Sectorial Properties of a Thin-walled Ring Sector
Aim: To check the accuracy of the geometric properties calculation for a thin-walled ring sector.
Name of a file with the initial data: ArcSection.tns
Formulation: Check the accuracy of the geometric properties calculation for a thin-walled rod cross-section in the form of a ring sector.
References: Young W.C., Budynas R.G., Roark's Formulas for Stress and Strain, New York , McGraw-Hill, New York, 2002.
Initial data:
Geometric dimensions of the section:
r = 100 cm,
t = 3 cm,
α= 67,5°.
Design model: The design model is created on the basis of a model of the central contour. The model of the contour is a polygon inscribed in an arc of a circle with specified properties. The number of vertices of a polygon in a model is 24.
Results Obtained in Tonus:
Design model, coordinate and principal axes, center of mass, ellipse of inertia, core of the section
Comparison of results:
Parameter |
Theory |
TONUS |
Deviation, % |
---|---|---|---|
Cross-sectional area, A сm2 |
706,858 |
707,159 |
0,043 |
Conventional shear area along the principal U-axis, Av,y cm2 |
247,313 |
247,879 |
0,229 |
Conventional shear area along the principal V-axis, Av,z cm2 |
459,487 |
459,279 |
0,045 |
Torsional moment of inertia, It cm4 |
2126,858 |
2121,476 |
0,253 |
Sectorial moment of inertia, Iw cm6 |
135771063,361 |
136173663,259 |
0,297 |
Y-coordinate of the shear center, yb cm |
66,229 |
66,232 |
0,005 |
Z-coordinate of the shear center, zb cm |
215,963 |
215,981 |
0,008 |
Sectorial Coordinate Diagrams
Notes: Geometric properties can be determined analytically by the following formulas:
\[ A=r\alpha ; \] \[ A_{v,y} =2rt\left( {\frac{\alpha }{2}-\frac{\sin (2\alpha )}{4}} \right); \] \[ A_{v,z} =2rt\left( {\frac{\alpha }{2}+\frac{\sin (2\alpha )}{4}} \right); \] \[ I_{t} =\frac{2}{3}t^{3}r\alpha ; \] \[ I_{\omega } =\frac{2tr^{5}}{3}\left[ {\alpha^{3}-6\frac{(\sin \alpha -\alpha \cos \alpha )^{2}}{\alpha -\sin \alpha \cos \alpha }} \right]; \] \[ e=2r\frac{\sin \alpha -\alpha \cos \alpha }{\alpha -\sin \alpha \cos \alpha }. \]