Types of Flat Finite Elements

SCAD includes various flat finite elements with a triangular and quadrangular shape. The number of nodes in some types of elements can be greater than the number of vertices. In this case additional nodes lie on one or several sides of the element and their numbers follow after the numbers of vertices in any order.

Elements for the Analysis of Thin Flexural Plates

These FEs are always located in the XOY plane and there are three degrees of freedom in each of their nodes: W — vertical displacement (deflection), and UX, UY — rotation angles about the X and Y axes. The FEs can be used in the models with indices 3, 5, 8 and 9 and have an isotropic, orthotropic, or anisotropic material. Moments MX, MY, MXY and shear forces QX and QY are calculated. When the subsoil parameter С1 is specified, RZ is calculated.

Figure 1. Plate finite elements

The list of FEs for the analysis of thin flexural plates is given in Table 1.

Table 1

Types of elements for the analysis of thin plates (Kirchhoff-Love theory)

Type

Name

Number of nodes

Node numbering order and local axes

Comments

11

Rectangular

4

Fig. 1, a

semi-compatible [18, 22, 23]

12, 14

Triangular

3

Fig. 1, b

incompatible [18, 22, 23]

13

Rectangular

4

Fig. 1, a

incompatible [28]

15

Triangular

3-6

Fig. 1, d

SubAreas1, option 1, [24, 23]

16

Quadrangular

4-8

Fig. 1, e

SubAreas, option 2 [25, 23]

18

Triangular

3-6

Fig. 1, d

SubAreas, option 2 [24, 23]

19

Quadrangular

4

Fig. 1, c

SubAreas, [25, 23]

20

Quadrangular

4-8

Fig. 1, e

SubAreas, [24, 23], option 1

 

1 SubAreas – subdomain method: triangular and quadrangular elements are divided, respectively, by medians and diagonals into triangles. Approximation polynomials of the appropriate degree are used on each of these triangles in such a way that compatibility is ensured. We obtain piecewise polynomial approximations.

Bending of Plates according to the Reissner-Mindlin Theory

These elements are used for the analysis of medium thickness plates and implement the Reissner-Mindlin theory. They are completely similar to the elements used for the analysis of thin plates in terms of the specification of the initial data. They differ from the elements given in Table 1 only in their type number, which is greater by 100. For example, element 120 is a quadrangular element with the number of nodes from 4 to 8, similarly to the element 20.

Each node of the elements has three degrees of freedom: w — vertical displacement (deflection), the positive direction of which coincides with the direction of the Z axis, and the rotation angles UX and UY about the X and Y axes.

Table 2

Types of elements for the analysis of medium-thickness plates (Reissner-Mindlin theory)

Type

Name

Number of nodes

Node numbering order and local axes

Comments

111

Rectangular

4

Fig. 1, a

JIDR42 [91, 23]

112

Triangular

3

Fig. 1, b

JIDR3 [91, 23]

115

Triangular

3-6

Fig. 1, d

JIDR3-6 [91, 23]

116

Quadrangular

4-8

Fig. 1, g

isoparametric, JIDR [91, 23]

118

Triangular

3-6

Fig. 1, f

isoparametric, JIDR [91, 23]

119

Quadrangular

4

Fig. 2, b

JIDR [91, 23]

120

Quadrangular

4-8

Fig. 1, e

JIDR, SubAreas [91, 23]

512

Triangular

3

Fig. 1, b

modified, DSG33,[23]

517

Quadrangular

4

Fig. 1, c

isoparametric, MITC44 [2, 75]

518

Triangular

3

Fig. 1, b

DSG3 [76]

 

The list of FEs for the analysis of plates according to the Reissner-Mindlin theory is given in Table 2.

2 JIDR, joint interpolation of displacements and rotations [91, 23].

3 DSG, Discrete Shear Gap [76].

4 MITC, Mixed Interpolation of Tensorial Components [3, 75].

 

Elements for Solving the Plane Stress and Plane Strain Problems of the Theory of Elasticity

All elements considered in this section enable to analyze both plane-stress and plane-strain systems (depending on the index, which is specified when describing the stiffness properties of the elements).

There are the following groups of element types:

Figure 2. Plane finite elements

 

Table 3

Types of elements for the plane problem of the theory of elasticity

Degrees of freedom of nodes

Type

Name

Number of nodes

Node numbering order and local axes

Comments

X, Z

21

Rectangular

4

Fig. 2, a

polylinear shape functions

22

Triangular

3

Fig. 2, b

linear shape functions

25

Triangular

3-6

Fig. 2, d

SubAreas [16, 23]

29

Quadrangular

4-12

Fig. 2, h

SubAreas [26, 23]

30

Quadrangular

4-8

Fig. 2, e

SubAreas [26, 23]

X, Y, Z

23

Rectangular

4

Fig. 2, a

polylinear shape functions

24

Triangular

3

Fig. 2, b

linear shape functions

26

Quadrangular

4-8

Fig. 2, g

isoparametric

27

Quadrangular

4-8

Fig. 2, e

SubAreas [26, 23]

28

Triangular

3-6

Fig. 2, f

isoparametric

Elements with drilling (DDF) and quasi-rotational degrees of freedom (QRDF)

X, Y, UY

121

Rectangular

4

Fig. 2, a

DDF6, incompatible [90, 23]

122

Triangular

3

Fig. 2, b

DDF, incompatible [90, 23]

125

Triangular

3-6

Fig. 2, d

DDF, SubAreas [90, 23]

129

Quadrangular

4-8

Fig. 2, e

DDF, SubAreas, incompatible [90, 23]

130

Quadrangular

4-8

Fig. 2, e

DDF, SubAreas [90, 23]

526

Quadrangular

4

Fig. 2, c

QRDF7, isoparametric [90, 23]

527

Quadrangular

4

Fig. 2, c

QRDF, SubAreas [90, 23]

528

Triangular

3

Fig. 2, b

QRDF [90, 23]

 

All elements can have isotropic, orthotropic or anisotropic material, as well as transverse isotropic for plane deformation.

The list of elements and their main properties are given in Table 3.

The following stresses are calculated — NX, NZ, NXZ, as well as NY — at the analysis of structures in the plane strain state. When the subsoil parameter Сuv  is specified, Rx  and Rz are calculated.

5 This can be either an average rotation angle or a quasi-rotational degree of freedom [90].

6 DDF  – Drilling degrees of freedom[23]

7 QRDF – Quasi-rotational degrees of freedom [23]

 

Finite Elements for the Analysis of Thin Shallow Shells

Finite elements used for the analysis of thin shallow shells can take any position in space. Six degrees of freedom are determined in the nodes of the elements — U, V, W, UX, UY and UZ (three linear displacements along and three rotation angles about the coordinate axes). The degrees of freedom U, V correspond to the membrane deformations, and W, UX, UY correspond to the bending ones.

Figure 3. Shell elements

 

There are the following groups of element types:

Material — isotropic, orthotropic, and anisotropic.

The list of elements is given in Table 4.

Table 4

Elements for the analysis of thin shells (Kirchhoff-Love theory)

Type

Name

Number of nodes

Node numbering order and local axes

Degrees of freedom

Comments

41

Rectangular

4

Fig. 3, a

U, V

polylinear shape functions

W, UX, UY

semi-compatible  [18, 22, 23]

42

Triangular

3

Fig. 3, b

U, V

linear shape functions

W, UX, UY

incompatible [18, 22, 23]

43

Rectangular

4

Fig. 3, a

U, V

polylinear shape functions

W, UX, UY

incompatible [28, 23]

44

Quadrangular

4

Fig. 3, c

U, V

SubAreas [26, 23]

W, UX, UY

SubAreas [25, 23]

45

Triangular

3-6

Fig. 3, d

U, V

SubAreas [16, 23]

W, UX, UY

SubAreas [24, 23], option 1

46

Quadrangular

4-8

Fig. 3, c

U, V

SubAreas [26, 23]

W, UX, UY

SubAreas, option 2 [25, 23]

48

Triangular

3-6

Fig. 3, d

U, V

SubAreas [16, 23]

W, UX, UY

SubAreas, option 2 [24, 23]

50

Quadrangular

4-8

Fig. 3, e

U, V

SubAreas [26, 23]

W, UX, UY

SubAreas, option 1 [26, 23]

Elements with drilling (DDF) and quasi-rotational degrees of freedom (QRDF)

91

Rectangular

4

Fig. 3, a

U, V, UZ

DDF, incompatible [90, 23]

W, UX, UY

semi-compatible  [18, 22, 23]

92

Triangular

3

Fig. 3, b

U, V, UZ

DDF, incompatible [90, 23]

W, UX, UY

incompatible [18, 22, 23]

93

Rectangular

4

Fig. 3, a

U, V, UZ

DDF, incompatible [90, 23]

W, UX, UY

incompatible [28, 23]

94

Quadrangular

4

Fig. 3, e

U, V, UZ

DDF, SubAreas, incompatible [90, 23]

W, UX, UY

SubAreas, [25, 23]

95

Triangular

3-6

Fig. 3, d

U, V, UZ

DDF, SubAreas [90, 23]

W, UX, UY

SubAreas [25, 23]

96

Quadrangular

4-8

Fig. 3, e

U, V, UZ

DDF, SubAreas [90, 22]

W, UX, UY

SubAreas [25, 23]

97

Quadrangular

4-8

Fig. 3, e

U, V, UZ

DDF, SubAreas, incompatible [90, 23]

W, UX, UY

SubAreas [25, 23]

591

Rectangular

4

Fig. 3, a

U, V, UZ

QRDF4 [90, 23]

W, UX, UY

semi-compatible  [18, 22, 23]

592

Triangular

3

Fig. 3, b

U, V, UZ

QRDF3 [90, 23]

W, UX, UY

incompatible [18, 22, 23]

593

Rectangular

4

Fig. 3, c

U, V, UZ

QRDF4, [90, 23]

W, UX, UY

incompatible [28, 23]

594

Quadrangular

4

Fig. 3, c

U, V, UZ

QRDF4, SubAreas [23]

W, UX, UY

SubAreas [25, 23]

 

Stresses NX, NY, NXY, moments MX, MY, MXY and shear forces QX and QY are calculated. When the subsoil parameter СY specified, Rz is calculated, and when Сuv is specified, Rx and Ry are calculated.

The graphic postprocessor calculates also the forces in the plate section SNX, SNZZ, SNXZ.

 

Finite Elements for the Analysis of Shells according to the Reissner-Mindlin Theory

These elements are used for the analysis of shallow shells allowing for shear and implement the Reissner-Mindlin theory. They are completely similar to the elements used for the analysis of thin shells in terms of the specification of the initial data.

The list of elements is given in Table 5.

Table 5

Elements for the analysis of medium-thickness shells (Reissner-Mindlin theory)

Type

Name

Number of nodes

Node numbering order and local axes

Degrees of freedom

Comments

141

Rectangular

4

Fig. 3, а

U, V

polylinear shapes

W, UX, UY

JIDR, incompatible [91, 23]

142

Triangular

3

Fig. 3, b

U, V

linear shape functions

W, UX, UY

JIDR3 [91, 23]

143

Quadrangular

isoparametric

4

Fig. 3, с

U, V

polylinear shape functions

W, UX, UY

MITC4, isoparametric [3, 75, 23]

144

Quadrangular

4

Fig. 3, с

U, V

SubAreas [26, 23]

W, UX, UY

JIDR4, SubAreas [91, 23]

145

Triangular

3-6

Fig. 3, d

U, V

SubAreas [26, 23]

W, UX, UY

JIDR, SubAreas [91, 23]

146

Quadrangular

isoparametric

4-8

Fig. 3, e

U, V

isoparametric

W, UX, UY

JIDR, isoparametric [91, 23]

147

Triangular,

isoparametric

3-6

Fig. 3, f

U, V

isoparametric

W, UX, UY

JIDR, isoparametric [91, 23]

148

Triangular

 

3

Fig. 3, b

U, V

linear shape functions

W, UX, UY

DSG3M [23]

149

Triangular

 

3

Fig. 3, b

U, V

linear shape functions

W, UX, UY

DSG3 [76, 23]

150

Quadrangular

4-8

Fig. 3, e

U, V

JIDR, SubAreas [26, 23]

W, UX, UY

JIDR, SubAreas [91, 23]

Elements with drilling (DDF) and quasi-rotational degrees of freedom (QRDF)

191

Rectangular

4

Fig. 3, a

U, V, UZ

DDF, incompatible [90, 23]

W, UX, UY

JIDR [91, 23]

192

Triangular

3

Fig. 3, b

U, V, UZ

DDF, SubAreas, [90, 23]

W, UX, UY

JIDR, SubAreas [91, 23]

194

Quadrangular

4

Fig. 3, с

U, V, UZ

DDF, SubAreas [90, 23]

W, UX, UY

JIDR, SubAreas [91, 23]

195

Triangular

3-6

Fig. 3, d

U, V, UZ

DDF, SubAreas [90, 23]

W, UX, UY

JIDR, SubAreas [91, 23]

196

Quadrangular

4-8

Fig. 3, e

U, V, UZ

DDF, SubAreas [90, 23]

W, UX, UY

JIDR, SubAreas, [91, 23]

197

Quadrangular

4-8

Fig. 3, e

U, V, UZ

DDF, incompatible, SubAreas [90, 23]

W, UX, UY

JIDR, SubAreas, [91, 2QRDF3]

542

Triangular

3

Fig. 3, b

U, V, UZ

 [90, 23]

W, UX, UY

JIDR [91, 23]

543

Quadrangular

4

Fig. 3, с

U, V, UZ

QRDF, isoparametric [90, 23]

W, UX, UY

MITC4, isoparametric [3, 75, 23]

544

Quadrangular

4

Fig. 3, а

U, V, UZ

QRDF, SubAreas [90, 23]

W, UX, UY

JIDR, SubAreas [91, 23]

546

Quadrangular

4

Fig. 3, с

U, V, UZ

QRDF, isoparametric [90, 23]

W, UX, UY

JIDR, isoparametric [91, 23]

547

Triangular

4

Fig. 3, b

U, V, UZ

QRDF [90, 23]

W, UX, UY

DSG3M [23]

548

Triangular

3

Fig. 3, b

U, V, UZ

QRDF [90, 23]

W, UX, UY

DSG3 [76, 23]