

ПЛИТНАЯ СТАЛЕЖЕЛЕЗОБЕТОННАЯ КОНСТРУКЦИЯ (ПСК)

ООО «ИНВ-СТРОЙ», Пекин Дмитрий Анатольевич, главный конструктор, к.т.н.

СУЩЕСТВУЮЩИЕ КОНСТРУКТИВНЫЕ РЕШЕНИЯ ОПОРНЫХ ЗОН

ОШИБКИ ПРИ ПРОЕКТИРОВАНИИ И СМР ПРИВОДЯТ К АВАРИЯМ

НЕДОСТАТКИ СП 63.13330.2012 (СНиП 2.03.01-84*) ПРИ РАСЧЕТЕ НА ПРОДАВЛИВАНИЕ:

- 1. Известна критика методики расчета на продавливание в части суммирования несущей способности бетона срезу (растяжению) на границах призмы (пирамиды) продавливания на I стадии НДС с несущей способностью поперечной арматуры на III стадии НДС, что не соответствует физической природе механизма разрушения.
- 2. Допущение о равномерном распределении касательных (растягивающих) напряжений в бетоне по всей площади расчетного сечения не подтверждается экспериментально [1].
- 3. По результатам серии экспериментов [2] выявлено, что для бетона классов В40, В45 согласно методики происходит заметное увеличение несущей способности на продавливание по сравнению с опытными данными.
- 4. Согласно проведенным испытаниям [3] установлено, что при увеличении габаритов грузовой площади, нормативная методика расчета также приводит к завышению несущей способности на продавливание.
- 5. На основе анализа [4] отмечено, что не учитывается фактическое НДС опорных зон ЖБК, продольное армирование, несимметричное напряженное состояние на разных гранях колонн, режим нагружения.

НЕДОСТАТКИ СП 63.13330.2012 (СНиП 2.03.01-84*) ПРИ РАСЧЕТЕ НА ПРОДАВЛИВАНИЕ:

- 6. Необходимость учета действующих в колоннах изгибающих моментов, особенно для плит перекрытий, противоречит механике железобетона, поскольку вертикальные нормальные напряжения в колоннах не могут действовать за границами их поперечного сечения. Снижение несущей способности на продавливание в плитах покрытия и фундаментных плитах при внецентренном нагружении происходит за счет уменьшения площади контакта колонны (грузовой площади) и плитной конструкции.
- 7. Конструктивное требование в пп. 8.1.46, 10.3.17 СП 63.13330.2012 (в отличии от СНиП 2.03.01-84*) по размещению поперечной арматуры в плане на расстоянии не менее h₀/3 от граней колонны (грузовой площади) для плитных железобетонных конструкций большой толщины (> 1 м) может приводить к реализации «стесненного» механизма продавливания по аналогии с разрушением свайных ростверков.
- Отсутствуют рекомендации по учету реактивного давления грунта для фундаментных плит в отличие от методик, реализованных в СНиП 2.03.01-84* и Еврокод 2.

НЕДОСТАТКИ ЕВРОКОД 2 ПРИ РАСЧЕТЕ НА ПРОДАВЛИВАНИЕ:

- 1. Полностью эмпирическое определение предельных касательных напряжений в бетоне на основе кубиковой прочности.
- 2. Необходимость сравнения касательных напряжений и несущей способности бетона на двух контурах, по периметру колонны: $V_{Ed,col}/V_{Rd,max}$ =2,82/7,2=0,39, где несущая способность $V_{Rd,max}$ заметно завышена и на расстоянии 2h₀ от граней колонны: $V_{Ed,u1}/V_{Rd,c}$ =1,06/0,80=1,33, где несущая способность $V_{Rd,c}$ заметно занижена, не отражает механизм разрушения при продавливании испытанного в описываемом эксперименте образца.
- 3. Равномерное распределение касательных напряжений по рабочей высоте сечения особенно на контуре по периметру колонны, а не по высоте сжатой зоны бетона.
- 4. Существенное занижение (на 33%) несущей способности на продавливание применительно к рассмотренному в данном докладе образцу ФПП-2.
- 5. Аналогичный подход по учету действующих в колоннах изгибающих моментов не соответствует механике железобетона, поскольку снижение несущей способности на продавливание при внецентренном нагружении происходит за счет уменьшения площади контакта колонны (грузовой площади) и плитной конструкции.

АЛЬТЕРНАТИВНОЕ КОНСТРУКТИВНОЕ РЕШЕНИЕ ПЛИТНАЯ СТАЛЕЖЕЛЕЗОБЕТОННАЯ КОНСТРУКЦИЯ

Стальные листы, устанавливаемые в одном направлении

Стальные листы, устанавливаемые в другом направлении

Фрагмент опорной зоны перекрытия. Вид в плане

- 1 стальные листы;
- 2 арматура периодического профиля;
- 3 бетон;
- 4 арматура колонны.

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ТЕХНИЧЕСКАЯ ТЕОРИЯ ИЗГИБА ПЛАСТИН

Основное уравнение теории изгиба пластинок:

$$\frac{\partial^4 w}{\partial x^4} + 2 \cdot \frac{\partial^4 w}{\partial x^2 \cdot \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{12(1-\mu^2)}{E \cdot h^3} \cdot p(x,y).$$
(1)

Кинематическая гипотеза:

Статическая гипотеза ($\sigma_z = 0$):

$$u = -z \cdot \frac{\partial w}{\partial x} ,$$

$$v = -z \cdot \frac{\partial w}{\partial y} . \quad (2)$$

$$\varepsilon_{x} = \frac{1}{E} \cdot (\sigma_{x} - \mu \cdot \sigma_{y} - \mu \cdot \sigma_{z}) = \frac{1}{E} \cdot (\sigma_{x} - \mu \cdot \sigma_{y}),$$

$$\varepsilon_{y} = \frac{1}{E} \cdot (\sigma_{y} - \mu \cdot \sigma_{x} - \mu \cdot \sigma_{z}) = \frac{1}{E} \cdot (\sigma_{y} - \mu \cdot \sigma_{x}). \quad (3)$$

Расчетные схемы 1, 2 (РС1, РС2)

Расчетная схема 3 (РС3)

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ТЕХНИЧЕСКАЯ ТЕОРИЯ ИЗГИБА ПЛАСТИН

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ОБЪЕМНАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ

Основные уравнения линейной теории упругости делятся на три группы:

K

на РС5 и РС6 бетон условно не показан

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ОБЪЕМНАЯ ЗАДАЧА ТЕОРИИ УПРУГОСТИ

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ СОПОСТАВЛЕНИЕ РАССМАТРИВАЕМЫХ ТЕОРИЙ

Приведенный изгибающий момент *M_{red}* по результатам расчета объемной задачи теории упругости:

$$M_{red} = \frac{\sigma_{br,red} - \sigma_{bc,red}}{1} + \frac{1}{W_{r,red}} = \frac{\sigma_{br,red} - \sigma_{bc,red}}{z_r} + \frac{z_c}{I_{red,el}} \cdot \frac{\sigma_{br,red} - \sigma_{bc,red}}{z_r + z_c} = I_{red,el} \cdot \frac{\sigma_{br,red} - \sigma_{bc,red}}{h} , (7)$$

$$T_{TC} = \sigma_{br,red} = \frac{N}{A} + \frac{M_{red}}{W_{r,red}}; \sigma_{bc,red} = \frac{N}{A} - \frac{M_{red}}{W_{c,red}} - c$$
истема уравнений,
$$\sigma_{br,red} = \frac{\sigma_{br,1} + \sigma_{br,2} + \dots + \sigma_{br,n}}{n} = \sum_{i=1}^{n} \frac{\sigma_{br,i}}{n} + \sigma_{bc,red} = \frac{\sigma_{bc,1} + \sigma_{bc,2} + \dots + \sigma_{bc,n}}{n} = \sum_{i=1}^{n} \frac{\sigma_{bc,i}}{n} - u$$

$$W_{r,red} = \frac{I_{red,el}}{z_l} , W_{c,red} = \frac{I_{red,el}}{z_c} - momentus comportubeneus pactantyrofi u cwarofi rpaneti, u explusion repetition u explusion u ex$$

Обозначения, принятые в таблице:

РС1, РС2, РС3 – расчетные схемы на основе ТТИП; РС4, РС5, РС6 – расчетные схемы на основе ТУ.

 A_{k}

 A'_{sm}

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ СОПОСТАВЛЕНИЕ РАССМАТРИВАЕМЫХ ТЕОРИЙ

Гипотеза выравнивания опорных моментов:

Изгибающие моменты M_x и M_y , действующие в двух взаимно ортогональных плоскостях и полученные из линейного расчета, полагаются равномерно распределенными по ширине соответствующего поперечного сечения опорной зоны плитной конструкции между смежными нулевыми моментными точками

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ТЕОРИЯ ПРОЧНОСТИ БЕТОНА

Критерий разрушения бетона Вильяма-Варнка при сложном напряженном состоянии:

$$\frac{F}{f_c} - S \ge 0. \qquad (8)$$

где: F – функция состояния главных напряжений σ_{xp} , σ_{yp} , σ_{zp}

Разрушение бетона может произойти в следующих четырех случаях:

Случай 1: $0 \ge \sigma_1 \ge \sigma_2 \ge \sigma_3$ (сжатие-сжатие)

Случай 2: $\sigma_1 \ge 0 \ge \sigma_2 \ge \sigma_3$ (растяжение-сжатие-сжатие)

Случай 3: $\sigma_1 \ge \sigma_2 \ge 0 \ge \sigma_3$ (растяжение-растяжение-сжатие)

Случай 4: $\sigma_1 \ge \sigma_2 \ge \sigma_3 \ge 0$ (растяжение-растяжение) (9)

Расчетная схема 7 (РС7)

Расчетная схема 7 (РС7). Бетон условно не показан

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ТЕОРИЯ ПРОЧНОСТИ БЕТОНА

Параметры поверхности разрушения и независимые функции, описывающие критерии и поверхности:

$$f_{t} = R_{bt}, f_{c} = R_{b} \quad \text{if } f_{c} = 1,2R_{b}, f_{1} = 1,45R_{b}, f_{2} = 1,725R_{b} \quad \text{mpu} |\sigma_{h}| \leq \sqrt{3} \cdot R_{b}, \text{rac:} |\sigma_{h}| = (\sigma_{xr} + \sigma_{yr} + \sigma_{yr})/3$$

$$C_{IJ} \text{vali} \mathbf{1}: 0 \geq \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \quad (\text{скатие-скатие-скатие)}$$

$$F = F_{1} = \frac{1}{\sqrt{15}} \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}} \quad Cos\eta = \frac{2\sigma_{1} - \sigma_{2} - \sigma_{3}}{\sqrt{2} \cdot \sqrt{(\sigma_{1} - \sigma_{2})^{2} + (\sigma_{2} - \sigma_{3})^{2} + (\sigma_{3} - \sigma_{1})^{2}}}$$

$$S = S_{1} = \frac{2r_{2} \cdot (r_{2}^{2} - r_{1}^{2}) \cdot Cos\eta + r_{2} \cdot (2r_{1} - r_{2}) \cdot \sqrt{4(r_{2}^{2} - r_{1}^{2}) \cdot Cos^{2}\eta + 5r_{1}^{2} - 4r_{1} \cdot r_{2}}}{4(r_{2}^{2} - r_{1}^{2}) \cdot Cos^{2}\eta + (r_{2} - 2r_{1})^{2}} \quad r_{1} = a_{0} + a_{1} \cdot \xi + a_{2} \cdot \xi^{2}}$$

$$\tau_{a} \quad r_{2} = b_{0} + b_{1} \cdot \xi + b_{2} \cdot \xi^{2}$$

$$\tau_{a} \quad r_{2} = b_{0} + b_{1} \cdot \xi + b_{2} \cdot \xi^{2}$$

$$\tau_{a} \quad r_{2} = b_{0} + b_{1} \cdot \xi + b_{2} \cdot \xi^{2}$$

$$f_{c} \quad f_{c} \quad f_{$$

 σ_{xp}

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ТЕОРИЯ ПРОЧНОСТИ БЕТОНА

Параметры поверхности разрушения и независимые функции, описывающие критерии и поверхности:

АНАЛИЗ НДС ОПОРНЫХ ЗОН ПЛИТНЫХ КОНСТРУКЦИЙ ТЕОРИЯ ПРОЧНОСТИ БЕТОНА

РС7. Изополя w

РС7. Изополя *σ*_{0,VV}

ФПП-1, РС61

2000

ФПП-2, РС62

ФПП-4, РС64

ПР-3 повязурскистир для орнатуры (22 und)

🖛 IP-3 – mensepetuceup das ajentrepet (22am)

ФПП-5, РС65

ФПП-6, РС66

🗢 12-3 - meanophanop ára opeanoph 122 umb

- 17-5 - manageraucung den sommen (22um)

Схема эксперимента, вид в плане

Схема эксперимента, вид сбоку

ФПП-4 на испытательном стенде. Вид сбоку Отрыв образца по углам опорного контура. Сколы бетона в углах оголовка колонны

ФПП-4 на испытательном стенде. Вид сверху по диагонали ФПП-4 на испытательном стенде. Вид снизу по диагонали

Таблица 2

Марка образца	Марка РС	Габариты образиа. м	Габарит опоры. м	Толщина листов. мм	Класс стали листов	Растянутая арматура	Сжатая арматура	Класс арматуры	<i>Е</i> _s , тс/м ²	Класс бетона	<i>Е_b</i> , тс/м ²	Разрушающая нагрузка $P_{m{h}}$ тс	Дата испытаний в 2010 г.
МК-1	PC60		-	6	C245	-	-	-		-	-	25,6	07.04
ФПП-1	PC61	(h)		0	C343	-	-					108,0	10.06
ФПП-2	PC62),24		-	-	18Ø12	-		07		9	108,0	28.05
ФПП-3	PC63		0.5			18Ø12	-	00	1.1(B30	$\cdot 10$	228,0	14.05
ФПП-4	PC64	×2,	0,5	6	C245	18Ø16	-	A5	, 2		,31	268,0	06.05
ФПП-5	PC65	5,0		0	0345	18Ø12	18Ø8	1			3	228,0	22.04
ФПП-6	PC66					18Ø16	18Ø8					268,0	15.04

Таблица 3

Опытные и теоретические значения разрушающих нагрузок

Опытная		Обозначение физической модели, величина теоретической													
разрушающая	pa	разрушающей нагрузки <i>P_{ult}</i> , тс и коэффициент использования													
нагрузка	ΦП	П-1	ФПП-2		ΦП	ФПП-3		ФПП-4		ФПП-5		ФПП-6			
P_{f} , тс	(PC61)		(PC62)		(PC	(PC63)		(PC64)		(PC65)		266)			
108,0	71,9	71,9 0,67 1		0,97											
128,0															
148,0															
168,0															
188,0															
208,0															
228,0					210,8	0,93			218,2	0,96					
248,0															
268,0							230,6	0,86			238,1	0,89			

ХАРАКТЕР РАЗВИТИЯ ТРЕЩИН В ОБРАЗЦЕ ФПП-4 Этап 0 – 8,0 тс Этап 1 – 28,0 тс Этап 2 – 48,0 тс Этап 3 – 68,0 тс

Этап 8 – 168,0 тс Этап 9 – 188,0 тс Этап 10 – 208,0 тс Этап 11 – 228,0 тс

ФПП-4 после разрушения. Верхняя грань фрагмента плиты ФПП-4 после разрушения. Нижняя грань фрагмента плиты

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ОПОРНЫХ ЗОН ЗАВИСИМОСТЬ ПРОГИБОВ *w* ОТ НАГРУЗКИ *P_f*

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ОПОРНЫХ ЗОН ЗАВИСИМОСТЬ ПРОГИБОВ w ОТ НАГРУЗКИ P_f

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ОПОРНЫХ ЗОН РАСЧЕТ ПО ПРОЧНОСТИ ОПОРНЫХ ЗОН НА ПРОДАВЛИВАНИЕ

Габариты ПСК в плане назначаются из расчета на продавливание по формуле:

$$q_{I} \cdot l_{x} \cdot l_{y} \leq h \cdot R_{bt} \cdot u_{m} = 4 \cdot h \cdot R_{bt} \cdot (l_{x} + l_{y}) / \delta, \quad (10)$$

где
$$q_i = g + p$$
 - расчетная равномерно распределенная нагрузка,
 l_x и l_y - длины пролетов, h - высота поперечного сечения, $l_{0,x}$ и $l_{0,y}$ - расстояния от оси до грани капители,
 $u_m = 4 \cdot (l_{0x} + l_{0y}) = 4 \cdot (l_x + l_y) / \delta$ - периметр,
 $\delta = l_x / l_{0x} = l_y / l_{0y} - коэффициент капители.$
 $S = \frac{l_x}{l_{0x}} = \frac{l_y}{l_{0y}} = \frac{l}{l_0} \le \frac{4 \cdot h \cdot R_m \cdot (l_x + l_y)}{l_x \cdot l_y \cdot q_i} = \frac{8 \cdot h \cdot R_m}{l \cdot q_i}$. (11)
Толщина стальных листов ПСК
определяется по формуле:
 $q_i \cdot l_x \cdot l_y \le n_a \cdot t_r \cdot h \cdot R_{yy}$, (12)
где $n_r = 8$ - количество поверхностей среза,
 t_r - толщина стальных листов, $R_{yy} = 0,58R_y$
 R_y - сопротивление стали по пределу текучести.
 $t_r \ge \frac{q_i \cdot l_x \cdot l_y}{4,64 \cdot h \cdot R_y} = \frac{q_i \cdot l^2}{4,64 \cdot h \cdot R_y}$. (13)

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ОПОРНЫХ ЗОН РАСЧЕТ ПО ПРОЧНОСТИ ОПОРНЫХ ЗОН НА ИЗГИБ

Расчет нормальных сечений опорных зон безбалочных перекрытий по предельным усилиям выполняется на основе решения уравнения равновесия суммы моментов внутренних усилий относительно нейтральной оси и нахождении предельного изгибающего момента M_{ult} в пластической стадии:

$$M_{ult} = R_{b} \cdot A_{b,c} \cdot \frac{x}{2} + R_{sc} \cdot A'_{sm} \cdot z_{s,c} + R_{s} \cdot A_{sm} \cdot z_{s,t} + R_{y} \cdot A'_{r} \cdot \frac{x}{2} + R_{y} \cdot A_{r} \cdot \frac{h-x}{2} \quad . \quad (14)$$

Высота сжатой зоны бетона *x*, находится на основе решения уравнения равновесия суммы проекций внутренних усилий на ось X или Y:

$$R_b \cdot A_{b,c} + R_{sc} \cdot A'_{sm} + R_y \cdot A'_r = R_s \cdot A_{sm} + R_y \cdot A_r . \quad (15)$$

Уравнение (15) преобразуется к виду:

$$R_{b} \cdot x \cdot b + R_{sc} \cdot n_{sc} \cdot A'_{s} + R_{y} \cdot x \cdot t_{r} \cdot n_{r} = R_{s} \cdot n_{s} \cdot A_{s} + R_{y} \cdot t_{r} \cdot n_{r} \cdot (h - x).$$
(16)

Решая уравнение (16) относительно *x*, находим:

$$x = \frac{R_s \cdot n_s \cdot A_s + R_y \cdot h \cdot t_r \cdot n_r - R_{sc} \cdot n_{sc} \cdot A'_s}{R_b \cdot b + 2 \cdot R_y \cdot t_r \cdot n_r} .$$
(17)

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ОПОРНЫХ ЗОН

Таблица 4

Геометрические характеристики элементов и приведенные напряжения

							-	_	-	_		-	-			
№ образца	h,	b,	а,	n_{s} ,	d_s ,	A_{sm} ,	<i>a'</i> ,	n_{sc} ,	d_{sc} ,	A'_{sm} ,	n_r ,	t_r ,	h_{r} ,	$\sigma_{bt,red}$,	$\sigma_{bc,red}$,	
	MM	MM	MM	ШТ	MM	CM^2	MM	ШТ	MM	CM^2	ШТ	СМ	СМ	TC/M^2	TC/M^2	
РС61 (ФПП-1)	240	2000	40								4	0,6	24	792,5	-1016,6	
РС62 (ФПП-2)	240	2000	40	18	12	20,3								808,8	-1082,4	
РС63 (ФПП-3)	240	2000	40	18	12	20,3					4	0,6	24	1606,8	-2124,3	
РС64 (ФПП-4)	240	2000	40	18	16	36,2					4	0,6	24	1840,7	-2480,1	1
РС65 (ФПП-5)	240	2000	40	18	12	20,3	45	18	8	9,0	4	0,6	24	1601,3	-2101,4	
РС66 (ФПП-6)	240	2000	40	18	16	36,2	45	18	8	9,0	4	0,6	24	1828,3	-2448,2	

Таблица 5

Расчет нормальных сечений по предельным усилиям

№ образца	$I_{red,el},$	<i>Р_f</i> , тс	$\sigma_{bt,red},$	$\sigma_{bc,red},$	х, см	ξ=x/h	M _{red} , тс*м	M_{ult} , TC*M	K _M
РС61 (ФПП-1)	247930	108.0	792.5	-1016.6	3.85	0.16	10 M	10 M	0.95
РС62 (ФПП-2)	238211	108,0	808,8	-1082,4	2,70	0,11	18,8	17,4	1,08
РС63 (ФПП-3)	255760	228,0	1606,8	-2124,3	5,68	0,24	39,8	34,0	1,17
РС64 (ФПП-4)	261396	268,0	1840,7	-2480,1	7,12	0,30	47,1	43,9	1,07
РС65 (ФПП-5)	259247	228,0	1601,3	-2101,4	4,87	0,20	40,0	34,3	1,17
РС66 (ФПП-6)	265118	268,0	1828,3	-2448,2	6,30	0,26	47,2	44,8	1,05

Таблица 6

Расчет нормальных сечений по допускаемым напряжениям

№ образца	<i>Р_f</i> , тс	<i>M_{red}</i> , тс*м	$\sigma_{s,red}$, TC/CM 2	Ks	$\sigma_{b,red},$ TC/M 2	K _b	$\sigma_{sc,red}$, tc/cm ²	K _{sc}	$\sigma_{r,red}$, tc/cm ²	K _r	$σ_{rc,red}$, τc/cm ²	K _{rc}
РС61 (ФПП-1)	108,0	18,7			1513,0	0,73			5,6	1,65	2,1	0,62
РС62 (ФПП-2)	108,0	18,8	5,2	1,13	1675,6	0,81						
РС63 (ФПП-3)	228,0	39,8	5,2	1,13	2535,2	1,22			7,0	2,06	3,6	1,06
РС64 (ФПП-4)	268,0	47,1	4,7	1,02	2705,9	1,30			6,4	1,88	3,8	1,12
РС65 (ФПП-5)	228,0	40,0	5,3	1,15	2469,5	1,19	1,5	0,33	7,0	2,06	3,5	1,03
РС66 (ФПП-6)	268,0	47,2	4,7	1,02	2621,1	1,26	1,8	0,39	6,4	1,88	3,7	1,09

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ОПОРНЫХ ЗОН РАСЧЕТ ПО ТРЕЩИНОСТОЙКОСТИ ОПОРНЫХ ЗОН

Расчет ширины раскрытия трещин нормальных к продольной оси элемента выполняется по формуле:

$$a_{crc,f} = \frac{a_{crc,a}}{2} = \frac{1}{2} \cdot \varphi_1 \cdot \varphi_2 \cdot \varphi_3 \cdot \psi_s \cdot \frac{\sigma_{s,red}}{E_s} \cdot l_s \le a_{crc,ult}, \quad (18)$$

где $a_{crc,f}$, $a_{crc,a}$, $a_{crc,ult}$ – фактическая, абсолютная и предельная ширина раскрытия нормальных трещин, $\varphi_1 = 1,4, \ \varphi_2 = 0,5, \ \varphi_3 = 1,0 - \frac{\text{коэффициенты, учитывающие длительность действия нагрузки,}}{\text{профиль продольной арматуры и характер НДС,}}$ $\psi_{s} = 1 - 0,8 \cdot \frac{M_{crc,red}}{M_{red}} = 1 - 0,8 \cdot \frac{h \cdot R_{bt,ser}}{(\sigma_{bt,red} - \sigma_{bc,red}) \cdot z_{t}} - \frac{\kappa_{0}}{\kappa_{0}} + \frac{\kappa_{0}}$ $M_{red} = I_{red,el} \cdot \frac{\sigma_{bt,red} - \sigma_{bc,red}}{h} - приведенный изгибающий момент,$ $M_{crc,red} = R_{bt,ser} \cdot W_{t,red} = R_{bt,ser} \cdot \frac{I_{red,el}}{Z_t} - момент образования нормальных трещин,$ – расстояние между смежными нормальными трещинами (принимается шаг листов). Приведенные напряжения в арматуре с учетом пластической работы бетона сжатой зоны по формуле: $M \cdot (h-x) = I \cdot (\sigma - \sigma) \cdot (h-x)$

$$\sigma_{s,red} = \frac{IM_{red} \cdot (H_0 - X)}{I_{red,pl}} \cdot \alpha_{s1} = \frac{I_{red,el} \cdot (O_{bt,red} - O_{bc,red}) \cdot (H_0 - X)}{h \cdot I_{red,pl}} \cdot \alpha_{s1} ,$$
(19)

высота сжатой зоны бетона *x* находится на основе равенства нулю статического момента сечения с трещиной относительно нейтральной оси:

$$x = h_0 \cdot \left[\sqrt{\left(\mu_s \cdot \alpha_{s2} + \mu'_s \cdot \alpha_{s1} + \frac{b_r \cdot h}{b \cdot h_0} \cdot \alpha_{s1} \right)^2 + 2 \cdot \left(\mu_s \cdot \alpha_{s2} + \mu'_s \cdot \alpha_{s1} \cdot \frac{a'}{h_0} + \frac{b_r \cdot h^2}{2 \cdot b \cdot h_0^2} \cdot \alpha_{s1} \right) - \left(\mu_s \cdot \alpha_{s2} + \mu'_s \cdot \alpha_{s1} + \frac{b_r \cdot h}{b \cdot h_0} \cdot \alpha_{s1} \right) \right].$$
(20)

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТАЛЬНЫХ ИССЛЕДОВАНИЙ ОПОРНЫХ ЗОН

Таблица 7

Геометрические характеристики поперечных сечений без трещин

	a	S_{red} ,	I_b ,	I_{sm} ,	I'_{sm} ,	I_r ,	I _{red,el} ,	A _{red} ,	Z_t ,	<i>Z</i> _{<i>c</i>} ,	M_{red} ,	N _{red} ,	
л≗ооразца	u	см ³	см4	см ⁴	$c M^4$	$c M^4$	см4	M ²	СМ	СМ	тс*м	тс	
РС61 (ФПП-1)	6,34	61981	230400			2765	247930	0,51652	12,00	12,00	18,7	-58,1	
РС62 (ФПП-2)	6,34	58114	230400	1232			238211	0,49287	11,79	12,21	18,8	-60,0	
РС63 (ФПП-3)	6,34	62494	230400	1235		2765	255760	0,52939	11,80	12,20	39,8	-121,4	
РС64 (ФПП-4)	6,34	62900	230400	2124		2765	261396	0,53947	11,66	12,34	47,1	-140,4	
РС65 (ФПП-5)	6,34	63610	230400	1264	521	2765	259247	0,53509	11,89	12,11	40,0	-124,8	
РС66 (ФПП-6)	6,34	64016	230400	2169	542	2765	265118	0,54518	11,74	12,26	47,2	-142,7	

Таблица 8

Геометрические характеристики поперечных сечений с трещинами

No ofinazua	$E_{b,red}$,	a	$x=z_c,$	<i>z</i> , <i>z'</i> см		I_b ,	I_s ,	I'_s ,	$I_{r,pl}$,	I _{red,pl} ,
л⊴ооразца	кгс/см ²	u	СМ	СМ	ζ, τΜ	CM ⁴	CM ⁴	CM^4	см ⁴	см4
РС61 (ФПП-1)	149333,3	14,06	6,61	13,39	6,61	19254			4438	81652
РС62 (ФПП-2)	149333,3	14,06	6,27	13,73	6,27	16433	3827			70238
РС63 (ФПП-3)	149333,3	14,06	8,10	11,90	8,10	35429	2875		3641	127039
РС64 (ФПП-4)	149333,3	14,06	8,99	11,01	8,99	48438	4388		3287	156351
РС65 (ФПП-5)	149333,3	14,06	7,94	12,06	3,44	33371	2953	107	3714	128600
РС66 (ФПП-6)	149333,3	14,06	8,81	11,19	4,31	45587	4533	167	3351	158784

Таблица 9

Момент трещинообразования и ширина раскрытия трещин

№ образца	<i>М_{red}</i> , тс*м	<i>R_{bt,ser}</i> кгс/см 2	φ_1	φ_2	φ_3	<i>W_{t,red}</i> , см ³	<i>М_{сrc,red}</i> , тс*м	$\psi_{ m s}$	<i>l</i> _s , мм	а _{стс,а} , ММ	а _{стс,f} , MM	K _{crc}
РС61 (ФПП-1)	18,7	18,40	1,4	0,5	1,0	20660,8	3,8	0,813	400	0,62	0,31	0,78
РС62 (ФПП-2)	18,8	18,40	1,4	0,5	1,0	20204,5	3,7	0,819	400	0,58	0,58	1,45
РС63 (ФПП-3)	39,8	18,40	1,4	0,5	1,0	21674,6	4,0	0,908	400	0,64	0,32	0,80
РС64 (ФПП-4)	47,1	18,40	1,4	0,5	1,0	22418,2	4,1	0,920	400	0,58	0,29	0,73
РС65 (ФПП-5)	40,0	18,40	1,4	0,5	1,0	21803,8	4,0	0,908	400	0,65	0,33	0,83
РС66 (ФПП-6)	47,2	18,40	1,4	0,5	1,0	22582,5	4,2	0,918	400	0,58	0,29	0,73

ПРАКТИЧЕСКОЕ ВНЕДРЕНИЕ ПСК В СТРОИТЕЛЬСТВЕ

- Фундаментная плита 16-ти этажного жилого дома с нежилыми помещениями и подземной автостоянкой по адресу: г. Москва, ул. Наличная, д. 3а, с. 1.
- Фундаментная плита и плиты перекрытий многофункционального комплекса с подземной автостоянкой по адресу: г. Москва, ул. Азовская, д. 28В.
- Фундаментная плита и плиты перекрытий многофункционального комплекса с подземной автостоянкой по адресу: Калужская область, г. Обнинск.
- Плита перекрытия производственного корпуса по адресу: Брянская область, г. Крачев, ул. Советская, д. 58.
- Фундаментная плита и плита перекрытия производственно-складского корпуса по адресу: Московская область, г. Одинцово, ул. Луговая, д. 14.
- Плиты перекрытий торгового центра по адресу: Калужская область, г. Калуга, ул. Болдина, д. 57.
- Фундаментная плита и плиты перекрытий торгово-выставочного центра с подземной автостоянкой по адресу: г. Тула, ул. Арсенальная.
- Плиты перекрытий, ленточные фундаменты офисно-складского комплекса по адресу: Московская область, д. Николо-Хованское, уч. 9/2-3.
- Фундаментная плита, плита покрытия подземной парковки многоэтажного жилого дома по адресу: Московская область, г. Чехов, ул. Чехова, д. 79.
- Фундаментные плиты, плиты перекрытий и покрытий подземной автостоянки многоэтажного жилого комплекса «Чайка» по адресу: М. О., г. Железнодорожный, ул. Главная, д. 7.

ПРАКТИЧЕСКОЕ ВНЕДРЕНИЕ ПСК В СТРОИТЕЛЬСТВЕ

ОСНОВНЫЕ ВЫВОДЫ ПО РАБОТЕ

- 1. При усилении опорной зоны с помощью стальной решетки происходит существенное увеличение изгибной жесткости конструкции от 58 до 81%, что позволяет снизить расход продольной рабочей арматуры, как на опоре, так и в пролете.
- 2. Установлено, что только объемные расчетные модели на основе теории упругости и механики железобетона позволяют с необходимой точностью прогнозировать несущую способность опорных зон, усиленных стальными решетками.
- 3. Полученные экспериментальные данные свидетельствуют, что стальные решетки существенно меняют картину НДС, образования и раскрытия нормальных трещин, исключается механизм хрупкого разрушения опорных зон плитных конструкций.
- 4. Установлено, что несущая способность опорных зон, усиленных стальными решетками, возросла в диапазоне от 2,11 до 2,48 раз по сравнению с традиционной железобетонной конструкцией.
- 5. Разработана методика расчета по прочности и трещиностойкости опорных зон плитных конструкций, усиленных стальными решетками, которая позволяет наиболее полно учесть их конструктивные особенности и с достаточной точностью от 5 до 17% в запас, оценивать предельные состояния плитных конструкций.
- 6. Выполненные экспериментальные и теоретические исследования показали, что рассечение тела бетона на всю высоту не оказывает существенного влияния на совместную работу конструктивных элементов и с учетом выявленных особенностей необходимо выделить новый тип – плитная сталежелезобетонная конструкция.

ССЫЛОЧНАЯ ЛИТЕРАТУРА

- 1. Трекин Н.Н., Пекин Д.А. Скрытые металлические капители безбалочных монолитных перекрытий. Промышленное и гражданское строительство, №7, 2014. С.17-20.
- 2. Клевцов В.А., Болгов А.Н. Действительная работа узлов плоской безбалочной безкапительной плиты перекрытия с колоннами при продавливании. Бетон и железобетон, №3, 2005. С.17-19.
- 3. Краснощёков Ю.В., Комлев А.А. Прочность плиты безбалочного перекрытия на участках соединения с колоннами. Бетон и железобетон, №1, 2011. С.25-27.
- Силантьев А.С. Проблемы учета действительной работы узлов сопряжения плоских безбалочных плит железобетонных перекрытий с колоннами. Перспективы развития фундаментальных наук. Труды VI Международной конференции студентов и молодых ученых. – Издательство Томского политехнического университета, 2009. – С. 726-729.
- 5. Карпенко Н.И., Карпенко С.Н. Практическая методика расчета железобетонных плит на продавливание по различным схемам. Бетон и железобетон, №5, 2012. С.10-16.
- 6. Кодыш Э.Н., Трекин Н.Н., Никитин И.К. Проектирование участков сборных перекрытий под повышенные нагрузки. Промышленное и гражданское строительство, №2, 2011. С.24-26.

Желающие приобрести монографию «Плитная сталежелезобетонная конструкция», в которой обосновывается возможность применения данного конструктивного решения до проведения обязательных экспериментальных исследований, могут обратиться по адресу: inv@inv-stroy.ru

Стоимость без учета почтовых расходов: **500 рублей**

Применение данного конструктивного решения на основе взаимовыгодного сотрудничества: контактное лицо – Директор по развитию ООО «ИНВ-СТРОЙ» Волошин Владимир: <u>vvoloshin@inv-stroy.ru</u>, Примеры успешной реализации: <u>http://inv-stroy.ru/UserFiles/File/Presentations/Presentation2.pdf</u>

