Geometric Properties of a Closed Thin-walled Elliptical Section

Aim: To check the accuracy of the geometric properties calculation for a closed elliptical shell of the rod cross-section.

Name of a file with the initial data: Ellipse_Shell.tns

Formulation: Check the accuracy of the geometric properties calculation for a closed elliptical shell of the rod cross-section.

References: Umansky A. A., Reference book for designers of industrial, apartment and civil buildings (theoretical calculation). Book 1, Moscow, Publishing House On Construction, 1972.

Aleksandrov A.V., Potapov V.D., Derzhavin B.P., Strength of Materials, Moscow, Vysshaya shkola, 1995.

Initial data:

a = 50 cm - length of the semi-major axis of an elliptical shell of the cross-section (along Y axis);
b = 30 cm - length of the semi-minor axis of an elliptical shell of the cross-section (along Z axis);
t = 1.0 cm - thickness of the shell of the cross-section.

 

Design model: The design model is created on the basis of a model of the central contour imported from the AutoCad graphic editor. The model of the contour is a polygon inscribed in an ellipse with given properties and built in polar coordinates with an angle step φ = 3°. The number of vertices of a polygon in a model is 120.

Results Obtained in Tonus


Design model, principal axes, center of mass, ellipse of inertia, core of the section, sectorial coordinate diagrams

Comparison of results:

Parameter

Theory

TONUS

Deviation, %

Cross-sectional area, A cm2

255.180

255.215

0.01

Conventional shear area along the principal U-axis, Av,y cm2

81.383

80.890

0.61

Conventional shear area along the principal V-axis, Av,z cm2

173.738

174.325

0.34

Angle of the principal axes of inertia, α rad

1.5708

1.5708

0.00

Moment of inertia about the centroidal Y1 axis parallel to the coordinate Y axis, Iy cm4

128657.250

128839.668

0.14

Moment of inertia about the centroidal Z1 axis parallel to the coordinate Z axis, Iz cm4

280418.750

279824.429

0.21

Torsional moment of inertia, It cm4

348176.760

347677.226

0.14

Sectorial moment of inertia, Iw cm6

4265014.702

4260080.440

0.12

Radius of gyration about Y1 axis, iy cm

22.457

22.468

0.05

Radius of gyration about Z1 axis, iz cm

33.154

33.112

0.13

Maximum section modulus about U-axis, Wu+ cm3

5608.375

5541.222

1.20

Minimum section modulus about U-axis, Wu‒ cm3

5608.375

5541.222

1.20

Maximum section modulus about V-axis, Wv+ cm3

4288.575

4224.254

1.50

Minimum section modulus about V-axis, Wv‒ cm3

4288.575

4224.254

1.50

Plastic section modulus about U-axis, Wpl,u cm3

7471.878

7467.234

0.06

Plastic section modulus about V-axis, Wpl,v cm3

5277.357

5275.030

0.04

Maximum moment of inertia, Iu cm4

280418.750

279824.429

0.21

Minimum moment of inertia, Iv cm4

128657.250

128839.668

0.14

Maximum radius of gyration, iu cm

33.154

33.112

0.13

Minimum radius of gyration, iv cm

22.457

22.468

0.05

Core size along positive Y(U)-axis, a u+ cm

16.810

16.552

1.53

Core size along negative Y(U)-axis, a u‒ сm

16.810

16.552

1.53

Core size along positive Z(V)-axis, a v+ cm

21.983

21.712

1.23

Core size along negative Z(V)-axis, a v‒ cm

21.983

21.712

1.23

Y-coordinate of the center of mass, ym cm

0.000

0.000

Z-coordinate of the center of mass, zm cm

0.000

0.000

Y-coordinate of the shear center, yb cm

0.000

0.013

Z-coordinate of the shear center, zb cm

0.000

0.040

Perimeter, P cm

510.360

510.430

0.01

Internal perimeter, Pi cm

255.180

255.215

0.01

External perimeter, Pe cm

255.180

255.215

0.01

Polar moment of inertia, Ip cm4

409076.000

408664.097

0.10

Polar radius of gyration, ip cm

40.043

40.016

0.07

Polar section modulus, Wp cm3

8181.520

8092.567

1.09

 

Values of sectorial coordinates ω in the first quarter of the Cartesian coordinate system UV, cm2

φ, °

Theory

TONUS

Deviation, %

0

0.000

0.000

0.00

3

-33.798

-33.931

0.39

6

-66.041

-66.277

0.36

9

-95.381

-95.675

0.31

12

-120.827

-121.132

0.25

15

-141.807

-142.088

0.20

18

-158.147

-158.383

0.15

21

-169.998

-170.171

0.11

24

-177.691

-177.821

0.07

27

-181.736

-181.819

0.05

30

-182.648

-182.691

0.02

33

-180.947

-180.957

0.01

36

-177.108

-177.094

0.01

39

-171.555

-171.521

0.02

42

-164.646

-164.598

0.03

45

-156.680

-156.624

0.04

48

-147.904

-147.842

0.04

51

-138.514

-138.448

0.05

54

-128.666

-128.599

0.05

57

-118.482

-118.417

0.05

60

-108.058

-107.995

0.06

63

-97.466

-97.407

0.06

66

-86.761

-86.706

0.06

69

-75.982

-75.933

0.06

72

-65.158

-65.115

0.07

75

-54.310

-54.273

0.07

78

-43.450

-43.420

0.07

81

-32.586

-32.564

0.07

84

-21.722

-21.707

0.07

87

-10.861

-10.853

0.07

90

0.000

0.000

0.00

 

Notes: Geometric properties of the closed elliptical shell of the rod cross-section can be determined analytically by the following formulas:

\[ A=4\cdot t\cdot a\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right); \] \[ A_{v,y} =4\cdot t\cdot \frac{a\cdot b^{2}}{a^{2}-b^{2}}\cdot \left[ {F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)-E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right]; \] \[ A_{v,z} =4\cdot t\cdot \frac{a}{a^{2}-b^{2}}\cdot \left[ {a^{2}\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)-b^{2}\cdot F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right]; \] \[ \alpha =0; \] \[ \mbox{I}_{\mbox{y}} =I_{v} =I_{1} =\frac{4}{3}\cdot t\cdot \frac{a\cdot b^{2}}{a^{2}-b^{2}}\cdot \left[ {\left( {2\cdot a^{2}-b^{2}} \right)\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)-b^{2}\cdot F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right]; \] \[ \mbox{I}_{\mbox{z}} =I_{u} =I_{2} =\frac{4}{3}\cdot t\cdot \frac{a^{3}}{a^{2}-b^{2}}\cdot \left[ {\left( {a^{2}-2\cdot b^{2}} \right)\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)+b^{2}\cdot F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right]; \] \[ I_{t} =\frac{\pi^{2}\cdot t\cdot a\cdot b^{2}}{E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}; \] \[ \omega =a\cdot b\cdot \left[ {\arcsin \left( {\frac{v}{a}} \right)-\frac{\pi }{2}\cdot \frac{E\left( {\arcsin \left( {\frac{v}{a}} \right);\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}{E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}} \right]; \] \[ v=\frac{a\cdot b\cdot \cos \left( \phi \right)}{\sqrt {a^{2}\cdot \sin ^{2}\left( \phi \right)-b^{2}\cdot \cos^{2}\left( \phi \right)} }; \] \[ {\begin{array}{*{20}c} {I_{\omega } \approx \frac{\pi^{2}\cdot t\cdot a^{3}\cdot b^{2}}{E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}\cdot \left[ {0.007812500\cdot \frac{\left( {a^{2}-b^{2}} \right)^{2}}{a^{4}}+0.003906250\cdot \frac{\left( {a^{2}-b^{2}} \right)^{3}}{a^{6}}+} \right.} \\ {+0.002326965\cdot \frac{\left( {a^{2}-b^{2}} \right)^{4}}{a^{8}}+0.001537323\cdot \frac{\left( {a^{2}-b^{2}} \right)^{5}}{a^{10}}+0.001087957\cdot \frac{\left( {a^{2}-b^{2}} \right)^{6}}{a^{12}}+} \\ {+0.000808729\cdot \frac{\left( {a^{2}-b^{2}} \right)^{7}}{a^{14}}+0.000254599\cdot \frac{\left( {a^{2}-b^{2}} \right)^{8}}{a^{16}}+0.000113341\cdot \frac{\left( {a^{2}-b^{2}} \right)^{9}}{a^{18}}+} \\ {\left. {+0.000053772\cdot \frac{\left( {a^{2}-b^{2}} \right)^{10}}{a^{20}}+0.000024374\cdot \frac{\left( {a^{2}-b^{2}} \right)^{11}}{a^{22}}+0.000008701\cdot \frac{\left( {a^{2}-b^{2}} \right)^{12}}{a^{24}}} \right]} \\ \end{array} }; \] \[ i_{y} =i_{v} =\sqrt {\frac{b^{2}}{3\cdot \left( {a^{2}-b^{2}} \right)}\cdot \left\{ {2\cdot a^{2}-b^{2}\cdot \left[ {1+\frac{F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}{E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}} \right]} \right\}} ; \] \[ i_{z} =i_{u} =\sqrt {\frac{a^{2}}{3\cdot \left( {a^{2}-b^{2}} \right)}\cdot \left\{ {a^{2}-2\cdot b^{2}\cdot \left[ {1-\frac{F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}{2\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}} \right]} \right\}} ; \] \[ W_{u+} =W_{u-} =\frac{4}{3}\cdot t\cdot \frac{a^{2}}{a^{2}-b^{2}}\cdot \left[ {\left( {a^{2}-2\cdot b^{2}} \right)\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)+b^{2}\cdot F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right]; \] \[ W_{v+} =W_{v-} =\frac{4}{3}\cdot t\cdot \frac{a\cdot b}{a^{2}-b^{2}}\cdot \left[ {\left( {2\cdot a^{2}-b^{2}} \right)\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)-b^{2}\cdot F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right]; \] \[ W_{pl,u} =2\cdot t\cdot a\cdot \left[ {a+\frac{b^{2}}{\sqrt {a^{2}-b^{2}} }\cdot \ln \left| {\frac{\sqrt {a^{2}-b^{2}} +a}{b}} \right|} \right]; \] \[ W_{pl,v} =2\cdot t\cdot b\cdot \left[ {b+\frac{a^{2}}{\sqrt {a^{2}-b^{2}} }\cdot \arcsin \left( {\frac{\sqrt {a^{2}-b^{2}} }{b}} \right)} \right]; \] \[ a_{u+} =a_{u-} =\frac{1}{3}\cdot \frac{b}{a^{2}-b^{2}}\cdot \left\{ {2\cdot a^{2}-b^{2}\cdot \left[ {1+\frac{F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}{E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}} \right]} \right\}; \] \[ a_{v+} =a_{v-} =\frac{1}{3}\cdot \frac{a}{a^{2}-b^{2}}\cdot \left\{ {a^{2}-2\cdot b^{2}\cdot \left[ {1-\frac{F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}{2\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}} \right]} \right\}; \] \[ y_{m} =y_{b} =z_{m} =z_{b} =0; \] \[ P_{e} =P_{i} =4\cdot a\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right); \quad P=P_{e} +P_{i} ; \] \[ I_{12} =0; \] \[ I_{p} =\frac{4}{3}\cdot t\cdot a\cdot \left[ {\left( {a^{2}+b^{2}} \right)\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)+b^{2}\cdot F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right]; \] \[ i_{p} =\sqrt {\frac{1}{3}\cdot \left\{ {a^{2}+b^{2}\cdot \left[ {1+\frac{F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}{E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)}} \right]} \right\}} ; \] \[ W_{p} =\frac{4}{3}\cdot t\cdot \left[ {\left( {a^{2}+b^{2}} \right)\cdot E\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)+b^{2}\cdot F\left( {\frac{\sqrt {a^{2}-b^{2}} }{a}} \right)} \right], \]

where: F(x) – Legendre complete elliptic integral of the first kind,
E(x) – Legendre complete elliptic integral of the second kind,
E(k,x) Legendre incomplete elliptic integral of the second kind.