись все степени свободы кроме вращения относительно оси у)

Нагрузки

-L1: вес тела при плотности $\rho = 24.525 \, \kappa H \, / \, m3;$

- L2: распределенная нагрузка 100 кН/м в стержне и по верхнему торцу балки плиты;

- комбинация нагружений;C1= L1+L2..

При определении расчетных сочетаний усилий полагалось: нагрузки постоянные, коэффициенты надежности по нагрузке равны 1.3.

Некоторые результаты.

Упругие (не армированные) системы имеют идентичные вертикальные перемещения при действующих нагрузках, z_m = 0.68 мм.

Максимальные и минимальные значения нормальных напряжений (здесь σ_{xx}) определялись по результатам расчета балки-оболочки при комбинации нагружений C1.

Рис. 2 Нормальные напряжения σ_{xx} в балке-оболочке. Левая половина расчетной области. Расстояние между цифровыми осями равно 0.5 м. Ось 4 – плоскость симметрии. А). Сини и красные цвета – напряжения различных знаков.

Влияние условий на торце по характеру распределения σ_{xx} ощущается на расстоянии около (0.5 - 0.6) м, не смотря на заранее предпринятые меры, которые должны были уменьшить этот эффект.

Б) Величина нормальных напряжений сжатия (верхняя часть в центре пролета) достигает величины $\sigma_{min} = -67.25 \, \kappa \Gamma / cm^2 \, (R_b = 199 \, \kappa \Gamma / cm^2).$

В) Величина нормальной силы в стержне:

- линейный расчет N = 0, отметим, что на торцах не допускается поступательное перемещение; при учете геометрической нелинейности N = 0.14 кГ.

-, в балке-оболочке отличия очень малы.

Вертикальные перемещения в обоих случаях практически не изменяются.

Учет геометрической нелинейности приводит к изменению результатов расчетов на малые величины.

Г) Результаты расчета арматуры.

Балка-стержень. Обозначения приведенных величин соответствуют принятым в ПК SCAD. Величины h1 =AS1/b, h2 =AS2/b.

Таблица

Границы сетки таблицы соответствуют осям 1,2,4. Приведенные значения соответствую правым границам интервалов между осями

$AS1 = 4.86 \text{ cm}^2, \text{ h1} = 0.162 \text{ cm}$	$AS1 = 8.48 \text{ cm}^2, \text{ h1} = 0.283$	AS1 =9.76 cm ² , h1=0.325
$AS2 = 1.78 \text{ cm}^2, \text{ h}2 = 0.06 \text{ cm}$	$AS2 = 1.78 \text{ cm}^2, \text{ h}2 = 0.06 \text{ cm}$	$AS2 = 1.78 \text{ cm}^2, \text{ h}2 = 0.06 \text{ cm}$

Балка-оболочка.

Продольная арматура (вдоль продольной оси)

)_____

Рис. 3. Распределение арматуры в балке-оболочке в направлении продольной оси.

-A 4 Д). соответствии с данными, приведенными в таблице п.Г армировалась балка-оболочка слоями эквивалентной толщины с защитным слоем равным а = 4 см.

E). По результатам расчета балки-оболочки в комбинации нагружений определяются и фрагментируются области, в которых σ_{xx} ≥ R_{bt}. Выделенный фрагмент расчленяется областями с удаленными КЭ, параллельными оси z с шагом по x 0.2-0.5м до «полного исчезновения» областей с недопустимыми растягивающими напряжениями в несколько итераций. На рис. 4 приведен промежуточный вариант подобного итерационного процесса.

Рис. 4. Распределение напряжений в балке-оболочке. Оранжевые области соответствуют условию $\sigma_{xx} \ge R_{bt}$.

Рис. 5. Распределение напряжений в балке-оболочке. Оранжевые области соответствуют условию σ_{xx} ≥ R_{bt}. Следующая итерация.

Рис. 6. Распределение напряжений σ_{xx} и σ_{yy} вдоль оси z (горизонтальная ось)над «трещиной по оси 7» (слева - направо – от верхней поверхности да устья «трещины»). Значения напряжений в пролете вблизи верхней поверхности балки: $\sigma_{xx} = -112 \, \kappa \Gamma / c M^2 \, u \, \sigma_{yy} - 4 \, \kappa \Gamma / c M^2$.

Отметим, что для данной стадии расчета вертикальные смещения точек в центре пролета достигли величин 1.52 мм (почти в 3 раза превышают перемещения точек упругой балки). По-видимому, процесс образования трещин является превалирующим в увеличении прогибов

несущих конструкций, воспринимающих нагрузку за счет изгибной жесткости.

В областях контакта нижней арматуры с бетоном резко увеличивается интенсивность нормальных напряжений, достигая в пролете величины $\sigma_i = 138 \, {\rm kr}/{\rm cm}^3$.

Надо ли армировать еже «армированную» балку?

Формальный расчет арматуры балки-оболочки показал, что рассматриваемый объект с «трещинами» должен дополнительно армироваться стернями Ø6 с шагом 10 см в продольном и вертикальном направлении. Расчет требуемого армирования неармированной упругой балки-оболочки в нижней части пролета показал, что требуется лишь продольная арматура Ø20 с шагом 10 см.!!!