Конечные элементы для нелинейного анализа тонкостенных железобетонных конструкций

С. Ю. Фиалко Cracow University of Technology & SCAD Soft sergiy.fialko@gmail.com

Основные направления современных исследований.

Для моделирования поведения бетона и железобетона используются различные подходы.

Один из самых распространенных состоит в применении той или иной теории пластичности, причем деградация бетона вследствие раскрытия трещин моделируется ниспадающей ветвью диаграммы σ – ε.

При этом поверхность прочности бетона в пространстве напряжений заменяется поверхностью текучести.

Наличие ниспадающей ветви на диаграмме σ – ε порождает серьезные проблемы при численной реализации

Edrem Kayhan APPLICATION OF VISCOUS AND NON-LOCAL INTEGRAL TYPE REGULARIZATION SCHEMES FOR SOFTENING PLASTICITY. September, 2009.

Снижение прочности бетона при развитии трещин моделируется ниспадающей ветвью на диаграмме **о** - **ɛ**, что приводит к серьезным вычислительным проблемам, связанными с неустойчивыми численными решениями.

При сгущении сетки численное решение для ниспадающей ветви диаграммы σ – ε расходится !!! При одном и том же уровне напряжений в разных конечных элементах возможны различные деформации.

Нужна регуляризация решения. В предлагаемом нами подходе таким естественным регуляризатором является арматура.

Z.P. Bažant, T. Belytschko, T. Chang. Nonlocal continuum approach, позволяющий регуляризировать физические соотношения.

В механике деформируемого твердого тела нелокальная модель материала интегрального типа — это такая модель, в которой конститутивный закон (физические соотношения) в точке среды порождает средневзвешенные переменные состояния, полученные в некоторой окрестности данной точки.

$$\sigma(x) = E\overline{\varepsilon}(x), \quad \overline{\varepsilon}(x) = \int_{-\infty}^{\infty} \varepsilon(x+\xi)\alpha(\xi)d\xi,$$

$$\alpha(\xi) : \alpha(\xi) = 0 \lor |\alpha(\xi)| < \delta \Big|_{\xi > \frac{l}{2} \land \xi < -\frac{l}{2}}, \quad \alpha(\xi) = \alpha(-\xi), \quad \int_{-\infty}^{\infty} \alpha(\xi)d\xi = 1;$$

Здесь $\overline{\varepsilon}(x)$ - средневесовое значение деформации, $\alpha(\zeta)$ – весовая функция.

G. Jouan , P. Kotronis , F. Collin. Second gradient model – учитывает в уравнениях равновесия градиенты первого и второго порядков.

В результате удается стабилизировать поведение численного решения в случае ниспадающей ветви диаграммы **о** - **є** бетона растянутой зоны.

T. Belytschko, T. Rabczuk. Метод частиц, основанный на аппроксимации трещин поверхностями разрывных перемещений, расположенными на частицах.

Figure 2. Schematic on the right shows a crack model for the crack on the left.

Поле перемещений считается непрерывным по всей области за исключением трещин:

$$\mathbf{u}(\mathbf{X},t) = \mathbf{u}^{cont}(\mathbf{X},t) + \mathbf{u}^{enr}(\mathbf{X},t)$$

Здесь **X** – пространственные координаты, t – время, **u**^{cont} – непрерывные перемещения, **u**^{enr} - разрывные. Трещина моделируется системой дискретных трещин, каждая из которых проходит через частицу (*fig.* 2).

Figure 3. Coupling of particle and finite elements.

С помощью метода множителей Лагранжа производится привязка частиц к узлам конечно-элементной сетки: $W = W_{int} + W_{ext} + \lambda^T (\mathbf{u}^{fe} - \mathbf{u}^p)$.

Wang L. C. Meso-scale approach – бетон представлен как композитный материал, состоящий из частиц раствора, твердых частиц заполнителя и переходной зоны взаимодействия между частицами, моделируемой набором упругих связей.

Решенные задачи:

Fig. 9. Configuration of the three-point bending beam

Fig. 18. Geometry of dumbbell-shaped specimen subject to uniaxial tension and FE mesh

- Данные работы направлены на моделирование процесса трещинообразования в бетоне и позволяют достаточно точно описать процесс раскрытия и распространения трещин.
- ✓ Однако в силу значительной их трудоемкости рассматриваются только модельные задачи, что не удовлетворяет запросам практики.
- Практически отсутствуют работы, посвященные изучению поведения фрагментов реальных конструкций.

Программные комплексы:

 АВАQUS. Имеет четырехузловой оболочечный элемент, допускающий произвольную ориентацию арматурных стержней относительно локальных осей координат. Арматурные стержни работают только на растяжение-сжатие. ✓ ANSYS. Имеет только объемные конечные элементы, содержащие арматурные стержни, работающие на растяжение-сжатие.

Не содержат оболочечных треугольных конечных элементов, необходимых для моделирования перекрытий, фундаментных плит и стен сложной геометрической формы, содержащих точки пересечения с осями колонн, отверстия, вырезы и т. д.

Без учета жесткости арматуры на поперечный сдвиг возникают существенные проблемы с устойчивостью вычислительных алгоритмов, значительно сужающих круг рассматриваемых задач и усложняющих, а порой и просто делающих невозможным получение конечного результата.

Цели и требования.

Предлагаемые конечные элементы предназначены для численного моделирования поведения тонкостенных железобетонных конструкций: фундаментных плит, плит перекрытий, несущих стен, пилонов, колонн, балок и т. д. Они предназначены для практического использования в программных комплексах МКЭ, ориентированных на десктопы и лаптопы.

Данный подход должен быть:

- ✓ Настолько простым, насколько это возможно.
- ✓ Отражать реальное поведение бетона и арматуры.
- ✓ Не требовать привязки шага сетки к арматурным стержням.
- Допускать произвольную ориентацию арматурных стержней относительно локальных осей конечных элементов.

Это позволяет моделировать поведение фрагментов реальных конструкций сложной геометрии.

Библиотека физически нелинейных конечных элементов:

- ✓ Четырехугольный плоский оболочечный конечный элемент.
- ✓ Треугольный плоский оболочечный конечный элемент.
- ✓ Двухузловой стержневой пространственный конечный элемент.

Постановка задачи:

 Бетон представляется изотропным материалом, поведение которого описывается соотношениями деформационной теории пластичности с элементами деградации, сформулированной в терминах остаточных деформаций.

- В оболочечных элементах арматура моделируется бесконечно тонким слоем, работающим на растяжение-сжатие в направлении осей арматурных стержней, а также на сдвиг. В пределах данного арматурного слоя все стержни одинаковы, имеют одно и то же направление и один и тот же шаг.
- В стержневом элементе продольная арматура моделируется отдельными стержнями, работающими на растяжение-сжатие и на сдвиг. Поперечная арматура представляется в виде слоя, работающего только на растяжение-сжатие.
- ✓ Проскальзывание между арматурой и бетоном отсутствует.
- ✓ Для оболочечных элементов используется теория оболочек средней толщины Миндлина – Рейсснера.
- ✓ Для стержневого элемента используется модель С. П. Тимошенко.

Перемещения и углы поворота считаются малыми.

- ✓ Устойчивость к сдвиговому запиранию обеспечивается реализацией подхода МІТС для четырехугольного конечного элемента и стержневого элемента, а также подхода DSG (Discrete Shear Gap)¹ для треугольного.
- Bletzinger K. U., Bischoff M., Ramm. E. 1998. A unified approach for shear-locking-free triangular and rectangular shell finite elements, in S. Idelsohn, E. Oñate, E. Dvorkin (Eds.). *Computational Mechanics. New trends and applications*. ©CIMNE, Barcelona, Spain. 1 – 22.

Основные постулаты деформационной теории пластичности.

✓ Закон упругого изменения объема:

$$\sigma = 3K\theta, \quad K = \frac{1-2\nu}{E}$$

Девиаторы тензоров напряжений и деформаций пропорциональны:

$$\mathbf{D}_{\sigma} = 2G' \left(\mathbf{D}_{\varepsilon} - \mathbf{D}_{\varepsilon}^{A} \right),$$

где G'= G'(D_ε) – текущее значение модуля сдвига, D_ε^A – значения компонент девиатора тензора деформаций в точке вычисления остаточных деформаций.

Основные постулаты деформационной теории пластичности.

- ✓ Зависимость между приведенными напряжениями и приведенными деформациями G'(D_ε) устанавливается на основании экспериментов по одноосному растяжению-сжатию.
- ✓ Закон упругой разгрузки:

$$\mathbf{D}_{\sigma} = 2G_{P}^{\prime}\mathbf{D}_{\varepsilon}^{P} - 2G(\mathbf{D}_{\varepsilon} - \mathbf{D}_{\varepsilon}^{A}),$$

где *G*′_{*P*}, **D**_ε^{*P*} – значения модуля сдвига и девиатора тензора деформаций в момент начала разгрузки, *G* – упругий модуль сдвига, **D**_ε – текущее значение девиатора тензора деформаций.

Четырехузловой конечный элемент

*s*₁, *s*₂ – направления укладки нижней арматуры; *s*₃, *s*₄ – верхней.

 z_{s1} , z_{s2} — расстояние от срединной поверхности до соответствующего слоя верхней арматуры, z_{s3} , z_{s4} — нижней.

h - толщина плиты.

Охуг – локальная система координат конечного элемента.

Треугольный конечный элемент

Функции формы:

Четырехузловой изопараметрический элемент:

Трехузловой изопараметрический элемент:

$$N_1(\xi,\eta) = 1 - \xi - \eta; \quad N_2(\xi,\eta) = \xi; \quad N3(\xi,\eta) = \eta;$$

Функции формы:

Стержневой элемент:

✓ Продольная арматура работает на растяжение-сжатие и на сдвиг.
 Учитывается дискретно с учетом физической нелинейности.

✓ Поперечная арматура работает упруго на растяжение-сжатие.
 Представляется в виде равномерно размазанного слоя.

Кинематика стержневого конечного элемента основана на гипотезе недеформируемости поперечника:

 $u_A(x, y, z) = u(x) + z\theta_y - y\theta_z,$ $v_A(x, y, z) = v(x) - z\theta_x,$ $w_A(x, y, z) = w(x) + y\theta_x, \quad A : A(x, y, z)$

Здесь:

*u*_{*A*}, *v*_{*A*}, *w*_{*A*} – перемещения произвольной точки *A* внутри стержня, имеющей координаты *x*, *y*, *z*, соответственно вдоль осей ОХ, ОҮ, OZ.

и, *v*, *w* – перемещения точки поперечного сечения, проходящего через точку *A* и лежащей на пересечении плоскости поперечного сечения с осью OX.

θ_x, θ_y, θ_z – углы поворота относительно осей, вызванные кручением и изгибом в двух плоскостях.

Бетон. Оболочечные конечные элементы.

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_y & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & 0 \end{pmatrix} \qquad \qquad \boldsymbol{\sigma} = \frac{1}{3} (\sigma_x + \sigma_y + \sigma_z|_{=0}) = \frac{1}{3} (\sigma_x + \sigma_y)$$

Приведенные напряжения:

$$\sigma_i = \sqrt{\sigma_x^2 + \sigma_y^2 - \sigma_x \sigma_y + 3(\tau_{xy}^2 + \tau_{yz}^2 + \tau_{xz}^2)}$$

Тензор деформаций:

$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_{x} & \frac{1}{2}\gamma_{xy} & \frac{1}{2}\gamma_{xz} \\ \frac{1}{2}\gamma_{yx} & \varepsilon_{y} & \frac{1}{2}\gamma_{yz} \\ \frac{1}{2}\gamma_{zx} & \frac{1}{2}\gamma_{zy} & \varepsilon_{z} \end{pmatrix} \qquad \boldsymbol{\sigma}_{z} = 0 = \frac{E}{1+\nu} \left(\varepsilon_{z} + \frac{\nu}{1-2\nu}\theta\right), \quad \theta = \varepsilon_{x} + \varepsilon_{y} + \varepsilon_{z}$$
$$\varepsilon_{z} = -\frac{\nu}{1-\nu} \left(\varepsilon_{x} + \varepsilon_{y}\right)$$

Бетон. Стержневой конечный элемент.

$$\boldsymbol{\sigma} = \begin{pmatrix} \sigma_x & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & 0 & 0 \\ \tau_{zx} & 0 & 0 \end{pmatrix} \qquad \qquad \boldsymbol{\sigma} = \frac{1}{3} (\sigma_x + \sigma_y|_{=0} + \sigma_z|_{=0}) = \frac{1}{3} \sigma_x$$

Приведенные напряжения:

$$\sigma_i = \sqrt{\sigma_x^2 + 3(\tau_{xy}^2 + \tau_{xz}^2)}$$

Тензор деформаций:

Приведенные деформации:
$$\varepsilon_i = \frac{2}{3} \sqrt{(1+v)^2 \varepsilon_x^2 + \frac{3}{4} (\gamma_{xy}^2 + \gamma_{xz}^2)^2}$$

Арматура

✓ Предполагаем, что арматурные стержни работают на растяжение-сжатие и на сдвиг.

Тензор напряжений:
$$\sigma = \begin{pmatrix}
 \sigma_s & \tau_{sn} & \tau_{sz} \\
 \tau_{ns} & 0 & 0 \\
 \tau_{zs} & 0 & 0
 \end{pmatrix}$$
 $\sigma = \frac{1}{3}\sigma$ Приведенные напряжения: $\sigma_{s,i} = \sqrt{\sigma_s^2 + 3(\tau_{sy}^2 + \tau_{sz}^2)}$ Тензор деформаций: $\varepsilon = \begin{pmatrix}
 \varepsilon_s & \frac{1}{2}\gamma_{sn} & \frac{1}{2}\gamma_{sz} \\
 \frac{1}{2}\gamma_{ns} & \varepsilon_n & 0 \\
 \frac{1}{2}\gamma_{zs} & 0 & \varepsilon_z
 \end{pmatrix}$ $\sigma_z = 0 = \frac{E}{1+\nu} \left(\varepsilon_z + \frac{\nu}{1-2\nu} \theta \right),$ Приведенные деформации: $\varepsilon_i^{sh} = \frac{2}{3}\sqrt{(1+\nu)^2(\varepsilon_s - \varepsilon_s^A)^2 + \frac{3}{4} \left[(\gamma_{sn} - \gamma_{sn}^A)^2 + (\gamma_{sz} - \gamma_{sz}^A)^2 \right]}$

Бетон. Активное нагружение и разгрузка.

Бетон. Реальные диаграммы $\sigma_i - \varepsilon_i$.

Аппроксимация Паде билинейной диаграммы

Диаграмма ЕКБ

$$= \begin{cases} E\varepsilon \mid 0 \le \varepsilon \le \varepsilon_{1}, \\ \alpha \sigma_{t} + \frac{(1-\alpha)E}{1-\xi} (\varepsilon - \xi \varepsilon_{1}) \mid \varepsilon_{1} \le \varepsilon \le \xi \varepsilon_{1}, \xi > 1, \\ \alpha \sigma_{t} + \beta E (\varepsilon - \xi \varepsilon_{1}) \mid \varepsilon > \xi \varepsilon_{1}, \\ \frac{E}{E_{s}} \varepsilon_{s} \sigma_{c} \\ \frac{E}{1+A\varepsilon_{s} + B\varepsilon_{s}^{2} + C\varepsilon_{s}^{3}} \mid \varepsilon_{ul} \le \varepsilon < 0 \end{cases}$$

 σ_c , σ_t – предел прочности бетона на сжатие и растяжение, ε_c , ε_1 – соответствующие им деформации. U – точка, соответствующая

предельным деформациям бетона на сжатие.

Арматура. Реальные диаграммы σ_i - ϵ_i .

Экспоненциальная аппроксимация билинейной диаграммы:

$$\sigma_{s} = \left(E\lambda^{-1} + E_{1}\varepsilon_{s}\right)\left(1 - e^{-\lambda\varepsilon_{s}}\right), \quad \lambda = E^{2}\left(\sigma_{y}\left(E - E_{1}\right)\right)$$

Кинематические условия сопряжения бетона и арматуры.

✓ Оболочечные элементы.

Отсутствие проскальзывания:

$$\begin{cases} \varepsilon_{s} = \varepsilon_{x} \cos \varphi_{a}^{2} + \varepsilon_{y} \sin \varphi_{a}^{2} + \frac{1}{2} \gamma_{xy} \sin 2\varphi_{a} \\ \gamma_{sn} = \sin 2\varphi_{a} (\varepsilon_{y} - \varepsilon_{x}) + (\cos \varphi_{a}^{2} - \sin \varphi_{a}^{2}) \gamma_{xy} \\ \gamma_{sz} = \gamma_{xz} \cos \varphi_{a} + \gamma_{yz} \sin \varphi_{a} \end{cases}$$

Кинематические условия сопряжения бетона и арматуры.

✓ Стержневой элемент.

Кинематические условия сопряжения бетона и арматуры.

Принцип возможных перемещений

Оболочечные элементы.

Поскольку при реальном армировании и густоте сетки на каждый конечный элемент приходится несколько стержней, а функции формы обладают медленной изменяемостью в переделах КЭ, мы заменяем дискретные стержни равномерно «размазанным» «арматурным слоем». Математически это выражается в замене конечных сумм интегралом по площади КЭ:

$$\begin{split} \delta \Pi_{s} &= \sum_{k} \int_{0}^{a_{k}} A_{s} \Big[\sigma_{s}^{k} \delta \varepsilon_{s}^{k} + m_{s}^{k} \big(\tau_{sz}^{k} \delta \gamma_{sz}^{k} + \tau_{sn}^{k} \delta \gamma_{sn}^{k} \big) \Big] ds_{k} \\ &= \iint_{\Omega} \frac{A_{s}}{h_{s}} \Big[\sigma_{s} \delta \varepsilon_{s} + m_{s} \big(\tau_{sz} \delta \gamma_{sz} + \tau_{sn} \delta \gamma_{sn} \big) \Big] d\Omega = \\ &= \frac{A_{s}}{h_{s}} \iint_{\Omega} \mathbf{M}_{s} \mathbf{\sigma}_{s} : \varepsilon_{s} d\Omega \end{split}$$

$$y$$

 h_s
 h_s
 ϕ_a
 1
 2

✓ Стержневой элемент.

$$\iiint_{V} \mathbf{M}\boldsymbol{\sigma} : \delta \boldsymbol{\varepsilon} dV + \sum_{s} A_{s} \int_{0}^{a} \mathbf{M}_{s} \boldsymbol{\sigma}_{s} : \delta \boldsymbol{\varepsilon}_{s} dx + \sum_{r} \frac{A_{r}}{h_{r}} \int_{0}^{a} \int_{0}^{b} \boldsymbol{\sigma}_{r} \delta \boldsymbol{\varepsilon}_{r} d\zeta dx - \underbrace{\delta A_{ext}}_{Virtual \ work \ of} = 0,$$
Virtual work of concrete
Virtual work of steel longitudinal
virtual work of transversal
rods. r - number of layer
$$\mathbf{M} = \begin{pmatrix} 1 \\ m \\ m \end{pmatrix}, \quad \mathbf{M}_{s} = \begin{pmatrix} 1 \\ m_{s} \\ m_{s} \end{pmatrix},$$

=

где *m*, *m*_s – коэффициенты коррекции касательных напряжений, вызванных сдвигом, зависящие от формы сечения (shear correction factors). Коэффициент *m* зависит от формы поперечного сечения стержня, а коэффициент *m*_s – от формы поперечного сечения арматурного стержня *s*.

- При вычислении интегралов по толщине оболочки применяется метод трапеций. В результате оболочка по толщине разбивается на слои.
- Интегралы по площади КЭ вычисляются с помощью квадратурных формул Гаусса-Лежандра. Используется изопараметрическое преобразование.
- Интегралы по объему стержневого конечного элемента вычисляются с помощью квадратурных формул Гаусса-Лежандра.
 Вследствие триангуляции поперечного сечения элемент разбивается на треугольные призмы.

Модельные задачи

Конечный элемент плоской рамы.

Для четкого понимания двух важных особенностей поведения предлагаемой расчетной модели рассмотрим конечный элемент плоской рамы, используя тот же самый подход, что и для оболочечных элементов:

- ✓ Сдвиговая теория С.П. Тимошенко.
- Деформационная теория пластичности для бетона и арматуры с учетом деградации бетона при раскрытии трещин, сформулированная в терминах остаточных деформаций.
- ✓ Кинематические условия сопряжения бетона и арматуры:

 $\varepsilon_s = \varepsilon_{x'} \gamma_{sz} = \gamma_{xz}$ (отсутствие проскальзывания).

✓ Принцип возможных перемещений:

$$\int_{0-h/2}^{a} \int_{0-h/2}^{h/2} (\sigma_x \delta \varepsilon_x + \tau_{xz} \delta \gamma_{xz}) dz dx + \sum_s \frac{A_s}{h_s} \int_{0}^{a} (\sigma_s \delta \varepsilon_s + m_s \tau_s \delta \gamma_{sz}) dx - \delta A_{ext} = 0$$

Предполагаем: арматура работает только на растяжение-сжатие.

Нас интересует работа бетона и арматуры в пределах ниспадающего участка диаграммы σ-ε. Продольное усилие в растянутой зоне (бетон + арматура):

Условие устойчивости равновесного состояния:

$$\frac{dF_{tens}}{d\varepsilon} = \frac{(h - h_c)(1 - \alpha)}{\xi - 1}E_c + \frac{A_s E_s}{h_s} > 0$$

Мы не можем задать протяженность зоны деградации как угодно малой:

$$\xi > \xi_{\min}, \xi_{\min} = 1 + \frac{(1 - \alpha)(1 - h_c/h)}{\mu_s^{tens}} \frac{E_c}{E_s}, \quad \mu_s^{tens} = \frac{\sum_{s \in tens} A_s}{bh} = \frac{A_s}{h_s h}$$

a = 3 m, A = 0.08 m², I = 0.0010667 m⁴, E_c = 30 000 Mpa, E_s = 210 000 Mpa, σ_y = 400 Mpa, A_s = 7.854e-005 m⁴, h_s = 0.02 m, μ_s = 0.01, α = 0.05, ξ_{min} = 7.91

 $\xi > \xi_{min}$ — устойчивое решение (кривая равновесных состояний - возрастающая).

Ft

 $\xi < \xi_{min}$ — кривая равновесных состояний содержит ниспадающую ветвь (потеря устойчивости стержня при растяжении).

 $\xi = \xi_{min}$ — кривая равновесных состояний содержит горизонтальный участок.

В случае полного разрушения бетона растянутой зоны арматура должна воспринимать не только растягивающие – сжимающие усилия, но и исключить разрушение в пределах конечного элемента за счет сдвиговых деформаций.

Бетон исчерпал несущую способность:

а. Арматура работает только на растяжение-сжатие:

Геометрическая изменяемость !!!

б. Арматура работает на растяжение-сжатие и на сдвиг:

Геометрически неизменяемая система

Структура матрицы тангенциальной жесткости стержневого конечного элемента Θi Θi Ui Wi Θi Wj Ui

Если учесть работу арматуры только на растяжение-сжатие, то в самом начале ниспадающего участка для бетона сходимость численного решения пропадает.

Задача 2. Изгиб квадратной плиты. (Карпенко Н. И. Теория железобетона с трещинами. М.: Стройиздат, 1976.)

<i>E_b,</i> MPa	v	Диагр. бетон	ξ_{\min}	×۲	σ _c , MPa	σ _t , MPa	Диагр. сталь	<i>E_s,</i> MPa	α
30 000	0.2	ЕКБ	34.5	40	26.5	1.3	Билинейн.	201 000	0

Образцы 825, 826, 827. Коэффициент армирования: $\mu_{s,x} = \mu_{s,y} = 0.0064$

Конечный элемент в окрестности центра пластины.

Бетон:

Приведенные напряжения – приведенные деформации для наиболее сжатого и наиболее растянутого волокон. Сталь: диаграмма σ/σ_у – Еє/ σ_у для сжатой и растянутой арматуры. Распределение напряжений в бетоне по высоте сечения при различных уровнях нагружения. Конечный элемент в окрестности центра пластины. σ_t = 1.3 MPa, ξ = 40, α = 0.

Задача 2. Балка прямоугольного сечения под действием сосредоточенной силы посреди пролета.

Rabczuk T., Belytschko T. Application of particle methods to static fracture of reinforced concrete structures. // International journal of fracture, 137, pp. 19 – 49, 2006.

Бетон: E = 28 000 MPa, σ_c = 32 MPa, σ_{ul} = 0.85 σ_c , σ_t = 2.5 MPa, v = 0.22, ε_c = 0.0035, ε_{ul} = 1.41 ε_c ; Арматура: E_s = 200 000 MPa, σ_v^{s} = 587 MPa.

Результаты T5A1 и T5A1-Fine практически совпадают. Для дальнейших расчетов используем модель T5A1.

Диаграммы нагрузка (КПа) – прогиб (м):

Диаграммы нагрузка (КПа) – прогиб (м):

Диаграммы нагрузка (КПа) – прогиб (м):

Поля напряжений σ_i-ε_i для бетона и арматуры. Сечение T5A1-Transv, элемент №16 (ближайший к центру)

Диаграмма σ_i-ε_i для наиболее растянутого и наиболее сжатого волокна бетона. Диаграмма σ_i-ε_i для наиболее растянутого и наиболее сжатого арматурного стержня.

Диаграммы σ_i-ε_i для бетона и арматуры. Сечение T6A1-Transv, элемент №16 (ближайший к центру)

Диаграмма σ_i-ε_i для наиболее растянутого и наиболее сжатого волокна бетона.

Диаграмма о_i-ε_i для наиболее растянутого и наиболее сжатого арматурного стержня.

Поля напряжений для бетона в последней точке кривой равновесных состояний., элемент №16 (ближайший к центру)

 σ_i , Мпа, Сечение T5A1-Transv

 σ_i , Мпа, Сечение T6A1-Transv

Бетон сжатой зоны исчерпал несущую способность.

Предельные состояния конечных элементов стен и перекрытий.

зоне течет

Арматура сжатой зо течет Бетон сжатой зоны исчерпал несущую способность

Предельное состояние стержневых элементов

Арматура растянутой зоны течет

Арматура сжатой зоны течет Бетон сжатой зоны исчерпал несущую способность

Рекомендации

- Применять нелинейный анализ ко всему сооружению не реально, да и не нужно.
- На основе линейного анализа следует определить наиболее напряженные элементы конструкций и выполнить подбор арматуры.
- ✓ С учетом примыкающих соседних элементов создать подконструкции, поведение которых нуждается в уточнении. Собрать нагрузки на выделенные фрагменты схемы. Создать библиотеку сечений для стержневых элементов. Подготовить данные по армированию для оболочечных и стержневых конечных элементов, задать диаграммы σ-ε, выполнить разбивку колонн и ригелей на конечные элементы.

Рекомендации

- Продумать границы изменения параметра нагружения, разбить процесс нагружения на шаги.
- ✓ Выполнить нелинейный анализ.

Благодарю за внимание !